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Abstract. [oT data, that most often carry a temporal dimension, can
be exploited from an analysis perspective or from a forecasting one. In
this paper, we propose a predictive approach to address the problem
of data trustworthiness in a data stream generated by a Smart Home
application. We describe an online Ensemble Regression model that per-
forms prediction in assigning a trust score to a target temporal value in
real-time. Experiments conducted with data retrieved from the UCI ML
repository demonstrate the performance of the model, while assessing
data accuracy.

Keywords: data trustworthiness - smart home - data stream.

1 Introduction

Among the large spectrum of IoT applications, time-series data generated by
a set of sensors and actuators are integrated to form a data stream. Smart
Homes are probably the trendiest domain where data stream can be exploited
in different ways such as remote control of home appliances, or even securing a
house, assuming the data is reliable. Unfortunately, like any data gathered from
hardware devices, sensor data stream may rise quality issues such as inaccuracy
or incompleteness [21], leading to difficulties in a decision making process. Within
this landscape, trusting the data is a key issue for helping stakeholders involved
in such process.

Trust can be handled through the concept of Data Trustworthiness (DT)
for which there is no unified definition in the literature: for example, [16] con-
siders that DT assessment should be consistent with quality dimensions such
as accuracy, timeliness and completeness; [18, 28] highlights accuracy as a DT
evaluation while [1] emphasizes on subjectivity and accuracy.

In this paper, we consider accuracy as the main quality dimension for as-
sessing data trustworthiness in a Smart Home application, assuming that data
arrives on time and the data is complete. Data accuracy, which refers to the cor-
rectness of sensor measurements [21], has been recognized as the most important
dimension in several papers [1, 16, 18, 28]. It is worth noticing that accuracy
is an objective description while DT is a subjective estimation based on some
assumptions (i.e., data follows a specific probability distribution). Considering
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the accuracy dimension and subjectivity, we borrow DT definition from [1] that
is: "Data Trustworthiness in IoT Networks is the subjective probability that data
observed by a user is consistent with the data at the source”. Note that this def-
inition is generic enough that leaves the door open to several implementations,
depending on the context and on the probability distribution(s) one may adopt.

The remainder of the paper is organized as follows: Section 2 reviews some
related work. In Section 3, we describe our approach. Section 4 illustrates the ex-
perimental results. Finally, we conclude and present some perspectives in Section
5.

2 Related Work

DT can be assessed by means of data similarity such as in [13] where authors
propose a pattern-wise method: a target (sensor) value is considered as reliable
if it co-occurs more frequently with the value of its neighbor sensor. However,
this method is rather suitable for value states (such as 0/1 represents whether
it is raining) than for continuous values (such as temperature). Won et al. [28]
consider that if multiple sensors measure the same value of interest at different
indoor locations, the difference between the measured values is proportional to
the distance between sensors. DT is inversely proportional to the weighted sum
of the difference between test data and neighbor sensor values: the smaller is the
distance between sensors, the greater is the weight.

All the above works [13, 28] make the same assumption that similar/redundant
data support each other for gaining trust. But there aren’t always redundant sen-
sors in a smart home: for example, there may be only one humidity sensor per
room.

Provenance-based methods rely on different data lineage dimensions. In
[6], inter-dependency between five items is considered: (a) data similarity, (b)
data conflict, (c) path similarity, (d) data deduction, (e) provider reputation.
Authors propose an iterative process for computing a trust score: at each itera-
tion, the trustworthiness of data and provider is adjusted according to the above
five elements. This work is extended by Wang et al. [27] in integrating the user’s
feedback: data received by the user come with a ‘reported trust’, and the user
will provide its ‘adjusted trust’ after accepting the data. If the difference be-
tween ‘reported trust’ and ‘adjusted trust’ is too large, the provider‘s reputation
decreases. Lim et al. [22] also extended work of [6] in providing a cyclic trust
computation framework suitable for data streams: (a) the more trusted data
reported by the sensor, the higher is the (provider’s) reputation; (b) data trust
depends both on data similarity, provenance similarity and sensor reputation.

The idea behind the provenance-based approach [6, 22, 27] is the same: the
more a data has similar redundant data with different lineages, the more this
data is trusted. However, a Smart Home is often an Ad Hoc network [23] where
there is a unique data lineage from the sensor to the gateway [21].

