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Abstract

Many algorithms have been proposed in the last ten years for the dis-
covery of dynamic communities. However, these methods are seldom com-
pared between themselves. In this article, we propose a generator of dy-
namic graphs with planted evolving community structure, as a benchmark
to compare and evaluate such algorithms. Unlike previously proposed
benchmarks, it is able to specify any desired evolving community struc-
ture through a descriptive language, and then to generate the correspond-
ing progressively evolving network. We empirically evaluate six existing
algorithms for dynamic community detection in terms of instantaneous
and longitudinal similarity with the planted ground truth, smoothness of
dynamic partitions, and scalability. We notably observe different types
of weaknesses depending on their approach to ensure smoothness, namely
Glitches, Oversimplification and Identity loss. Although no method arises
as a clear winner, we observe clear differences between methods, and we
identified the fastest, those yielding the most smoothed or the most accu-
rate solutions at each step. Dynamic Networks, Community Detection,
Dynamic Communities, Network Generator

1 Introduction

Many algorithms have been proposed in recent years to discover evolving com-
munities in dynamic networks. Because few empirical comparisons of them have
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been conducted, their relative strengths and weaknesses are mostly unknown.
A likely reason for the scarcity of such work is the lack of reliable benchmarks to
generate synthetic graphs, i.e., an equivalent to the LFR benchmark [19] in static
settings. Several benchmarks have already been proposed (e.g. [12, 2, 28, 32]),
but none of them allow to generate a dynamic network corresponding to a sce-
nario of community evolution described by the experimenter.

In this paper, we will focus on the problem of detecting communities in pro-
gressively evolving graphs, i.e., graphs for which the graph is well defined at any
given time, and change at a slow rate. Such graphs are common in human ac-
tivities [27], for instance friendships in social networks, physical infrastructures
(electricity/transport network, etc.) and physical proximity between individuals
captured at a high rate using personal sensors[10].

Since reproducibility is paramount in such a work, we provide an open-
source implementation of the benchmark generator, algorithm implementations
and evaluation scores as a fully documented python library and a notebook
allowing to reproduce the results1.

1.1 Ship of Theseus and the nature of dynamic communi-
ties

Communities lifecycles –their history, the events they undergo, etc.– are of ut-
most importance since they are what makes the difference between static and
dynamic community detection. Indeed, two algorithms that agree on what is the
best partition for each static graph composing the dynamic network might still
disagree on what the corresponding dynamic communities are. A good example
of this problem is to consider the ship of Theseus paradox.

The paradox of the ship of Theseus is an ancient thought experiment about
the identity of an object evolving through time. It can be formulated as follows:

Let’s consider a famous ship, the ship of Theseus, composed of planks, and
kept in a harbor as a historical artifact. As time passes, some planks deteriorate
and need to be replaced by new ones. After a long enough period, all the original
planks of the ship have been replaced. Can we consider the ship in the harbor
to still be the same ship of Theseus? If not, at which point exactly did it cease
to be the same ship?

Another aspect of the problem arises if we add a second part to the story.
Let’s consider that the old planks were stored in a warehouse, repaired, and
that a new ship, identical to the original one, is built with them. Should this
ship, just built out, be considered as the real ship of Theseus?

Let’s call the original ship A, the ship that stayed in the harbor B, and the
reconstructed from original pieces, C.

In terms of dynamic community detection, this scenario can be modeled
(Fig. 1) by a progressively evolving community c1(ship A), that nodes leave one

1Library: https://tnetwork.readthedocs.io/en/latest/.
Experiments reproduction: https://tinyurl.com/y7a2lrbz
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Figure 1: Illustration of the Ship of Theseus paradox. C is composed of the same
nodes as A, but A progressively transforms into B. The choice to consider that
B or C is the same community as A therefore depends only on the community
life-cycle.

after the others until all of them have been replaced (ship B). A new community
c2 appears after that, composed of the same nodes as the original community
c1 (ship C).

A static algorithm analyzing the state of the network at every step would be
able to discover that there is, at each step, one community (at the beginning)
and two at the end. But the whole point of dynamic community detection is
to yield a longitudinal description, and therefore, to decide when two ships at
different points in time are the same or not.

The benchmark we propose is designed to represent complex evolution sce-
narios such as the ship of Theseus, in addition to usually defined events such
as merge and split. It allows representing progressive changes for each event,
e.g., add and remove edges incrementally such that two originally distinct com-
munities merge into a single one. Unlike previous benchmarks, any community
evaluation scenario can be described and generated using an appropriate lan-
guage, and the network has both stable links and a community structure with
known properties. We detail the difference with previous methods in section 2.

The rest of the paper is organized as follows. In section 2, we introduce
previously proposed benchmarks, and we emphasize the added value of our
proposition. In section 3, we detail the generation process of our benchmark.
Finally, in section 4, we compare several algorithms with different smoothing
approaches on networks generated using the proposed benchmark.

2 Related works

A few methods have already been introduced in the literature to generate bench-
mark graphs for progressively evolving communities.

In Granell et al. [12], two cyclic scenarios are proposed: one generates nodes
migration (a set of nodes switch from a larger community to a smaller, and
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back), the other generates sequences of Merge-Split. In both cases, communities
are defined as Stochastic Block Models (SBM), parameterized by fixed internal
density pin and external density pout.

