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Escort function definitions for feasible region
flexibility in applications of Replicator-like dynamics

with constraints
Andres Ovalle, Student Member, IEEE, Ahmad Hably, Member, IEEE, and Seddik Bacha, Member, IEEE,

Abstract—This paper proposes an extension to a family of
evolutionary game dynamics called Escort Replicator Dynamics
(ERD), defined in [1] based on information-geometric concepts.
Specifically, the objective of this paper is to propose three types of
convenient so-called escort functions and evaluate the stability of
ERD under the use of these functions. Since it is proven that
ERD is stable using the proposed definitions, ERD is able to
confine trajectories of the state vector in regions defined by upper
and lower boundaries which can be, but are not required to be,
non-negative. From an engineering application perspective, these
proposed escort functions are convenient since they allow to extend
replicator-like dynamics applications to engineering problems with
feasible regions more general than the standard simplex or the
non-negative orthant. From a population dynamics perspective the
proposed escort functions are useful to represent upper and lower
limits on the share of a population that is allowed to play a given
pure strategy of the underlying symmetric game.

I. INTRODUCTION

Evolutionary game theory (EGT) explains the quantitative
and qualitative aspects of evolution in biology by using game
theory tools [2]. It models interactions between portions of a
population (population dynamics) which try to maximize their
wellness. Wellness is considered as the payoff obtained for using
a certain combination of strategies. Portions of the population
with strategies giving higher than average payoff will expand
quicker and the proportion of these portions will tend to grow.

The concept of evolutionary stable strategy has been intro-
duced to explain the level of effectiveness of a strategy in animal
populations [3]. It attempts to capture the idea of resistance
to mutations of succesful strategies in static environments. In
other words, a population in which most of its members play
an evolutionary stable strategy is resistant to invasion by a small
group of mutants who play an alternative mixed strategy [4]. On
the other hand, the concept of state of a population represents
the distribution of this population over the available strategies.
In other words, a state gathers information of the amounts of
individuals of the population using each of the available strate-
gies or mixed versions of them. An Evolutionarily Stable State
(ESS) is one of these possible distributions with an important
feature: if the population is in an ESS, after disturbances its
genetic composition is restored by natural selection [2].

Reference [5] has mentioned the advantages of using EGT in
engineering applications and shows its usefulness in several en-
gineering examples such as smart lighting and optimal economic

The authors are with Université de Grenoble Alpes, CNRS, Grenoble INP,
G2Elab, Gipsa-lab, F-38000 Grenoble, France. Ahmad Hably is the correspond-
ing author, ahmad.hably@grenoble-inp.fr

This work is supported by the aVEnir (accompagnons le Véhicule Electrique
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dispatch in micro-grids. A similar approach has been used for
distributed optimization in [6], for wireless networks in [7], and
for load management of electric vehicle fleets in [8], [9]. EGT
is also used for automating the clustering of nodes and nomina-
tions of cluster heads, to achieve cluster stability in Vehicular
Ad hoc Networks in [10], and to analyze advanced persistent
threats against cloud storage in [11]. Recently in [12], EGT has
been used to analyze strategic choice between two competing
alternatives having their own business case in employing upward
consumption flexibility to alleviate problems caused by wind
generation and renewable energy support schemes.

In [1], the functional parameter called Escort used in Escort
Replicator Dynamics (ERD) has been introduced to make a gen-
eralization of evolutionary game dynamics (including replicator
dynamics, and projection dynamics). This escort parameter can
be interpreted an incentive (or deterrent) to the rate of grow
of a population share. In [13] the local stability of the ERD,
with certain escort functions, is proved by using generalized
information divergencies (like the Kullback-Leibler divergence)
as local Lyapunov functions. The selection of the candidate
Lyapunov function depends on the escort functional parameter
used with the ERD. Provided that this escort functions are non-
decreasing and strictly positive on the interval (0,1), authors
of [13] describe several examples. Recently, the ERD has been
considered as special case of the Separable Riemannian game
dynamics described in [14, Example 4.3].

