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Abstract—In this paper, we are interested in the predictive
and discriminant nature of features in supervised classification
problems. We discuss the notions of prediction and discrimination
and propose a hybrid approach combining supervised classifiers,
model explanation, multicriteria decision making and pattern
mining for identifying the most predictive and discriminant
features in a dataset. The explanation of models learned by
supervised classifiers produces rankings of features according
to various performance measures. Based on that, multicriteria
decision making and pattern mining methods are used to,
respectively, select the most important features and interpret their
role in terms of prediction and discrimination. Finally, we present
and discuss two experiments on public datasets illustrating the
potential of the approach.

I. INTRODUCTION

Biomedical sciences make increasing use of methods from
computer science. For instance, biologists wishing to study
diabetes now collect data, in the form of biomarkers, from both
diabetic and healthy patients and then use machine learning
techniques to discriminate classes of patients and predict the
disease. Provided that the patients are sufficiently numerous
and the data correctly collected, most modern supervised
classification approaches [1] are able to build models capable
of diagnosing, or predicting the onset of, diabetes in new
patients with good performances. While useful for the patients
themselves, simply applying such models is not sufficient for
biologists who rather need to understand the underlying causes
of diabetes, i.e. they need meaning to be assigned to the
biomarkers in terms of their roles in the development of the
illness and its diagnostic. Which biomarkers can best be used
to predict that a patient has diabetes? Which biomarkers can
best be used to predict that a patient does not have diabetes?
Which biomarkers can best be used to discriminate between
having and not having diabetes? Are the best biomarkers for
these three tasks the same?

The problem of identifying the most important features
(biomarkers) in a supervised classification setting (the diagno-
sis of diabetes by a model) belongs to the field of explainable
machine learning [2], [3], which has now become one of
the main research topics in artificial intelligence. However,
existing methods only identify the features that are important
for models with no explicit consideration for the different
meanings this importance can have. Indeed, in supervised

classification, models perform two subtly different tasks: pre-
diction and discrimination. Features can thus be important for
either the prediction or discrimination performance of models,
i.e. a feature can be predictive or discriminant.

In this paper, we are interested in identifying predictive and
discriminant features in supervised classification problems (i.e.
in datasets) instead of in particular models. We first discuss
the notions of prediction and discrimination, then introduce a
general method for identifying the features that are the most
predictive and/or discriminant in a supervised classification
dataset. The proposed method combines a machine learning
explanation approach with multicriteria decision making [4]
and pattern mining [5]. Supervised classifiers are used on
the data to create models. The model explanation approach
produces rankings of features according to their importance
w.r.t measures of performance on which background knowl-
edge is expressed in terms of prediction and discrimination.
The multicriteria decision making process uses the rankings of
features to select the “most important” features. Pattern min-
ing, through the formal concept analysis (FCA) formalism [6],
[7], exploits the symbolic background knowledge about the
measures of performance to transfer meaning to the selected
features, and allows for an intuitive visual representation of
the result. This workflow is illustrated in Fig. 1.
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Fig. 1: Workflow of the hybrid approach.

As a practical case, we analyse two public biomedical
datasets and show that the application of the proposed method
allows the user to gain an understanding of the data and the
classification problem. To the best of our knowledge, this is
one of the few papers discussing the discriminant and pre-
dictive nature of dataset features in a supervised classification
problem thanks to decision making and FCA.

This paper is organised as follows. In Section II, we propose
a definition of discrimination and prediction and discuss how
they can be measured using models. In Section III, we present
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how to use multicriteria decision to identify the features we
are interested in. In Section IV, we recall the necessary FCA
background, and use it to assign meaning to features and
present it in the form of a concept lattice. In Section V, we
apply the proposed method to the public datasets to illustrate
the capabilities of the framework introduced in this paper. In
Section VI, we discuss the choices we made and present some
directions for future work.