In Bazzi et al. [2], a generic method is introduced to generate multilayer
networks with community structures. It requires to define an interlayer depen-
dency tensor encoding the probability for node ui in layer la (ui, la) to copy
its community assignment from node uj in layer lb (uj , lb). In the most simple
case, for dynamic networks, the community of (ui, lt) is defined as depending
only on the affiliation of the same node in the previous layer (ui, lt−1). A ran-
dom iterative process is used to attribute nodes to communities in each layer,
satisfying both the constraints of the interlayer dependency tensor and a chosen
distribution of community sizes. Edges are added in a second step, indepen-
dently for each t, according to a degree corrected SBM, parameterized by a
unique mixing parameter µ ∈ [0, 1], where 0 corresponds to all edges falling
inside communities, and 1 corresponds to no community structure. Note that
edges are picked independently at each step, and events such are split or merge
cannot be represented.

In RDYN [28], community’s lifecycles are created randomly based on rules:
events (merge/split) have a probability to occur, and when an event occurs,
involved communities are chosen by a random selection biased by the size of
communities. Edges evolve gradually by combining two processes: a decay that
makes old edges disappear, and a biased growth that reinforces community
structure. The generation is driven by parameters, such as number of nodes,
average degree, mixing coefficient, probability of node appearance, probability
of node action, etc. Because the structure of communities at any given time
is not necessarily well defined, the quality of communities is evaluated at each
step using conductance, and communities are included in the ground truth only
when the value is higher than a threshold. This benchmark generates progres-
sive events with complex lifecycles, but the evolution of communities is fully
determined by internal mechanisms, and one cannot represent custom scenar-
ios. The properties of generated communities are also not fully known, apart
from their conductance property, since it is the result of an ad-hoc dynamic
process.

The method proposed by Sengupta et al. [32] yields overlapping communi-
ties. At each step, a community event (birth, death, split, merge) occurs with
probability p and a node event (add, remove) with probability p′. The initial
community structure is generated by a static algorithm [6]. Edges inside each
community are distributed randomly (Erdős-Renyi graph), with a probability
decreasing with size: α

nγ with n the number of nodes and α, γ ∈]0, 1[ chosen
parameters. Edges are later modified randomly according to two factors: 1)ran-
dom modifications at each step and 2) gradual evolution to match changes in
the community structure. For instance, if two communities merge, edges to add
are drawn at random among disconnected pairs of nodes in the resulting com-
munity in order to reach the desired density. Rules are introduced to ensure
that communities stay coherent (Not becoming too small, not allowing simulta-
neous operations on the same nodes, etc.) Limitations are comparable to those
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SPLIT(…)
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Scenario description Edges generation
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SPLIT(…) SPLIT(…)

Figure 2: Illustration of the benchmark generation process.

of RDYN.
In several other articles, notably [13, 23, 33, 11, 31, 35, 34, 3], ad-hoc bench-

marks were introduced, usually to test one specific scenario, with similar or
more restricted scopes.

Unlike all previous methods, the benchmark we propose introduces a lan-
guage to represent any scenario of community evolution by specifying events
(merge, split, etc.), either through its complete description, or by drawing ran-
domly sequences of events (see section 4.2 for examples). It also generates a
network with 1) stable links (links present in t are likely to be present in t+ 1),
2) communities with known properties (see section 3.2.1 for details), 3)Able to
represent progressive events, such as a progressive merge or split.

To the best of our knowledge, a single paper has been published so far com-
paring empirically dynamic community detection algorithms: in [7], 5 methods
have been tested on RDyn benchmark [28]. They were compared in terms of
average community quality at each step. In this article, we compare on different
aspects, by introducing measures of smoothness and longitudinal quality (see
Section 4.3)

3 Synthetic network generation process

The benchmark we propose follows a two-step process (Fig. 2):

1. Scenario description: the experimenter defines initial communities and
the scenario of their evolution (sequence of events).

2. Edges generation: edges are generated by a partly-random process.
They form a dynamic network corresponding to the described community
structure, satisfying some community quality properties.

3.1 Scenario description

Any scenario can be described by a set of community events, each of them
modifying the affiliation of nodes. To represent these community events, we
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define instructions allowing to represent the most common ones (Merge, Split,
Birth, Death, etc.), or any arbitrary, more complex event.

We therefore define a language allowing to describe algorithmically any com-
munity evolution scenario. This language is composed of instructions, in the
following form:

C← EVENT(parameters)[delay,triggers]

Where

• C is a list of communities yielded by this event, a community being a
tuple < ID,L,N > with:

– ID a unique identifier for this community. Each community yielded
by an event has a new, unique ID, e.g., an event that takes a com-
munity and removes one of its node will yield a community with a
new unique ID.

– L the label associated with this community. The label corresponds
to the identity of the community: e.g., after a split, we can choose
to attribute new labels to both resulting communities, or to give the
label of the split community to one of the resulting ones.

– N the set of nodes composing this community.

• EVENT is the type of event (e.g., MERGE, BIRTH, etc.)

• parameters differ for each event. They are, for instance, communities to
merge, labels associated to the yielded communities, etc.

• triggers is the set of communities that must be ready (have been yielded
by a previous event) for this event to be triggered

• delay is a number of steps to wait before starting the event after the
triggers conditions are fulfilled.

To sum up, the instruction above means that the event EVENT will start delay
steps after all communities in triggers appeared. This trigger/delay mechanism
allows to define complex relations between communities, for instance the division
of a community being triggered by the apparition of another –topologically
unrelated– community.

We first define a single event, Assignment, allowing to represent any change
between an arbitrary number of communities.

ASSIGN(BEFORE-COM, AFTER-NODES, AFTER-LABELS )

• BEFORE is an ordered list of communities that will be modified

• AFTER −NODES is an ordered list of sets of nodes, each set of nodes
corresponding to a community yielded by this event
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• AFTER − LABELS is an ordered list of labels to attribute to yielded
communities.

