Schwarz algorithms for ocean-atmosphere coupled problems including turbulent boundary layer parameterizations

Sophie Thery, Eric Blayo, Florian Lemarié

To cite this version:

Sophie Thery, Eric Blayo, Florian Lemarié. Schwarz algorithms for ocean-atmosphere coupled problems including turbulent boundary layer parameterizations. DD26 2020 - 26th International Domain Decomposition Conference, Dec 2020, Hong Kong, China. pp.1-34. hal-03173266

HAL Id: hal-03173266

https://hal.science/hal-03173266

Submitted on 18 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Schwarz algorithms for ocean-atmosphere coupled problems including turbulent boundary layer parameterizations

Sophie THERY

Univ. Grenoble Alpes, Lab. Jean Kuntzmann, Inria AIRSEA team

DD26, December 9th 2020

PhD under the supervision of Eric Blayo and Florian Lemarié
Application of ocean-atmosphere coupling

Various physical phenomena are governed by the ocean-atmosphere coupling: long term predictions to short term predictions.

climate modeling seasonal forecasts short term predictions

Improve the representation of ocean-atmosphere interactions
Complexity of ocean-atmosphere fluxes

- Turbulente Boundary layer \rightarrow complex parametrization.

- Near the interface: fluxes estimated by (complicated) formulas depending on the jump of the solution.
The ocean-atmosphere coupling algorithms

Two current approaches, both mathematically unsatisfactory:

- Synchronous coupling at the time step (local in time)
 - a lot of communication ⇒ inefficient implementations
 - physical validity and numerical stability issues Lemarié & al. (2015), Beljaars & al. (2017)

- Asynchronous coupling by time windows (global in time)
 - balance of the average flows over each time window
 - synchronization problem
Motivations

Practical implementations for ocean-atmosphere coupling algorithms are mathematically unsatisfactory.

Objectives: improve the mathematical coupling methods
Motivations

Practical implementations for ocean-atmosphere coupling algorithms are mathematically unsatisfactory.

Objectives : improve the mathematical coupling methods

A numerical method that would solve these problems

⇒ Schwarz algorithms

French COCOA ANR Project: Study of an iterative process on ocean-atmosphere coupling. In particular

- Implementation of Schwarz algorithms in realistic climate models
- Theoretical work on these algorithms in this context.
A 1D Simplified coupled ocean-atmosphere model

Hypotheses:
- Focus on the dynamical part
- Physical restriction (1D)
- Taking into account turbulent parametrisations

A reasonably realistic model on $U = (u, v)^T$ horizontal ocean/atmosphere currents.

Interface is a buffer zone with its own parameterization.
Non-linear coupled ocean-atmosphere model

\[\partial_t \mathbf{U} + \begin{pmatrix} 0 & -f \\ f & 0 \end{pmatrix} \mathbf{U} - \partial_z (\nu_{atm}(u^*, z) \partial_z \mathbf{U}) = \mathcal{F} \]

\[SBL (\| \mathbf{U}(\delta_{atm}) - \mathbf{U}(\delta_{oce}) \|) \rightarrow u^* \]

\[\rho_a \nu_{atm}(u^*, \delta_{atm}) \partial_z \mathbf{U}(\delta_{atm}) = \rho_a (u^*)^2 e_T \]

\[= \rho_o \nu_{oce}(u^*, \delta_{oce}) \partial_z \mathbf{U}(\delta_{oce}) \]

Ocean atmosphere specificities:
- Coriolis effect
- Non constants viscosities
- Non linear equation
- Non linear interface condition

