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Abstract
There is a local ring I of order 4,  without identity for the multiplication, defined by 
generators and relations as 

We give a natural map between linear codes over I and additive codes over �4, that 
allows for efficient computations. We study the algebraic structure of linear codes 
over this non-unital local ring, their generator and parity-check matrices. A canoni-
cal form for these matrices is given in the case of so-called nice codes. By analogy 
with ℤ4-codes, we define residue and torsion codes attached to a linear I-code. We 
introduce the notion of quasi self-dual codes (QSD) over I,   and Type IV I-codes, 
that is, QSD codes all codewords of which have even Hamming weight. This is the 
natural analogue of Type IV codes over the field �4. Further, we define quasi Type 
IV codes over I as those QSD codes with an even torsion code. We give a mass for-
mula for QSD codes, and another for quasi Type IV codes, and classify both types of 
codes, up to coordinate permutation equivalence, in short lengths.

I = ⟨a, b ∣ 2a = 2b = 0, a
2 = b, ab = 0⟩.
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1  Introduction

While rings have been used as alphabets in Coding Theory for more than thirty 
years [14], it is only recently that non-unital rings have been used to that effect [1]. 
In that paper, the authors introduce the notion of Type IV codes over the ring E in 
the terminology of [8, 13], in analogy with Type IV codes over unital rings of order 
four [7].

In this paper we study codes over another non-unital commutative ring of order 
four, denoted by I in the classification of [8, 13]. We call I-code of length n any 
I-submodule of In. Such a code can be thought of as an additive �4-code in the sense 
of [3] with an extra module structure. This allows us to use the additive code pack-
age of Magma [12] in computations, and might lead in the future to the discovery 
of new additive �4-codes. In the ring I the notion of self-dual code must be adapted 
since the usual relation between the size of the code and that of its dual [15], does 
not hold in general. We thus introduce, in Section  2.4, following [1], the notion 
of quasi self-dual code (QSD), that is of an I-code of length n which is both self-
orthogonal and of size 2n. As with other local rings of order 4, residue and torsion 
codes play a fundamental role in the structure of QSD codes. Thus, in Sect. 3, we 
derive a canonical form for the generator matrix of any I-code, based on the residue 
and torsion codes. However, an I-code cannot be determined uniquely by its residue 
and torsion codes. But it is completely characterized by the triplet formed by these 
two codes and a map between the residue code and the cosets of the torsion code. 
This is similar to the technique used to derive mass formulas for self-dual codes over 
rings [2, 5, 9]. In Sect. 4 we give a construction of QSD codes from a pair of binary 
codes; we call this the multilevel construction in analogy with a similar construction 
over ℤ4 [4]. In Sect. 5, we derive a mass formula for QSD codes with the objec-
tive of classifying these codes. The method of calculation of this formula leads us 
to introduce the notion of quasi Type IV codes: QSD codes whose torsion code is 
even, and to derive a mass formula for them. Finally, we give a classification of QSD 
codes up to length 3 in Sect. 6, and some concluding remarks in Sect. 7.

2 � Background material

2.1 � Binary codes

Denote by wt(x) the (Hamming) weight of x ∈ �
n
2
, or, in other words, the number 

of indices i where xi ≠ 0. A linear code is a subspace of � n
2
, viewed as an �2-vector 

space. The dual of a binary linear code C is denoted by C⊥ and defined as
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where (x, y) =
∑n

i=1
xiyi, denotes the standard inner product. A code C is self-

orthogonal if it is included in its dual: C ⊆ C⊥. A code is even if all its codewords 
have even weight. All self-orthogonal codes are even but not conversely. Two binary 
codes are equivalent if there is a permutation of coordinates that maps one to the 
other.

2.2 � Rings

Following [8], we define a ring on two generators a, b by its relations

Thus, I has characteristic two, and consists of four elements I = {0, a, b, c}, with 
c = a + b. The addition table is immediate from these definitions

The multiplication table is as follows.

From this table, we infer that this ring is commutative, and without an identity ele-
ment for the multiplication. It is local with maximal ideal J = {0, b}, and residue 
field �2 = {0, 1}, the finite field of order 2. Thus we have a b-adic decomposition as 
follows. Every element i ∈ I can be written

where s, t ∈ �2 and where we have defined a natural action of �2 on I by the rule 
r0 = 0r = 0 and r1 = 1r = r for all r ∈ I. Thus a = 1a, b = 1b and c = a1 + b1 = c1. 
Note that for all r ∈ I, this action is “distributive” in the sense that r(s⊕ t) = rs + rt, 
where ⊕ denotes the addition in �2. On occasion we will use the inner product 
notation (x, r) for x ∈ �

n
2
, r ∈ In to denote

C⊥ = {y ∈ �
n
2
∣ ∀x ∈ C, (x, y) = 0},

I = ⟨a, b ∣ 2a = 2b = 0, a2 = b, ab = 0⟩.