Input: BEFORE-COM, AFTER-NODES, AFTER-LABELS
Global AC : set of currently active communities
begin

for c ∈ BEFORE-COM do
AC ← AC \ c

end
NEW-COMS ← [] ;
for i ← 0 to length(AFTER-LABELS) do

NEW-COMS[i] ← <NEW-C-ID(), AFTER-LABELS[i],
AFTER-NODES[i]> ;

AC ← AC ∪ NEW-COMS[i] ;

end
return NEW-COMS

end
Algorithm 1: instruction ASSIGN. NEW-C-ID() is a function that gen-
erate a new, unique community identifier.

Most articles in the literature agree on a set of commonly found events
impacting communities, such as SPLIT and MERGE.

In appendix A, we define some of these common events, based on the AS-
SIGN event: BIRTH, DEATH, MERGE, SPLIT, INITIALIZE and THESEUS,
which corresponds to the ship of Theseus paradox presented in the introduction.
The benchmark python library contains definition for additional events: CON-
TINUE (a community continues without change for a given period), RESUR-
GENCE (a community disappears and re-appears with identical nodes some
time later), and operations of progressive, node by node change: GROW-
ITERATIVE, SHRINK-ITERATIVE and MIGRATE-ITERATIVE (nodes mi-
grate from one community to another).

These instructions can be combined to define any scenario, either by listing
all desired events or by writing a program to generate scenarios by picking
instructions randomly. See section 4.2 for examples.

3.2 Edges generation

In the previous section, we have seen how to define the community evolution
scenario. In this section, we address the generation of edges to fit this scenario.

Communities can have, at each step, two states: stable, when it is not in-
volved in any event, or evolving otherwise. In the state stable, edges of the
community are generated following the Deterministic Strongly Assortative Block
Model (DSABM) (See Section 3.2.1).

When an event is triggered, the communities involved switch to the evolving
state. Internal edges are known according to the DSABM before and after the
event. Therefore, we make one edge modification (addition/removal) at each
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step of the dynamic network evolution, until reaching the final state. At each
step, external edges are also generated according to the DSABM.

3.2.1 Deterministic Strongly Assortative Block Model

A common approach to generate static community benchmarks is to use a
stochastic block model (SBM) [16]. An edge probability matrix P of size r × r
is defined, with r the number of blocks (communities), and edges between each
pair of blocks are generated according to this probability matrix. We adopt
a variation of the SBM, that we call Deterministic Strongly Assortative Block
Model (DSABM).

A block model is said to be Strongly Assortative if Pii > Pij for each i
and j such as i 6= j. This corresponds to the original definition of communities
as groups of nodes that are more densely connected than the rest of the network.
Note that we adopted a Strongly Assortative structure for the sake of simplicity,
the extension to other Block Models is straightforward.

We adopt a deterministic block model to solve the problem of the genera-
tion of slowly evolving community structures. In the situation when one wants
the network topology to follow a block structure and to allow this block structure
to evolve, one needs to comply with two apparently antagonistic requirements:

• Economy of change: we want as few edge modifications as possible to
go from a network satisfying the partition t1 to one satisfying another
partition t2.

• Random internal structure: we want the graph at each step to be com-
patible with the definition of block models, i.e. edges between communities
should be chosen at random, and not depend on previous partitions.

These two requirements are antagonistic as soon as the internal density of
communities changes between two steps. We can illustrate this problem with
the following example: let’s assume that we have at time t two disconnected
communities of size 4 and density 1. Each community contains 6 edges. Let’s
now consider that the two communities merge at time t + 1 into a single com-
munity of density 0.5. This community should have 14 internal edges. If we
try to maximize the economy of change objective, we will add only two edges
chosen randomly among the missing edges. The resulting community will thus
be composed of two cliques of size 4 connected by only two edges, a structure
very unlikely to obtain through a random edge selection for a single community
of size 8 and density 0.5.

Conversely, maximizing the random internal structure by resampling inde-
pendently networks at each step will lead to unstable edges, in particular for
sparse blocks. This would not be compatible with a scenario of a progressive
evolution from a network with a partition to a network with another one.

In previous benchmarks using SBM, the economy of change is usually ignored
and random edges are generated at every step [2]. In Granell et al.[12], a solution
is introduced: all pairs of nodes in the initial graph are ordered in a random
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fashion, and when edges need to be added or removed to reach the final state,
they are chosen according to this predefined order

We propose to generalize the method introduced in [12] to make it work for
any type of scenario.

To each pair of nodes is assigned a fixed Latent Affinity score Ω ∈ [0, 1].
When a new node n is added to a network G = (V,E), a random value is
assigned to each pair between n and every node in V . When we need to attribute
edges for a pair of blocks (communities c1, c2), we first compute the number q
of edges according to the probability matrix Pc1c2 (Therefore interpreted as the
fraction of existing edges rather than an independent probability of observing
each edge). We then select the q pairs of highest Ω among pairs of nodes in this
community.

The number and the position of edges in a block are therefore selected in a
deterministic way for a given community structure and given latent affinities.
Note that several runs of the same dynamic community scenario nevertheless
lead to different dynamic networks, since latent affinities are assigned randomly.