+ External conditions
Linear coupled ocean-atmosphere model

\[\partial_t u + \begin{pmatrix} 0 & -f \\ f & 0 \end{pmatrix} u - \partial_z (\nu_{atm}(z) \partial_z u) = F \]

\[\rho_a \nu_{atm}(0^+) \partial_z u(0^+) = \rho_o \nu_{oce}(0^-) \partial_z u(0^-) \]

\[u(0^-) = u(0^+) \]

\[\partial_t u + \begin{pmatrix} 0 & -f \\ f & 0 \end{pmatrix} u - \partial_z (\nu_{oce}(z) \partial_z u) = F \]

\[+ \text{ Dirichlet conditions} \]

\[\Rightarrow \text{Ekman Problem} \]

widely used by physicists:

- \(\text{Ekman (1905)} \)
- \(\text{Madsen (1977)} \)
- \(\text{Grisogono (1995)} \)
- \(\text{Lewis & Belcher (2004)} \)

Linear problem specificities:

- Coriolis effect
- non constants viscosities
1. Ocean atmosphere coupling
2. Schwarz algorithm and OA specificities
3. Impact of Coriolis effect
4. Impact of non-constants viscosities
5. Particular case OA coupling
6. Current and future work
Schwarz algorithm

\[\begin{align*}
L_2(u_2) &= 0 \text{ in } \Omega_2 \\
B_2(u_2) &= 0 \text{ on } \partial\Omega_2 \setminus \partial\Omega_1 \\
C_2(u_2|_\Gamma, u_1|_\Gamma) &= 0 \\
\Gamma \\
C_1(u_1|_\Gamma, u_2|_\Gamma) &= 0 \\
B_1(u_1) &= 0 \text{ on } \partial\Omega_1 \setminus \partial\Omega_2 \\
L_1(u_1) &= 0 \text{ in } \Omega_1
\end{align*} \]

First guess \(u_2^0 \) then

\[\begin{align*}
L_1 u_1^n &= F_1 & \text{on } \Omega_1 \times]0, T[\\
B_1 u_1^n &= G_1 & \text{on } \partial\Omega_1^{\text{ext}} \times]0, T[\\
u_1^n(t = 0) &= u_0 \\
C_{1,1} u_1^n &= C_{1,2} u_2^{n-1} & \text{on } \Gamma
\end{align*} \]

\[\begin{align*}
L_2 u_2^n &= F_2 & \text{on } \Omega_2 \times]0, T[\\
B_2 u_2^n &= G_2 & \text{on } \partial\Omega_2^{\text{ext}} \times]0, T[\\
u_2^n(t = 0) &= u_0 \\
C_{2,2} u_2^n &= C_{2,1} u_1^n & \text{on } \Gamma
\end{align*} \]
Convergence factor for linear problems

\[\rho^{obs} = \frac{\| e_j^n(z = 0) \|_2}{\| e_j^{n-1}(z = 0) \|_2} \quad e_j^n = u_j^n - u^{exact} \]

- 1D Stationary case: solve the equation for each iteration
- 1D Non-stationary case: use Fourier transform in time

\[\Rightarrow \rho(\omega) = \frac{\left| \hat{e}_j^n(\omega, 0) \right|}{\left| \hat{e}_j^{n-1}(\omega, 0) \right|} \]
Schwarz algorithm and OA specificities

Reminder on Schwarz algorithm

Convergence factor for linear problems

\[\rho^{obs} = \frac{\|e^n_j(z = 0)\|_2}{\|e^n_{j-1}(z = 0)\|_2} \quad e^n_j = u^n_j - u^{exact} \]

- 1D Stationary case: solve the equation for each iteration
- 1D Non-stationary case: use Fourier transform in time

\[\Rightarrow \rho(\omega) = \frac{|\hat{e}^n_j(\omega, 0)|}{|\hat{e}^{n-1}_j(\omega, 0)|} \]

\[\min_{\omega_{\min} \leq |\omega| \leq \omega_{\max}} \rho(\omega) \leq \rho^{obs} \leq \max_{\omega_{\min} \leq |\omega| \leq \omega_{\max}} \rho(\omega) \]

