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Abstract
We consider the multi organization scheduling problem (MOSP) [20]: given N organiza-

tions owning, each of them, one set of tasks and machines, the aim is to compute a schedule
which gathers all the tasks on all the machines, and such that the makespan is minimized.
A rationality constraint must be fulfilled: no organization should increases its makespan
(the completion time of its last task) compared to the case where it schedules its own tasks
(and only its own tasks) on its own machines. We show that cooperation (sharing machines
and tasks) can benefit to all the organizations simultaneously, since they may decrease their
makespans by a factor of N . We present an algorithm which is (1 + ε)-approximate, while
the makespan of each organization is increased by a factor at most (1 + ε). We also study
to which extent the rationality constraint (or a relaxed constraint) increases the makespan,
compared to problem (P ||Cmax) where there is no such a constraint. Finally, we introduce a
new problem, which focus on equity: the aim is to return a schedule which fulfills the ratio-
nality constraint and which maximizes the factor by which each organization has decreased
its makespan. We give an optimal algorithm for this problem in a particular case, and show
that it is NP-hard and hard to approximate in the general case. We complete this paper by
an efficient heuristic for this problem.

1 Introduction
Cost constraints, as well as environmental issues, make the sharing of machines between inde-
pendent organizations (such as laboratories or universities) a very interesting solution. Sharing
machines allow organizations which need to execute tasks to use the machines of organizations
which do not need machines at this time, decreasing the completion time of the tasks without
having to invest in new machines. But cooperation is even more than sharing unused machines
with organizations who need to schedule tasks: cooperation can benefit simultaneously several
organizations which all have tasks to compute, by allowing a better placement of the tasks,
as we will see in the sequel. The Multi Organization Scheduling Problem (MOSP) [20] deals
with several organizations which each owns both a set of identical parallel machines and a set
of sequential tasks to execute. The objective is to minimize the completion time of the last
task completed on the machines shared by the organizations, given that no organization should
increase the completion time of its tasks in the shared system, compared to the case where it ex-
ecutes its own tasks on its own machines. This last constraint is called the rationality constraint,
and ensures that all the organizations have incentive to share their machines.

Besides analyzing the best possible benefit that organizations can mutually have by sharing
their machines, our aim is to focus on the efficiency of algorithms (where the efficiency is thought
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in term of makespan – the date at which all the tasks have been computed), and on the equity of
algorithms for MOSP (it is not suitable that, even if the returned schedule fulfills the rationality
constraint, the machines which are free are used only for the tasks of a single organization
while some tasks of the other organizations are waiting). These two aspects may be antagonist,
and our aim is to see to which extent, since what we want would be a schedule with a small
makespan and in which machines are shared with equity. We will start by reviewing existing
work on MOSP, and continue by presenting our results and the map of this paper.

Related work.

The Multi Organization Scheduling Problem [20,21] has been introduced with parallel rigid tasks
(tasks that need to be executed in parallel on several machines) and has mainly been studied from
an approximation viewpoint. The best approximate algorithm is a 3-approximation algorithm
when the organizations schedule locally the tasks in decreasing order of their heights (the height
of a task is the number of machines needed to execute the task), or a 4-approximation algorithm
in the general case [10]. For sequential tasks (tasks that need to be executed on one machine
only), the best known algorithm is a 2-approximate algorithm [6] (in the sequel, all the papers
– as well as our results – deal with sequential tasks). Note that all these bounds are not only
approximation ratios, since they are in fact upper bounds of the ratio, in the worst instance,
Cmax(S )
OPT r̄ , where Cmax(S ) is the makespan in a solution returned by the algorithm and OPT r̄ is

the smallest possible makespan that can be obtained by scheduling the same set of tasks on the
same set of machines (this last schedule does not necessarily fulfill the rationality constraint).
Lower bounds on such a ratio have also been given: it has been proved that there is no algorithm
with a ratio smaller than 2 when the tasks are parallel [21], or when the tasks are sequential and
when it is required that, in the returned schedule, the machines of each organization schedule
their own tasks before scheduling the tasks of other organizations [6, 8]. A lower bound of 3

2 is
known in the general case for sequential tasks [6,20] – we will improve this bound in the sequel.

Several variants have been studied: for example, organizations choose themselves on which
machines to schedule their tasks knowing that each machine schedule the tasks of its organization
first [8]. Despite most works deal with minimizing the overall makespan while each organization
wishes to minimizes its own makespan, other objectives have also been studied: the aim can be
to minimize the average completion time of tasks [6, 8], or the energy needed to schedule the
tasks [5]. These papers usually show that the problem is NP-hard and then give approximation
algorithms or heuristics.

Some papers also consider a relaxed version of MOSP: it is assumed that the organizations
tolerate a bounded degradation on the makespan of their own tasks, and the aim is to minimize
the global makespan. This problem is denoted by (1 + α)-MOSP [17] when it is assumed that
each organization accepts to increase the maximum completion time of its tasks by a factor at
most (1 + α). A 3

2 -approximate algorithm for 2-MOSP has been given [9]. Other work include
additional constraints on the machines [4]. The closest work in spirit to what we will do in
Section 4 is a study of (1 +α)-MOSP on unrelated machines [17,18]. In this setting, Ooshita et
al. show that, when there is no cooperation (α = 0), the makespan can be m times higher than
in the optimal makespan without the rationality constraint. When α > 0, the authors also give
a (2 + 2

α)-approximate algorithm for (1 + α)-MOSP.
There is few work on fairness issues when some organizations own tasks and machines. In an

experimental work, Cohen et al. [8] look at the fairness (using stretch and Jain Index) of sched-
ules returned by some algorithms, and they show that the best results are obtained by algorithm
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ILBA [21]. In another work, Skowron and Rzadca [22] model the fair scheduling problem as a
cooperative game and use the Shapley value to determine an ideal fair schedule. To calculate the
contribution of an organization, they determine how the presence of this organization influences
the performance of other organizations. For unit-size tasks they give a fully polynomial-time
randomized approximation scheme, and they show this problem is NP-hard and hard to approx-
imate in the general case. Other work about fairness in scheduling are mainly about how to
schedule tasks of different users on a set of shared machines (tasks belong to different users, but
the machines are not owned by the users) [1], or when different users have different preferences
on the order in which shared tasks will be executed on a same machine [19].

Our results, and map of the paper.

In this paper, we consider that N organizations O1, . . . , ON share m machines, and that each
organization Oi has its own set of tasks Ti. Each organization Oi wishes to minimize its
makespan, i.e. the date at which all its tasks (the tasks of Ti) have been completed. If each
organization Oi schedules its own tasks (and only its owns tasks) on its own machines, these
tasks are completed at a date which will be called the local makespan of Oi. We have two
objectives, which can be antagonists. First, we would like to return a schedule which is as
efficient as possible, and thus which minimizes the global makespan, i.e. the date at which all
the tasks have been scheduled. Second, we would like to return a fair schedule. Our results are
as follows.

In Section 3 we show that cooperation can permit to decrease the makespan of each or-
ganization by a factor N (but no more). This shows that cooperation can benefit to all the
organizations simultaneously, and not only to some organizations which own many tasks or few
machines. In this section, we also give a polynomial time algorithm with resource augmentation:
for a fixed ε > 0, and a fixed number of organizations, it returns a solution (1 + ε)-approximate
in which each organization has a makespan at most (1 + ε) times its local makespan.