More recent works [1, 15] promote regression based methods. In [15] a
static city weather data set is analysed: authors propose a method that estimates
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the value of a target sensor by means of the values of its surrounding sensors.
If the residual between the estimation and the real value exceeds a predefined
threshold, then the (target) value is considered as untrusted, the residual being
the difference between the predicted value and the real value. Adams et al.
[1] revisit the work of [15] in considering that the residual follows a Gaussian
distribution. A Cumulative Distribution Function takes the residual as input
and outputs a trust score: if this score exceeds a threshold, the received data is
trusted. Work in [1] shows that Linear Regression outperforms Random Forest
Regression, Gradient Boosted Machine and Multi-Layer Perceptrons.

These works [1, 15] share the idea that a small residual (i.e., the model made
a good prediction) leads to a high trust score.

We found the approach described in [1] appealing although it does not take
into account data stream characteristics (timeliness, non-stationarity, etc.). Es-
pecially, due to seasonal changes, or changes in user habits, the underlying distri-
bution parameters (e.g., means, variance, correlation) of smart home data usually
changes over time, which is called the non-stationarity feature of the data stream
[26]. Non-stationarity of the data stream leads to a significant degradation of the
performance of the prediction/classification model, which is known as concept
drift. Although the work of [1] does not take into account the non-stationarity
of data stream and the concept drift, we believe it is a good start assuming we
could transpose it to target (IoT) data streams.

In the next section, we describe DTOM, a Data Trustworthiness Online
Method to evaluate a trust score of (a batch of) data in a real-time data stream.
DTOM is based on the work [1] but differs by the following points: (1) DTOM is
based on an Online Ensemble Regression model which is suitable for the analysis
of online streams; (2) DTOM has a heuristic update strategy: Updated using the
data from the top 50% of trust rankings per batch, and (3) DTOM has been
evaluated with various real inaccurate data ratios while [1] use a (simulated)
inaccurate fixed data ratio.

3 Data Trustworthiness Online Model: DTOM

In this section, we first provide a problem statement as well as algorithmic
details, then we describe the Online Ensemble Regression methods we adopted.

3.1 Problem Statement

Given f sensors, each sensor generates a value within a fixed period of time.
A value dj/ 4 is emitted by a sensor f’, at time ¢'. If dy s has quality (ac-
curacy dimension) issue, its accuracy level das 4 is 0, otherwise, it is 1. Our
model will give an estimated DT dtsy € [0,1] (denoted as a Trust Score) by
Equation 1 from [1]. Estimation of dtsy 4 is the solution to problem minimiz-
ing |days y — dtss | So, the problem of assessing DT can be considered as a
Prediction problem.
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3.2 Design and Implementation

DTOM approach consists of three processes: initialization (offline phase), assess-
ment (online phase) and update (online phase).

Initialization: Given a sensor f’, its historic data is noted as Y}/, and its refer-
ence data (gathered from other sensors) is noted as Xy/. Yy and X are used
to initialize the ensemble Regression model (line 1, Algo. 1). We calculate the
estimation ch/,t, of each historical data df/ . Then, we calculate the residual
dry: p between CZN, and dy 4 (line 2). The average (resp. standard deviation)
of the residual is denoted p (resp. o) (line 3, 4).

Algorithm 1 DTOM Initialization

Input: historic data of a sensor f’, Y}/; reference data of Y/, Xy/;

Output: the ensemble regression model Reg; the average of residuals, p; the standard
deviation of residuals, o.

an ensemble regression model reg is initialized with Yy and X4 .

setResiduals < the training error (residual) of Reg with Y and X/

u < average of setResidual

o + Standard deviation of setResidual

Return u, o, Reg;

Assessment: One data dj v arrives at a processing device (e.g., gateway) as
defined in Algorithm 2 (lines 2 - 5). The ensemble regression generates an esti-
mation df/,t/ (line 3) and gets the corresponding value of residual (line 4). The
corresponding trust score dtsys 4 is calculated by equation 1 from [1] (line 5).

Update: the new data dy/  is also buffered, with its reference data refs 4 and
its trust score dtsy v (line 6 in Algorithm 2). When the buffer is full (lines 7 -
18), the data from the top 50% of trust rankings in the buffer is used to update
the regression (line 8), and the buffer is cleared (line 9).