Discretized-in-time algorithm: \(\omega_{\max} = \frac{\pi}{\Delta t} \) and \(\omega_{\min} = \frac{\pi}{T} \)
Coupled Ekman problems

\[\partial_t U + \begin{pmatrix} 0 & -f \\ f & 0 \end{pmatrix} U - \partial_z (\nu_{atm}(z) \partial_z U) = F \]

\[\rho_{atm}(0^+) \partial_z U(0^+) = \rho_{oce}(0^-) \partial_z U(0^-) \]

\[U(0^-) = U(0^+) \]

\[\partial_t U + \begin{pmatrix} 0 & -f \\ f & 0 \end{pmatrix} U - \partial_z (\nu_{oce}(z) \partial_z U) = F \]

\[\Rightarrow \text{Specificities:} \]

- Coriolis effect (\(U\) components are coupled)
- Non constant diffusion coefficients with interface discontinuity

+ Dirichlet conditions
State of the art

<table>
<thead>
<tr>
<th></th>
<th>Constante diffusion</th>
<th>Variable in space diffusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | *adv-diff 2D* Japhet et al., 2001
eq. Helmholtz Dubois, 2007 Magoulès et al., 2004 | *eq. de diffusion* Lions, 1990 |
| **Nonstationary** | *heat equation* Gander and Halpern, 2003
reaction-reaction-diff 2D Bennequin et al., 2016 and Gander et al., 2007 | *diffusion 1D eq.* Lemarié et al., 2013 |
| without Coriolis | *2D shallow water* Martin, 2003 *primitives eq.* 3D Audusse et al., 2009 | |
| with Coriolis | | *diffusion 1D eq. + Coriolis* Thery et al., 2020 |
Impact of the Coriolis effect: example with constant viscosities

- Coriolis effect → coupling \(\mathbf{U} = \begin{pmatrix} u \\ v \end{pmatrix} \) components

\[
\begin{align*}
\partial_t \mathbf{U}_j + \begin{pmatrix} 0 & -f \\ f & 0 \end{pmatrix} \mathbf{U}_j - \nu_j \partial_z^2 \mathbf{U}_j &= \mathbf{F}_j \\
\text{+ Dirichlet external conditions} \\
\text{+ Initial conditions} \\
\mathbf{U}_1(0^-) &= \mathbf{U}_2(0^+) \\
\nu_1(0^-) \partial_z \mathbf{U}_1 &= \nu_2(0^+) \partial_z \mathbf{U}_2
\end{align*}
\]
Impact of the Coriolis effect: example with constant viscosities

- Coriolis effect → coupling $\mathbf{U} = \begin{pmatrix} u \\ v \end{pmatrix}$ components
- Study of the convergence with change of variable $\varphi = u + iv$.

$$\begin{cases}
\partial_t \varphi_j + if \varphi_j - \nu_j \partial_z^2 \varphi_j = \mathcal{F}_\varphi_j \\
\text{+ Dirichlet external conditions} \\
\text{+ Initial conditions} \\
\varphi_1(0^-) = \varphi_2(0^+) \\
\nu_1(0^-) \partial_z \varphi_1 = \nu_2(0^+) \partial_z \varphi_2
\end{cases}$$
Impact of the Coriolis effect: example with constant viscosities

- Coriolis effect \rightarrow coupling $\mathbf{U} = \begin{pmatrix} u \\ v \end{pmatrix}$ components
- Study of the convergence with change of variable $\varphi = u + iv$.
- Study the convergence on the error e_j

\[
\partial_t e_j + if e_j - \nu_j \partial_z^2 e_j = 0
\]

+ Dirichlet external conditions
+ Null initial condition
\[
e_1(0^-) = e_2(0^+)
\]
\[
\nu_1 \partial_z e_1 = \nu_2 \partial_z e_2
\]
Impact of the Coriolis effect: example with constant viscosities