3.2.2 Communities density

The DSABM used to generate the network corresponding to the desired com-
munity structure requires to define a Probability Matrix P . As for any Strongly
Assortative SBM, we want Pii > Pij |i 6= j. This is commonly solved by selecting
two parameters pext and pin, such that Pij = pext and Pii = pin However, we
think that this choice is unrealistic for partitions with communities of hetero-
geneous sizes: intuitively, a community of size 3-5 must have an intern density
> 0.7 to be well defined, while a community of size 100 with a comparable den-
sity seems unlikely in empirical networks. A community growing in size should
therefore see its density shrink. Additionally, it has been observed for dynamic
graphs that the average degree tends to grow with the graph size[20]. To val-
idate empirically those intuitions, we compute the density and average degree
of communities in a collection of large graphs with ground-truth communities
from the SNAP dataset repository [21]. We use two definitions of communities:

1. The so-called Ground Truth Communities, corresponding to collected la-
bels of nodes. Note that the communities found are not defined by the
topology of the network, but based on meta-data

2. Communities found in the same networks by the Louvain algorithm [4].
Communities are thus topologically defined and correspond to a high value
of Modularity.

We can observe in fig. 3 that the average density of communities tends to shrink
with their sizes, while their average degree tends to grow, independently of the
definition of communities considered. The slope of these trends depends on the
network.
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(a) Average of densities of communi-
ties,
Ground Truth Communities

(b) Average of internal mean degree of
communities, communities discovered
by the Louvain algorithm

(c) Average of densities of communi-
ties,
communities discovered by the Louvain
algorithm

(d) Average of internal mean degree of
communities, communities discovered
by the Louvain algorithm

Figure 3: relation between densities/mean degrees of communities relatively to
their size in several large networks with available ground-truth communities. We
observe similar trends for most networks: density decreasing with size, average
internal degree increasing with size.

We therefore propose to model the density of each community using a simple
function, compatible with observations. We define the average degree of a com-
munity c, relatively to its number of nodes nc and a density coefficient α ∈]0, 1]
as:

k̄c = (nc − 1)α

The density of each community c is thus defined as:

pin(c) =
nc(nc − 1)α

nc(nc − 1)
= (nc − 1)α−1

And the number of internal edges in a community:

mc =
⌈nc × k̄c

2

⌉

10



If α = 1, communities are cliques, and the density decreases faster with size
for lower α.

The external density pext is defined as: pext = βpin(cV ) with β a parameter
of community identifiability and cV the whole graph seen as a community.

As a consequence, the internal and external density of all communities and
their evolution with size are fixed with only two parameters: α, β ∈ [0, 1].

These parameters can be chosen to vary the sharpness of communities as for
any SBM based approach. In this article, we vary α ∈ [0.5, 1] and β ∈ [0, 0.5].

3.3 Random punctual noise

Edges generated by the DSABM are deterministic for a given Ω, i.e., if the com-
munities do not change, the graph also stays unchanged. It has been proposed
[18] that in real dynamic networks, one can differentiate a stable backbone from
random, short-lived fluctuations. We add a parameter βr ∈ [0, 1] to our bench-
mark, such that, at each step, a fraction βr of edges are rewired at random
to differentiate the imperfections in community structures that are part of the
backbone (controlled by β) and the ones which aren’t (βr)

3.3.1 Algorithmic complexity

Each community being handled independently, the complexity of the generation
process is not prohibitive: networks with hundreds of nodes and thousands of
evolution step can be generated in a few seconds, and with thousands of nodes
and tens of thousands of steps in a few minutes. The generation of very large
networks is nevertheless not possible with the current implementation, due to
the usage of the latent affinity score, which requires storing n2 values. This
constraint could be removed by using more advanced methods, for instance
based on deterministic hash functions.

4 Experiments

In this section, we evaluate several algorithms on networks generated using the
proposed benchmark. We first introduce the algorithms to compare, and then
conduct three experiments: qualitative evaluation on a complex scenario, quan-
titative evaluation on randomly generated networks, and scalability evaluation.

4.1 Algorithms

Many algorithms for Dynamic Community Detection have been proposed in
recent years [29]. Among them, we have selected six algorithms with different
smoothing techniques. Our goal is not to search for the best algorithm, but
rather to study the consequences of choices made to integrate the dynamic into
the community detection process. We have selected algorithms based on the
following criteria:
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(a) Planted dynamic communities, represented using the TAM visualization.
Each node is represented as a thin horizontal line. Colors represent com-
munities. Grey areas represent anbiguous affiliations. Events are identified
by arrows and names, e.g., blue communities A and B merge into a singe
community identified as B, and this process last from steps 30 to 60.

(b) The static graph at time t=0, ver-
sion sharp
(α = 0.9, β = 0.05, βr = 0.01)

(c) The static graph at time t=0, ver-
sion blurred
(α = 0.8, β = 0.25, βr = 0.01 )

Figure 4: A simple scenario of community evolution.
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(a) No-Smoothing (b) Label-Smoothing

Figure 5: Comparison of partitions obtained using two different methods on the
ad-hoc scenario, sharp flavor. Most communities are captured accurately, with
some key differences: resurgence events are identified by Label-Smoothing but
not by the other, The ship of theseus is labeled differently, etc.

• Being based on Modularity optimisation. We want all methods to agree
on the definition of the best static partition on a single network, so that
their differences depend only on the dynamic of the network. We chose
the Modularity optimization approach because it is the most widespread,
although a similar work could be done with SBM or Matrix factorization
[22] based approaches, for instance.

• They represent well the variety of approaches used to tackle the dynamic
aspect

• Their source code is available, or implementing them faithfully is not too
difficult.

• They are scalable enough. We had for instance to discard popular methods
such as DYNMOGA [9], Estrangement Confinement [17] and FacetNet
[23], whose complexity is not compatible with having hundreds of steps of
evolution.

The algorithms compared in this paper are the following:
No-Smoothing: The approach we will use as a reference consists in apply-

ing a static algorithm on the snapshot at each step, and then matching the most
similar communities in consecutive steps, based on the Jaccard Coefficient. We
use the Louvain method [4] at each step, and the matching process, common to
several approaches, is described in section 4.1.1.