3.3 Online Ensemble Regression

Online Ensemble Regression methods are suitable to our context especially for
handling concept drifts [8, 10, 20]. Online Ensemble Regression is a set of individ-
ual regression models whose predictions are combined to predict new incoming
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Algorithm 2 DTOM Assessment and Update

Input: New data from sensor f’ at time t', d/ ,/; the reference data of dy/ u/, ref 4

ensemble regression model, Reg, Reg.predict is the prediction function of Reg; the
residual follows a Gaussian Distribution, N (,u, 02); A buffer is used to store the
data in each batch, and the upper limit of its capacity is also equal to the batch
size, noted as buf ferSize.

Output: trust score of d/ v, dtsy v € [0, 1].

!

10:
11:
12:

myBuf fer < ¢ // The buffer cache is empty
if new data dy v is generated then
dgr v < Reg.predict(ref ) // generates an estimation of ds
drpry < dgpr g —dgy /] get the residual
dtssr g = F(drg p,pu,0) // as Equation 1
myBuffer < myBuffer U (ds v,refsr v, dtsg ) //new data, its reference
data and its trust score are buffered
if |[myBuf fer| > buf ferSize then // when the buffer is full
Reg + Reg update with the data from the top 50% of trust rankings in
myBuf fer
myBuf fer < ¢ //the buffer is cleared
end if
end if
Return dtss y;

instances in real time. There are several online regression models in the literature

[2-4, 7, 12, 14, 17, 19, 24, 25, 29].

Online ensemble regression methods may adopt the following strategies to

accommodate concept drift (the strategies chosen for each model are shown in
Table 1):

— M1) Modification of basic models’ weights: The better the performance of

the basic model in the latest data, its voting weight increases, otherwise the
weight decreases.

M2) Modification of basic models’ parameters: If the basic model is updat-
able, its parameters are adjusted with new data.

M3) Modification of basic models’ parameters: If the loss of the entire ensem-
ble regressions exceeds a threshold, new basic models are added to improve
performance.

M4) Modification of basic models’ parameters: Poorly performing or too old
basic models are removed to reduce the computational burden.

A1) Selecting instances: Incorrectly predicted data is used to update the
model because it may represent the trend of data changes.

A2) Weighting instances: Incorrectly predicted data gets more weight that
affect the model update.

As illustrated in Table 1, Online Ensemble Regression methods can be up-

dated in 1) using a single piece of data (denoted ”simple”) or 2) multiple
pieces (denoted "batch”). In terms of ”explanatory”, Online Ensemble Regres-
sion methods can be divided into two categories [25]: 1) implicit, online regression
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model does not use detection techniques of a concept drift, but is continuously
updated with new4 data; 2) explicit, the update mechanism is triggered only
when the concept drift is confirmed by the concept drift detection module. Some
Online Ensemble Regression methods use a sliding window, while others don’t
(see table 1). Most methods limit the number of base models except for [29].

In order to choose an Ensemble method, we adopted the following criteria
(models that meet the criteria are marked with * in Table 1):

— No re-accessible historic data is one of the main differences between data
streams and static data [20]. Data is accessed only once and then discarded
to limit memory and storage space usages [9].

— Batch-by-Batch update has better stability than instance-by-instance [3,
8] and is less sensitive to inaccurate data [3].

— Implicit method is more suitable than the explicit one (such as concept
detection) in noisy data streams [20], because the latter may cause too many
false alarms [8, 20].

— Limited number of basic models reduce the storage burden [20].

As illustrated in Table 1, AddExp [19] and B-NNRW [3] are the methods
that meet our criteria. AddExp uses a loss bound to obtain the error model, and
adjusts the expert’s weights according to their actual losses (M1). Each expert
updates upon new arrival data (M2). If the overall performance (loss bound) is
below (above) a predefined threshold, a new expert is added (M3). The pruning
strategy is weakest-first or oldest-first (M4).