In Section 4, we relax the rationality constraint by considering (1 + α)-MOSP: we assume
that each organization agrees to complete its last task at a date at most (1 + α) times its
local makespan. We are interested by the tradeoff between the value of α and the value of the
(global) makespan. We first show that an algorithm which returns schedules which minimize
the makespan can have to increase a local makespan by a factor m − 1, which is certainly
unacceptable for the agents. We then focus on the ratio than can be obtained for the global
makespan, for a fixed α: we give a lower bound of the necessary increase of the makespan in
(1 + α)-MOSP with respect to the optimal makespan without the rationality constraint. If
α = 0, (1 + α)-MOSP corresponds to MOSP (no organization should get a makespan higher
than its local makespan). In this case, the obtained lower bound shows that it is not possible
to get algorithm which outputs 2-approximate schedules for the makespan and which fulfills the
rationality constraint. This improves the lower bound of 3

2 given in [6, 20].
In Section 5, we define the gain of an organization as the ratio between its local makespan

over its makespan in the schedule returned. Since we want to fulfill the rationality constraint,
this gain will be at least 1, but the higher this gain is, the higher an organization will be satisfied
by the schedule returned. We are interested by getting fair schedules: we introduce the problem
which consists in returning schedules which maximize the minimal gain of an organization. For
the unit tasks case, we give a polynomial time optimal algorithm for this problem. For the
general case, we show that this problem is NP-complete, and even hard to approximate, and we
give an heuristic which outputs, in practice, schedules close to the optimal ones.
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We conclude this work by giving a few research direction in Section 6. Before starting
to present our technical results, we start, in Section 2, by introducing notations and defining
formally our problem.

2 Preliminaries

2.1 Notations

By O = {O1, ..., ON} we denote the set of N independent organizations sharing m machines
{1, . . . ,m} and n tasks. Each organization Oi, with i ∈ {1, . . . , N} owns mi ≥ 1 machines, and
a set Ti of ni ≥ 0 tasks. If ni > 0, these tasks are denoted by t1i , . . . , t

ni
i . Tasks are sequential:

each task nji is executed on a single machine, during a processing time (also called length)
lji > 0. Machines are identical. We denote by m = ∑N

i=1mi the total number of machines, and
by n = ∑N

i=1 ni the total number of tasks. We denote by T the set of all the tasks.
Given a task j, and a considered schedule, we denote by Cj the completion time of task j,

i.e. the date at which its execution ends. Preemption is not allowed: once a task starts to be
executed, it will be executed until its completion.

MOSP takes as input the local schedules of the organizations. The local schedule of Orga-
nization Oi is a schedule of the ni tasks of Oi on the mi machines of Oi. This schedule may
minimize the makespan of Oi, or not (this problem is indeed NP-hard [11]): Organization Oi
gives its local schedule to a central entity which will return a schedule which fulfills the rational-
ity constraint. We will denote by S i

loc the local schedule of Organization Oi, and we will denote
by Ciloc the makespan of this schedule (this will be called the local makespan of Oi).

Given a schedule S of the n tasks on the m machines, we will denote by Ci(S ) the com-
pletion time of the last task of Organization Oi in S . We will also call Ci(S ) the makespan of
Organization Oi in S . Given a schedule S we will denote by Cmax(S ) the completion time of
the last task in S . Therefore Cmax(S ) = maxi∈{1,...,N}Ci(S ), and is called the makespan of
S .

Given i ∈ {1, . . . ,m}, we will denote by Li(S ) the load of machine i in Schedule S : this
is the sum of the processing times of the tasks assigned to machine i in S . The total load of a
schedule is the sum of the processing times of all the tasks of the schedule (∑N

i=1
∑ni
j=1 l

j
i ).

2.2 Problem statement

The objective of each organization Oi is to minimize Ci(S ), the date at which all its tasks
are completed in the returned schedule S . The multi-organization scheduling problem (MOSP)
consists in scheduling the n tasks of all the organizations, on themmachines of the organizations,
in order to minimize the makespan of the returned schedule with the additional constraints that
no organization has a makespan larger than the makespan of its local schedule:

minimize Cmax(S ) such that, for each i ∈ {1, . . . , N}, Ci(S ) ≤ Ciloc.

The set of these additional constraints is called the rationality constraint: it ensures that each
organization will have incentive to accept the schedule returned by the central entity (or trusted
third party), since it will not be able to get a better makespan if it schedules its own tasks on
its own machines.

Given an instance I, we will denote by S ∗ an optimal solution for MOSP, and we will denote
by OPT the makespan of such a solution. In the sequel, we will also be interested to compare
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OPT , or the makespan returned by an algorithm, to the best solution without the rationality
constraint, that we will denote S ∗(r̄). In such a solution, all the tasks are scheduled on all
the machines in order to minimize the makespan: this is an optimal solution of the classical
scheduling problem (P ||Cmax). We will also denote by OPT r̄ the makespan S ∗(r̄).

3 Interest of cooperation and algorithm
In this section, we measure to what extent cooperation can reduce the makespans of organiza-
tions, with respect to a schedule made of the local schedules only. We will show in Section 3.1
that on some instances, cooperation can decrease simultaneously all the makespans. In Sec-
tion 3.2, we present an algorithm which returns a schedule whose makespan is at most (1 + ε)
times the makespan of an optimal schedule of MOSP, while the makespan of each organization
in this schedule is at most (1 + ε) times its local makespan.

3.1 Cooperation can decrease all the makespans

If the local makespan of Organization Oi is much larger than the local makespan of the other
organizations, then, by load balancing tasks of Oi on the machines of all the organizations,
the makespan of Oi may decrease a lot. In this section, we show that MOSP is more than
load balancing tasks of heavy loaded organizations on the machines of less loaded organizations:
there are instances for which all the organizations can simultaneously benefit of cooperation.
Proposition 1 shows that all the organizations may together reduce their makespans up to a
factor N by cooperating with each other.

Proposition 1. In an optimal schedule for MOSP, all the organizations may decrease simul-
taneously their makespans up to a factor N , with respect to their local makespans (which are
assumed to be optimal). This is the best possible bound : there is no instance where each orga-
nization can decrease its makespan by a factor larger than N .

Proof. Let us first exhibit an instance where each organization improves its makespan by a
factor as close as wished of N . We consider an instance where each of the N organizations owns
a single machine (therefore m = N). For each i ∈ {1, . . . , N}, Organization Oi owns mxi−1

tasks of length 1 (thus Organization O1 owns m tasks, while Organization ON owns mxN−1

tasks). The local makespan of Organization Oi is therefore mxi−1. Let us now consider the
following schedule, S , optimal for MOSP : on each machine, there are one task of Organization
O1, followed by x tasks of Organization O2, followed by x2 tasks of Organization O3, and so
forth. The schedule ends on each machine with xN−1 tasks of ON . For each i ∈ {1, . . . , N}, the
makespan of Oi in S is 1 +∑i

j=2 x
j−1. Therefore, each organization Oi decreases its makespan,

from S i
local to S , by a factor Ciloc

Ci(S ) = mxi−1

1+
∑i

j=2 x
j−1 . This tends towards to m = N when x tends

towards to the infinity.
Let us now show that there is no instance where cooperation can make each organization

decrease its makespan by a factor larger than N . By contradiction, let us assume that there
exists an instance I for which there is a schedule S in which the makespan of each organization is
decreased by a factor larger than N with respect to its local makespan (assumed to be optimal).
Note that there is in I at least one organization Oi such that mi ≥ m

N (otherwise, we would
have ∑m

i=1mi < m). By hypothesis, the makespan of Oi in S is Ci(S ) < Ciloc
N . We now show
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that this implies that it is possible for Oi to obtain a schedule of its tasks on its machines with
makespan smaller than Ciloc.