II. PREDICTION AND DISCRIMINATION

We are interested in identifying predictive and discriminant
features in a dataset. The notions of “predictiveness” and
“discriminativeness” of features are rarely discussed in the
literature so we will first introduce working definitions. To
predict means to assert that something will happen, is true or,
in a classification problem, belongs to a class. To discriminate
means to be able to perceive the differences between two
things. Regarding features in a classification problem, a feature
is said to be predictive when its value can be used to assert that
an individual belongs to a particular class, and as discriminant
when its value can be used to differentiate between the classes.
For instance, fevers are predictive of being ill because their
presence can be used by doctors to diagnose illnesses but they
are not discriminant as they do not allow to separate between
several possible diseases. The definitions of predictive and
discriminant are thus linked to the existence of an external
process that uses the features to make decisions. Here, we
chose to use models built with classifiers as external processes.

We consider binary classification problems [8] in which
individuals belong to one of two groups, the positive (or target)
and negative classes. A classifier is a process that uses a set
of individuals for which the classes are known (the training
set) to create a model that is able to assign classes to a set
of individuals for which the true classes are hidden (the test
set) or unknown. Explaining the way models use the features
to assign classes to individuals is currently one of the main
topic in artificial intelligence. Guidotti et al. [3] proposed a
categorisation of explanation problems and approaches into
three categories: model explanation, outcome explanation and
inspection. The first category contains approaches that, given
a target model, aim at providing another model that is under-
standable and mimics the behaviour of the target model. Such
understandable models include sets of rules [9] or decision
trees [10]. The second category contains approaches that aim
at providing explanations of the predictions on individual
instances. Noticeable examples of outcome explanation ap-
proaches include LIME [11] and SHAP [12]. LIME explains
individual predictions by presenting simple, understandable
models trained from randomly generated instances similar to
the one being explained. SHAP explains individual predictions
by evaluating the importance that each feature had in the
model’s decision, i.e, in the introductory biomedical example,
the importance that each biomarker had in the diagnosis of
a patient. The third category contains approaches that aim at
providing a (visual or textual) representation of the work of
models. Most of these approaches focus on explaining neural
networks [13].

In this work, we want to identify the features that are
used by the models to predict and/or discriminate. We thus
need an explanation approach that highlights features w.r.t.
their importance in these two tasks. Many measures have
been proposed [14], [15], [16] to quantify the performance
of models with regard to various views of what a good model
should be doing. The relations between these measures, as well
as the role that they play in the evaluation of models [17],
[18], [19], have been extensively studied. The subject is
of particular importance in biostatistics where researchers
are notably interested in the relations between performance
measures and prediction and discrimination [20], [21]. In this
paper, we consider measures that are combinations of four
different scores obtained by guessing the classes of individuals
in a test set. Some of these measures are presented in Table I.
True Positive (TP) is the number of individuals belonging
to the positive class that were classified as positive. False
Negative (FN) is the number of individuals belonging to the
positive class that were classified as negative. False Positive
(FP) is the number of individuals belonging to the negative
class that were classified as positive. True Negative (TN) is
the number of individuals belonging to the negative class that
were classified as negative.

The sensitivity (or recall) measure, for example, is the ratio
of the number of positive individuals that have been correctly
recognised as such by the model to the total number of positive
individuals in the test set, i.e. sensitivity equals TP

TP+FN .
Sensitivity quantifies the ability of the model to recognise the
positive class. The precision measure is the ratio of the number
of positive individuals that have been correctly recognised as
such by the model to the total number of positive guesses,
i.e. precision equals TP

TP+FP . It quantifies the ability of the
model not to make mistakes when identifying the positive
class. The accuracy measure is the ratio of the number of
individuals whose class has been correctly guessed by the
model to the total number of individuals, i.e. accuracy equals

TP+TN
TP+TN+FP+FN . As such, it quantifies the ability of the
model to recognise both positive and negative classes while
not making mistakes.

These three measures represent different priorities. Sensi-
tivity is maximised when the model is always predicting the
positive class. Many errors can be made (false positive) but
all individuals belonging to the positive class are recognised
as such. Conversely, the precision can be maximised by being
overly cautious with positive predictions. The accuracy can
be considered as a compromise between the predictive power
and the error avoidance that perceives both classes as equally
important. We observe that two important notions are at
play here: recognising classes and not making mistakes. We
will consider that measures quantify the prediction power of
models when they focus only on the recognition part (e.g.
sensitivity, specificity), the correctness of models when they
focus only on not making mistakes (e.g. precision, negative
predictive value), and the discrimination power of models
when they mix both goals (e.g. accuracy, Fscore). In Fig. 2,
we present a representation of these different measures’ char-
acteristics in the form of a partial ordering of terms that serves
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Real class 1 Real class 0