- Coriolis effect → coupling $\mathbf{U} = \begin{pmatrix} u \\ v \end{pmatrix}$ components
- Study of the convergence with change of variable $\varphi = u + iv$.
- Study the convergence on the error e_j
- Fourier Transform \Rightarrow frequencies shifted by f:

$$i(\omega + f)\hat{e}_j - \nu_j \partial_z^2 \hat{e}_j = 0$$
+ Dirichlet external conditions

$$\hat{e}_1(0^-) = \hat{e}_2(0^+)$$
$$\nu_1 \partial_z \hat{e}_1 = \nu_2 \partial_z \hat{e}_2$$
With Dirichlet-Neumann interface conditions

\[
\begin{align*}
\hat{e}_1^n(\omega, 0) &= \hat{e}_{n-1}^n(\omega, 0) \\
\nu_2 \partial_z \hat{e}_2^n(\omega, 0) &= \nu_1 \partial_z \hat{e}_1^n(\omega, 0)
\end{align*}
\]

Convergence factor

- **Infinite domains:**
 \[
 \rho_{cst}^{DN}(\omega) = \sqrt{\frac{\nu_1}{\nu_2}}
 \]
 Independent of time frequency

- **Finite domains:**
 \[
 \rho_{cst}^{DN}(\omega) = \sqrt{\frac{\nu_1}{\nu_2}} \left| \frac{\tanh \left(z_2^\infty \sqrt{i \frac{\omega + f}{\nu_2}} \right)}{\tanh \left(z_1^\infty \sqrt{i \frac{\omega + f}{\nu_1}} \right)} \right|
 \]
Case 1: $|z_2^\infty \sqrt{\nu_1}| > |z_1^\infty \sqrt{\nu_2}|$

- Convergence factor behavior: $|\rho(\omega)| < \frac{z_2^\infty \nu_1}{z_1^\infty \nu_2}$ and $\rho(\omega) \xrightarrow{|\omega| \to \infty} \sqrt{\frac{\nu_1}{\nu_2}}$

- Impact of Coriolis: shifts the local maximum and non symmetric graph
Case 2 : $|z_2^\infty \sqrt{\nu_1}| < |z_1^\infty \sqrt{\nu_2}|$

Convergence factor behavior : $|\rho(\omega)| < \sqrt{\frac{\nu_1}{\nu_2}} \frac{Q(x_1)}{Q(x_2)}$ and $\rho(\omega) \rightarrow \sqrt{\frac{\nu_1}{\nu_2}}$ as $|\omega| \rightarrow \infty$

with $Q(x) = |\tanh((1 + i)x)|$ and x_1, x_2 solution of the transcendental equation

Impact of Coriolis : shifts the local minimum and non symmetric graph
The effect of turbulence

Parametrisation of turbulence \Rightarrow non constant viscosity

In ocean-atmosphere context:
KPP viscosity (O’Brien, 1970)
- affine profile close to the surface
- parabolic or cubic profile in the turbulent zone
- constant profile in free zone
\Rightarrow convergence for variable viscosity profile
Convergence factor with non-constants viscosities

\[i(f + \omega)\hat{e}_j(z, t) - \partial_z(\nu_j(z)\partial_z\hat{e}_j(z, t)) = 0 \]

Mathematical tools to calculate converge:

- with \(\nu_j(z) = a_j z + b_j \) \(\rightarrow \) Bessel’s functions
- with \(\nu_j(z) = a_j z^2 + b_j z + c_j \) \(\rightarrow \) Legendre polynomials.

\(\Rightarrow \) The convergence factor depends on the global viscosity profile
Impact of non-constants viscosities

Convergence factor with non-constants viscosities

\[i(f + \omega)\hat{e}_j(z, t) - \partial_z(\nu_j(z)\partial_z\hat{e}_j(z, t)) = 0 \]

Mathematical tools to calculate converge:

- with \(\nu_j(z) = a_jz + b_j \) → Bessel’s functions
- with \(\nu_j(z) = a_jz^2 + b_jz + c_j \) → Legendre polynomials.