Note that the original version of AddExp was designed to update instance-by-
instance, but AddExp can be easily extended to update Batch-by-Batch [25]. The
original AddExp does not reveal which instances should be taken for training
a new basic model [5]. However, for "Batch-by-Batch update”, it can train /
initialize a new basic model by Boosting / Bagging the instances in the current
batch (A1,A2). One limitation of AddExp is that its predictions are in [0, 1]
interval. Another limitation is that it depends on a number of hyper-parameters,
as follows: 1) factor of decreasing weight (: the weight of basic model is updated
as wit1, = wt7i5‘5f1i’y‘|; 2) loss required to add new expert 7: if |, — y¢| > T,
a new expert is added; 3) factor of new expert weight 7: the weight of the new
basic model is equal to Zf\]:tl we,i |&.i — Y| Where, wy; is the weight of basic
model ¢ in time ¢; y; is the dependent variable; & ; is the estimation of y; by
basic model i; N; is number of overall experts; g; is the estimation of AddExp
(over all basic models).

B-NNRW, a Boosting/Bagging ensemble method is based on NNRW (A1,A2),
a Neural Network with Random Weights where the weights between the input
layer and the hidden layer are fixed. NNRW does not update and adopts a linear
assumption. Therefore, B-NNRW also adopts the linear assumption and adjusts
its weights according to their loss in the last batch of data (M1). Pruning (M3)
and adding (M4) basic models are also used to maintain the performance of the
whole system. B-NNRW also relies on some hyper parameters such as 1) the
pruning rate ¢: only ) models with the lowest error are eligible to participate in
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method description new data explanatorySliding  adaption # basic
size window model
*AddExp Additive expert ensem- *both *implicit  *no M1, M2, *limited
[19] bles regression M3, M4
ILLSA [17]  Incremental Local *batch *implicit  yes M1, M3, *limited
Learning Soft Sensing M4
Algorithm
OWE |[25] On-line Weighted ensem- simple *implicit  yes M1, M3, *limited
bles regression M4, Al
R-FIMT-DD Ensemble of Incremental simple explicit *no M2, A1 *limited
[14] Hoeffding-based trees
AMRules [2] Ensemble of randomized simple explicit *no M3, M4  *limited
adaptive model rules
DOER [24] Dynamic and Online En- simple *implicit  yes M1, M2, *limited
semble Regression M3, M4
VHPRE [4] Vertical and Horizon- simple explicit *no M1, M3, *limited
tal Partitioning for Data M4
Stream Regression En-
semble
ARF-Reg Adaptive Random Forest simple explicit *1no M2, M3, *limited
[12] (ARF) for regression M4
Online- Neural network  en- simple *implicit  *no M2 *limited

DNNE (7] sembles with random
weights based

*B-NNRW Neural network en- *batch *implicit  *no M1, M3, *limited
(3] sembles with random M4, Al,

weights + Bagging / A2

Boosting
Learn.+-+ Learn++.NSE [8] + R2C *batch *implicit  *no M1 not limited
R2C [29]

Table 1. Online Regression Methods with their Characteristics
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the final prediction, @ = ¢ * M, M being the maximum number of basic models
; 2) the replacement rate r: the number of new added models is r x M.

4 Experimentation

4.1 Experimental Dataset

We conducted our experiments with the Appliances Energy Prediction dataset
retrieved from the UCI Machine Learning Repository data portal ! consisting
of the following attributes: energy assumption, humidity and temperature. For
illustration purposes, we focus on the RH2 sensor which is a humidity sensor in
a living room area.

Dataset volume and velocity: One humidity sensor and one temperature sen-
sor are installed in each room and outside the building (18 sensors in total).
Data were averaged for 10 minutes period and gathered during 4.5 months (from
11/01/2016 to 05/27/2016) resulting in a total 12 MB CSV file with 19735 in-
stances.

Simulated untrusted data (SUTD): Variance Fault (Gaussian noise) is one of
several types of faults that can be injected into a data stream (randomly selected
original data) to represent untrustworthy data [11]. [1] shows that the detection
of Variance Fault is more difficult than others, such as Stuck Fault (replaces
the true data value with a constant value), Offset (adds an a constant value to
the true data value). The percentage of noisy data injected into original data
(OD) varies from 5% to 65% (by step of 5%) for each experiment. Based on [1],
we define SUTD as follows: SUTD = OD + N(0,¢'), where N is a Gaussian
distribution and ¢’ is the Standard Deviation of RH2 sensor data. Due to space
limitations, Fig. 1 (b-e) shows RH2 data for the first 24 hours, respectively
without and with 5%, 35% and 65% of noise.