Predicted class 1

Predicted class 0

True Positive (TP) False Positive (FP) Precision= TP
TP+FP

FDR = FP
TP+FP

False Negative (FN) True Negative (TN) FOR= FN
FN+TN

NPV = TN
FN+TN

Sensitivity= TP
TP+FN

FPR = FP
FP+TN

FScore= 2Precision×Sensitivity
Precision+Sensitivity

FNR = FN
TP+FN

Specificity = TN
FP+TN

Accuracy= TP+TN
TP+TN+FP+FN

Positive Likelihood Ratio= Sensitivity
FPR

MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

Negative Likelihood Ratio= FNR
Specificity

TABLE I: Some possible measures of the performance of a model. Measures in yellow quantify the prediction power of models, measures
in green quantify the correctness, and those in blue quantify the discrimination power.

Classification

Prediction Discrimination Correctness

Sensitivity Specificity Accuracy FScore Precision NPV

Fig. 2: Partial ordering of terms characterising performance measures
and their role in a classification process.

as background knowledge for the interpretation of features. It
states that sensitivity is related to prediction which is a possible
characteristic of classification.

Let T be a test set, M a model, m a measure and f a feature
used to describe the individuals in T . We denote by m(M,T )
the score of the model M for the measure m on the test set T ,
and denote by T f

i the test set obtained by randomly permuting
the values taken by f in T for a permutation i. The impact of
the feature f on the score of the model M for the measure m
is defined as the mean variation of the score of the model for
m when the values taken by f in the test set are permuted [22],
i.e., for a large enough k (number of permutations),

impact(f,M,m) ≈
k∑

i=1

m(M,T f
i )−m(M,T )

k
.

In other words, the impact reflects the importance that the
feature has for the model w.r.t. the measure. This impact thus
constitutes a form of explanation of the model. As it is a
real number, the impact can be used to rank the features. A
negative impact means that changing the values of the feature
has a negative influence on the model’s score, which means
that the model makes use of the feature for whatever the
measure is quantifying. Therefore, in this work, we define
features as predictive or discriminant if they have negative
impacts on measures of prediction or discrimination. Measures
of correctness are not used in this work but are discussed again
later.

III. SELECTING FEATURES

A. Prediction, Discrimination and Feature Importance

We have a dataset in which individuals are described by the
values of a set F of features and a corresponding class (here

we will assume that there are two classes). In Section 2, we
defined predictive (resp. discriminant) features as those having
a negative impact on the score of a model for a measure of
prediction (resp. discrimination). All features in the dataset
potentially have these characteristics but presenting them all
to an expert would not help. Instead, we want to identify the
features that are among the most predictive or discriminant.

We could argue that a feature f1 is more predictive than
a feature f2 if it has a smaller impact value on a model’s
sensitivity score. However, if f2 has a smaller impact value
than f1 on the same model’s specificity score, which one is
the most predictive? And if f2 has a smaller impact value on
another model’s sensitivity score? As multiple measures are
indicative of prediction or discrimination, and different models
can result in different rankings of features, we represent the
problem of identifying the most predictive and discriminant
features as a multicriteria decision problem.

One of the goals of multicriteria decision making [4], [23]
is to model preferences. In this paper, we take a utility-based
approach. Let V1, ..., Vn be attributes, and let R be the set of
real numbers that we use as evaluation space. By a criterion we
mean a pair Vi = (Vi, φi), i ∈ {1, . . . , n}, where φi : Vi → R
is an utility function. Such a criterion naturally defines a local
preference relation (reflexive and transitive) �i on Vi: for all
x, y ∈ Vi, x �i y if φi(x) ≥ φi(y). Let a = (a1, . . . , an) and
b = (b1, . . . , bn) be two alternatives in V1× · · · × Vn. We say
that a is preferred to b on the ith criterion when bi �i ai.
For instance, when buying a new car, two criteria could be
based on the price and the maximum speed: price-wise, one
would prefer a cheaper car whereas Speed-wise, one would
prefer a faster car. However, preferences on those two criteria
do not necessarily coincide and compromises must be made.
When faced with a set of alternatives and multiple criteria, we
will refer to the problem of identifying the “best” alternatives
according to the criteria as a multicriteria decision problem.

Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two alterna-
tives. Alternative a is said to dominate b, denoted by b � a,
if bi �i ai for all i ∈ {1, . . . , n}. The Pareto front of the
multicriteria decision problem over a set Crit of criteria and
a set Alt of alternatives is denoted by Pareto(Crit, Alt) and
it is defined as the set of alternatives that are not dominated
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by any other alternative. In other words, an alternative is
in the Pareto front if it is better than all the others on
at least one criterion. A car that is both slower and more
expensive than another is surely not preferred and thus it
does not constitute a better choice. Having excluded all the
alternatives that are clearly worse than others, the Pareto front
contains only alternatives for which one cannot improve on a
criterion without losing on another. Notice that the Pareto front
constitutes an anti-chain w.r.t. the overall preference relation
�.

Let Mo be a set of models and let Me be a set of
performance measures quantifying either prediction or dis-
crimination. We represent the problem of identifying the
most predictive and discriminant features as the multicriteria
decision problem in which the set of alternatives is the set F
of features and the set of attributes is the set Mo ×Me of
the pairs composed of a model and a measure. The value of
the attribute (mo,me) ∈ Mo×Me for the feature f ∈ F is
impact(f,mo,me). The criteria are the pairs ((mo,me), id)
where id is the identity function. A feature f1 is preferred
to a feature f2 for a criterion ((mo,me), id) if and only
if impact(f1,mo,me) ≤ impact(f2,mo,me). In order to
simplify the notations, we thereafter identify the criteria with
their attributes and use “the criterion (mo,me)” to refer to
((mo,me), id), as well as Mo ×Me to refer to the set of
criteria.

Definition 1. (IMPORTANT FEATURES) A feature f is said to
be important if

f ∈ Pareto(Mo×Me,F).

We provide an illustrative example in the next subsection.

B. Identifying Important Features

Important features are defined w.r.t. a multicriteria decision
problem that involves models and measures. As it is impossible
to consider all possible models and measures, we have to make
choices and restrict ourselves to finite sets.

Let C be a finite set of classifiers (e.g. Random Forests [24],
Naive Bayes, Neural Networks, Support Vector Machines [25])
and Me be a finite set of measures of a model’s performance
(e.g. accuracy, specificity, sensitivity). As a running example,
we will use
• F = {f1, f2, f3, f4, f5}
• C = {Random Forests (RF), Neural Networks (NN)}
• Me = {Specificity, Sensitivity, Accuracy}

Our assumption is that different types of classifiers learn,
and thus perceive and use features, differently so the most
important features for accuracy are not necessarily the same
in models learned with neural networks and random forests.
With each classifier C ∈ C, we create a model that represents
the classifier. The training and test sets are of fixed sizes and
randomly drawn from the dataset at each new training phase.
This process results in the creation of the set Mo of models.
From there, for each model M and measure m, we associate

f1 f2 f3 f4 f5
(RF,Accuracy) -0.01 0 0.04 -0.015 0.002
(RF, Sensitivity) 0 -0.02 0.01 0.017 0.001
(RF, Specificity) -0.005 -0.18 0.002 0.015 0.03
(NN,Accuracy) 0 -0.002 0.02 -0.01 0.01
(NN,Sensitivity) 0 0.006 0.009 0.01 -0.01
(NN,Specificity) 0 0.005 0.01 0.009 -0.009

TABLE II: Matrix of impacts of features on models’ scores. A
negative score means that a feature is correctly used by the model to
perform what the measure is quantifying.

to each feature f its impact on M ’s m score. This results in
the creation of a |C × Me| × |F| matrix that quantifies the
importance that each classifier’s representative model assigns
to each feature w.r.t. each measure. Let us suppose that, in our
running example, the matrix is the one depicted in Table II.