The main contribution of this manuscript is described in the
following paragraphs. The general objective of the approach
in this paper is to drive initial states to a local ESS (from its
vicinity) for the underlying symmetric game (assuming an ESS
exists in the interior of a considered feasible region). From an
engineering application perspective, the underlying game can be,
but is not required to be, defined by the euclidean gradient of a
given potential function. In that context, the objective of driving
states towards a local ESS is identical to that of finding a feasible
optimum of the defining potential function in the interior of the
feasible region, defined by upper and lower constraints on each
state variable. From an EGT perspective, the objective is to
reach a local ESS for the underlying game, constraining the
size of shares of the population that are allowed to play each
of the pure strategies. For instance this could represent limited
adoption capacities for a given pure strategy, or minimal quotas
in a particular scenario.

The main novelty in this paper is the exploitation the escort
functions definition in ERD to confine population states in
manifolds different than the standard simplex or the non-
negative orthant. Thus, feasible regions can be defined by upper
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and lower constraints, or the intersection of both. In an EGT
context, the proposed escort functions are required to be defined
for non-negative constraints so that a population share is never
negative. However, in an engineering scenario, upper and lower
boundaries are not required to be non-negative in the definition
of the proposed escort functions.

The paper is organized as follows. In section II, an introduc-
tion to the Escort Replicator Dynamics (ERD) is given. Then,
the proposed escort functions are presented in Section III, and a
motivation is provided for these definitions. A formal stability
proof is given in Section IV. It is followed by an illustrative
example in Section VI. The paper ends with a discussion in
Section VII.

II. ESCORT REPLICATOR DYNAMICS FOUNDATION

Since this manuscript works with the definitions presented
in [1] for ERD, this section serves as an introduction to
some of those definitions. Let us consider a population of
individuals playing a game. In this set-up, all the individuals
in the population are indistinguishable from each other, except
for the strategy they chose to play in the evolutionary game.
In other words, individuals in the population play a symmetric
game where they all share the same finite set of pure strategies.

The generalized ERD, defined in continuous time by

ẋk = φk(xk)(fk(x)− f̄φ(x)), (1)

describes the evolution of the distribution of this population
over the finite set of K possible pure strategies, according to the
payoff these provide [1]. Here, the distribution at a given instant
is represented by the state vector x = [x1, x2, · · · , xk, · · · , xK ]T

whose elements xk represent the proportion of individuals in
the population choosing pure strategy k, with payoff fk(x). In
eq. (1), φk(xk) is the so-called escort function. On the other
hand, f̄φ(x) represents a weighted average payoff defined by,

f̄φ(x) =
1

Φ(x)

K∑

k=1

φk(xk)fk(x), (2)

where Φ(x) =
∑K
k=1 φk(xk). It can be noticed that if φk(xk) =

0 at t = 0, then xk will remain constant for t > 0. Moreover,
proportions xk with payoffs greater that the weighted average
payoff (i.e. fk(x) > f̄φ(x)) will tend to grow and vice-versa.

The weighted average payoff defined by eq. (2) can be
understood as the expected value of the vector of payoff
functions given a probability distribution θ(x) defined by the
escort functions as,

θ(x) =
1

Φ(x)
φ(x) =

1

Φ(x)
[φ1(x1), · · · , φK(xK)]T . (3)

On the other hand, let us sum eq. (1) over all the pure
strategies played by individuals of the population,

∑K
k=1 ẋk =

K∑

k=1

φk(xk)fk(x)− f̄φ(x)

K∑

k=1

φk(xk)

= Φ(x)f̄φ(x)− Φ(x)f̄φ(x) = 0. (4)

Therefore, if at t = 0 the state vector x lies in the hyper-plane
defined by,

HKm = {x ∈ RK :
∑K
k=1 xk = m}, (5)

then the state vector will remain in that hyper-plane for t > 0,
regardless of the escort functions that are consistently defined.
Note that in the context of population dynamics, m = 1 in
eq. (5). In that same context, a good example is the definition
of escort functions as φk(xk) = xk, where the grow incentive is
proportional to the proportion itself. In such case, ERD becomes
the well-known replicator dynamics where the standard simplex,

∆K =
{
x ∈ RK : xk ≥ 0,

∑K
k=1 xk = 1

}
⊂ HKm=1,

is positively invariant because φk(0) = 0 and φk(xk) > 0 for
xk > 0. In other words, if xk > 0 for all k at t = 0, then states
x for t > 0 will always remain within the convex set ∆K .

