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Abstract

Over the past few decades, the Constitutive Relation Error (CRE) theory has proven
to be a valuable numerical technique for model identification in engineering systems.
Under certain conditions, this technique allows predicting the global state of con-
nections starting from an observed structural vibratory response. These conditions
often assume deterministic knowledge about input parameters and mechanical mod-
elling. As with most inverse problems, the inherent uncertainties in the system can
drastically affect the parameters of interest, posing an additional difficulty in the
identification process. The present study proposes a simple and direct way to in-
clude and evaluate the effect of uncertainties in the CRE-based process of identifying
parameters of semi-rigid structural connections. The numerical investigations are
carried out in two parts. The first, from an exclusively deterministic perspective,
shows the main characteristics of the method such as the possibility of using par-
tial data and the inclusion of flexible support conditions. The second part explores
the limits of the suggested formulation in a non-deterministic context considering
both measurement noise and material uncertainty. The results show that the pre-
sented CRE formulation can identify the parameters properly in various situations.
However, high noise levels in the reference measures may deteriorate identification
process.

Keywords— Finite Element Model Updating, Modified Constitutive Relation Error,
Planar structures, Structural joint identification

1 Introduction

When the term civil structure is invoked, several examples may come to mind: houses,
buildings, bridges, etc. Regardless of their specific functions and complexities, they all
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have one essential point that characterizes them and allows their systematic study: they
are composed of structural elements. These fundamental units, arranged in different ways
in space, generate distinct structural systems. There are three classes in which these
elements can be ideally placed depending on the relative sizes of their sides: reticular
(beams, columns), planar (walls, slabs), or massive (foundation blocks). This division
in conceptual units, or structural elements, is advantageous for several reasons including
mechanical analysis and for construction purposes. But a set of scattered structural
elements does not necessarily form a structure. It is necessary to have an additional
component to join these elements together. Those physical regions, where the structural
elements meet, are indispensable to the system design and receive the name structural
jo1nts.

The improper functioning of the joints reflects on the performance of the structural
system. This finding comes from practical nature observations. Firstly, consider the case
of beams, which manifest a proximate relation to slabs in some aspects. The corresponding
joints, according to its capacity to enable relative movement in a given direction, can be
classified as: rigid, free, or semi-rigid. In structural analysis, it is usual considering the
joints among structural members as perfectly rigid, what may not be a proper assumption
in many cases. In reality, the behavior would be closer to semi-rigid [1]. Since the same
practice is extensible to planar elements, it seems legitimate to put the validity of this
hypothesis in question. Secondly, there is the localizing effect; shear wall/slab joints have
been shown to be the area of strong deformation and degradation mechanisms. Among
the reasons, one can cite the cyclic behavior of concrete under shear and the losses of
bond strength under tensile and compression loads [2]. In addition, investigating these
connections allows us to better understand how energy is distributed among the different
elements, and how this energy mobilizes the vibration modes of each one. This information
is relevant for designing more efficient structures.

Knowing the relationships between causes and effects of the various phenomena of
interest to engineering has been a constant concern along the history. This effort has
led to numerous effective tools, codes, practices, for the study and sizing of the various
structural elements, associating safety and rational use of resources. The same remains
true for structural joints. However, there are specific aspects that do not have an enough
understanding and therefore inspire further investigation. The mechanical behaviour of
connections between planar elements is one such example. In particular, consider the fol-
lowing question: how to characterize the structural joint state as realistically as possible?
Being aware that various damaging phenomena start at joints [3], would it be possible to
extract the essential variables that control their origin and propagation?

In the literature, it is common to find three ways to approach this subject. The first is
the experimental way, in which observations show large stress concentrations and damage
near the junctions arising from the strut action along the panels [4, 5, 6]. Secondly, the
theoretical way, in which some hypotheses are made in order to explain the observed
physical phenomena [7]. Third, the modelling way, in which computational simulations
try to predict some particular aspect of the structure, such as the joint capacity [8] and the
global behaviour [9]. This last way has gained prominence over the last decades because
numerical simulations, alongside theory and experiment, have been consolidated as the
third pillar in today’s science [10]. The present study is in line with the third pillar. From
the various reasons that could motivate this choice, it is highlighted those of functional



order, for example, in nuclear power plants where intrusive measurements, or experiments,
are not a simple task. In this and other similar contexts, computational models become a
meaning for obtaining indirect information, provided it is able to sufficiently represent the
actual structural state. It is therefore of practical importance, as shown in the state of art,
to establish “best-estimate” numerical methodologies for civil structures at all levels [11].
This knowledge is of capital relevance for decision making in structural health monitoring
and planning repair actions.

This brief discussion served to make clearer the choice of structural joints, and why to
represent them by models. Now, it comes a crucial question: considering planar structural
elements, is there an universal model to be used? In the literature, there seems to be no
unanimous answer to this question [12]. In this case, there are two immediate alternatives
to approach it: deriving a new model that respects the physical principles of Mechanics
and reflects the observations, or, choosing a consecrated, although limited, model and
adjusting its parameters to correspond some observed data sets. The latter option is
known as model updating, or model identification, and is preferred here. The interest in
model updating is not new and several methodologies to this end have been proposed
in structural dynamics [13, 14, 15]. This effort led to the rise of two major categories
of investigations. Firstly, the direct methods, in which the updating procedure does not
respect physical principles necessarily [16]. Essentially, the matrices (stiffness and/or
mass) are altered using exclusively the precepts of linear algebra. Second, the parametric
methods, also known as indirect, iterative or local, in which the updating procedure is
consistent with sound mechanical principles [17].

In the present study, the Constitutive Relation Error (CRE) [18, 19] is chosen as
updating technique. In addition to being a parametric method, it has been demonstrated
promising results in a number of investigations. For instance, Deracmaeker et al [20]
has updated the mass and stiffness of a small scale aircraft based on modal data. They
remark the high dependence on the number of degrees of freedom present on the model,
which becomes prohibitive for industrial applications. In this case, they propose reduced
model basis as a convenient approach to circumvent this problem [21]. In the acoustic
field, CRE identification of admittance coefficient for improved simulations has led to
important cost savings thanks to its good prediction of pressure levels without the need
of recurrent prototyping [22, 23]. Complex time-varying actions has been identified and
compared to real in situ measures showing good agreement, which is an important step
for reducing the lack of knowledge in terms of natural actions [24]. Under static loading
conditions, the theoretical predictions of CRE has enabled the identification of the actual
structural stiffness [25] based on experimental evidences, and also to infer the response
dispersion due to random input parameters.