Indeed, let us consider the following schedule of the tasks of Oi on mi machines : compute
between time 0 and Ci(S ) the tasks scheduled in S on the first mi machines, and then the
tasks scheduled in S on machines mi + 1, 2mi between time Ci(S ) and 2Ci(S ), etc. (tasks
scheduled in S on machines (x− 1)mi + 1, xmi are scheduled between time (x− 1)Ci(S ) and
xCi(S ), as they are scheduled in S : a task starting at time t on machine j will be scheduled at
time t mod Ci(S ), on machine (j mod mi) if j mod mi 6= 0 and on machine mi otherwise).
This schedule is a feasible schedule of makespan at most NCi(S ) < Ciloc. Therefore, the local
schedule of Oi was not optimal, a contradiction.

3.2 A PTAS with resource augmentation

In this section, we show that the polynomial approximation scheme (PTAS) presented by Hall
and Shmoys [12] for a scheduling problem can be used to get a PTAS with resource augmentation
for our problem. More precisely: given a fixed ε > 0, and a fixed number of organizations N ,
we will get a polynomial time algorithm which returns a schedule with a makespan at most
(1 + ε)OPT , and in which the makespan of each organization is at most (1 + ε) times its local
makespan. The rationality constraint may thus be violated, but the increase of the makespans
of the organizations is bounded, and may be acceptable if ε is small. Let us start by presenting
the scheduling problem studied by Hall and Shmoys.

Scheduling problem with delivery times (SchedDT). The input of this problem consists
in nDT tasks {1, . . . , nDT } and mDT identical machines. Each task j has a processing time pj (it
must be processed without interruption for time pj on any one of the mDT machines), a release
date rj (the date at which it becomes available for processing), and a delivery time qj . Each
task’s delivery begins immediately after its processing has been completed, and all tasks may be
delivered simultaneously. Therefore, for a given schedule in which task j starts at time σj , the
completion time of task j is defined as Cj = σj+pj+qj . The aim is to minimize, over all possible
schedules, the makespan Cmax = maxj∈{1,...,n}Cj . In the sequel, we will denote this problem as
SchedDT. As noted by Hall and Shmoys, this problem is equivalent to the scheduling problem
with release dates (rj) and due dates (dj) – and without delivery times – in which the objective
is to minimize the maximum lateness, where the lateness of task j is Lj = σj +pj−dj . This last
problem is denoted as (P |rj |Lmax), using Graham’s notation for scheduling problems. However,
while this problem is inapproximable in polynomial time if P 6= NP , there exists a PTAS for
SchedDT. Let us now give a high level description of this PTAS, that we will use for our
problem is the sequel. The details can be found in the original paper [12].

High level description of the PTAS for SchedDT. This PTAS is a generalization of the
PTAS of Hochbaum and Shmoys [13] for problem (P ||Cmax). The principle of Hall and Shmoys’s
algorithm is the following one. It assumes that there are a lower bound LB and an upper bound
UB of the optimal makespan OPTDT of SchedDT, such that LB ≤ OPTDT ≤ UB ≤ 2OPTDT .
It then does a dichotomic search with a target value T on this interval: for each target value,
the algorithm either builds a schedule of makespan at most T (1 + ε), or it assures that there is
no schedule of makespan at most T . At the end of the dichotomic search, the schedule found
with the smallest value of T which lead to a feasible schedule is returned.
Before this, a preprocessing step consists in rounding the input: the releases dates are rounded
down to obtain a fixed number of distinct ones. The same thing is done for delivery times.
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Tasks are partitioned into two sets: large tasks (tasks whose processing times are larger than
or equal to a given number δ function of ε), and small tasks (smaller than δ). Large tasks are
rounded down so that there is a fixed number of different processing time for the large tasks.
Given that, for large tasks, there are a fixed number of different values of q, r and p, there
is now a fixed number τ1 of different types of large tasks. Small tasks are “glued” into small
components of size δ and of common values r and q (once these values have been rounded): there
is now a fixed number τ2 of different types of small components (which gather small tasks). Let
X be the set of possible types of tasks (|X| = τ1 + τ2). A machine configuration indicates,
for each type of task t ∈ X how many tasks of type t are on the machine. Given the size of
the large tasks, we can upper bound the maximum number of large tasks per machine in a
schedule with a makespan smaller than 2OPTDT and show that the number of relevant machine
configurations is fixed (let us denote by γ this number). For a given schedule, xl indicates the
number of machines with configuration l: vector x = (x1, . . . , xγ) defines an outline for the
schedule. Therefore, the number of relevant outlines is at most mγ , a polynomial in m. The
order of tasks on machine is based on a generalization of the Jackson’s rule [15], a polynomial
time optimal algorithm for (1||Lmax) (where the aim is to minimize the maximum lateness on a
single machine), when there are release date. This problem, (1|rj |Lmax), is solved in polynomial
time [12]. The algorithm tries every relevant outline. If at least a schedule with makespan at
most T is found, the algorithm outputs the best schedule – a schedule, with rounded tasks of
makespan at most T . When the tasks take back their true values, this becomes a schedule of
makespan at most (1 + ε)T . By doing a dichotomic search over T , this algorithm returns a
(1 + ε)-approximate solution for the SchedDT [12]. Let us now see how we can use it to get a
PTAS with resource augmentation for MOSP.
Algorithm for our problem. Let I be an instance of MOSP, and T an integer (T will be a
target makespan). We will create an instance I ′(T ) of SchedDT from I and T in the following
way. We fix nDT = n and mDT = m. For task tji (the j-th task of Organization i), which is
of length lji in I, we create in I(T )′ a task tk, with k = (∑i−1

x=1 nx) + i (i.e. to each task of I is
associated a task in I ′(T )). We set: pk = lji , rk = 0, and qk = max{0, T −Ciloc}. The idea is the
following one: tasks are available at date 0, and a task of Organization Oi should be scheduled
before the local makespan of Oi, Ciloc. Whereas the lengths will be rounded, we will not round
down the values q in the PTAS if the number of organizations is fixed (in this case, there will
be a fixed number of sizes q – at most N , the number of organizations –, and this will allow
us to better bound the deterioration of the local makespans of the organizations). Once this
reduction has been done, we use the above described PTAS of Hall and Shmoys with instance
I ′(T ) (the only differences between the original PTAS and our utilization of it is that the values
q are not rounded – if N is fixed –, and that the instance I ′(T ) slightly differs at each step of
the dichotomic search since the values q are a function of T ).

We do a dichotomic search over the target makespan T in the interval [LB,UB], where

LB = max
{

maxi,j lji ,
∑N

i=1

∑ni
j=1 l

j
i

m

}
and UB is the makespan of the schedule returned by a

greedy 2-approximate algorithm for MOSP [8] (UB is the makespan of a schedule without idle

times, so we have UB ≤
∑N

i=1

∑ni
j=1 l

j
i

m + maxi,j lji ≤ 2LB). Note that maxi,j lji and
∑N

i=1

∑ni
j=1 l

j
i

m

are lower bounds of OPT (since maxi,j lji is the length of the longest task, and
∑N

i=1

∑ni
j=1 l

j
i

m is

the average load of a machine), and thus LB = max
{

maxi,j lji ,
∑N

i=1

∑ni
j=1 l

j
i

m

}
is a lower bound
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of OPT . Let us denote ApproxViaDT(ε) this algorithm.

Proposition 2. Let ε > 0. If the number of organizations is fixed, Algorithm ApproxViaDT(ε)
returns a schedule of makespan at most (1 + ε)OPT in which each organization i ∈ {1, . . . , N}
has a makespan at most (1 + ε)Ciloc.