If all individuals play a single strategy k, the portion cor-
responding to that single strategy will be xk = 1. Thus, pure
strategies are represented by the canonical base of RK which
are the vertices of the simplex ∆K . In general, for increasing
escort functions such that φk(0) = 0, the standard simplex is
invariant under ERD.

A. Rest points of the dynamics

Rest points of the dynamics are the zeros of the vector field
defined by eq. (1). Some of these will in fact depend on the
definitions of the escort functions and the underlying game. For
instance, if escort functions are defined as φk(xk) = xk, then at
least K rest points will exist, i.e. one per pure strategy [15]. In a
different scenario, if escort functions are defined as φk(xk) = 1,
ERD becomes the orthogonal projection dynamics. In such a
case, pure strategy rest points will no longer exist [16].

In general, rest points of ERD are states x̂rp for which
payoff functions fk(x̂rp) are equal to a given constant ε,
considering only shares k ∈ sp(φ(x̂rp)). Function sp(·) refers
to the support of the vector input, i.e., only population shares
k ∈ {1, 2, · · · ,K} whose escort functions are φk(x̂k) > 0
are considered. Since the concerned payoff functions are all
fk(x̂rp) = ε, the weighted average payoff is also equal to ε,
and fk(x̂rp) − f̄φ(x̂rp) = ε − ε = 0, leading to ẋk = 0 in
eq. (1).

In particular, a Nash Equilibrium (NE) x̂ne of the underlying
game is a rest point for the escort replicator dynamics if escort
functions are defined to allow it. To explain this, consider that a
NE must hold the condition x·f(x̂ne) ≤ x̂ne·f(x̂ne) [17, Section
19.5][15]. This condition implies that at the NE, the payoff
functions are equal to a constant fk(x̂ne) = δ for strategies
k that are actually played (i.e., strategies k ∈ sp(x̂ne)), and
fk(x̂ne) ≤ δ for strategies k that are not played. Thus, if the
NE lies in the interior of the simplex, (i.e. all strategies are
played), then f̄φ(x̂ne) = δ and fk(x̂ne)− f̄φ(x̂ne) = δ−δ = 0,
leading again to ẋk = 0 in eq. (1).

B. Evolutionarily Stable States

Regardless of the nature of the payoff landscape that can
either be defined or not by the euclidean gradient of a potential
function, and taking into account the symmetry of the under-
lying game, an equilibrium state x̂ defined by an inequality
condition of the form of

(x̂− x) · f(x) > 0, (6)
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is known as an Evolutionarily Stable State (ESS) [1]. For
contrast, from subsection II-A, a Nash Equilibrium (NE) is
defined by (x̂ne − x) · f(x̂ne) ≥ 0, which differs to the
ESS definition in the evaluation of the payoff vector at the
equilibrium state instead of its vicinity. Let us consider a payoff
landscape f(x) defined by the euclidean gradient of a potential
function F (x), i.e. f(x) = ∇F (x), and think of an unstable
equilibrium (e.g., a saddle point). In such case, the payoff vector
evaluated at the saddle point is zero valued which results in a
valid NE condition, i.e., (x̂ne − x) · f(x̂ne) = 0. However, the
payoff vector evaluated at a vicinity of that unstable equilibrium,
f(x), will always point outward x̂ne, forming an obtuse angle
with vector (x̂ne−x). This results in an unvalid ESS condition,
(x̂ne − x) · f(x) < 0 for states at the vicinity of the saddle
point. To summarize, the ESS is a more refined definition of
stable equilibrium state than that of NE. In a symmetric game
set-up, ESS is equivalent to Strict NE ((x̂−x) · f(x̂) > 0) [18].