We use the matrix of impacts of features to compute
Pareto(Mo × Me,F), i.e. the important features. In our
running example, as a feature is preferred to another if its
impact value is lower, we have the following preferences:

c1 = (RF,Accuracy) : f4 � f1 � f2 � f5 � f3
c2 = (RF, Sensitivity) : f2 � f1 � f5 � f3 � f4
c3 = (RF, Specificity) : f2 � f1 � f3 � f4 � f5
c4 = (NN,Accuracy) : f4 � f2 � f1 � f5 � f3
c5 = (NN,Sensitivity) : f5 � f1 � f2 � f3 � f4
c6 = (NN,Specificity) : f5 � f1 � f2 � f4 � f3

The Pareto front of this multicriteria decision problem, and
the set of important features, is {f1, f2, f4, f5}. The features
f2, f4 and f5 are important because they are the best for
some criteria and f1 is important because it is better than the
others on at least one criterion. The feature f3 is not deemed
important as it is always worse than f1 and f2.

Once the important features are identified, we want to inter-
pret their importance in terms of prediction and discrimination.

IV. INTERPRETING IMPORTANT FEATURES

Knowing that a feature is important is not enough. We
would like to know why it is important. Is it because it is
particularly discriminant? Is it predictive? If it is predictive, is
it predictive of the positive or negative class? We would like to
explain the reasons why a feature has been deemed important
so as to provide more insight into its role in the classification
problem. As importance is defined as membership to the
Pareto front of a multicriteria decision problem, explaining
the importance of a feature is linked to identifying the criteria
responsible for its presence in the Pareto front.

Let G be a set and 2G be the family of its subsets. Closure
and interior operators on G are functions f : 2G 7→ 2G such
that X ⊆ Y ⇒ f(X) ⊆ f(Y ) and f(f(X)) = f(X). In
addition, closure operators c are such that X ⊆ c(X) and
interior operators i are such that X ⊇ i(X). A set X ⊆ G is
said to be closed under a closure operator c if X = c(X). It
is said to be open under an interior operator i if X = i(X).
Let ≤ be a total order on the elements of G. We call lectic
order the partial order ≤l on 2G such that X ≤l Y if and only
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if the smallest element of the symmetric difference of X and
Y , according to ≤, is in Y . We then say that X is lectically
smaller than Y .

Our set of criteria is Mo × Me and our set of alter-
natives, or features, is F . We define the interior operator
g : 2Mo×Me 7→ 2Mo×Me such that, for a set X of criteria,
g(X) is the lectically greatest inclusion-minimal subset of X
for which Pareto(X,F) = Pareto(g(X),F). Let

P = {P ⊆ F | ∃X ⊆Mo×Me, P = Pareto(X,F)}

be the family of features sets P for which there exists a
criteria set X such that Pareto(X,F) = P . For P ∈ P ,
we use C(P ) to denote the family of criteria sets X such
that Pareto(X,F) = P . We then have that, for any P ∈ P ,
G(P ) = {g(X) | X ∈ C(P )} is the family of inclusion-
minimal criteria sets for which P is the Pareto front. Hence,
X is a minimal set of criteria for which a feature f appears on
the Pareto front if and only if X ∈ G(P ) for some P that is
inclusion-minimal such that f ∈ P . We use M(f) to denote
the family of such minimal criteria sets for the feature f .

In our running example, the feature f2 appears in the Pareto
front only when the criteria set contains c2, c3, both c4 and
c5 or both c4 and c6. Hence, M(f2) = {{c2}, {c3}, {c4,c5},
{c4,c6}}. Similarly, for other features, we have M(f4) =
{{c1}, {c4}}, M(f5) = {{c5}, {c6}} and, finally, M(f1) =
{{c1,c2}, {c1,c3}, {c1,c5}, {c1,c6}, {c2,c5}, {c2,c6}, {c3,c5},
{c3,c6}, {c4,c5}, {c4,c6}}.

Once the minimal sets of criteria required for a feature f to
appear in the Pareto front are identified, we interpret them in
human-understandable terms. To a criterion ci ∈ Mo ×Me
we assign an interpretation I(ci), i.e. a set of terms, according
to background knowledge. Using Fig 2’s partially ordered
set as background knowledge, the interpretation I(ci) is then
the set of terms greater than or equal to the name of the
measure in ci. Indeed, Fig. 2 contains terms that represent
the measures and tasks for which a feature can be good. As
discussed in Section II, being good for accuracy is being good
for discrimination. Furthermore, being discriminant is being
good, in general, for classification. We know that the values of
the criterion (Random Forests, Accuracy) are the impacts
of the features on the accuracy of the model that represents
random forests. Hence, the best features for this criterion
are good for the accuracy. The interpretation of (Random
Forests,Accuracy) is then I(Random Forests,Accuracy)
= {Accuracy, Discrimination, Classification}. In our running
example, the interpretations of the criteria are:

I(c1) = {Accuracy, Discrimination, Classification}
I(c2) = {Sensitivity, Prediction, Classification}
I(c3) = {Specificity, Prediction, Classification}
I(c4) = {Accuracy, Discrimination, Classification}
I(c5) = {Sensitivity, Prediction, Classification}
I(c6) = {Specificity, Prediction, Classification}

What remains is to associate the terms used in the criteria’s
interpretations to important features and present the result to
the user. To do this, we use notions from formal concept
analysis [6], a mathematical framework based on lattice theory

that aims at extracting meaningful classes from data and, as
such, can be perceived as a form of clustering. A formal
context is a triple (O,A,R) in which O is a finite set of
objects, A a finite set of attributes and R ⊆ O×A a relation
between objects and attributes. We say that the object o is
described by the attribute a when (o, a) ∈ R. Formal contexts
are formalisations of binary datasets. Two operators can then
be defined, both denoted by ·′:

·′ : 2O 7→ 2A

O′ = {a ∈ A | ∀o ∈ O, (o, a) ∈ R}

·′ : 2A 7→ 2O

A′ = {o ∈ O | ∀a ∈ A, (o, a) ∈ R}

They form a Galois connection and, as such, both ·′′ com-
positions are closure operators. A pair (O,A), where O ⊆ O
and A ⊆ A, is called a formal concept if and only if O = A′

and A = O′. This implies that both O and A are closed sets,
i.e. O = O′′ and A = A′′. The set of formal concepts of a
formal context, ordered with the inclusion relation on either of
their components, forms a complete lattice called the concept
lattice of the formal context. The formal concepts (O,A) can
be viewed as classes of objects in which O is the set of objects
belonging to the class, called its extent, and A is the set of
attributes or properties, called its intent, that the objects share
and that describe the class. The concept lattice organises these
classes in a structure that is easy to understand for a human,
provided that the lattice is not too large, and allows for efficient
algorithms to be applied. A formal concept (O,A) introduces
an object o ∈ O if A = {o}′. It is then called an introducer
concept [26] and can be seen as the most specific class to
which the object belongs.

We construct a formal context (Fp, I,R) in which the ob-
jects (Fp) correspond to the important features, the attributes
(I) correspond to the terms used to describe the criteria and
(f, i) ∈ R if and only if there is a set X ∈ M(f) such that
i ∈

⋂
cj∈X I(cj). In other words, if a feature f is in the Pareto

front of a set of criteria that are all interpreted as expressing
being good for discrimination, then f will be described as
being discriminant. The formal context constructed from our
running example is shown in Table III. It states that the feature
f2 is good for sensitivity and specificity, which means that it
is predictive, which in turns means that it is good for clas-
sification. The formal concepts of this context are composed
of a set of features and a set of terms that describe all the
features and are, in a sense, classes of important features. The
introducer concepts allow for an intuitive visual representation
of the hierarchy of these classes to be presented. To facilitate
the understanding of the structure, only the features introduced
by the concepts are depicted in the figures below.

The concept lattice corresponding to the formal context in
Table III and restricted to the introducer concepts is shown in
Fig. 3. The feature f4 is depicted in the extent of the concept
(f4, {Accuracy, Discrimination, Classification}). This
means that the feature f4 is good for the accuracy measure,
and so that it is discriminant. Similarly, the features f2 and f5
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Accuracy Sensitivity Specificity Prediction Discrimination Classification
f1 ×
f2 × × × ×
f4 × × ×
f5 × × × ×

TABLE III: The formal context constructed from our running exam-
ple.

are depicted in the concept (f2f5, {Sensitivity, Specificity,
Prediction, Classification}). This means that the features
f2 and f5 are good for the sensitivity and specificity measures,
and so that they are predictive. Lastly, the feature f1 appears
in the concept (f1, {Classification}), which means that f1
is a good compromise between discrimination and prediction
and thus good for classification in general.

(f2f5,{Sensitivity, Specificity, Prediction, Classification})

(f4,{Accuracy, Discrimination, Classification})

(f1,{Classification})

Fig. 3: Formal concepts presenting sets of important features from
our running example together with their interpretation.