Implicit-Global This method introduced in [1] uses a form of implicit
smoothing [29]: at each step, the Louvain algorithm is run, but instead of start-
ing it with each node in its own community, the previous partition is used as
seed.

DYNAMO [36] is a recent method updating at each evolution step the
community structure according to changes in the graph, based on a set of local

13



(a) No-Smoothing (b) Label-Smoothing

(c) DYNAMO (d) Transversal-Network

(e) Implicit-Global (f) Smoothed-Graph

Figure 6: Comparison of partitions obtained using all methods on the ad-hoc
scenario, blurred variant. We annotated exampled of typical smoothing prob-
lems: Glitches, Identity loss and Oversimplification
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rules. The primary goal is to be faster than No-smoothing while reaching similar
Modularity scores, by avoiding to recompute communities from scratch at each
step. However, as Implicit Global, it also introduces some smoothing by staying
close to a previous local minimum (implicit local smoothing). We used the
implementation by the authors.

Smoothed-Graph This method is a variant of the one proposed in [14].
A community detection algorithm (in our case, Louvain) is run at each step
t on a graph whose smoothed adjacency matrix is defined as follows: Atij =

αAtij + (1− α)Ct−1ij where Ct−1ij = 1 if i and j belongs to the same community
at step t− 1, 0 otherwise.

Transversal-Network is a popular method introduced by Mucha et al. [25]
with a Cross-Time approach, i.e. communities at t depends on earlier and later
steps of the network. The principle of the method is to build a single transversal
network by adding inter-snapshot coupling links and to apply a Louvain-like
community detection algorithm on this network, based on an adapted version
of the modularity. We used the original implementation by the authors.

Label-Smoothing is a method introduced by Falkowski et al. [8] whose
first step is the same as the No-Smoothing algorithm, but instead of matching
communities between pairs of successive steps, a Community survival graph is
created by considering each community in each step as a node, and an edge
connects any two communities with a Jaccard coefficient above a threshold,
with the Jaccard value as weight. Community detection is applied to this graph
to define communities of static communities, thus defining dynamic communi-
ties. We implement it using the Louvain algorithm for both steps, and similar
parameters as for the matching method described in section 4.1.1.

All algorithms have several parameters that could be modified to improve
the results. However, community detection being an un-supervised problem
by definition, these parameters usually cannot be tuned. We therefore used
the default parameters from the implementation (DYNAMO) or used by the
authors themselves (ω = 0.5, [25]). α = 0.9 [14])

4.1.1 Persistent labels attribution

Methods No-Smoothing, Implicit-Global, DYNAMO and Smoothed-Graph de-
tect communities at each step, with or without smoothing, but do not attribute
persistent labels to communities. For all those methods, we therefore attribute
persistent labels to communities using the same procedure, inspired by [13].
First, a similarity score is computed between any two pairs of communities
between adjacent snapshots using the Jaccard coefficient, and any pair of com-
munities with a value of similarity above a threshold (0.3, in our experiments)
is considered a potential match. Then, two communities ca in t and cb in t+ 1
are matched if i) cb is the most similar community to ca in t+ 1 AND ii) ca is
the most similar community to cb in t. If a community in t+ 1 is not matched
to any community in t, it receives a new label. When creating our benchmark,
we respect this logic, i.e., in case of merge or split, the communities the most
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similar before and after the event share the same label (we avoid ties in our
scenarios).

4.2 Qualitative evaluation on an ad-hoc scenario

In this section, we generate a small, deterministic scenario to observe qualita-
tively how each algorithm behaves. The scenario is designed to include several
particular cases such as a Ship of Theseus, resurgence of communities, and suc-
cessive merge and split of communities. It is described as follows (note that
the algorithm is a functional python code, using the provided implementation
library):

1

2 # I n i t i a l i z a t i o n with 4 communities o f d i f f e r e n t s i z e s
3 [A, B, C, T] = my scenar io . INITIALIZE ( [ 5 , 8 , 20 , 8 ] , [ ”A” , ”B” ,

”C” , ”T” ] )
4

5 # Create a theseus sh ip a f t e r 20 s t ep s
6 (T,U)=my scenar io .THESEUS(T, de lay=20)
7

8 # Merge two o f the o r i g i n a l communities a f t e r 30 s t ep s
9 B = my scenar io .MERGE( [A, B] , B. l a b e l ( ) , de lay=30)

10

11 # Sp l i t a community o f s i z e 20 in 2 communities o f s i z e 15 and
5

12 (C, C1) = my scenar io . SPLIT(C, [ ”C” , ”C1” ] , [ 1 5 , 5 ] , de lay=75)
13

14 # Sp l i t again the l a r g e s t one , 40 s t ep s a f t e r the end o f the
f i r s t s p l i t

15 (C1 , C2) = my scenar io . SPLIT(C, [ ”C” , ”C2” ] , [ 1 0 , 5 ] , de lay=40)
16

17 # Merge the sma l l e s t community c rea ted by the s p l i t , and the
one c rea ted by the f i r s t merge

18 my scenar io .MERGE( [ C2 , B] , B. l a b e l ( ) , de lay=20)
19

20 # Make a new community appear with 5 nodes , d i sappear and
reappear twice , grow by 5 nodes and di sappear

21 R = my scenar io .BIRTH(5 , name=”R” , de lay=25)
22 R = my scenar io .RESURGENCE(R, de lay=10)
23 R = my scenar io .RESURGENCE(R, de lay=10)
24 R = my scenar io .RESURGENCE(R, de lay=10)
25

26 # Make the r e su rgent community grow by 5 nodes 4 t imes teps
a f t e r be ing ready

27 R = my scenar io .GROW ITERATIVE(R, 5 , de lay=4)
28

29 # Ki l l the community grown above , 10 s t ep s a f t e r the end o f the
add i t i on o f the l a s t node

30 my scenar io .DEATH(R, de lay=10)

Listing 1: Defining an ad-hoc scenario. Resurgence is an operation that makes
a community disappear and reappear with the same label after a delay.