RH2 sensor data: Fig. 1(a) displays RH2 data with some concept drifts de-
tected by Page-Hinckley Test 2. We observe that from January to March, data
changes are relatively flat compared to April, May. Correspondingly, the con-
cept drift from January to March is less visible than for April, May. This smart
home sensor data with non-stationary nature (concept drift) will be used to
test whether DTOM can handle the concept drift to correctly assess DT in the
non-stationary data stream.

Reference Data: For RH2 sensor, the reference dataset is the data sent from
other 17 humidity / temperature sensors (not including energy assumption data),
and these sensors always generate correct data. Due to space limitations, Fig. 2
(a-d) shows an excerpt of RH6, T6, RH5, T5 sensor data with their statistical
description.

Root Mean Square Error (RMSE) (Equation 2) is a known measure that we
use to assess OD trust. The lower the RMSE value of ODs / SUTDs, the more
accurately their trust scores are estimated.

! UCT https://archive.ics.uci.edu/ml/datasets/ Appliances-energy-+prediction
2 Details about Page-Hinkley method for concept drift detection are available at
https://scikit-multiflow.github.io/scikit-multiflow/
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Balanced-Accuracy (BACC). To further evaluate DTOM, data are classified
either as trustworthy or untrustworthy according to a threshold tth. Let us
set up: an OD is seen as a true positive (TP) if it is correctly classified as
‘trustworthy’ and a false negative (FN) otherwise, and that a SUTD is seen as
a true negative (TIN) if it is correctly identified as "untrustworthy’ and a false
positive (FP) otherwise. In this case, BACC (equation 3) indicates whether
the overall data is well classified and takes into account the unbalanced nature
of the dataset.

BACC = (Sensibility + Speci ficity) /2

3
#TP and Specificity = #TN ®)

where Sensibility = ZTP 1 #FN H#TN + #FP

Trust Score We can also directly observe the trust score of ODs / SUTDs
to determine whether they are correctly scored when the concept drift occurs.
The expected trust score for any OD is 1. Therefore, in the case of concept drift,
the higher (more accurate) of ODs’ trust score, DTOM adapts better to the
concept drift. Similarly, the expected trust score for any SUTD is 0. In the case
of concept drift, the lower (more accurate) SUTDs’ trust score, DTOM adapts
better to the concept drift.

4.2 Evaluation

In order to evaluate DTOM, we implemented AddExp and B-NNRW. We also
compared DTOM with linear regression (a static model), to show how DTOM
behaves in presence of concept drift. For any regressor, the first 5% data are
used for initialization. Trust threshold ¢th is determined by maximizing BACC.
For any Online Ensemble Regression: the maximum number of basic models is
25; instances are weighted by Boosting; buffer size is 100. The super-parameters
for each regressor are as follows:

— AddFEzp: factor of decreasing weight 5 = 0.5, factor of new expert weight
~v = 0.1, loss required to add new expert 7 = 0.05 (See definitions in Section
3.3 ). These super-parameter settings are the optimal values after tuning,
i.e., the same settings suggested in [19]. Basic regression models are SGD-
Regressor and Passive-Aggressive-Regressor3. Pruning strategy is the worst
first [3].

3 available in Sklearn: https://scikit-learn.org/stable/
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— B-NNRW: Number of hidden nodes of NNRW is 16; the pruning rate p = 0.9
(optimal value between 1.0 and 0.7); the replacement rate » = 0.1 (optimal
value between 0.0 and 0.3) (See definitions in Section 3.3 ).

— Linear Regression: the first 5% data are taken for initialization; the trust
threshold tth is determined by maximizing BACC, but without update.

4.3 Results

In this subsection, we will discuss the numbers obtained for RMSE (trust score’s
accuracy) and BACC (OD / SUTDs’ classification) for all the above methods.