On its augmented version, the Modified Constitutive Relation Error (MCRE) is char-
acterized by the adding a regularization term to the performance function. This new form
broadens the possibilities of including the available information instead of making new
assumptions [26, 27]. The CRE technique can also be adapted to modern experimental
devices. For instance, the full-field measures provided by digital image correlation is a rich
source of information for model updating [28]. Strain measures provided by fiber optic
allied to damage identification is revealed to be a potential solution for civil structural
health monitoring [29]. The results are consistent even in the presence of corrupted mea-
sures [30, 31]. The stiffness identification of Euler-Bernoulli beams under static loading



conditions has been reported in [32], as well as damage localization for a given state of
the structure [33]. The use of CRE techniques in the field of reticular structural elements
has been so promising that it has been possible to extend it to frame-based structures
[34, 35, 36, 37]. In the case of plates, the heterogeneous material properties can be identi-
fied under Reissner-Mindlin assumptions using discrete measures and few vibration modes
[38]. Despite those remarkable advances in the field, the potential advantages of using
CRE theory concerning civil engineering structures still deserve investigations.

In a previous work, the authors show how the deterministic formulations for paramet-
ric identification can be of theoretical and practical interest in civil engineering [39]. In
the present work, we resume this deterministic formulation with straightforward modi-
fications that allow it to be used in non-deterministic situations. The formulations, as
well as the underlying assumptions, are presented throughout the Section 2. Firstly, the
mathematical problem is posed on its continuous form (Section 2.1). Then, the result-
ing formulation is transformed into its algebraic counterpart (Section 2.2). This step is
imperative for equations to be solved by using the Finite Element Method. The deter-
ministic CRE solution algorithm is then showed in Section 2.3. In order to provide an
alternative solution via, a distinct deterministic technique is presented so that it can be
used to check the results provided by the CRE form (Section 2.4). Then, we suggest the
modifications that may be made in the deterministic algorithm in order to include the ef-
fects of uncertainties (Section 2.5). The applications are discussed in Section 3, where the
main potentialities and limitations of the proposed formulation are explored, including a
discussion concerning sources of uncertainties, and how they may affect the identification
process. The text ends by presenting some conclusions and suggestions in Section 4.

2 Problem formulation

2.1 Continuous description

The fundamental idea when dealing with Constitutive Relation Error theory is the
separation of the governing equations into two groups. The first group contains the equa-
tions that express the conditions of admissibility: kinematic constraints and equilibrium
equations. The second group contains the constitutive relations relevant to the problem.
This division becomes pertinent in mechanical problems because, in general, constitutive
equations are the least reliable relations. Often, relationships that describe the observed
macroscopic behavior are assumed without actually having exhaustive knowledge on the
micro or mesoscale. Therefore, it is natural to set these equations apart and to ensure that
an approximate displacement-stress solution verifies the group of the most reliable equa-
tions (i.e. the admissibility conditions) exactly [40]. In fact, these notions can be made
further precise. Let the domain of study be a deformable solid, Q C R3, with boundary,
0f). The structure is subjected to displacement constraints u on a part 0;€2, and traction
forces g on 05€). The constraints are applied on complementary parts, 0,2 U 052 = 0f).
The body force, denoted as b, acts through the domain. The stress tensor is represented
by o, the outward-pointing normal vector by n, and ~ is the acceleration’s image. With
these terms the core definitions can be made.

Let (u,0,7) be a solution candidate. It is named admissible when it verifies the
following three equations:
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In equation (3), T'r() is the trace operator and &* represents the symmetric part of
the gradient of u*. It is remarked that the admissibility conditions, although crucial, do
not guarantee the existence and uniqueness of the solution. It is also needed to specify
the constitutive relations, expressed as follows:

floe(w)=0—-Ce=0 (4)
9(7,u) =7~ pm = 0 o)

The equation (4) expresses a particular material response known as Hooke’s Law, in
which ¢ is the linear strain tensor, and C' is a fourth-order stiffness tensor of material
properties or Elastic moduli. In equation (5), p is the mass density which is considered to
be constant throughout the analysis.

Although it may be admissible, a triple (u, 0, v) may not satisfy exactly the constitutive
relations. In this case, the relations (4) and (5) will result in nonzero values, or a residue.
The quality of an admissible solution is indicated by a performance measure known as
Constitutive Relation Error, E2 .y, which is a functional possessing the following two
properties:

E%RE(U7 Y, U) =0 (6)

E%,0(0,7,u) = 0 < (0,7, u) is the exact solution of the problem (7)

The way of proposing the measure is not unique and depends on the problem at
hand as long as it respects the two conditions above. In the present study, the following
performance measure is used:

«
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In equation (8), « is a real parameter belonging to [0, 1] that reflects the degree of
confidence that is placed on each constitutive equation. For free-vibration problems,
X = pw?, where w is the vibration frequency. Note that if the triple (u, o, ~) is admissible,
and still satisfies the constitutive equations, we will have the exact solution to the problem,
and the equation (8) results nil. Therefore, the solution of the mechanical problem will
be the triple that minimizes equation (8), as follows:

Eé‘RE<U7 s u) =

5



min  EZpp
)
s.t. (u,0,7) is admissible

This is the crucial aspect of the formulation. For a given C, and a given p, the formu-
lation in equation (9) is a forward problem essentially. It is just a different way of writing
the classic finite element problem. At the end, one has the structural displacements, as
usual. The major advantage of this formulation is not in this direct form, but in its inverse
form. The idea is finding the stiffness and mass parameters that best fit the observations.
The approach consists in modifying the measure from equation (8) to include the refer-
ence quantities obtained under specific conditions [30, 41]. Once these parameters are
found, the model can be used to predict the structural behavior in situations different
from those used for the model updating [24]. Although the static conditions can be used
without major problems, here we propose the use of the dynamic data, in particular,
the free vibrating regime. This choice comes from the fact that dynamic tests provide
rich information about the structural state. The reference quantities are included in the
equation (8) giving rise to a modified performance measure. This new version receives
the name Modified Constitutive Relation Error (MCRE), and is written as follows:

2 2 r <112
Evicre(o,7,u) = ECRE(U>7>U)+2—"U_U|‘ (10)
(1—r)
where @ represents observed displacements and r is a real parameter belonging to [0, 1]
which controls the level of confidence agreed to the measurements.