C. ERD with Euclidean gradient as payoff landscape

Finally, as proved in [1], for payoff landscapes f(x) defined
by the euclidean gradient of a potential function, the ERD,
defined by (1), behaves as a gradient flow. This means that the
trajectories from any initial state x(0) are such that the maximal
direction of change is followed, and eventually a local optimum
of the potential function is reached. This is a generalization
of the Shahshahani gradient in replicator dynamics, which can
be obtained with escort functions φk(xk) = xk [17, Section
19.5][19].

III. TWO SIMPLEXES AND THEIR INTERSECTION

For non-decreasing escort functions, and strictly positive on
0 < xk < 1, the author of [1] provides Lyapunov functions for
ERD, proving the stability of an ESS. These Lyapunov functions
depend on the escort functions definition [1], [20].

In this paper, escort functions are considered an asset and
their characteristics are exploited to keep x in a constrained
simplex ΨK for all t > 0. The new manifold, as the simplex, is
(K−1)-dimensional, is also embedded in RK , and is a subspace
of the hyper-plane HKm. However, by intuitively exploiting the
definition of the escort functions, ΨK confines the state vector
inside the intersection of two simplexes that represent upper and
lower constraints on the state variables.

From a population dynamics perspective, this can be inter-
preted for instance as a natural limit on the use of a given
strategy of the underlying game. In fact, these new definitions
are proposed to develop an application of ERD in optimal
distributed resource allocation scenarios, where these limited
access to resources are a common issue. As it is demonstrated
in this paper, ERD equipped with the proposed definitions is
still able to reach a local ESS (a local strict NE). Even if the
proposed escort functions are neither strictly positive nor non-
decreasing on the interval 0 < xk < 1, a Lyapunov function
can still be found for an equilibrium x̂ in the constrained
simplex ΨK .

The first part of this section summarizes the characteristics
of the desirable feasible set ΨK . The second part defines of the
escort functions required to confine the vector state inside ΨK ,
and the reason behind these definitions.

A. Desirable feasible region

The desirable feasible region is defined as

ΨK =
{
x ∈ RK : xlok ≤ xk ≤ xupk ,

∑K
k=1 xk = m

}
, (7)

with ΨK ⊂ HKm and where xlok < xupk for all k, and both
can be larger or smaller than 1 in an engineering application
context. If a population dynamics context is being represented
by ERD, then m = 1, and these boundaries should be restricted
to 0 ≤ xlok < xupk ≤ 1 for conceptual consistency (population
shares must be non-negative). However, generally speaking in
an engineering application context, these boundaries are not
required to be positive, and m is not required to be 1.

Region ΨK can also be defined as the intersection ΨK =
∆K
up∩∆K

lo , of simplexes ∆K
up and ∆K

lo , which can be expressed
as,

∆K
up =

{
x ∈ RK : xk ≤ xupk ,

∑K
k=1 xk = m

}
⊂ HKm,

∆K
lo =

{
x ∈ RK : xk ≥ xlok ,

∑K
k=1 xk = m

}
⊂ HKm.

(8)

The set ΨK , simplexes ∆K
up and ∆K

lo , and even the standard
simplex ∆K , are all convex polytopes that can be fully described
by their set of vertices. For instance, the set of vertices for the
standard simplex is the K-dimensional identity matrix I (i.e. the
standard basis of RK). Similarly, the sets of vertices for sim-
plexes ∆K

up and ∆K
lo can be represented as the column vectors

of matrices Cup and Clo respectively. These matrices are K-
dimensional, and represent basis for RK as well. Furthermore,
the set of vertices of the intersection region can be packed as
well in a matrix CΨ whose dimensions are (K × L) being L
the number of vertices of the intersection.