+ 0 a b c

0 0 a b c

a a 0 c b

b b c 0 a

c c b a 0

× 0 a b c

0 0 0 0 0

a 0 b 0 b

b 0 0 0 0

c 0 b 0 b

i = as + bt,

(x, r) =

n∑

i=1

xiri =
∑

xi=1

ri.
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Denote by � ∶ I → I∕J ≃ �2 the map of reduction modulo J . Thus �(0) = �(b) = 0, 
and �(a) = �(c) = 1. This map is extended in the natural way in a map from In to � n

2
.

2.3 � Modules

A linear I-code C of length n is an I-submodule of In. It can be described as the I-span 
of the rows of a generator matrix. An �4-code of length n is just any non-empty subset 
of � n

4
 . The notion and notation of Hamming weight over �4 is the same as over �2 . An 

additive code of length n over �4 is an additive subgroup of � n
4
 . It is an �2 vector space 

with 4k elements for some k ≤ n (here 2k is an integer, but k may be half-integral). 
Using a generator matrix G, such a code can be cast as the �2-span of its rows. To 
every linear I-code C is attached an additive �4-code �(C) by the alphabet substitution

where �4 = �2[�], extended naturally to � n
4
 . Trivially, the Hamming weight of �(x) 

is wt(x).
We use the Magma notation

for the weight distribution of an additive �4-code code, where Ai is the number of 
codewords of weight i. Two I-codes are permutation equivalent if there is a per-
mutation of coordinates that maps one to the other (and, consequently, the �-image 
of one on the �-image of the other). The automorphism group Aut(C) of an I-code 
C is the group of column permutations that leave C invariant.

2.4 � Duality

Define an inner product on In , by writing (x, y) =
∑n

i=1
xiyi for all x, y ∈ In.

The dual C⊥ of a linear I-code C is the module defined by

Thus the dual of a module is a module. A code is self-dual if it is equal to its dual.

Remark 1  The repetition code of length 2 is the linear I-code defined by 
R2 ∶= {00, aa, bb, cc}. Its dual is R⊥

2
= {00, aa, bb, cc, 0b, b0, ac, ca}, a supercode of 

R2 of size 8. In length one, we have J⊥ = I.

Remark 1 shows that the product of the sizes of a code and its dual is not always 4n. 
A code C of length n is nice if |C||C⊥| = 4n. A linear I-code C is self-orthogonal if

Clearly, C is self-orthogonal if and only if C ⊆ C⊥.

A code of length n is quasi self-dual (or QSD for short) if it is self-orthogonal 
and of size 2n . Note that the direct sum of two QSD codes is QSD.

0 → 0, a → �, b → 1, c → �2,

[<0, 1>,⋯ ,<i,Ai>,⋯ ,<n,An>]

C⊥ = {y ∈ In ∣ ∀x ∈ C, (x, y) = 0}.

∀x, y ∈ C, (x, y) = 0.
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Following a terminology from [7], a quasi self-dual code over I with all weights 
even is called a Type IV code. This notion is also stable by taking direct sums.

Remark 2  The repetition code of length 2 is quasi self-dual over I and is of Type IV. 
This shows, by taking direct sums of codes, that Type IV codes over I exist for all 
even lengths. We see that J is a quasi self-dual code over I. This shows, again by tak-
ing direct sums, that QSD codes exist for all integer lengths.

We introduce the notion of Quasi Type IV code (QT4) as a QSD code with an 
even torsion code (see next section for a definition of torsion code). Every Type IV 
code is quasi Type IV but not conversely as the next example shows. The motivation 
will appear in the mass formula section.

Example 1  The code with three generators 
⎛
⎜
⎜
⎝

a b a b

0 b b 0

b 0 0 b

⎞
⎟
⎟
⎠

 is QSD but not Type 

IV as the sum of first and second row has odd weight. But its torsion code with gen-

erator matrix 
⎛
⎜
⎜
⎝

1 0 1 0

0 1 1 0

1 0 0 1

⎞
⎟
⎟
⎠

 is an even code.

3 � Structure of linear codes

Let C be a code of length n over I. With this code we associate two binary codes of 
length n: 

1.	 the residue code defined by res(C) = {�(y) ∣ y ∈ C},

2.	 the torsion code defined by tor(C) = {x ∈ �
n
2
∣ bx ∈ C}.