For a given C, p and u the equation (10) provides a positive scalar. The lower this
value, the better the solution represents the observed reality. The term better means
that the found solution respects strictly the admissibility conditions, and, simultaneously,
it respects the stipulated constitutive equations and the observed measures as well as
possible. In this case, the final problem is expressed by a double minimization which can
be written as follows:

minmin = E},opp
C,P u,o,7y (11)
s.t. (u,0,7) is admissible

In addition to the usual information such as displacements, stresses or deformations,
the solution of problem (11) provides the parameters C' and p that best represent the
current state of the structure. This idea remains valid for the entire structure, including
the joints. In fact, this formulation even permits one can simply choose the regions that
should be updated, and thus obtain the desired information. This process can be done in
the discretization step and will be explained in the sequence.

2.2 Algebraic description

Only a few problems have a known analytical solution. This is why approximate
numerical solutions have gained attention in the recent decades. Among these methods
of approximation, one of th most often used in the practical engineering problems is the
Finite Element Method (FEM) [42]. This method consists of subdividing the structure



into a set of elements and nodes composing the mesh. Thus, the equilibrium equation (3)
can be rewritten as follows:

[Kl{u} + [M]{i} = {q} (12)
where [K] is the stiffness matrix, [M] is the mass matrix, {u} is the nodal displace-
ments, {ii} is the nodal acceleration, and {¢} is the nodal excitation forces. Under the

assumption that both displacement and excitation force are sinusoidal functions of time,
it follows:

{u} = {A,} sinwr (13)

{a) = {A}sinwr (14)

where {A,} is the nodal displacement amplitude, {A4,} is the nodal force amplitude
and 7 is the time. Substituting equations (13) and (14) into equation (12), the discrete
equilibrium equation, valid for undamped systems, becomes:

(K] = w?[M]){A} = {4} (15)

The present study is devoted to free vibration regimes. In this case, {A,} is nil and
the equilibrium of the structure can be achieved at well-defined vibration frequencies,
called proper frequencies, or eigenfrequencies. Each eigenvalue w; corresponds to a geo-
metric shape obtained from the eigenvector, {U};. Both eigenvalues and eigenvectors are
characteristic of each structure, and can be found by solving the following equation:

(KU} — wi[MI{U}: = {0} (16)

Before proceeding with discretization, it is necessary to define the norm |ju — @l in
equation (10). This norm expresses the discrepancy between numerical model predictions
and observed measurements and can be proposed in multiple ways. Here, it is set the
following form:

lu— al| = {[Y]U — U} [GJ{[Y]U - U} (17)

where [Y] is a projection matrix, U stores the collected measures and [G,] is defined as the
stiffness matrix condensed at the points where the displacement field is being measured.

In the present study, it is assumed that the causes of the discrepancies between model
and reality lie in the lack of knowledge of the correct stiffness of the system, in particular,
the joints. Therefore, the mass distribution of the system is assumed perfectly known. To
implement this option, we simply set @ = 1 in equation (8). Let {V'} represent the image
of the admissible stress. Then, the performance measure stipulated by equation (8) can
be written as follows:

Bns(U.V,0) = L {U VY [KOHU - V) (18)

where 6 stores the material constitutive parameters. Here, the constitutive material is
linear elastic and isotropic, therefore, defined by the Poisson’s ratio and the Young mod-
ulus.



Structural joints are considered independently of the rest of the structure. In this
case, each joint is considered to have semi-rigid behavior governed by Hooke’s law. This
choice does not imply loss of generality in terms of choosing more complex constitutive
models. On the contrary, the reasons are twofold. Firstly, it allows for a clearer and more
concise presentation of the underlying formulation. Second, once verified, this formulation
can serve as a first approximation for more complex models (linearization step). As an
independent entity, each hookean joint has stiffness according to the six possible degrees of
freedom, being three rotations and three translations. The set of all stiffness parameters
that characterize each joint is included in 6.

The present CRE formulation allows identification to be performed only in some re-
gions of interest. For this, it is necessary to select these regions using projection matrices
on the nodal displacements in equation (18). Let [II] be the projection matrix which
collects the degrees of freedom corresponding to the joints. It is also important to collect
the stiffness matrix corresponding exclusively to the joints, i.e., [K;]. Then, the CRE
norm is rewritten as follows:

FeeU,V,6) = LMW ~ V)Y@ - V) (19

Using equations (17) and (18), it is possible to express equation (10) in discrete version
as:

-2

Eyvierp(U,V,0) Z%{[H](U — YK @ONMU - V)3
1 r

* 21 —r

The final version of the problem to be solved is then stated as follows:

{(Mv - oYU - U}

memr[r]n‘;l Eycore (21)
st [K{V} - [M{U} = {0}

At this point, one can choose the most convenient alternative to solve this minimization
problem. Here, we choose a two-step approach as described below.

2.3 Proposed algorithm

The double minimization expressed in equation (21) has an appealing aspect. For a
fixed 6, the quantity to be minimized is quadratic into respect to {U — V'}. This observa-
tion allows the unknown nodal values to be obtained directly. Let the problem expressed
in equation (21) be rewritten as an unconstrained minimization using the following La-
grangian form:

L(U,V,6,3) = {[M(U ~ V)Y (K@M ~ )}
- %1 {1V - OYIGHITIU = T} + I (K OV} - [MI{U})

(22)



For a given set of parameters, 7, the Lagrangian becomes function of U, V and .
Therefore, its minimum is obtained by doing:

2—5 = [ [, (O )I{U =V} + —— [GYIU = U} = MI{A} = {0} (23)
or = I @N]IHT - V) + [K(6)]{3} = {0) 2
o = [KENIV) - MU} = {0} (25)

These equations can be arranged in a linear system form:

[A{X} ={B} (26)
where,
[7(67)] G —w?[M]
[A] = | [J(07)] 0 [K(67)] (27)
—[K(@7)] [K(07)] —w?[M] 0
[7(67)] = [T K (67)][11] (28)
(G0