⇒ The convergence factor depends on the global viscosity profile

Dirichlet-Neumann interface conditions

\[
\rho_{DN}(\omega) \xrightarrow{|\omega|\to\infty} \sqrt{\frac{\nu_1(0)}{\nu_2(0)}}
\]

for all viscosities profiles

\[
\rho_{DN}^{aff}(\omega) \leq \frac{\rho_{DN}^{cst}(\omega)}{\mu_1 \ln(1 + \frac{1}{\mu_1})}
\]

\[
\rho_{DN}^{par}(\omega) \leq \frac{\rho_{DN}^{cst}(\omega)}{4\mu_1 \arccos(\sqrt{1 + 4\mu_1})}
\]

with \(\mu_1 = \left| \frac{\nu_1(0)}{\partial_z\nu_1(0)z_1^\infty} \right| \)
The particular case ocean-atmosphere coupling

Stationary case for any interface condition:

- without Coriolis \rightarrow free zones have a huge influence
- with Coriolis \rightarrow turbulent zones have a bigger influence
The particular case ocean-atmosphere coupling

Non-Stationary case for any interface condition:
- $|\omega + f| < 10^{-11} \rightarrow$ influenced by free zone
- $|\omega + f| > 10^{-5} \rightarrow$ influenced by turbulent zone

Example: convergence for all frequencies except frequencies close to $-f$
Conclusion for linear problems

- Impact of Coriolis effect: shift of the graph
 ⇒ perturbation of the algorithm’s behavior
- Convergence factor depends of the global viscosities profile
 ⇒ mathematical tools to calculate the convergence factor (Bessel and Legendre functions)
 ⇒ simplification must be made with caution
⇒ Results are shown in: S. Thery, C. Pelletier, F. Lemarié and Blayo E., 2020: Coupling two Ekman layers with a Schwarz algorithm. under review
Conclusion for linear problems

- Impact of Coriolis effect: shift of the graph
 ⇒ perturbation of the algorithm’s behavior

- Convergence factor depends of the global viscosities profile
 ⇒ mathematical tools to calculate the convergence factor (Bessel and Legendre functions)
 ⇒ simplification must be made with caution

⇒ Results are shown in: S. Thery, C. Pelletier, F. Lemarié and Blayo E., 2020: Coupling two Ekman layers with a Schwarz algorithm. under review

Ocean-atmosphere coupling

The Coriolis effect and the turbulence zones have a big impact on the convergence
The non-linear model

\[\partial_t U + \begin{pmatrix} 0 & -f \\ f & 0 \end{pmatrix} U - \partial_z (\nu_{atm}(u^*, z) \partial_z U) = \mathcal{F} \]

Application of Schwarz algorithms on non-linear model
- Study of the well posedness of the problem
- Study of convergence of the algorithm
Current work on the non-linear model

Stationary case: using tools from linear problem

- unique solution consistent with the physical constraints
- without Coriolis effect: fast divergence & free zones have a huge influence
- with Coriolis effect: fast convergence & turbulent zones have a bigger influence
Current work on the non-linear model

Stationary case: using tools from linear problem

- unique solution consistent with the physical constraints
- without Coriolis effect: fast divergence & free zones have a huge influence
- with Coriolis effect: fast convergence & turbulent zones have a bigger influence

Non stationary case:

No theoretical method for solve this problem
⇒ experimental results ⇒ similarities with linear problem behavior:

- unique solution consistent with the physical constraints
- if $\omega_{\text{min}} \leq |f| \leq \omega_{\text{max}} \rightarrow$ divergence
- if $|f| \leq \omega_{\text{min}}$ or $\omega_{\text{max}} \leq |f| \rightarrow$ convergence
Test on a real model

IPSLS-CM (3D)

- test on a climate model (3D)
- Convergence in two iterations for 90% points

Thank you