0.9 1
A s AddEXP
O g === B_NNRW
(a) o == Linear Regression A/-_/
%)
2074 >
o
5 10 15 20 25 30 35 40 45 50 55 60 65
proportion of simulated untrusted data,in %
a
£ 0.10 1 m—= AddEXp
7 — B NNRW
b s : )
(b) qu 0.05 4™ Linear Regression
%)
=
[+4

T T T T

5 10 15 20 25 30 35 40 45 50 55 60 65
proportion of simulated untrusted data,in %

0.8 1 \——\
9 074 = AddExp
© & 7| == BNNRW

| === Linear Regression

T T T T T T T

T T T T T T
5 10 15 20 25 30 35 40 45 50 55 60 65
proportion of simulated untrusted data,in %

Fig. 3. (AddExp vs. B-NNRW vs. Linear Regression) performance with different SUTD
ratios(5% - 65%) in RH2 data: (a) RMSE of ODs’ trust score; (b) RMSE of STUDs’
trust score; (¢) BACC of overall data.

RMSE of ODs : As depicted in Fig. 3(a), the linear regression curve is close to
0.9 for all different SUTD ratios. This means that with linear regression, OD is
always wrongly evaluated with a relatively low trust score. The reason is that
the residuals between ODs and their prediction are unexpectedly too large. A
further explanation is that linear regression without updates cannot maintain
predictive power in non-stationary data streams, due to concept drift.

Note that for all SUTD ratios, B-NNRW curve is always lower, and therefore
better than AddExp. One possible explanation is that, for non-stationary data
stream, the prediction ability of B-NNRW is better than AddExp one.
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For a SUTD ratio in the 5%-45% range , both B-NNRW and AddExp curves
are stable. In other words, B-NNRW and AddExp maintain their performance
as data quality declines. The reason is that 1) DTOM has successfully filtered
out most of low-quality data that is not used to update the Ensemble Regression
models, 2) B-NNRW and AddExp both have a certain tolerance for inaccurate
data.

However, when the SUTD ratio exceeds 50%, B-NNRW and AddExp curves
increase. This is because they both are updated by using the data from the top
50% of trust rankings in each batch. If the SUTD ratio is close to or higher than
50%, SUTDs inevitably interfere with its update process.

RMSE of SUTDs : Fig. 3(b) shows that, for all SUTD ratios, SUTDs’ RMSE of
Linear Regression is close to 0.1.

Fig. 3(b) also shows that AddExp and B-NNRW performances are stable
when the SUTD ratio is within a 5% to 50% range, and B-NNRW ratio (which
is close to 0.02) is slightly lower (better) than AddExp (close to 0.03). Both
AddExp and B-NNRW behave better than linear regression.

When the proportion of SUTD is greater than 50%, AddExp curve increases
significantly. This means that AddExp loses performance: it is even worse than
Linear Regression. However, B-NNRW curve increases more slowly than Ad-
dExp. One possible explanation is: 1) AddExp loses its predictive ability due to
updating with some SUTDs; 2) B-NNRW has a higher tolerance than AdddExp
for SUTD, and its prediction ability is less negatively impacted.

BACC : Fig. 3(c) shows that, in all cases, Linear Regression BACC is stably
close to 0.55, which is lower than others. This means that nearly half of the data
is correctly classified.

For all SUTD ratio range values, we have shown that B-NNRW performs
better than AddExp, in comparison with ODs’ RMSE and of STUDs” RMSE.
Therefore, BACC of B-NNRW is always higher (better) than AddExp. This
means that, a higher percentage of data is correctly classified with B-NNRW
than with AddExp.

From the 50%-65% SUTDs ratio, we showed that B-NNRW and AddExp have
lost performance in both ODs’ RMSE and STUDs” RMSE, due to unavoidable
update with SUTDs. Therefore, as the SUTD ratio increases from 50%, both
B-NNRW and AddExp BACC values decrease.

Trust Score of ODs. We have shown that 1) when SUTDs ratio does not exceed
50%, the performance of B-NNRW and AddExp are stable; 2) with any SUTDs
ratio (5% - 65%), the performance of Linear Regression is stable.

For illustration purposes, we arbitrarily choose a ratio of 25% SUTDs from
0% to 50%, and illustrate the ODs’ trust score generated by all regressors, as
illustrated in Fig. 4 (a). Before concept drift No.1, the linear regression curve is
even higher (better) than B-NNRW and AddExp ones. However, after concept
drift No.1, the linear regression curve is always close to 0.1, which is far from
the expected value of 1 for ODs. The reason is that the concept drift affects the
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Fig.4. (AddExp vs. B-NNRW wvs. Linear Regression) performance with RH2 data
(25% SUTD ratios), in case of concept drift: (a) trust score of ODs; (b) trust score of
SUTDs. Up to 19 concept drifts were detected by Page-Hinckley Test (illustrated by
numbers and circles).

performance of Linear Regression because this method does not handle concept
drifts.