(B} = { 0 } (29)

0

Uu-Vv

{X} = { U } (30)

A

Both the matrices [J] and [K] depend on 67. This implies that the solution of the
linear system ({U}, {V'}, {\}) is also a function of #/. This fact can be used to obtain the
sensitivity of the Lagrangean at this particular point for a particular w. The derivation
follows:

Vo= T LU(0),V(0),A(0),0) (31)

oL oU OL oV 0L O\ OL
o —_— - 2
Vi= v a6, " av a6, " ox a6, " 6, (32)

-0 =0 =0
The .quantiti.es %, g—‘[// and g—i are null because {U}, {V}, {A\} come from the
Lagrangian stationariness. It comes:
oL

vi=Z 3



0|1

Vi= g | 3 {0 = VGO - V) + 57— (100 - DY IGHYIU - T)
+ KOV} - M0
(34)
1 T Ta[KJ] Ta[K]
Vi = o {U = VYT SR U — VY = )T V) (35)

From an initial value of §/, and with the gradient of expression (35), it is possible to
obtain an improved value /! using the classical steepest gradient method. With the new
67+ the procedure is repeated iteratively until convergence is reached, which concludes
the solution of the problem (21). For improving computational efficiency, it is advised
the use of more advanced algorithms for this purpose, such as the BFGS. A flowchart
containing the steps to be followed is shown in the Figure 1. This sequence of tasks can
be implemented in any finite element analysis software provided that one can manipulate
the main matrices freely. In the present study, we chose to build the algorithm using
Cast3m [43].

Reference Structural Response Reference Data Initial Model
- Experimental test - Modal shapes - Mesh, boundary conditions,
- Synthetical test (direct FEM) - Eigenfrequencies material properties ...

- Initial interface parameters

Parameter identification

Evaluate the Model quality

- Calculate admissible fields (eq.26)
- Calculate the MCRE (eq. 20)

Update parameters

- Gradient method MCRE < e f’ararTu'eters
(steepest, Newton, No Yes identified
BFGS...)

Updated Model

- Mesh, boundary conditions,
material properties ...
- Identified interface parameters

e =tolerance

Figure 1: Minimization: proposed workflow

2.4 The consistency measure

The degree of consistency between the measured vibration modes and those predicted
by the discrete model is indicated by the Modal Assurance Criterion (MAC). This quantity
is calculated as follows:

10
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The MAC results a real number ranging from 0 to 1. Also, the degree of consistency
can be defined for the frequencies accordingly:

MAC(U;, U;) = (36)

The quantity Af can assume negative values. If the measured frequency is close
enough to the corresponding predicted value, then Af tends to zero.

Equations (36) and (37) can be used to create an alternative expression that measures
the discrepancy between observed and expected behaviour under free vibration regime.
Let h; be a weighting factor, then, the following measure is presented:

Nm

EMAC_Zh [1—MAC Ul,Uz} +Z (1= h) [AF(&r, w0)]2 (38)

where N,, represents the number of observed modes. The quantity E%; - may be used
for verifying purposes, as will be discussed.

2.5 Uncertainties modelling

In the formulations described above, a perfect knowledge of both the measurements
and the material parameters that constitute the planar structural elements is implicit. In
fact, this hypothesis has a relevant aspect both from a theoretical point of view and for
preliminary investigations [39]. However, reality requires a greater degree of sophistication
on the part of models. This is due to the numerous intrinsic sources of uncertainties,
such as, those regarding the physical parameters, the chosen model, the solution method
employed, the accuracy achieved, the degree of knowledge about the physical phenomenon,
the measurement collection, among others. Uncertainties are pervasive, to a greater or
lesser extent. Thus, before pointing out whether the identified parameters correspond to
reality, it is important to estimate the impact that uncertainties may have on the proposed
identification strategy. In the present study, this estimate will be obtained relying on the
probability theory.

Let the uncertainties in the input parameters be represented by ¥ = (¥, Uy, ..., V), a
vector containing n random variables. Because W is known a priori, so does its cumulative
probability functions, Fy,. v, is the realization of the j-th random variable which can
follow several models of continuous distribution. This choice does not change the essence
of the methodology. Therefore, for sake of simplicity, the random variables are assumed
as Gaussian, being defined by two real parameters each: the mean, mg, and the standard
deviation, sp.

Probabilistic analysis usually require several calls of the mechanical model in question
to obtain the desired distributions. Here, each call represents a double minimization
problem (see Figure 1). Therefore, the time spent for analysis can reach weeks, and even
months, what quickly becomes a limiting factor. To circumvent this problem, it is possible

11



to use a meta-modelling technique known as the Response Surface (RS). In practice, this
method is a non linear regression that has been improved since its proposition [44]. In
the present study, the quadratic surface response is chosen according to the following
equation:

n n
925 = Qo + Z ajl/)j + Z ajlewl + € (39)
j=1 j<i=1

In equation (39), a;, (j =0,...,n) and aj, (j <1 =1,...,n) are real coefficients to be
determined from numerical experiments by using non linear regression. € represents the
deviation comparing with the actual mechanical response. It follows Gaussian distribution
with zero mean. The numerical experiments utilize elementary statistical information on
the basic variables (mean values and standard deviations). The experimental points are
generated using the following rule [45]:

’QZ)]‘ = mEj + 5j3Dj (40)
where 0; is real parameter to set the distance from the mean, ¢; € [—1,1].
With these definitions, based on the Monte Carlo simulation method, it is possible to

obtain an estimate of the effects of uncertainties on the proposed formulation using the
Algorithm 1.

Algorithm 1 Proposed task sequence

: procedure DEFINE RS POLYNOMIAL
Generate numerical experiments points (equation (40))
Non linear regression for finding the RS polynomial coefficients

1
2
3
4: procedure META-MODELLING

5: loop, j=1,number of Monte Carlo simulations:

6 Choose a random real number <), such that, <) € [0, 1]
7

8

9

Calculate the sample vector V) = (W”, wéj), . wg)), where wl-(j) = Fy (W)

Obtain output using the RS polynomial at 1)) (equation (39))
. endloop

3 Applications

The present applications illustrate some features of the proposed formulation. We
start with a simple one-dimensional structure in which some key ideas are discussed. We
then move to a beam model, well known in the literature, as a means of verification and
comparison with other model update techniques. Finally, in a more elaborate example,
the effects of uncertainties on the identification process will be analysed relying on a
structure of a building composed of planar elements.