Proof. Let us first show that Algorithm ApproxViaDT(ε), returns a schedule of makespan at
most (1 + ε)OPT .

Let us consider an instance I of MOSP, and let us denote by OPT the value of its optimal
makespan. Let us consider a target makespan T examined at a given step of the dichotomic
search. For this value T , the algorithm either returns a schedule of value T (1 + ε), or assures
that there is no schedule of value at most T . If T = OPT , then, OPTDT ≤ OPT , where
OPTDT is the makespan of an optimal solution of instance I ′(T ) of the scheduling problem with
delivery times. Indeed, let us consider an optimal schedule for MOSP, and let us view it from
the viewpoint of SchedDT. For each task k of Organization Oi, qk = max{0, OPT − Ciloc}. In
a feasible schedule for MOSP, the execution of this task k will end at most at time Ciloc, and
thus its completion (as defined in the scheduling problem with delivery times) will be at most
at time Ciloc + q ≤ OPT . Therefore, there is a feasible schedule of makespan OPT for instance
I ′(OPT ).

Note that, during the dichotomic search of ApproxViaDT(ε), if there is a solution for
instance I ′(T ) for problem SchedDT then there is no solution for instances I ′(T ′) with T ′ < T
(by construction) and there are solutions for instances I ′(T ′) with T ′ > T since a solution for
instance T will be a solution for instance T ′ (the values q increase at most by T ′ − T , while the
makespan also). Therefore, ApproxViaDT(ε), which returns a schedule (1 + ε)-approximate
for SchedDT, will return a solution of makespan at most (1 + ε)OPT .

Let us now show that in the returned solution, the makespan of each organization is at most
(1 + ε)Ciloc. Recall that the makespan of the schedule returned by the PTAS for SchedDT (for
the final target makespan T ) is at most (1 + ε)T ≤ (1 + ε)OPT . Recall also that the values
q have not been rounded, and that the value q of a task of Oi is 0 if Ciloc > T and T − Ciloc
otherwise. The schedule of the tasks of types in X (tasks with rounded sizes, or small tasks
glued into small components) has a makespan at most T . The factor (1 + ε) is obtained when
we replace these tasks by the tasks with their real lengths. Since the values q have not been
rounded down, a task of Oi will end, when considering the schedule with the rounded sizes, at
time at most Ciloc if T < Ciloc, and at most T − q = Ciloc otherwise: in both cases, its execution
ends at time at most Ciloc. By replacing the tasks of X by the true tasks, each completion time
may be increased by factor (1 + ε). Therefore, we obtain a schedule in which the execution of
each task of Oi ends at most at time (1 + ε)Ciloc. This concludes the proof.

Note that, if the number of organizations is not fixed, we can use the same algorithm, by
rounding the values q (as in the original PTAS for SchedDT). This will return a schedule
of makespan at most (1 + ε)OPT and in which each organization has a makespan at most
Ciloc + εOPT .

4 Efficiency vs. increase of the local makespans
In this section, we study how the aim of minimizing the makespan is in opposition with the
rationality constraint. We start, in Section 4.1, to show that if we want to return a schedule
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optimal for the makespan, then we may have to increase the local makespans up to a factor
m− 1. Since it is unlikely that the organizations agree to increase their local makespan of such
a large factor, in Section 4.2, we assume that each organization agrees to increase its makespan
by a factor (1 + α), with α ≥ 0. We then look at the increase of the makespan in function of α
(when α = 0, the problem is MOSP, the higher α is, the more relaxed the rationality constraint
is).

Note that, contrarily to what we have done in Section 3.2, in this section, we compare
the makespan of an optimal solution of (1 + α)-MOSP to the optimal makespan without the
rationality constraint, OPT r̄. The algorithm of Section 3.2 returned a schedule close to OPT ,
the optimal solution of MOSP , but not necessarily close to OPT r̄ (this can be very different,
since, as we will see in the sequel, OPT , can be twice larger than OPT r̄).

4.1 The aim is to minimize the makespan: impact on the local makespans.

Let us first consider instances made of two organizations in which each organization owns one
machine (m = 2). In this case, the makespan of the best schedule of MOSP minimizes the global
makespan: OPT = OPT r̄. Indeed, let us assume without loss of generality that C1

loc ≤ C2
loc, and

let us consider S ∗(r̄), an optimal schedule for (P ||Cmax) for such an instance. In S ∗(r̄), let us
schedule on each machine the tasks of O1 before the tasks of O2. By construction, this schedule
minimizes the makespan; O2 does not increase its makespan (otherwise the local schedules
would have a makespan smaller than OPT , which is not possible); and O1 does not increase its
makespan neither since its jobs are at the beginning of the schedule on each machine.

This is the best case: the rationality constraint does not prevent from obtaining the best
schedule concerning the makespan. This is however not always the case whenm > 2. The follow-
ing proposition shows that, in order to get a schedule minimizing the makespan, an organization
may have to increase its makespan up to a factor m− 1.

Proposition 3. In a schedule which minimizes the makespan of the tasks of T on m machines,
an organization may necessarily increase its makespan up to a factor m − 1 (compared to its
local makespan), but never up to a factor larger than m. This holds even if there are two
organizations.

Proof. Let us consider an optimal schedule of the tasks T for problem (P||Cmax). In this
schedule, we reorder the tasks such that on each machine the tasks are scheduled by increasing
number of their organizations (i.e. tasks of O1 are scheduled before the one of O2, and so
forth). Let us denote by O the schedule obtained. This schedule stays an optimal schedule since
the load on each machine, and thus the makespan, do not change. Let us show that for each
i ∈ {1, . . . , n}, CiO ≤ mCiloc. Let us consider a given machine j and a task x of Oi on machine j.
If it is not the first task on machine j, task x is preceded by tasks of {O1, . . . , Oi} on Mj . The
load of the tasks which precede the x (plus the length of x) is thus at most ∑i

k=1mkC
k
loc (since

the load of each organization Ok is at most mkC
k
loc). Since the organizations are indexed by

non decreasing local makespans, ∑i
k=1mkC

k
loc ≤

∑i
k=1mkC

i
loc ≤ mCiloc. The completion time

of each task of Oi in O is at most mCiloc. Therefore CiO ≤ mCiloc.
Let us now output an instance in which an organization has to increase its makespan up to

a factor m−1. Consider the instance with two organizations, where O1 has m−1 machines and
m− 1 tasks of length 1 (its local makespan is thus 1), and where O2 has m− 1 tasks of length
m − 1 and 1 machine. An optimal schedule of these tasks on m machines has a makespan of
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m−1. Indeed, in such a schedule, the tasks of O1 are necessarily scheduled on the same machine
and are completed at time m− 1 : the makespan of O1 is increased by a factor m− 1.

Note that the bound of m− 1 can be increased up to m if the organizations are allowed to
own tasks but no machine. The instance showing this is almost the same than the one in the
proof above (O1 owns m machines and m tasks of length 1 and O2 has m − 1 tasks of length
m).

We have seen that what we could call “the price of efficiency”, the factor at which a local
makespan may have to increase to get an optimal schedule for the makespan, is between m− 1
andm, which is high. We can assume that organizations may accept to increase their makespans
in order to get an efficient schedule, but only if this does not increase to much their makespans.
In the following section, we assume that each organization agrees to increase a little bit its
makespan: it will accept a schedule in which its makespan is increased by a factor at most
(1 + α) compared to its local makespan.