By observing Fig. 4 (a), both of B-NNRW or AddExp follow a downward
trend due to the concept drift. The decline of the curve means that performance
is reduced. However, after the performance degradation, the curves of both B-
NNRW and AddExp tend to return to the previous level. This ability comes
from the update process of Online Ensemble Regression, which enables DTOM
to deal with the concept drift.

In comparing B-NNRW with AddExp curves, we note that 1) when there is
no concept drift, the curves of both are closed; 2) when the concept drift occurs,
the curve of B-NNRW declines slightly than the AddExp one: this is illustrated
in Fig. 4 (a) concept drifts 1 - 3, 5- 8, 10 - 19 ). This means that B-NNRW can
adapt to changes in the data stream more quickly than AddExp, and outperforms
AddExp (the same result is shown in Fig. 3 (a) with 25% STUDs ratio).

Trust Score of SUTDs We still choose the 25% SUTDs ratio to illustrate the
SUTDs’ trust score generated by all regressors (see Fig. 4 (b)).

Before concept drift No.1, the linear regression curve is lower (better) than
B-NNRW and AddExp. However, after concept drift No.1 and before the concept
drift No.2, the linear regression’s curve increase. After the concept drift No.2 |
the linear regression curve is slightly higher than B-NNRW and AddExp. After
the concept drift No.3, the linear regression curve is significantly higher (worst)
than B-NNRW and AddExp. The reason is same as ODs’ trust score of linear
regression: we do not have an update mechanism to deal with a concept drift.
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By observing Fig. 4 (b), most of the concept drifts lead to a relatively slight
increase in the curves of B-NNRW and AddExp (degraded performance). How-
ever, thanks to the update capacity of the online ensemble regression, upon
performance decline, the curves of B-NNRW and AddExp tend to return to the
previous level (close to 0).

Our experiments show : 1)when concept drift occurs relatively at low fre-
quency (concept drifts No. 1 - 8 | in Jan., Feb. and Mar.), B-NNRW has a slight
advantage over AddExp ( B-NNRW 0.001 vs. AddExp 0.003 in mean); 2) When
the frequency of concept drift occurs at a higher frequency (concept drifts No.
10 - 19, in Apr. and May), the curves of both increase (worst), but B-NNRW
keeps its advantage over AddExp (B-NNRW 0.003 vs. AddExp 0.004 in mean).
Hence, the overall performance of B-NNRW is better than AddExp (the same
result has been shown in Fig. 3 (b) with 25% STUDs ratio).

5 Conclusion

In this article we described DTOM, an online model-based method for assessing
data trustworthiness in smart home (IoT) data streams. DTOM extends the work
of [1] in using Online Ensemble Regression, and in adopting a heuristic update
strategy: batch-by-batch, with the data from the top 50% of trust rankings in
each batch. DTOM has been implemented with B-NNRW and AddExp and
experimental results have been conducted with a real dataset.

The first outcome of the experimentation is that B-NNRW ensures Data
Trustworthiness for a vast majority of data in a non-stationary data stream,
while outperforming other regressors. The second outcome relates to DTOM
performance degradation when the SUTD ratio exceeds 50%, because SUTDs
will inevitably interfere with the regressor update process.

The work described in this paper is a first step towards developing efficient
real-time predictive methods for a data stream, i.e., the proposal of learning
methods that (1) can handle the drifts, and (2) cover a comprehensive set of
practical applications. However, the proposed methods have some limitations.
Indeed, our work is based on the assumption that the initialization phase has a
high-trust dataset. If a low-trust dataset is used during the initialization phase,
it is possible that 1) the distribution parameters of residuals may be incorrectly
estimated; 2) the parameters of the online Ensemble Regression model also may
be erroneous. Clearly there is room for improving these methods. One possible
research direction is that that our proposed method requires only a small amount
of high-trust data for initialization. This amount may be provided by domain
experts at limited cost.
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