3.1 Two-bar structure

Consider an ideal structure composed of two bars as illustrated in Figure 2. The bars
are joined by a spring. The left end of the first bar is fixed and the right end of the second

12



bar is free. Each bar has input data £ =1, S = 1, L = 1 and mass per unit volume
= 2. The units are assumed to be compatible for facilitating the presentation. The
discrete model is represented by two standard bar elements.

ES/L k ES/L
—— =
B C D
L _ ) L _

Figure 2: Two-bar structure

The reference nodal displacements for this system are showed in table 1 and the
corresponding mode frequencies in table 2. They were obtained by solving the standard
free vibration FEM problem using the reference value k& = 2 for the spring and the
variational consistent mass matrix.

Position Mode 1 Mode 2 Mode 3
A 0.0000  0.0000  0.0000
B 0.3946  -0.7442 0.3465
C 0.5585  -0.3216 -0.7556
D 0.7296  0.5854  0.5559

Table 1: Normalized reference mode shapes

Eigenfrequency Value (Hz)

1 0.0803
2 0.2849
3 0.5289

Table 2: Reference frequencies

The evolution of the MCRE as a function of the spring stiffness is shown in Figure 3.
There are two aspects that deserve to be discussed by observing this figure. The first one
is the point of minimum. According to the formulation expressed in equations (11) and
(21), the searched parameter corresponds to the minimum. In this particular problem, the
parameter to be identified is unique, k. Each point in the curve from Figure 3 is obtained
from the solution of the linear system (26). However, only at the minimum point, we have
a pair of admissible vectors U and V' in which the interface stiffness parameter respects
the constitutive equation as best as possible. It is important to note that we are dealing
with an ideal example; there is no uncertainty in the measurements, and therefore the
constitutive equations of the model is satisfied exactly. This is why the MCRE norm
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tends to zero in the neighbourhood of k£ = 2. In realistic cases, MCRE null values are
unlikely to occur.

The second aspect of interest of the Figure 3 is the convex behavior in the vicinity
of the minimum point. This property is of considerable interest from a numerical point
of view. First because it ensures the existence of local minimums contributing to the
stability of the algorithm. Second, one can take advantage of second-order minimization
strategies to improve computational efficiency. Of course, this idea remains valid as long
as these properties are not influenced by data noise.
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Figure 3: Two-bar structure: Evolution of Modified Constitutive Relation Error

Continuing the investigations, in free vibration regimes, it is important to observe
the structural behavior over a defined frequency spectrum, and not only a specific mode.
In figure 4, it is showed the frequency response function (FRF) observed at point D
(Figure 2) in terms of displacements. The frequency domain ranges from 0Hz to 1.5H z,
containing the three eigenfrequencies. One can see the response spectrum of the system
when the initial value of the searched parameter is k = 10. After convergence, the response
matches the reference. Since the reference data is ideal, and therefore free of noise, the
formulation is still able to identify it appropriately, even when the initial value of the
searched parameter is five times higher than the expected one.
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So far, the reasoning has been based on the full set of measures, i.e., nodes B, C and D.
However, in the real-world experiments the quantity of sensors are limited. In general, the
number of sensors is well below the number of nodes present in the finite element mesh.
This fact brings us to the next question. Is it possible to identify the joint parameter
disposing only of partial measures? To find the answer, some supplementary numerical
tests were made according to Table 3. The numerical test T1 corresponds to Figure 3,
whereas the remaining results are shown in Figure 5. The parameter is identified in all
cases letting clear the robustness of the proposed formulation. In the limit, only one
modal reference is enough for identification because the problem is essentially linear and
with only one parameter to be identified. It is worth bearing in mind that these inferences
are plausible because the reference data is free of uncertainties.

Test Reference eigenmode Reference eigenfrequency Measure at node

T1 1,2, 3 1,2, 3 B, C, D
T2 2 2 B, C, D
T3 3 3 B, C, D
T4 2 2 D
T5 3 3 B

Table 3: Numerical test details
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The last aspect to be discussed in this example concerns the boundary conditions. In
real world problems, perfectly rigid support conditions are hardly achieved. To mimic
this situation, we propose to include an additional semi-rigid connection in place of the
fixed support, i.e., at the node A. Then, we make its stiffness successively increase
until it reaches very large values (virtually rigid) according to Table 4. The goal is
verifying whether the formulation can still identify both joints properly. In this case,
the parametric space is two dimensional, (ka, kjoint), and a typical graph can be seen in
Figure 6 for the case C1 from Table 4. The results are shown in Figures 7 to 11 for
each parameter. Although the rigidity at extremity A increases drastically surpassing the
order of magnitude of the remaining variables, the proposed formulation is still capable
to identify it. As in the previous cases, this observation must be made with caution that
uncertainties are not being taken into account.

Parameter set k4 Kjoint

C1 D 2
C2 10 2
C3 50 2
C4 200 2
Ch 2000 2

Table 4: Reference values used for stability testing
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Figure 11: Projection of the MCRE on each direction of the parameter domain. Case 5

The inverse problems are well known for being ill-posed, and consequently present
difficulties in obtaining a numerical solution. However, the results obtained through this
simple example show the attractiveness of the proposed methodology in deterministic
contexts, in particular, the effectiveness with which the expected parameters are identified.
This feature was maintained under different identification conditions such as complete
reference measurement data, partial reference measurement data and semi-rigid boundary
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conditions. These inferences allow the continuation of numerical investigations retaining
that, under well controlled conditions, numerical instabilities do not seem to represent
major problems.