Recall that the Trace function of �4 down to �2 is defined by ∀z ∈ �4, Tr(z) = z + z2 . 
In other words

By distinguishing four cases and induction on n it can be checked that for all x ∈ In , 
we have Tr(�(x)) = �(x), and thus res(C) = Tr(�(C)). Similarly, we see that tor(C) is 
the so-called subfield subcode of �(C), that is �(C)

⋂
�
n
2
 . Denote by �C the restric-

tion of � to C. We see that tor(C)b = Ker (�C) , and that res(C) = Im (�C) . By the 
first isomorphism theorem applied to the map �C, we see that |C| = |res(C)||tor(C)| . 
There is a relationship between these two codes.

Lemma 1  If C is a linear I-code then res(C) ⊆ tor(C).

Proof  Write an arbitrary codeword z in b-adic decomposition form as z = ax + by, 
with x,  y binary vectors. Since �(ax + by) = x, we have x ∈ res(C). Note that, by 

Tr(0) = Tr(1) = 0;Tr(�) = Tr(�2) = 1.
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definition of the residue code, any x ∈ res(C) arises in that way. Multiplying the 
codeword ax + by by a,  we see that bx ∈ C, implying x ∈ tor(C). 	�  ◻

We let k1 = dim(res(C)), and k2 = dim(tor(C)) − k1 , a nonegative quan-
tity by Lemma  1, and say that C is of type  (k1, k2). It can be seen that C is 
free as an I-module if and only if k2 = 0. Further, by a previous observation, 
|C| = |res(C)||tor(C)| = 22k1+k2 . We give a characterization of the generator matrix 
of a linear code as a function of these invariants.

Theorem 1  Assume C is an I-linear code of length n and type (k1, k2). Then, up to 
a permutation of columns, there exists a generator matrix G of C that is of the form

where Ij denotes the identity matrix of order j,  the matrix Y has entries in I, and X, Z 
are binary matrices.

Proof  Write the generator matrices of res(C) and tor(C) as G1 =
(
Ik1 X �(Y)

)
 and 

G2 =

(
Ik1 X �(Y)

0 Ik2 Z

)

 , respectively, with Y a matrix of suitable dimensions with 

entries in I,  and X, Z are binary matrices. By the first isomorphism theorem applied 

to the map �C , the matrix G can be written on the form 
(

R

bT

)

, where

and �(R) = G1 . By taking linear combinations with rows of T,  the matrix R can be 
written in the above form. 	� ◻

Theorem 2  Assume C is a nice I-linear code of length n and type (k1, k2) . Then a 
parity check matrix H of C consistent with Theorem 1 is of the form

where Ij denotes the identity matrix of order j, and X,  Y,  Z are as in Theorem  1. 
In particular C⟂ is of type (n − k1 − k2, k2) . If, furthermore C is self-dual, then 
n = 2k1 + k2.

Proof  A direct calculation shows that HGt = 0. This shows that, as I-modules, 
⟨H⟩ = In−k1H ⊆ C⊥ . Equality follows by size comparison upon noticing that ⟨H⟩ has 
type (n − k1 − k2, k2), and upon observing that by the niceness hypothesis we have 
|C||C⊥| = 4n . The last assertion follows by unicity of the type k1 = n − k1 − k2. 	�  ◻

To prepare for the derivation of a mass formula, we develop a method similar to 
that of [9]. We define a map F from res(C) to � n

2
∕tor(C) by the formula

G =

(
aIk1 aX Y

0 bIk2 bZ

)

,

tor(C) = res(C)⊕ ⟨T⟩,

H =

(
Yt + aZtXt aZt aIn−k1−k2
bXt bIk2 0

)

,

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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Since C is I-linear, it follows that F is �2-linear. We write �(C) = (res(C), tor(C),F).

The following Theorem is immediate, but essential.

Theorem 3  Keep the above notation. The map � is a one to one correspondence 
between linear I-codes C of length n, and triplets (C1,C2,F) such that C1,C2 are 
binary codes of length n, satisfying C1 ⊆ C2 and such that the map F is �2-linear 
from C1 to � n

2
∕C2.

Proof  Let C be an arbitrary linear I-code. Let �(C) = (C1,C2,F), be given. Writing 
an arbitrary codeword of C as ax + by, with x, y binary vectors of length n, we see 
that

•	 �(ax + by) = x, implying x ∈ C1;
•	 y ∈ F(x), by definition of F.