V. EXPERIMENTAL RESULTS

In this section, we present the results of our method on real
datasets. In order to illustrate the method’s potential to provide
an understanding of the dataset through the set of important
features, we use public datasets with meaningful features.

A. Diabetes Data

1) Dataset and Experimental Setup: The Pima Indians
Diabetes Database is a public dataset available on the Kaggle
machine learning repository1. It contains 768 instances, 8
features and two classes : having diabetes (positive class)
or not (negative class). We chose to consider four types
of classifiers C = {Random Forests, Naive Bayes, Neural
Networks, Support Vector Machines} and four measures M
= {Sensitivity, Specificity, Accuracy, FScore}, the first two
quantifying prediction and the last two discrimination so as
to preserve a good balance of criteria. For each (classifier,
measure) pair, we trained a model using Python’s scikit-learn
library2. For the random forest classifier, we set the number
of trees to 20 and the minimum number of samples required
to split a node to 1. For the neural network classifier, we used
an architecture with two hidden layers containing respectively
10 and 5 neurons, relu as the activation function and batch
sizes of 20. For the support vector machine classifier, we used
a polynomial kernel function of degree 2. All other possible
parameters were set to default values. The impacts of features
were computed using 100 permutations.

The terms used in the interpretation of criteria and features
were Sensitivity, Specificity, Accuracy, FScore, Prediction,
Discrimination and Classification with the same taxonomy as
the one presented in Fig. 2.

1https://www.kaggle.com/uciml/pima-indians-diabetes-database
2https://scikit-learn.org/

2) Results: The four models have accuracies of 0.75 for
random forest, 0.73 for naive Bayes, 0.61 for neural network
and 0.79 for support vector machine. The 16 criteria created
by the classifiers and measures produce a Pareto front, and
thus a set of important features, of size 4. The interpretation
of those 4 important features is presented in Fig. 4.

{Glucose}
{Sensitivity, Specificity, Accuracy, FScore}

{Age}
{Sensitivity, FScore}

{Insulin}
{Specificity}

{SkinThickness}
{Prediction}

Fig. 4: The interpretation of the 4 important features in the Pima
Indians Diabetes dataset. For the sake of legibility, only the most
specific terms describing the sets of features are depicted. Terms are
written in blue if they are related to prediction and in red if they are
related to discrimination.

We observe that the feature Glucose is good for every
measure and so is both predictive and discriminant. The feature
Age is good for FScore and so it is discriminant. Age is also
good for sensitivity, which is a measure of the ability of a
model to predict the positive class (having diabetes), so we
can say that Age is predictive of having diabetes. The feature
Insulin is good for specificity, which is a measure of the ability
of a model to predict the negative class (not having diabetes),
so we can say that Insulin is predictive of not having diabetes.
The feature SkinThickness is deemed good for prediction in
general.

One can use these results to understand that, in the popu-
lation described by this dataset, the plasma glucose concen-
tration is the most important value to look at when trying
to decide whether someone has diabetes. After the plasma
glucose concentration, the insulin level is the most important
value for diagnosing diabetes and the age is the most important
value for diagnosing not having diabetes. If these features are
not enough to decide, the triceps skin fold thickness can also
be looked at.

B. Breast Cancer Data

1) Dataset and Experimental Setup: The Breast Cancer
Wisconsin (Diagnostic) Data Set is a public dataset available
on the UCI machine learning repository3. It contains 562
instances, 30 features and two classes characterising breast
tumors : malignant (positive class) and benign (negative class).
As explained in the description of the dataset, the features
were extracted from images depicting cell nuclei. Ten real-
valued features were computed for each cell nucleus and the

3https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+ %28Di-
agnostic%29
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mean, standard error, and "worst" or largest (mean of the
three largest values) of these features were computed for each
image, resulting in 30 features identified by numbers ranging
from 0 to 29.
• 0, 10, 20: radius (mean of distances from center to points

on the perimeter)
• 1, 11, 21: texture (standard deviation of gray-scale values)
• 2, 12, 22: perimeter
• 3, 13, 23: area
• 4, 14, 24: smoothness (local variation in radius lengths)
• 5, 15, 25: compactness (perimeter2/area−1.0)
• 6, 16, 26: concavity (severity of concave portions of the

contour)
• 7, 17, 27: concave points (number of concave portions of

the contour)
• 8, 18, 28: symmetry
• 9, 19, 29: fractal dimension ("coastline approximation"

minus 1)
For instance, the feature 0 is the mean radius, the feature

10 is the standard error of the radius and the feature 20 is the
largest radius in the image.