4.2 The aim is to minimize the increase of the local makespans: impact on
the makespan.

Let α ≥ 0. We now assume that each organization Oi agrees to have a makespan at most equal
to (1 +α)Ciloc. If α = 0, this is the MOSP. Otherwise, it means that each organization agrees to
increase a little bit its makespan (the higher α is, the higher an organization agrees to increase
its makespan). We call (1 + α)-MOSP, the problem where we wish to minimize the makespan
with these relaxed constraints:

minimize Cmax(S ) such that, for each i ∈ {1, . . . , N}, Ci(S ) ≤ (1 + α)Ciloc.

Our aim is to give a lower bound on the approximation ratio of an algorithm for (1 +α)-MOSP
with respect to the optimal makespan OPT r̄: this will show what we loose, in term of makespan,
due to the relaxed rationality constraint.

Proposition 4. Let α ≥ 0, ε > 0. If each organization accepts to increase its makespan
by a factor (1 + α), there is no (max

k∈{
⌊√

αm2+m
1+α

⌋
,

⌈√
αm2+m

1+α

⌉
}

(
1 + (m−k)(k(1+α)−mα−1)

k(m−1)

)
− ε)-

approximate algorithm with respect to the global makespan.

Proof. Given m machines, and k ∈ {1, . . . ,m − 1}, let us consider the following set of tasks: k
tasks of length xk(m − 1) (these tasks are said large) and nsmall = (m − 1)xk(m − k) tasks of
length 1 (these tasks are said small). The optimal makespan of these tasks is OPT = xk(m−1):
it is obtained when each large task is alone on a machine, and the small tasks are scheduled on
the (m− k) remaining machines.

Let us now assume that Organization O1 owns m− 1 machines and all the small tasks, and
that Organization O2 owns one machine and all the large tasks. The local makespan of O1 is
then C1

loc = xk(m− k) ≤ OPT , and the local makespan of O2 is C2
loc = xk2(m− 1) ≥ OPT .

Let S be a schedule in which each organization increases its makespan by a factor at most
(1 + α). In S , each task of O1 (small task) is completed at the latest at time b(1 + α)C1

locc =
b(1 +α)xk(m− k)c. Therefore, on m− k machines, there are at most b(1 +α)xk(m− k)c tasks
of length 1, and the other small tasks are on the k remaining machines. The minimal number
of small tasks to schedule on the k remaining machines is nsmall− (m− k)b(1 +α)xk(m− k)c =

10



(m−1)xk(m−k)−(m−k)b(1+α)xk(m−k)c. On one of these k machines, there is at least 1/k of
these tasks, that is (m−1)x(m−k)− (m−k)b(1+α)xk(m−k)c

k ≥ (m−1)x(m−k)−(1+α)x(m−k)2.
If there are at least two large tasks on the same machine, the makespan is at least equal to
2(xk(m− 1)) = 2OPT . Otherwise, there are at most one large task by machine. The makespan
of such a schedule is then at least the length of a large task plus the length of the small tasks.
This is larger than or equal to xk(m−1)+(m−1)x(m−k)−(1+α)x(m−k)2. The approximation
ratio is thus at least xk(m−1)+(m−1)x(m−k)−(1+α)x(m−k)2

xk(m−1) = 1 + (m−k)(k(1+α)−mα−1)
k(m−1) .

By deriving f(k) = 1 + (m−k)(k(1+α)−mα−1)
k(m−1) (with k ∈ [1,+∞)), we find that the value of k

which maximizes f(k) is k =
√

αm2+m
1+α .

Since f(k) is an increasing function between [1,
√

αm2+m
1+α ] and a decreasing function in

[
√

αm2+m
1+α ,+∞), the maximum value of f(k) when k is an integer is:

max
k∈{
⌊√

αm2+m
1+α

⌋
,

⌈√
αm2+m

1+α

⌉
}

(
1 + (m− k)(k(1 + α)−mα− 1)

k(m− 1)

)
.

When α = 0, the value of k which maximizes the ratio (f(k)) is d
√
me or b

√
mc. When

√
m

is an integer, there is no algorithm for MOSP which returns
(
1 + m−2

√
m+1

m−1 − ε
)
-approximate

schedules with respect to the global makespan. This tends towards 2 when m tends towards the
infinity, which lead to the following corollary.

Corollary 1. Let ε > 0. There is no algorithm which returns schedules which fulfill the ratio-
nality constraint, and which is (2− ε)-approximate with respect to the global makespan OPT r̄.

This bound improves the previous one, 3
2 , which had been given by Pascual et al. [20] for two

organizations and by Cohen et al. [6] for more than two organizations. Furthermore, in [8] the
authors show that no approximation algorithm for MOSP has a ratio asymptotically better than
2 w.r.t. the global makespan (when m tends towards the infinity) when we add the constraint
that on the returned schedule, each machine schedules the tasks of its organization (if any)
before the tasks of other organizations. This constraint is thus not necessary to obtain the
asymptotic ratio of 2.

When m tends towards the infinity and α > 0 the value of k maximizing f(k) is then
m
√

α
α+1 . In that case we can express the approximation ratio depending on only α as 2 + 2α−

(α + 1)
√

α
α+1 −

α√
α
α+1

. The value
√

α
α+1 quickly increases with α and tends towards 1 when α

tends towards the infinity. This means that this ratio is close to 2 when α is close to 0, and it
quickly decreases and tends towards 1.

Figure 4.2 shows the lower bound given in Proposition 4. This ratio is given as a function
of α (Left), or of the number of machines, m (Right). The higher m is, the higher the ratio
is. When α increases, this ratio decreases quickly. The first points of the curves in Figure 4.2
Left shows the lower bound of the ratio between the best makespan in a schedule satisfying the
rationality constraint, and the best makespan without this constraint (as seen above, this ratio
tends towards 2 when m increases). This ratio when α = 0 can also be seen in the blue curve of
Figure 4.2 Right.
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Figure 1: Each organization accepts to decrease its makespan by a factor (1 +α). Lower bound
on the ratio between the best possible makespan when no organization increases its makespan
by a factor larger than (1 + α), and the optimal makespan.

We end this section by mentioning that we can easily adapt the algorithm described in
Section 3.2 to the case of (1+α)-MOSP: whereas, for a target makespan T , we had set the delivery
time of a task of Organization Oi to q = max{0, T −Ciloc} (so that this task is completed at time
Ciloc in the returned schedule of rounded tasks), we fix this value to q = max{0, T − (1 +α)Ciloc}
in the case of (1 + α)-MOSP. We thus get, for any fixed ε > 0, a polynomial time algorithm
returning a schedule of makespan at most (1 + ε) times the makespan of an optimal solution of
(1 + α)-MOSP, and in which the makespan of each organization is at most (1 + ε)(1 + α) its
local makespan.

In the previous sections, we have assumed either that the rationality constraint should be
fulfilled (but we then had as only objective function to minimize the makespan, and the gains
for the organizations – the decrease of their makespans – in the returned schedule could be
very different), or we have even assumed than we can relax (in a bounded way) the rationality
constraint to get a schedule with an even smaller makespan. In the following section, we focus
on fairness issues: we will keep the rationality constraint, and our focus will not be to decrease
the makespan, but to get schedule in which all the organizations decrease their makespans by a
factor as large as possible.

5 Max Min Gain

5.1 Problem statement

Let us first define the gain gi(S ) of Organization Oi in a schedule S : gi(S ) represents how
much Organization Oi has decreased its makespan in the schedule S in comparison to its local
schedule:

gi(S ) = Ciloc
Ci(S ) .