From there it follows that the code C is uniquely determined as

	�  ◻

4 � Construction of QSD codes

We call the next construction of I-codes from binary codes the multilevel 
construction.

Theorem 4  Let C1 be a self-orthogonal binary code of length n, and let C2 be a 
binary code of length n, where C1 ⊆ C2 . The code C defined by the relation

is a self-orthogonal code. Its residue code is C1 and its torsion code is C2 . If, further-
more, |C1||C2| = 2n , then C is QSD.

Proof  The code C is closed under addition, by linearity of C1 
and C2 . Let us check it is closed under multiplication by a sca-
lar of I. Note that aC = a2C1 + abC2 = bC1 ⊆ bC2 ⊆ C . Likewise, 
we see that cC = caC1 + cbC2 = bC1 ∈ C . Because bI = {0}, we get 
bC = baC1 + b2C2 = {0} ⊆ C.

Thus C is I-linear.
For all x, x′ in C1 and y, y′ in C2 we have the inner products

F(x) = {y ∈ �
n
2
∣ ax + by ∈ C}.

C =
⋃

x∈C1

⋃

y∈F(x)

ax + by.

C = aC1 + bC2,
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since x ∈ C1 which is self orthogonal. Thus C is self-orthogonal. The residue and 
torsion codes are immediately derived from the definitions. Since |C| = |C1||C2|, 
the last assertion follows. 	�  ◻

Note that for given residue and torsion codes many QSD codes may exist. As 

an example, the code C1 generated by the matrix 
(
a a 0

0 b b

)

 and the code C2 

generated by the matrix 
(
a a b

0 b b

)

 have same residue and torsion codes.

5 � Mass formulas

5.1 � QSD codes

Define NI(n, k) as the number of QSD I-codes of length n and type (k, n − 2k). Let 
�(N,K) denote the number of self-orthogonal binary codes having parameters 
[N, K]. The following explicit formula for this quantity can be found in [10, p.1]. 
It is valid for K ≥ 1.

We need the following counting lemma. For information on q-binomial coefficients 
we refer the reader to [11, p. 443].

Lemma 2  The number E(q, n, r, s) of subspaces of dimension r of � n
q
 containing a 

given subspace of dimension s < r is 
(
n−s

r−s

)

q
 , where 

(
i

i

)

q
 denotes the q-binomial coef-

ficient defined for integers i ≥ j by

Proof  Follows by Lemma 3 of [6] with i = j = s and k = r . 	�  ◻

We also need the following simple Lemma.

Lemma 3  If C is a self-orthogonal I-code, then its residue res(C) is a binary self-
orthogonal code.

Proof  By linearity of the map � it can be seen that ∀x, y ∈ C , we have

(ax + by, ax� + by�) = a2(x, x�) + ab(x, y�) + ba(y, x�) + b2(y, y�) = b(x, x�) = 0

�(N,K) =

⎧
⎪
⎨
⎪
⎩

∏K

j=1
(2N+1−2j−1)

∏K

j=1
(2j−1)

if n ≥ 3 is odd ,

(2N−K−1)
∏K−1

j=1
(2N−2j−1)

∏K

j=1
(2j−1)

if n ≥ 2 is even .

(
i

j

)

q

=
(qi − 1)(qi−1 − 1)⋯ (qi−j+1 − 1)

(qj − 1)(qj−1 − 1)⋯ (q − 1)
.
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The result follows by res(C) = Im(�C) . 	�  ◻

We can now count the QSD codes of given length and residue dimension.

Theorem 5  For all lengths n and type (k, n − 2k) , with k > 0 we have

Proof  Let C be a QSD code of length n and type (k, n − 2k) . We reason in terms of 
the map � . Note the following three independent counts. 

1.	 By Lemma 3, we know that res(C) is self-orthogonal. By definition of � , there 
are �(n, k) self-orthogonal binary [n, k] codes that can be used as res(C).

2.	 The residue code is contained in E(2, n, n − k, k) =
(
n−k

n−2k

)

2
 possible torsion codes 

by Lemma 2 for r = k, s = n − k , and q = 2.
3.	 The additive map F is arbitrary from res(C) to � n

2
∕tor(C). By the QSD hypothesis, 

these two vector spaces have dimension k. Hence, by considering the matrix of 
F,  we see that there are 2k2 choices for F.

The result follows by multiplying the three factors together. 	�  ◻

The following mass formula follows by the usual counting technique.

Corollary 1  For given length n and type (k, n − 2k) , with k > 0 , we have

where C runs over distinct representatives of equivalence classes under column per-
mutations of QSD codes of length n and type (k, n − 2k).