We generate two networks using this scenario with different parameters, a
sharp scenario (α = 0.9, β = 0.05), and a blurred one (α = 0.8, β = 0.25). We
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add a small random noise βr = 0.01.
In fig. 4, we can see the ground truth communities corresponding to this

scenario, together with the initial state of the network at t = 0 for both sets
of parameters. To represent the planted communities, we use the Temporal
Activity Map (TAM [24]) visualization approach, i.e., each node has a fixed
vertical position, edges are not represented, time is on the horizontal axis, and
colors correspond to community affiliations (two nodes with the same color
belongs to the same community, whether they are in the same timestep or
different ones). Nodes appear grey when they have no known affiliation, which
corresponds to periods during which events are on-going, affected communities
not being properly defined. Nodes not present in the network at a given time
appear white.

In fig. 5, we can compare the results obtained by the No-Smoothing and the
Label-Smoothing approaches on the sharp variant. We can observe that the non-
smoothed algorithm already matches quite well the ground truth, without too
much instability. When using the Label-Smoothing approach, despite having
the exact same partition at each step initially, some important differences arise:
i)the resurgent community is identified as such (yellow community for all of
them), ii)The ship of Theseus is split differently.

In fig. 6, the same results are shown for all methods on the blurred variant.
From this figure, we define three types of problems that can be observed in
dynamic communities:

• Glitches corresponds to individual nodes switching arbitrarily between
communities for short periods.

• Identity loss corresponds to a community label being lost and replaced by
a different one due to a short-lived change, while the community stayed
mostly coherent.

• Oversimplification corresponds to topologically distinct communities at a
given time being merged to improve the smoothness of the solution.

We can observe that there are much fewer glitches in some smoothed ap-
proaches (Implicit-Gobal, Smoothed-Graph) compared with No-Smoothing or
DYNAMO. Similarly, Identity loss observed in the No-Smoothing approach for
the ship of Theseus (orange → green → blue → purple, etc.) is partially solved
by Label-Smoothing, Implicit-Global and Smoothed-Graph. However, Oversim-
plification also appears, for instance with communities A and B being considered
as a single one for Smoothed-Graph.

4.3 Quantitative evaluation of quality on a random sce-
nario

In order to quantitatively evaluate the quality of dynamic communities discov-
ered by each algorithm, we design a generator of random scenarios, based on the
following principle: given a number of communities m, a minimal and maximal
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Figure 7: Change in dynamic partitions properties when the µ parameter in-
creases (higher score is better). Top row: Instantaneous Quality functions.
Middle row: Smoothness quality functions. Bottom row: Longitudinal Qual-
ity functions. We observe clear differences between algorithms: no-smoothing
and transversal network have among the highest scores in instantaneous Qual-
ity functions, but among the lowest in smoothness ones. Smoothed graphs and
implicit global have the opposite behavior. Despite those opposite approaches,
no-smoothing and smoothed graph both have high scores in longitudinal scores.
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community sizes smin and smax, and a number of operations o, we repeat o
times the following process (code available in the implementation):

1. Pick a community c at random.

2. If |c| > smax, split it in two, the largest resulting community inherits 2
3 of

its nodes.

3. Else, merge it with the smallest remaining community.

4.3.1 Scores for the evaluation of dynamic communities

All algorithms selected for evaluation have the same quality function in the static
case: Modularity. We introduce quality functions to assess different aspects of
the quality of dynamic communities: evaluation of their quality at each point
in time, of their smoothness, and of their longitudinal quality.

Evaluation at each step
First, we use scores to evaluate the quality of communities at each step taken

independently. As already done for instance in [28], we use the average values for
each step of static scores. We use average Modularity Q to assess the intrinsic
quality, average AMI AMI and average ARI score ARI to compare with the
ground truth. AMI is the adjusted for chance version of the Normalised Mutual
Information, while ARI is the adjusted rand index. Note that, in theory, a
static approach run at each time without smoothing should have the highest
values for these metrics, thus high scores in these metrics alone are not good
measurements of the quality of dynamic communities.

Evaluation of smoothness
We introduce 3 scores to evaluate the smoothness of dynamic partitions.

• SM-P is defined as 1 - the average NMI between all pairs of successive
snapshots, and measure the smoothness at the level of partitions. (Higher
is better)

More formally, SM-P = 1− 1
T−1

∑T−1
t NMI(Gt, Gt+1)

• SM-N is defined as the inverse of the number of affiliation change (summed
for all nodes). It measures the smoothness at the level of nodes. (Higher
is better)

More formally, SM-N = 1/(
∑V
n

∑T−1
t δL(n,t),L(n,t+1)), with L(n, t) the la-

bel of node n at time t and δi,j the kronecker delta, i.e., δi,j = 1 if i = j,
0 otherwise.

• SM-L is defined as the inverse of the average Shannon entropy of node
labels, i.e., for each node, we compute the entropyH of its label affiliations,
and SM-L is the inverse of the average among all nodes. It measures the
smoothness at the level of labels. (Higher is better)

More formally, SM-L = 1/
∑V
n H(L(n)), with H the Shannon Entropy
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and L(n) the probabilities of observing each label when picking node n at
a random time t.