The Maximal Minimal Gain problem, denoted as MaxMinGain, takes the same input as
MOSP. It builds a schedule of the n tasks of all the organizations on the m machines of the
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organizations, in order to maximize the minimum gain among the organizations. The returned
schedule is thus S = arg max

S
min

i∈{1,...,N}
gi(S )

Note that the schedule S which is made of N local schedules has a minimum gain of 1, which
means that an optimal schedule for MaxMinGain always has a minimum gain larger than or
equal to 1 and satisfies the rationality constraint.

Given a considered instance I, we will denote by S ∗ an optimal solution for MaxMinGain,
and we will denote by OPT the minimum gain among the organizations in such a solution. In
the sequel, we will also be interested to compare the makespan Cmax(S ∗), or the makespan
returned by an algorithm, to the best solution without the rationality constraint, that we will
denote by S ∗(r̄).

Let us note that it is also possible to define the gain of an organization Oi in a schedule S

not as Ciloc
Ci(S ) (multiplicative case) but as Ciloc − Ci(S ) (additive case). Note that this second

definition is very close to the definition of utility used in a recent paper by Agnetis et al. [2]. In
the work of Agnetis et al., two agents, each one owning a subset of tasks, share a single machine.
The two agents A and B have different objective functions fA and fB. The utility of agent A
in a schedule S is defined as fA∞ − fA(S), where fA∞ denotes the value of fA when the subset of
tasks of A is scheduled after the subset of tasks owned by B, which is the worst case for A. Even
though the contexts are different, the idea is the same: we evaluate individual satisfaction by
comparing a worst case for the agent to the current solution. In our case, for each organization
Oi, we compare the makespan obtained by Oi in a schedule to the worst makespan Oi could have,
and this worst makespan is its local makespan, Ciloc, since we fulfill the rationality constraint.
All the results in Section 5 are proved for the multiplicative case, but can be proved in a similar
way for the additive case.

5.2 Case of unit tasks

In this section, we show that problem MaxMinGain can be solved in polynomial time when all
the tasks have the same length. Moreover, in this case, it is possible to find a schedule S which
is optimal for MaxMinGain and optimal for problem (P ||Cmax): the global makespan is mini-
mized while the minimal gain of an organization is maximized. Let us now present the following
algorithm which returns such a schedule. This algorithm, called LS-IM, is a list scheduling al-
gorithm: it greedily schedules all the tasks, considering the tasks by increasing local makespans
of their owners:

Sort the organizations by non decreasing local makespans. If two organizations have the
same local makespan, sort them by non decreasing number of tasks. Let Ox1 , . . . , OxN
be the result of this sort.

for i=1 to N do
for each task tjxi ∈ Txi do

schedule tjxi on the first available machine;
end

end
Algorithm 1: List scheduling by increasing local makespans (Algorithm LS-IM)

Proposition 5. When all the tasks have the same length, Algorithm LS-IM returns schedules
which are optimal for MaxMinGain and optimal for (P ||Cmax).
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Proof. Let us assume that the organizations are labelled such that C1
loc ≤ C2

loc ≤ · · · ≤ CNloc and
that, for all l ∈ {2, . . . , N}, if C lloc = C l−1

loc , then nl ≥ nl−1. We also assume all the tasks have
the same length.

Let us suppose, for the sake of contradiction, that the schedule S returned by algorithm LS-
IM is not optimal for MaxMinGain. Let Ok be an organization which get a minimal gain in S .
In order to increase the gain of Ok, we should build a schedule S ′ in which Ck(S ′) < Ck(S ).
Tasks all have the same length and there is no idle time in S : there is not enough slots so that
all the tasks of O1, . . . , Ok are completed before time Ck(S ). Therefore, in S ′, a task of Ol,
with l < k will be completed at time at least Ck(S ). The gain of Ol in S ′ will thus be at
least Clloc

Ck(S ) ≤
Ckloc
Ci(S ) : the minimal gain in S ′ is larger than or equal to the minimal gain in S .

Therefore, S is optimal for MaxMinGain.
Schedule S has no idle time and all the tasks are the same length, therefore if a task tji

starts at time t in S , all machines are busy at least until t, which means that at least one tasks
has to start at t or later: the schedule S is also optimal for (P ||Cmax).

We showed that, in the particular case of unit tasks, we can find a polynomial time algorithm
which builds schedules which both minimize the global makespan and maximize the minimal
gain of an organization. In this special case we do not have to compromise between global
optimization and individual satisfaction. Unfortunately, this result does not hold in the general
case, as we will see in the following section.

5.3 General case

In this section, we study MaxMinGain in the general case. We fist show that MaxMinGain
is strongly NP-hard and hard to approximate.

Proposition 6. If P 6= NP , problem MaxMinGain is NP-hard and inapproximable in poly-
nomial time, even if there are only two organizations and two machines.

Proof. Let r > 1. By contradiction, let us assume that P 6= NP and that there exists a
polynomial time r-approximate algorithm for MaxMinGain. We will show that this algorithm
allows us to solve the NP-complete Partition problem. The Partition problem is the following
one: given a set S = {a1, . . . , ak} of k positive integers such that ∑k

i=1 ai = 2B, is it possible to
partition S into two subsets S1 and S2 such that ∑ai∈S1 ai = ∑

ai∈S2 ai = B?
We will exhibit an instance for which the maximum minimal gain is strictly greater than 1

if and only if there is a yes answer to the Partition problem. Note first that, if this is true,
then our r-approximate algorithm allows us to solve the Partition problem. Indeed, if there
is a yes answer to the Partition problem then the maximal minimal gain is OPT > 1: a r-
approximate algorithm should return a solution in which the gain of each organization is a least
rOPT > 1. If the answer to the Partition problem is ‘no’ then OPT = 1, and any algorithm,
including the r-approximate algorithm, will return a solution with minimal gain 1. Therefore,
the r-approximate algorithm permits to determine whether the answer to the partition problem
is positive or not. Since this r-approximate algorithm is a polynomial time algorithm, this
implies that P = NP , a contradiction.

Let us now consider the following instance of MaxMinGain, and show that, for this instance,
there is a yes answer to the Partition problem if and only if the maximum minimal gain,
OPT , is strictly greater than 1. There are two organizations, each one having a single machine.
Organization O1 owns k tasks t11, . . . , t1k such that for each i ∈ {1, . . . , k}, the length of task t1i
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is equal to ai. Organization O2 owns 2 tasks, each of length B + 1. The local makespan of O1
is thus 2B, while the local makespan of O2 is 2B + 2.

Let us first consider that answer of the Partition problem is ‘yes’. Therefore, there exists
a partition (S1, S2) of the tasks of O1 such that ∑t1i∈S1 t

1
i = ∑

t2i∈S2 t
2
i = B. By scheduling

the tasks of S1 followed by a task of O2 on a machine, and the tasks of S2 followed by the
second task of O2 on the second machine, the makespan of O1 is B, while the makespan of O2
is B + (B + 1) = 2B + 1. Since the local makespan of O1 is 2B and the local makespan of O2 is
2B + 2, both organizations have a gain strictly greater than 1(O1 decreases its makespan by a
factor 2, and O2 by a factor B+2

B+1).
Let us now consider that the answer of the Partition problem is ‘no’. Let us first notice

that organization O2 can have a gain greater than 1 only if there is one of its tasks on each
machine (otherwise its makespan will be at least its local makespan, 2B+ 2). In this case, there
is a set S1 of tasks of O1 with the first task of O2, and a set S2 of tasks of O1 with the second
task of O2. Since the answer of the Partition problem is ‘no’, any partition (S1, S2) of the
tasks of O1 is such that the weight of a subset is at least B + 1 (each t1i corresponds to ai ∈ N).
Therefore, the load of a machine is at least 2(B+ 1) = 2B+ 2. The last task on such a machine
should be a task of O2 (since the local makespan of O1 is smaller than 2B + 2), and thus the
makespan of O2 is at least 2B + 2, its local makespan: this organization has a gain smaller
than 1.