3.2 Beam structure

The present example was proposed by Friswell and Mottershead [14]. It is a beam with
flexural rigidity F1 = 4557Nm?, Poisson’s ratio v = 0.3, mass density p = 2680K g/m?
and length L = 0.7m. The schematic representation can be found in Figure 12. The
reference values are k; = 4 x 10°N/m and k; = 1 x 10°N.m/rad.

ke Elp
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| <«
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Figure 12: Beam schematic representation

The plot of the MCRE along the search interval can be seen in Figure 13. The identi-
fication was based on the first three vibration modes and corresponding eigenfrequencies.
The measures (displacement and rotation) were taken only at the free end of the beam.
As can be noted, the minimum point corresponds exactly to the reference value.
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Figure 13: MCRE based identification

The measure presented in equation (38) has been consolidated in the literature for
model identification purposes. So, we decided to apply it here and check if the predicted
parameters remains the same. The parameter h; is set to 0.5. The results are shown in
Figure 14 retaining the same search interval. As can be seen, the classical MAC approach
recovers the same values identified by the MCRE norm.
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Figure 14: MAC based identification

From Figure 13-a and Figure 14-a, comparing MCRE norm and MAC norm, it can be
noted that the MAC norm may exhibit less pronounced convexity in the vicinity of the
minimum point. This observation serves as a warning when algorithms present conver-
gence difficulties. Additionally, it indicates that the MCRE norm may be advantageous
in some situations by preserving its parabolic aspect near the point of identification.

The relevance of this example lies in the fact that the proposed MCRE norm repro-
duces, with high degree of agreement, the results predicted by the classic MAC norm.
This finding is encouraging from a theoretical point of view and many numerical analysis
may follow from this. Despite its importance, this aspect will not be further explored.

These two examples explored exclusively deterministic aspects of the proposed formu-
lation. This information is valuable for the theoretical development of new applications
and extensions of the concepts discussed in this paper. However, in realistic situations, it
is necessary to remember that determinism has limitations. For this reason, in the next
example, this aspect is placed under discussion.

3.3 Building structure

This example refers to a building structure. Among the various types of structural
design possible, the present has the particularity of being composed of planar elements.
Thus, their carrying capacity is determined by the proper performance of slabs, walls
and joints. Membrane effects are considered relevant in this case, so shell elements are
utilized. The main input parameters are showed in table 5 whereas the front and the side
view are presented in Figure 15. Each connection between a slab and the neighbouring
wall is semi-rigid. The stiffness reference value is 4 x 10°N.m /rad.
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Characteristic Value

Length Ly 14m
Length Ly ™m
Length L, 21m
Interfloor distance 3m
Wall thickness 20cm
Slab thickness 14em
Young Modulus 32GPa
Poisson’s ratio 0.2

Specific weight — 2500kg/m?

Table 5: Building structure details
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Figure 15: Building structure: Front and side view (measure in m)

Only the first four modes will be considered for the joint identification. These are the
reference modes with corresponding frequencies that can be seen in Figure 16. It will be
considered the data from four arbitrary points (four sensors). They are chosen as being
the four top vertex of the building. The measures are taken along the three displacement
axis. Rotations can be included, but they were neglected in this application. It mimics
the real measurement cases where the information is available for a limited set of points
along particular directions.

Following the discussions presented in the previous examples, the identification, with-
out considering the associated uncertainties, can be found in Figure 17. All observations
made in those simpler examples remain valid here and will not be rediscussed. Neverthe-
less, a further comment is pertinent. Since the proposed formulation is built based on
the FEM, it inherits the vast range of applications provided by this method. Not only
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reticular and planar structures can be analysed but also solid, and mixed, depending on
the assembling capacity of the software that will host the formulation. The Cast3m [43]
finite element code, developed in the present study, can handle these assemblies without
major difficulties.

Continuing the numerical investigations, the non-determinism is included following
three steps. In the first step, we will evaluate only the effects that measurement noise
can cause. In the second stage, only the uncertainties regarding the material parameters
will be addressed. In the last stage, we will evaluate both effects simultaneously. This
progressive way of acting facilitates the analysis and interpretation of the results.

Moving on to the first step, noises are included in the reference measures. The mea-
surement provided by each sensor follows a probabilistic distribution law assumed as
Gaussian. The mean always corresponds to the corresponding deterministic value, and
the standard deviation is adopted as a fraction of the mean value. Four percentile levels
were tested: 5%, 10%, 15% and 20%. One assumes that the more dispersed the distribu-
tion, the higher the noise level that affects the sensor and consequently the identification
process. The results are shown in Figure 18 and Table 6. As the noise level increases
the MCRE evolution paths become horizontal. The more horizontal the curves, the more
the algorithm loses its identification capability. This is because the identified parameter
corresponds to a minimum point which is in turn found by a gradient method. The more
horizontal the curve, the harder it becomes to define the gradient, so the algorithm starts
to get too slow. Excessively long calculation times may become prohibitive in practical
applications. In the numerical tests, below the maximum noise level (20%), the proposed
formulation was still able to identify properly the rotational stiffness of the joints.
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Figure 18: MCRE evolution in the presence of increasing noise levels

Noise level Identified parameter k;

0%
5%
10%
15%
20%

4.00 x 105N.m/rad
4.05 x 105N.m/rad
3.97 x 105N.m/rad
3.95 x 105N.m/rad
3.92 x 105N.m/rad

Table 6: Identified k; in the presence of increasing noise levels
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Figure 19: Discrete probability density of the rigidity identified considering the uncer-
tainties on material parameters without noise

of parameters are drawn and tested to verify the value of the predicted joint stiffness. The
discrete spectrum of identified parameters can be seen in Figure 19. This graph shows
that rotational rigidity dispersion resembles a Gaussian law. The calculation of the mean
and standard deviation gives the values 4.023 x 10°N.m/rad and 1.953 x 10°N.m /rad,
respectively. The mean of the identified values tends to the reference value, while the
deviation reaches ~ 50%. In this case it can be inferred that the identification algorithm
may increase the dispersion without changing their mean value w.r.t. the deterministic.
This behaviour is typical of linear correlations between random variables. Thus, the pro-
posed identification algorithm manifests a linear dependence with respect to the material
uncertainties. This feature is relevant because it suggests that the quality control of the
identification process can be performed by controlling the dispersion of the referred input
variables. However, deeper statistical studies are needed to identify the validity limits of
this statement, which is beyond the scope of the present study.