We used the same classifiers, measures, parameters and
terms as in the preceding experiment with the diabetes dataset.

2) Results: The four models have accuracies of 0.96 for
random forest, 0.89 for naive Bayes, 0.93 for neural network
and 0.92 for support vector machine. The 16 criteria created
by the classifiers and measures produce a Pareto front, and
thus a set of important features, of size 13. The interpretation
of those 13 important features is presented in Fig. 5.

{23, 27}
{Sensitivity, Specificity, Accuracy, FScore}

{13}
{Specificity, Accuracy, FScore}

{3, 22}
{Sensitivity, Accuracy, FScore}

{21, 25, 26}
{Sensitivity}

{0, 1, 2, 6, 20}
{Prediction}

Fig. 5: The interpretation of the 13 important features in the Breast
Cancer Wisconsin (Diagnostic) dataset. For the sake of legibility, only
the most specific terms describing the sets of features are depicted.
Terms are written in blue if they are related to prediction and in red
if they are related to discrimination.

We observe that the features 23 and 27 are good for every
measure and, thus, are both predictive and discriminant. The
feature 13 is good for specificity, which is a measure of the
ability of a model to predict the negative class, so we can say
that 13 is predictive of a tumor being benign. The features 3,
21, 22, 25 and 26 are good for sensitivity, which is a measure
of the ability of a model to predict the positive class, so we
can say that those features are predictive of a tumor being
malignant. Additionally, the features 3 and 22 are discriminant.

The features 0, 1, 2, 6 and 20 are good for prediction in
general.

One can interpret these results to mean that the areas of cell
nuclei, represented by the features 3, 13 and 23, are particu-
larly important in diagnosing breast cancer. Additionally, the
largest, or “worst-case”, values extracted from the images, i.e.
the features from 20 to 29, seem to be particularly important as
most of them are represented in the Fig. 5. The standard errors,
with the exception of the radius, seem to be less important in
diagnosing breast cancer as they are not in the set of important
features.

VI. DISCUSSION AND CONCLUSION

Our approach identifies important features in a dataset and
labels them in terms of prediction and discrimination. To reach
this result, we have made a number of choices that we discuss
in this section.

First of all, we defined predictive and discriminant features
through their usage by models learned from data. Whether
it be from the selection of the training and test sets or the
classifier algorithm itself, nondeterminism is introduced in the
first step of the approach. The output is therefore not always
the same. From our experiments, it appears that the set of
important features is fairly stable while the interpretations are
less so. The more precise the interpretation, the more the labels
can change. A feature that is found to be particularly good for
accuracy at the end of one application of the approach can
be found to only be good for discrimination, without more
precision, the next time. This randomness can be somewhat
reduced by increasing the numbers of classifiers at the cost of
computation time.

For the definition of “most predictive or discriminant fea-
tures”, we used the membership to the Pareto front of a
multicriteria decision problem. We believe that this makes
sense but other methods could be considered. In particular,
instead of using only the greatest features in the partial order
induced on the feature set by the Pareto dominance (i.e. the
Pareto front), one could prefer to select all the features up to
a given depth in this partially ordered set. With the depth as a
parameter, the number of important features could be adjusted.
Of course, other types of preferences aggregation could also
be used.

Finally, our goal was to identify predictive and discriminant
features but, in defining these notions, we also mentioned
the existence of measures that quantify the correctness of
models, i.e. the model’s ability not to make mistakes. It
would be interesting, as a future work, to integrate this notion
into the approach and study the differences between features
that are good for avoiding mistakes and features that are
good for predicting classes. Similarly, only knowledge on the
meaning of measures was used here even though the criteria
in the multicriteria decision problem also involve a model
that represents a classifier type. Background knowledge on
the classifiers themselves could be used in the interpretation
of the criteria and the features. For example, a feature could be
considered as discriminant by neural networks and predictive
by random forests.
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