We have shown that the minimal gain is strictly greater than 1 if and only if the answer of
the Partition problem is ‘yes’: this concludes the proof.

Let us now show that MaxMinGain is strongly NP-hard. This implies that there is no
pseudo-polynomial algorithm to solve it.

Proposition 7. Problem MaxMinGain is strongly NP-hard, even if there are only two orga-
nizations.

Proof. Let us reduce the NP-complete problem 3-Partition to the decision version of MaxMin-
Gain. The 3-Partition problem is the following one: given a set S = {a1, . . . , a3k} of 3k
positive integers such that∑3k

i=1 ai = kB, with B ∈ N, is it possible to partition S into k subsets
{S1, . . . , Sk} such that for each i ∈ {1, . . . , k},∑aj∈Si aj = B? Our problem is the following
one: given the local schedules of n organizations, and given a bound X ∈ Z, with X < 1, is
is possible to create a schedule of all the tasks on all the machines such that the makespan
of each organization is at most X times its makespan in its local schedule? The instance of
MaxMinGain corresponding to the instance of Partition is the following one: there are two
organizations, O1 and O2. Organization O1 owns one machine and 3k tasks t1, . . . , t3k such that
for each i ∈ {1, . . . , 3k}, the length of task ti is equal to ai. Organization O2 owns k−1 machines
and k tasks, each of length kB. We set X = k+1

2k .
Let us show that there is a yes answer to the Partition problem if and only if the answer

of the corresponding instance of MaxMinGain is also ‘yes’.
Let us first consider that the answer of the Partition problem is ‘yes’: there exists a

partition (S1, . . . , Sk) of the tasks of O1 such that for each i ∈ {1, . . . , k},∑aj∈Si aj = B. For
each i ∈ {1, . . . , k}, by scheduling on machine i the tasks corresponding to the numbers of Si
followed by a task of O2, the makespan of O1 is B, while the makespan of O2 is B+kB = (k+1)B.
Since the local makespan of O1 is kB and the local makespan of O2 is 2kB, the makespan of each
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organization in the constructed schedule is at most equal to X = k+1
2k times its local makespan:

the answer of the decision problem of MaxMinGain is ‘yes’.
Let us now consider that the answer of the decision problem of MaxMinGain is ‘yes’. The

makespan of each organization is at most X = k+1
2k its local makespan, that is k+1

2k kB = (k+1)B
2

for O1 and k+1
2k 2kB = (k+1)B for O2. Thus the global makespan is at most (k+1)B. Therefore,

there is necessary one task of O2 on each of the k machines. Since the global makespan is at
most (k+ 1)B and since the total load is (k+ 1)kB, then there is necessarily a load of (k+ 1)B
on each of the k machines. The load due to the tasks of O2 on each machine is kB, so, on each
machine, the load due to the tasks of O1 is B. It is therefore possible to partition the numbers
t1, . . . , tk into k sets of weight B: the answer of the 3-Partition problem is ‘yes’.

We showed that when the tasks have the same lengths, there is always a schedule which is
both optimal for MaxMinGain and for the minimization of the makespan (problem (P ||Cmax)).
It is easy to note that, in the general case, we can obtain an optimal solution S ∗ of MaxMin-
Gain that is also 2-approximate for (P ||Cmax). Since every schedule with no idle time is 2-
approximate for (P ||Cmax), we can obtain such a schedule from S ∗ by removing idle times
between tasks and by moving every task which would be scheduled after that some other ma-
chines are available, to schedule it on the first available machine. By doing this, we do not delay
any task, so every organization has at least the same gain as in S ∗, and this new schedule is
thus still optimal for MaxMinGain. This schedule does not contain any idle time before that
the last task starts to be executed, and is thus 2-approximate for (P ||Cmax).

Let us now show that there is no algorithm which is optimal for MaxMinGain and which
has an approximation smaller than 2 for MOSP. Naturally, this implies that no algorithm can
be optimal for MaxMinGain and have an approximation ratio smaller than 2 for (P ||Cmax).

Proposition 8. Let m ≥ 4 and ε > 0. There is no algorithm which is optimal for MaxMinGain
and (2− 7

m+3 − ε)-approximate for MOSP.

Proof. Let us consider the following instance, with two organizations. Organization O1 owns
m− 1 machines and m2 tasks of length 1. Organization O2 owns one machine, 2 tasks of length
m−1 and one task of length 3. O1’s local makespan is m+2 and O2’s local makespan is 2m+1.

In an optimal schedule SMMG for MaxMinGain, the m2 tasks of O1 are scheduled first,
followed by three tasks of O2 on three different machines. Indeed, in SMMG, the makespan of
O1 is m and the makespan of O2 is 2m− 1, which is also the global makespan. O1’s gain is m+2

m
and O2’s gain is 2m+1

2m−1 . Since O2 has the minimum gain, in order to increase the minimum gain
we should to decrease O2’s makespan. This is only possible if a task of O1 is delayed, being
completed at time at leastm+1 instead ofm. The gain of O1 would then be at most m+1

m , which
is larger than the minimal gain in SMMG. Schedule SMMG is thus optimal for MaxMinGain.
We can also note that SMMG is one with the smallest makespan among the optimal schedules
for MaxMinGain.

Let us now consider SMOSP , an optimal schedule for MOSP. In SMOSP , the two tasks of
O2 of length m−1 are scheduled at time 0, first and (m−1)(m−2) tasks of O1, so that the load
of every machine is m− 1. Then, m tasks of O1 are scheduled between m− 1 and m. Schedule
SMOSP ends by the last task of O2 (of length 3) at time m, and the remaining 2(m− 1) tasks
of O1 on the m − 1 other machines. In SMOSP , the makespan of O1 is thus m + 2 and the
makespan of O2 is m+ 3. Note that SMOSP fulfills the rationality constraint and is optimal for
(P ||Cmax).
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Let r be the ratio between the makespan in SMMG, the best schedule (w.r.t the minimization
of the makespan) among schedules optimal for MaxMinGain, and the makespan in SMOSP ,
optimal for MOSP:

r = 2m− 1
m+ 3 = 2− 7

m+ 3 .

Therefore, for this instance, there is no optimal schedule for MaxMinGain which has an ap-
proximation ratio better than (2− 7

m+3) for MOSP.

When m tends towards the infinity the ratio tends towards 2: it is thus impossible to find an
optimal algorithm for MaxMinGain less than 2-approximate for the makespan minimization.
We have showed that MaxMinGain is strongly NP-hard, hard to approximate and that, in the
general case, ensuring a fair schedule can lead to low global efficiency. We will now propose a
polynomial time heuristic which, in practice, returns good solutions for both the minimum gain
and the global makespan.

5.4 Heuristic

In this section, we propose a polynomial time heuristic for MaxMinGain. The idea is to sched-
ule the tasks of the organizations by increasing local makespans, in order to favor the organization
with the lowest makespan, and then the organization with the second lowest makespan and so
forth. The algorithm always maintains the minimum gain at 1 or above, fulfilling the rationality
constraint. As explained in the sequel, it delays as much as possible the tasks owned by organi-
zations with high local makespan in order to create space for organization with low makespans.
An execution of this algorithm can be seen in Figure 2, in which each color corresponds to an
organization (there are thus 5 organizations).