5.2 � Quasi type IV codes

Define N4(n, k) as the number of QT4 I-codes of length n and type (k, n − 2k) . The 
analogue of Lemma 2 is as follows.

Lemma 4  The number EE(n, r, s) of even codes of dimension r of � n
2
 containing a 

given subspace of dimension s < r is 
(
n−1−s

r−s

)

2
.

Proof  Follows by Lemma 3 of [6] with i = j = s and k = r for q = 2 . Here C in the 
notation of [6] is the binary code of length n, and dimension n − 1 , consisting of all 
even Hamming weight vectors. 	�  ◻

(�(x), �(y)) = �((x, y)) = �(0) = 0.

NI(n, k) = �(n, k)

(
n − k

n − 2k

)

2

2k
2

.

∑

C

1

|Aut(C)|
=

�(n, k)
(
n−k

n−2k

)

2
2k

2

n!
,
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Using this Lemma the following analogue of Theorem 5 for QT4 codes can be 
shown. The easy proof is omitted.

Theorem 6  For all lengths n and type (k, n − 2k) , with k > 0 we have

The following mass formula follows by the usual counting technique.

Corollary 2  For given length n, and type (k, n − 2k) , with k > 0 , we have

where C runs over distinct representatives of equivalence classes under column per-
mutations of QT4 codes of length n and type (k, n − 2k).

6 � Short length classification ( n < 4)

In the following, we classify, up to coordinate permutation, QSD codes. We con-
struct QSD codes by means of the multilevel construction, and of the characteriza-
tion of Theorem 1, in short lengths ( n < 4 ) and rely on the mass formula to know 
the maximum number of equivalence classes.

For n = 1 there is just one QSD code with generator matrix 
(
b
)
.

6.1 � n = 2

There are two codes of length 2. Both are Type IV codes and their weight distribu-
tion is [<0, 1>,<2, 3>] . One is generated by 

(
a a

)
 and the other one by 

(
a c

)
.

6.2 � n = 3

There are exactly six codes that are not permutation equivalent. All these codes have 
an automorphism group of order 2. The following four codes have a minimum dis-
tance equal to 1.

•	 One code has generator matrix 

 and weight distribution [<0, 1>,<1, 2>,<2, 1>,<3, 4>].
•	 One code has generator matrix 

N4(n, k) = �(n, k)

(
n − 1 − k

n − 2k

)

2

2k
2

.

∑

C

1

|Aut(C)|
=

�(n, k)
(
n−1−k

n−2k

)

2
2k

2

n!
,

(
a a b

0 b 0

)
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 and weight distribution [<0, 1>,<1, 2>,<2, 5>].
•	 The last two codes amongst these four share the same weight distribution 

[<0, 1>,<1, 1>,<2, 3>,<3, 3>] . Their generator matrices are 

 and 

Two codes have minimum distance 2 and weight distribution 
[<0, 1>,<2, 5>,<3, 2>] . Their generator matrices are

and

These two codes are quasi Type IV codes with, as torsion code, a binary code of 

parameters [3,  2,  2] and generator matrix 
(
b 0 b

0 b b

)

 . Note that we obtain two 

quasi Type IV codes, which is consistent with Corollary 1.

7 � Conclusion

In this article, we have studied quasi self-dual codes over the non-unital commu-
tative ring I of order four. The existence of codes that are not nice precludes any 
attempt to derive a general MacWilliams formula, since this would imply a relation 
between the size of a code and that of its dual. We have thus introduced QSD codes 
as an alternative to the concept of self-dual codes. For similar reasons, we have 
introduced the notion of quasi Type IV codes, in view of the difficulty of studying 
Type IV codes. We have derived a mass formula for QSD codes and for QT4 codes 
to classify them under coordinate permutation equivalence.

The main open problem arising from this work would be to derive a mass for-
mula for Type IV codes. This would require a characterization of these codes akin to 
what exists over E [1], or over unital rings of Type IV [7]. It would be interesting to 
derive a classification under a notion of equivalence based on the symmetry of the 

(
a a 0

0 b 0

)

(
a 0 a

0 b 0

)

(
a 0 c

0 b 0

)

.

(
a a b

0 b b

)

(
a a 0

0 b b

)

.
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alphabet between a and c. It might be a simpler classification than the classification 
under column permutation of the present paper.

On the computational side, pushing the classification of QSD codes beyond 
length 3,  is certainly a worthy project, and might lead to the discovery of new addi-
tive �4-codes in lengths > 3.
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