It is important to note that they measure different aspects of smoothness:
SM-P is independent of labels and is little impacted by the instability of single
nodes. SM-N is sensible to glitches (short-lived, spurious changes). SM-L is little
sensible to glitches but is impacted by long-term instability, e.g., an unjustified
label change which is not reversed.

Longitudinal scores
Finally, we introduce scores to compare dynamic partitions with a ground

truth longitudinally. Let’s define the longitudinal partition as follows:

Definition 1 A longitudinal partition associates a label l to each set of tu-
ples (n, t), with n a node and t a timestep.

Given a reference longitudinal partition Lref and a longitudinal partition to
compare L, any static community comparison function can be applied on those
longitudinal partitions as with any partition. We apply AMI and ARI compar-
ison function, hereafter called LAMI and LARI.

4.3.2 Experimental settings

We fix parameters as m = 10, smin = 5, smax = 15, o = 20. We define an
initially sharp partition with α = 1 and β = 0. We make the sharpness vary
by using a parameter µ such as α = 1 − µ and β = µ. We also add random
noise βr = 0.01. We repeat each experiment 20 times. On average, the resulting
networks have 100 nodes and 1200 steps (snapshots).

4.3.3 Results

Fig.7 synthesizes the results by scoring method, while Fig.8 synthesizes the
results by method, for a value of µ = 0.2, which seems to be a tipping point.
We make the following observations:

• In terms of instantaneous quality (AMI, ARI, Q), as expected the No-
Smoothing approach has the highest values, together with the Transversal-
Network, for all µ. We can note that AMI starts at 1 (for µ = 0) and do
not fall below 0.3 for any method, showing that the community structure,
although blurred, stays roughly detectable.

• In terms of smoothness, two methods have high scores for the three as-
pects: Implicit-Global and Smoothed-Graph. Label-Smoothing has the
highest scores in most settings for the SM − L scores, which measure
label smoothness. DYNAMO is the least stable in most cases.

• No method seems to be a clear winner in terms of Longitudinal similarity
with the ground truth. We can note however that for sharp communities
(µ < 0.15), the No-Smoothing approach always obtains the highest score,
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Figure 8: Radar chart of ranks of different methods for µ = 0.2. Higher
score is better. We observe that the No-Smoothing method obtains among
the best results in instantaneous scores (Q,AMI,ARI), while Smoothed-Graph
and Implicit-Global obtain higher scores in smoothing scores. Label-Smoothing
has the highest score in label smoothness.

while for higher µ, Smoothed-Graph and in some cases Label-Smoothing
obtain the highest scores. This is coherent with the observation that
static algorithms become unstable when the community structure is not
unambiguously defined, and that smoothing is therefore needed to obtain
stable dynamic communities.

From Fig.8 , we can make the following additional observations: Smoothed-
Graph and Implicit-Global provide the strongest smoothing, but, as a conse-
quence, compared with the reference No-Smoothing method, they have commu-
nities of lower quality in each individual snapshot.

4.4 Scalability evaluation

Another important aspect to consider in comparing methods is their capacity
to handle large networks with many steps of evolution. The complexity of the
No-Smoothing approach, for instance, is simple to estimate. It can be defined
as TOCD + (T − 1)OM , with T the number of steps, OCD the complexity to
run the static community detection algorithm at each step, OM the complexity
of the matching process between consecutive partitions. The first part, which is
the most costly, can be trivially parallelized. The computational complexity is
therefore linearly proportional to the number of steps and depends on the size
of the network at each step and the chosen static algorithm. Other algorithms
have complexities that depend on other factors and are harder to formulate
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theoretically in comparable terms.
In this section, we compare empirically the scalability of the chosen methods

by varying two parameters: either we fix the size of the network at each step,
and vary the number of steps, or the contrary. More formally, we use the same
algorithm to generate random dynamic graphs as before, but:

• In the first test, we change the number of operations o = 50 in order to
have a large number of steps, and run computations on subsets of the first
x steps, varying x.

• In the second test, we vary the number of initial communities m while
keeping the same average size. We run algorithms on a slice composed of
the first 50 steps only.

In Fig.9, we can observe that DYNAMO is the fastest method when the
number of nodes or steps becomes large. This result is expected since the method
is the only one among those tested that make only local changes according to
modifications between steps[5].

Most of the tested methods have a complexity that is linear with the number
of steps when the graph size is fixed. Label-Smoothing is the exception with
complexity increasing quickly with the number of steps, because the similarity
of communities in every step needs to be computed with communities in all
other steps.

When the size of networks increase, all methods but DYNAMO have a com-
plexity increasing faster than the number of nodes, which is expected since even
the Louvain algorithm has a complexity superior to O(n).

In particular, Transversal-Network and Smoothed-Graph approaches quickly
become prohibitive. A possible explanation is that both methods work with
dense matrices, due to the computation of an intermediate network representa-
tion in which a dense matrix is subtracted to the adjacency matrix. Optimized
implementations could partly solve those problems.

Obviously, those results are highly dependent on the implementation of each
method, and on the number of available cores for parallelization. For DYNAMO
and transversal-network, we used implementations provided by the authors,
respectively in Java for the first, and Matlab for the other. For the other
methods, we used our own implementation in python, relying on the networkx
[15], CDlib [30] and sklearn [26] libraries. We run the code on a 4 cores, 16GB
of RAM computer.