It is now pertinent to find out what happens when all uncertainties are simultaneously
included into the model, i.e. the third stage. As the uncertainties associated with the
material do not impact significantly the identification capability, they will be maintained
at the levels already presented, i.e. 20%. On the other hand, the measures provided by
the sensors are considered have increasing noise levels: 1%, 5%, and 10%. After running
105 Monte Carlo simulations, the dispersion corresponding to each set may be expressed
graphically as shown in Figures 20, 21 and 22. As the noise level in the measurements
increases, the dispersion curve changes its appearance from normal to log-normal. The
rising peaks on the left side of the graphs indicate that an increasing number of ob-
servations are moving away from the mean. This fact is confirmed by the calculated
values, which are: 3.92 x 10°N.m/rad (noise = 1%), 2.83 x 105N.m/rad (noise = 5%)
and 2.28 x 10°N.m/rad (noise = 10%). The presence of material uncertainty seems to
amplify the effects of noise levels, which ultimately create difficulties for the identification
process.
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Figure 20: Discrete probability density of the rigidity identified considering the uncer-
tainties on material parameters in the presence of noise (level = 1%)
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Figure 22: Discrete probability density of the rigidity identified considering the uncer-
tainties on material parameters in the presence of noise (level = 10%)

The outcome of these three steps is that the quality of the measures may influence
directly the identification ability of the proposed formulation. Although a certain ro-
bustness against some categories of uncertainty, such as materials for instance, can be
evidenced, it rests not immune to high noise levels.

4 Final remarks

The present study proposed a numerical formulation for the parameter identification
of joints between structural elements. Joints are considered as independent mechanical
entities that are capable of transmitting generalized forces between their neighbouring
structural elements. It is assumed that they have a priori unknown rigidity, but can
be identified from information about the free vibration regime of the global structure.
The numerical procedure follows the precepts of the Constitutive Relation Error theory,
in which the unknown stiffness parameters are found through a minimization problem.
Although planar elements are the focus of the present study, the technique can also be
applied to elements of other typologies.

The main characteristics and potentialities were evidenced numerically by examples of
increasing complexity, starting with reticular structures and progressing to planar struc-
tures. In particular, this investigation highlights that the proposed algorithm inherits the
versatility of using FEM in combining different types of structural elements, as long as the
host software has the corresponding assembling capability. This feature opens numerous
research opportunities and applications in engineering.

In numerical identification procedures, the sources of uncertainty occupy a prominent
place. Thus, the discussions throughout the text followed two complementary paths. The
first was to investigate the predictability of the proposed formulation in a completely de-
terministic context. As expected, its performance was remarkable. It has been shown that
in ideal cases (where all input variables are perfectly known and free of noise), the for-
mulation can identify joint parameters properly even with partial information. Although
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these observations are of significant theoretical interest, the assumed determinism has
limitations in demonstrating the applicability of the formulation to more general cases.

The second path was to model the inherent uncertainties coming from various sources.
The idea was checking if the good deterministic properties remained. To this end, it was
included a probabilistic analyses by means of surface response metamodeling. This choice
was made because probabilistic analyses require a large number of finite element model
calls, which can quickly result in prohibitive processing times. The obtained results are
encouraging. They show that the proposed formulation retains its ability to identify
the joint parameter within limited levels of material uncertainty and noise. In the tests
performed, the uncertainties associated exclusively with the material were not so harmful
in the identification process. However, high noise levels in measurements may lead the
proposed algorithm to lose its efficiency in properly predicting parameters.

The present study finds ramifications in different areas of engineering, such as the
design of experiments. Using the proposed formulation, it is possible to establish the best
geometric arrangement of sensors according to the parameter to be identified. Another
application would be in the area of structural monitoring, where different monitoring
devices can be proposed based on the concepts discussed here.

Some challenges still persist. Among them, it is cited the inclusion of more complex
joint models, possibly non-linear. Thus, it would be possible to advance the proposed for-
mulation in the study of damaged structural states and consequently a better estimation
of its remaining resistant capacity.

Acknowledgment

This work, within the SINAPS@ project, benefited from French state funding man-
aged by the National Research Agency under program RNSR Future Investments bearing
reference No. ANR-11-RSNR-0022-04. The research reported in this paper has been
supported in part by the SEISM Paris Saclay Research Institute.

References

[1] M. Petyt and W. Mirza. Dynamic behaviour of in-line shear walls connected by floor
slabs. Journal of Sound and Vibration, 25(3):349-357, 1972.

[2] N. Lle and J. Reynouard. Seismic behavior of r/c shear wall structures designed
according to the french ps92 and ec8 codes: A comparison between shaking-table re-
sponse data and 2d modeling. In 12th World Conference on FEarthquake Engineering,
2000.

[3] Ebrahim Zamani Beydokhty and Hashem Shariatmadar. Behavior of damaged exte-
rior rc beam-column joints strengthened by cfrp composites. Latin American journal
of solids and structures, 13(5):880-896, 2016.

[4] Alg Kudzys and Alg Kudzys. Evaluation of wall-slab connection behaviour under
extreme lateral actions. Statyba, 2(8):35-44, 1996.

28



[5]

[13]

[14]

[15]

[16]

[17]

Snehal Kaushik and Kaustubh Dasgupta. Seismic behavior of slab-structural
wall junction of rc building. FEarthquake Engineering and Engineering Vibration,
18(2):331-349, 2019.

S Greeshma and KP Jaya. Effect of geometric parameters on exterior wall-floor
connection. In 15 WCFEE, 2012.

Johannes Daniél Gerber and GPAG van Zijl. Alternative wall-to-slab connection
systems in reinforced concrete structures. Journal of the South African Institution
of Civil Engineering, 59(3):36-47, 2017.

Snehal Kaushik and Kaustubh Dasgupta. Seismic damage in shear wall-slab junction
in rc buildings. Procedia Engineering, 144:1332-1339, 2016.

GM Cocchi. Elastic-static analysis of shear wall/slab-frame systems using the frame-
work method. Computers € structures, 54(2):303-313, 1995.

Morris Riedel, Felix Wolf, Dieter Kranzlmiiller, Achim Streit, and Thomas Lippert.
Research advances by using interoperable e-science infrastructures. Cluster comput-
ing, 12(4):357, 20009.

F. Hemez and S. Doebling. Review and assessment of model updating for non-linear,
transient dynamics. Mechanical Systems and Signal Processing, 15(1):45-74, 2001.

Z. Pan, S. Guner, and F. Vecchio. Modeling of interior beam-column joints for
nonlinear analysis of reinforced concrete frames. Engineering Structures, 142:182—
191, 2017.