We will assume that the organizations are labelled in non decreasing order of their makespans:
C1
loc ≤ · · · ≤ CNloc. In this algorithm we will consider two subroutines. The first one is the

list scheduling algorithm LPT (for Longest Processing Time), which schedules the tasks of an
organization by non increasing lengths (as soon as a machine is available, the remaining task
of largest length is scheduled on this machine). The second subroutine consists in delaying the
tasks of an organization in a way that no task ends after the local makespan of its organization
and no task begins before the makespan of any organization with a lower local makespan, unless
it is scheduled on the machines of the organization owning it (in practice, the tasks of Oi are
scheduled using LPT from time Ciloc, on all the machines and in the reverse order of time, under
the constraint that no task should start on a machine of Ok (with k < i) before Ckloc).

We start from the local schedules, showed in the first schedule in Figure 2. In the second
schedule of this figure, the tasks of all the organizations have been delayed as much as possible,
according to the delay operation that we have just presented. By delaying tasks in this way, we
make sure that the organizations always have a makespan equal to their local makespan. Then,
for each organization Oi, from O1 to ON , we execute two steps.

• Firstly, we schedule the tasks of Oi with LPT, at the end of the tasks of organizations
Ok, with k < i which have already been scheduled. This step is shown on schedule 3 of
Figure 2, for Organization O1, which is the one with the lowest local makespan (and the
dark blue tasks). By doing so, Organization Oi may decrease its makespan.

• If Oi decreases its makespan, as a second step, we run another delay operation for the
tasks of Oi+1, considering the new makespan of Organization Oi. We can see this in step 4
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Figure 2: Example of 6 steps of the heuristic execution. Step 1: local schedules. Step 6: the
scheduled returned by MCEDD.

of Figure 2: Organization O2 (with the second smallest local makespan and light blue
tasks) has been able to free space on its machine by delaying tasks that couldn’t be moved
earlier because the local makespan of O1 was too high.

We repeat these steps for every organization, considering the organizations in non decreasing
order of their makespans. We get our final schedule in schedule 6 of Figure 2.

Note that we decided to use LPT in order to schedule the tasks of an organization because
of its low computational cost and its good approximation ratio, but it is possible to consider
other scheduling algorithms. Note also that this algorithm is 2-approximate for (P ||Cmax) (and
thus for MOSP) since it returns a schedule with no idle time before the start of the last task.
Since MaxMinGain is hard to approximate, we have no approximation ratio for the minimum
gain. Let us now evaluate this algorithm experimentally.
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5.5 Experimental evaluation

In this section, we study the efficiency of our algorithm on randomly generated instances. Let
S be the schedule returned by our algorithm when executed on the instance I. We call :

s(I) = Cmax(S )
max(L(S ), pmax(I))

where L(S ) =
∑m

i=1 Li(S )
m is the average load of a machine in S and pmax(I) denotes the

largest length of a task in I. As we have seen before, max(L(S ), pmax(I)) is a lower bound of
an optimal makespan for instance I. We also define :

s′(I) =
min

i∈{1,...,N}
Cloci
Ci(S )

min
i∈{1,...,N}

Cloci
max(Li(I),pmax(Oi))

where Li(I) is the average load of a machine if the only tasks in I were the one of Oi; pmax(Oi)
denotes the largest length of a task owned by Oi. We can note that max(Li(I), pmax(Oi)) is a
lower bound of the best makespan Oi could get. Then, Cloci

max(Li(I),pmax(Oi))
is a higher bound of

the gain Oi can get.

The local schedules are obtained with the LPT list scheduling. Instances are randomly gen-
erated thanks to a realistic generator [16]. We set the maximum task length to 50. Tasks are
spread among the organizations following a zipf distribution; we set the number of elements of
the distribution to N and s to 1.4267 which corresponds to the data observed in [14]. We create
instances varying three parameters: the number of tasks n, the number of machines m and the
number of organizations N . Machines are spread uniformly. We consider 9600 instances.
Since our algorithm tries to return a solution as fair as possible, we will focus on the impact
of the number of organizations on the quality of the solution returned by our algorithm on the
tested instances.

We see in Figure 3(a) that the score s increases with the number of organizations. This is
consistent with the idea that the more organizations there are, the more difficult it is to satisfy
each one of them. We also observe that the s score is below 1.07, which means the schedule
returned by our algorithm has on average a makespan lower than 1.07 times a lower bound of
optimal global makespan with no rationality constraint.

Figure 3(b) shows the variation of score s′. We note that s′ is on average above 0.92. This
means that the minimum gain in the schedule returned by our algorithm is higher than 0.92
times a higher bound of the optimal minimum gain. This figure also shows that when the
number of organizations increases, s′ gets closer to 1. This means that the approximation gets
better when the number of organizations increases. The reason is that when we have a lot of
organizations, it is likely that at least one organization cannot decrease its makespan or can
decrease it very slightly: the higher bound is smaller and it is easier to get to this bound.

6 Conclusion and future work
In this paper, we have focused on two problems: MOSP (or (1 +α)-MOSP), for which we have
studied the necessary tradeoff between efficiency (in term of low makespan) and the (relaxed)
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(a) Variation of score s (b) Variation of score s′

Figure 3: Experimental evaluation of MCEDD.

rationality constraint. We have also shown the interest of cooperation, that can benefit to all the
organizations, and proposed an algorithm which returns schedules (1+ε)-approximate for MOSP
while the makespans of the organizations are increased by at most a factor (1 + ε). We then
introduced problem MaxMinGain, for which we have also shown the necessary tradeoff between
the minimization of the makespan and the minimization of the minimal gain (excepted if the
tasks have all the same length, instances for which there is a polynomial time algorithm optimal
for both objectives). We have shown that MaxMinGain is inapproximable in polynomial time
if P 6= NP , but we have given a heuristic which, in practice, returns good schedules for both
the minimization of the makespan and the maximization of the minimal gain.

Note that most results can be adapted if the tasks have released dates. Indeed, the “negative”
results are still valid (this concerns complexity proofs, and results showing the necessary tradeoff
between the global makespan and either the rationality constraint or the maximization of the
minimal gain). The optimal algorithm for MaxMinGain with unit tasks can also be easily
adapted. The PTAS of Hall and Shmoys [12] works with release dates, and thus we can use
its adaptation with release dates too: there is also in this case a (1 + ε)-approximate schedule
for MOSP while the makespans of the organizations are increased by at most a factor (1 + ε).
Likewise, this algorithm can be adapted when machines are not necessary identical but can have
a fixed number of different speeds.

Note also that in this paper we have considered that each organization owns at least one
machine, but results also hold if there are organizations with tasks but without any machine (in
this case, they do not have “local makespan”, and we do not apply the rationality constraint for
these organizations).

A possible future work direction would be to consider online tasks (when we do not know
their release dates in advance). In this case, allowing preemption of the tasks could certainly be
useful. Another interesting direction is when the organizations do not have the same objectives.
Some organizations could aim at minimizing their makespan, while some others could wish to
minimize the average completion time of their tasks, or the average tardiness of their tasks,
etc. There are numerous works in multi agent scheduling [1], where agents can have different
objectives, but these work assume that machines are shared and do not belong to the agents,
which only own tasks.
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Last but not least, numerous things remain to be done considering fairness. Notions widely
used in the fair allocation field [3] could certainly be useful. For example, envy-freeness is a
standard notion in fair division problems, where a set of items should be shared among agents
– the aim is that no agent is “jealous” from another agent. This notion could for example be
introduced in the context where organizations share tasks and machines.

Acknowledgements. We thank Krzysztof Rzadca for giving us the source code that he wrote
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