From those observations, we can conclude that all tested algorithms but
DYNAMO are able to handle small graphs with a few thousand steps, or larger
graphs with a few hundred steps, but are not designed to handle large graphs
with many steps of evolution, due to the handling of dynamic graphs as a
succession of snapshots.
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Figure 9: Running time (in seconds) of the different algorithms depending on the
average size of graphs and their number of steps. DYNAMO is by far the fastest
method, thanks to its incremental approach. We observe that label smoothing
is the only approach whose running time at each step grows with the number
of steps.

5 Conclusion

We have proposed a benchmark to generate dynamic graphs following any com-
munity evolution scenario using an appropriate language, and used it to compare
several algorithms. By using examples and quantitative analysis, we have shown
the weaknesses and strengths of several approaches, in particular the effect of
smoothing on the quality of dynamic communities.

A limitation of the current implementation of the benchmark is the space
complexity induced by the latent affinity Ω, which is in n2, thus not practical
for large graphs.

Variants of the method could be introduced to test different types of dynamic
networks: one could test the influence of taking snapshots at coarser temporal
granularity using sliding windows, or generate link streams by associating a
spawning probability to edges of the currently generated dynamic graphs. Cur-
rently, generated networks are non-oriented and unweighted, but the benchmark
could be trivially extended to generate such graphs.

Although we proposed scores specifically designed to evaluate dynamic parti-
tions, the question of which score to use remains an important research question.
In this work, we did not take into account the events themselves (split, merge,
etc.) in evaluation scores, and based our longitudinal scores on labels only. We
think that this approach is not fully satisfying and a proper way to take into
account both the stability of communities and their similarity with a ground
truth defined at each step should be investigated further.
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A Appendix: Definition of community events

In this appendix, we give the implementation of several well-known community
events. Note that these events, and a few more, are implemented in the library
released with this article.

BIRTH(NB-NODES, LABEL) is an instruction to create a new commu-
nity with a label LABEL composed of a number of NB-NODES newly created
nodes. Note that a new community could appear by taking nodes from one or
several existing communities, but this should be represented through an ad-hoc
ASSIGN event.

Input: NB-NODES, LABEL
begin

N ← [];
for i ← 0 to NB-NODES do

N ← N ∪ NEW-NODE() ;
end
return ASSIGN([],[N],[LABEL]) ;

end
Algorithm 2: instruction BIRTH

DEATH(COM) is an instruction to make the community COM disappear,
and its nodes leave the network.

Input: COM
begin

ASSIGN([COM],[],[]) ;
end

Algorithm 3: instruction DEATH

MERGE(C-BEFORE, L-AFTER) is used to merge two or more com-
munities into a single one. It is an instruction with two parameters:

• C-BEFORE the list of communities to merge

• L-AFTER the label of the resulting community (if not provided, a new
unique label is generated)

The label in L-AFTER can be either one of those of the communities in C-
BEFORE or a new one (conservation or not of the label by one of the resulting
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communities). It is defined by the following algorithm:

Input: C-BEFORE, L-AFTER
begin

N ← [];
for C ∈ C-BEFORE do

N ← N ∪ C.N ;
end
return ASSIGN(C-BEFORE,[N],[L-AFTER]) ;

end
Algorithm 4: instruction MERGE

SPLIT(C-BEFORE, L-AFTER, SIZES) is used to split a community
by creating new ones of sizes described in the SIZE parameter. Nodes are chosen
randomly. It can be defined as a command with three parameters:

• C-BEFORE: the community to split

• L-AFTER: the ordered list of labels of the communities created by the
split event

• SIZES: an ordered list containing the sizes of the resulting communities.
The sum of the elements of this list must be equal to the number of nodes
in C-BEFORE

It is defined by the following algorithm:

Input: C-BEFORE, SIZES, L-AFTER
begin

N ← C-BEFORE.N ;
AFTER-NODES ← [] ;
for i ← 0 to length(SIZES) do

AFTER-NODES[i] ← randomChoice(N, SIZES[i]) ;
N ← N \ AFTER-NODES[i] ;

end
return ASSIGN([C-BEFORE], AFTER-NODES, L-AFTER) ;

end
Algorithm 5: instruction SPLIT. randomChoice(L,n) function select ran-
domly n elements in list L

THESEUS(COM, NB-NODES) COM is the community to modify. NB-
NODES corresponds to the number of nodes to replace in the original commu-
nity. If NB-NODES is equal to the number of nodes, then the event corresponds
exactly to the scenario described in fig. 1.

Note that we use the ASSIGN instruction to describe, at each step, that the
community simultaneously lose a node and gain a new one, and then at the end
to make the community reappear with the original nodes.
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Input: COM, NB-NODES
begin

N-CURRENT ← copy(COM.N);
N-ORIGINAL ← copy(COM.N) ;
COM-CURRENT ← COM ;
for i ← 0 to NB-NODES do

REMOVED ← randomChoice(N-CURRENT,1) ;
N-CURRENT ← N-CURRENT \ REMOVED ;
ADDED ← NEW-NODE() ;
[COM-CURRENT] ← ASSIGN([COM-CURRENT],
[(COM-CURRENT.N ∪ ADDED) \ REMOVED ],
[COM-CURRENT.L]) ;

end
B ← ASSIGN([], [N-ORIGINAL], [NEW-COM-ID()]) ;
return [COM-CURRENT, B]

end
Algorithm 6: instruction THESEUS. copy function allows to make a copy
of a list, such as it can be modified without affecting the original

INITIALIZE(SIZES, LABELS) allows setting the community structure
in the first step.

• SIZES is the list of sizes of initial communities

• LABELS is the list of labels of those communities

The function returns the corresponding communities composed of newly cre-
ated nodes. The code is omitted for simplicity, but present in the provided
implementation.
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