J. Mottershead and M. Friswell. Model updating in structural dynamics: a survey.
Journal of sound and vibration, 167(2):347-375, 1993.

M. Friswell and Mottershead J. Finite element model updating in structural dynamics,
volume 38. Springer Science & Business Media, 1995.

B. Zarate and J. Caicedo. Finite element model updating: multiple alternatives.
Engineering Structures, 30(12):3724-3730, 2008.

Y.B. Yang and Y.J. Chen. A new direct method for updating structural models
based on measured modal data. Engineering Structures, 31(1):32-42, 2009.

J. Mottershead, M. Link, and M. Friswell. The sensitivity method in finite element
model updating: a tutorial. Mechanical systems and signal processing, 25(7):2275—
2296, 2011.

P. Ladeveze and D. Leguillon. Error estimate procedure in the finite element method
and applications. SIAM J. Numer. Anal., 20(3):485 — 509, 1983.

P. Ladeveze, D. Nedjar, and M. Reynier. Updating of finite element models using
vibration tests. AIAA Journal, 32(7):1485 — 1491, 1994.

29



[20]

[28]

[29]

[30]

[31]

32]

A. Deraemaeker, P. Ladeveze, and S. Le Loch. Results obtained by the cre updating
method using a plate model. Mechanical systems and signal processing, 17(1):47-54,
2003.

A. Deraemaeker, P. Ladeveze, and P. Leconte. Reduced bases for model updating
in structural dynamics based on constitutive relation error. Computer methods in
applied mechanics and engineering, 191(21-22):2427-2444, 2002.

V. Decouvreur, P. Bouillard, A. Deraemaeker, and P. Ladeveze. Updating 2d acoustic

models with the constitutive relation error method. Journal of sound and vibration,
278(4-5):773-787, 2004.

V. Decouvreur, P. Ladeveze, and P. Bouillard. Updating 3d acoustic models with
the constitutive relation error method: A two-stage approach for absorbing material
characterization. Journal of sound and vibration, 310(4-5):985-997, 2008.

P. Charbonnel, P. Ladeveze, F. Louf, and C. Le Noac’h. A robust cre-based approach
for model updating using in situ measurements. Computers € Structures, 129:63-73,
2013.

M. Azzouna, P. Feissel, and P. Villon. Robust identification of elastic properties using
the modified constitutive relation error. Computer Methods in Applied Mechanics and
Engineering, 295:196-218, 2015.

S. Guchhait and B. Banerjee. Material parameter identification in transient dynamics
by error in constitutive equation approach. Procedia Engineering, 144:512-519, 2016.

B. Banerjee, T. Walsh, W. Aquino, and M. Bonnet. Large scale parameter estimation
problems in frequency-domain elastodynamics using an error in constitutive equation

functional. Computer methods in applied mechanics and engineering, 253:60-72,
2013.

S. Huang, P. Feissel, and P. Villon. Modified constitutive relation error: An identi-
fication framework dealing with the reliability of information. Computer Methods in
Applied Mechanics and Engineering, 311:1-17, 2016.

J. Waeytens and et al. Model updating techniques for damage detection in concrete
beam using optical fiber strain measurement device. Engineering Structures, 129:2—
10, 2016.

O. Allix, P. Feissel, and H. Nguyen. Identification strategy in the presence of cor-
rupted measurements. Engineering computations, 22(5/6):487-504, 2005.

P. Feissel and O. Allix. Modified constitutive relation error identification strategy
for transient dynamics with corrupted data: The elastic case. Computer methods in
applied mechanics and engineering, 196(13-16):1968-1983, 2007.

J. Guo and I. Takewaki. Minimum constitutive relation error based static identifica-

tion of beams using force method. In Journal of Physics: Conference Series, volume
842, pages 1-10. IOP Publishing, 2017.

30



[33]

[34]

[38]

[39]

T. Silva and N. Maia. Detection and localisation of structural damage based on
the error in the constitutive relations in dynamics. Applied Mathematical Modelling,
46:736-749, 2017.

Jia Guo, Li Wang, and Izuru Takewaki. Modal-based structural damage identification
by minimum constitutive relation error and sparse regularization. Structural Control
and Health Monitoring, 25(12):¢2255, 2018.

Jia Guo, Li Wang, and Izuru Takewaki. Frequency response-based damage identifi-
cation in frames by minimum constitutive relation error and sparse regularization.
Journal of Sound and Vibration, 443:270-292, 2019.

Jia Guo, Kailai Deng, Li Wang, and Izuru Takewaki. Physical-based parametrization
and local damage identification for frame-type structures using response sensitivity
approach in time domain. Structural Control and Health Monitoring, 26(10):e2412,
2019.

Jia Guo, Li Wang, and Izuru Takewaki. Static damage identification in beams by

minimum constitutive relation error. Inverse Problems in Science and Engineering,
27(10):1347-1371, 2019.

S. Guchhait and B. Banerjee. Constitutive error based parameter estimation tech-
nique for plate structures using free vibration signatures. Journal of Sound and
Vibration, 419:302-317, 2018.

H. Oliveira, F. Louf, E. Hervé-Secourgeon, and F. Gatuingt. Wall-slab joint param-
eter identification of a reinforced concrete structure using possibly corrupted modal
data. International Journal for Numerical and Analytical Methods in Geomechanics,
44(1):19-39, 2020.

P. Ladeveze and J. Pelle. Mastering calculations in linear and nonlinear mechanics,
volume 171. Springer, 2005.

P. Ladeveze. A modelling error estimator for dynamic structural model updating. In
Studies in Applied Mechanics, volume 47, pages 135-151. Elsevier, 1998.

Olek C Zienkiewicz, Robert L. Taylor, and Jian Z Zhu. The finite element method:
its basis and fundamentals. Elsevier, 2005.

Cast3m. CFEA, Logiciel de calcul par éléments finis en mécanique des structures et
des fluides, available at http://www-cast3m.cea.fr/index.php, 2018.

George EP Box and Kenneth B Wilson. On the experimental attainment of opti-
mum conditions. Journal of the Royal Statistical Society: Series B (Methodological),
13(1):1-38, 1951.

Christian G Bucher and Ulrich Bourgund. A fast and efficient response surface
approach for structural reliability problems. Structural safety, 7(1):57-66, 1990.

31