If these matrices are known, it is possible to redefine (7) and
(8) equivalently as convex hulls as,

ΨK =

{
x = CΨη : η ∈ RL, ηl ≥ 0,

L∑

l=1

ηl = 1

}
(9)

∆K
up =

{
x = Cupα : α ∈ RK , αk ≥ 0,

∑K
k=1 αk = 1

}
(10)

∆K
lo =

{
x = Cloβ : β ∈ RK , βk ≥ 0,

∑K
k=1 βk = 1

}
(11)

Notice that sums
∑L
l ηl = 1,

∑K
k αk = 1, and

∑K
k βk = 1

in eqs. (9), (10) and (11) are equal to 1, as opposed to sums∑K
k xk = m in eqs. (7) and (8). This is because eqs. (9),

(10) (11) are convex hull representations, i.e., convex linear
combinations of the vertices of the convex polytopes.

Matrices Cup and Clo can be easily found as it will be
shown in subsection III-B. However, for CΨ the number of
vertices L can be much larger that K and enumerating all of
them is a combinatorial problem, hard to solve computationally
[21]. In [8], a similar scenario is considered but it is assumed
that constraints are homogeneous for all the pure strategies, i.e.,
xlok = 0, and xupk = xup for all k. In that manuscript, vertices
for eq. (9) are defined as mixed strategies of the underlying
game, and states are driven towards an ESS by using the mixed
strategist dynamics version of replicator dynamics [17, Section
19.6]. It is shown that the population can be divided in γ pure
strategies at most, where γ is an integer that depends on xup and
lies somewhere between 1 and K (i.e., γ = b1/xupc, where b·c
is the floor operator). In that homogeneous scenario, the amount
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of vertices of ΨK is relatively small for γ close to 1 or close
to K. However, even in this simplified scenario, the number
of vertices becomes relatively large if γ is near K/2. For the
general non-homogeneous case, finding the vertices of ΨK is
not a viable procedure [21].

B. Convex hull matrices for the intersecting simplexes

At the end of this subsection it will become clear that
finding these matrices is not mandatory. However, the proce-
dure is useful to illustrate the origin of the escort functions
proposed in this paper. Let xup = [xup1 , xup2 , · · · , xupK ]T and
xlo = [xlo1 , x

lo
2 , · · · , xloK ]T be the column vectors containing

the constraints that define simplexes ∆K
up and ∆K

lo respectively.
Matrices Cup and Clo are defined by

Cup = xup1
T + σupI, Clo = xlo1

T + σloI, (12)

where 1 is a K-dimensional column vector with all its entries
equal to 1. Scalars σlo, and σup are

σup = m−∑K
k=1 x

up
k , σlo = m−∑K

k=1 x
lo
k , (13)

with m = 1 if states lie in the hyper-plane HKm=1 and upper
and lower simplexes are subsets of that same hyper-plane. It is
important to notice that σup and σlo in eq. (13) must satisfy the
conditions given by,

σup < 0, σlo > 0. (14)

Otherwise, the hyper-plane HKm (i.e.,
∑K
k=1 xk = m) would

be unfeasible since constraints xupk would be too low (i.e.∑K
k=1 x

up
k < m), or constraints xlok would be too high (i.e.∑K

k=1 x
lo
k > m).

Fig. 1(a) illustrates the standard simplex ∆3 in R3 and a
simplex of upper constraints ∆3

up. As it was described, the
column vectors of Cup are the vertices of that simplex ∆3

up

found by applying eq. (12). This simplex looks like it is inverted
w.r.t. the standard simplex, which occurs because of the nature
of its inequalities. Fig. 1(b) shows a simplex of lower constraints
∆3
lo. Again, the vertices of ∆3

lo are found using eq. (12).
Fig. 1(c) shows the intersection Ψ3 = ∆3

up ∩ ∆3
lo of both

simplexes. This diagram is useful to highlight that the number
of vertices of the intersection depends on the constraints and
maybe unpredictable for dimensions larger than K = 3.

∆3

∆3
up ∩ ∆3

lo

c)

c
up
2

c
up
3

c
up
1

e1

e2

e3

∆3
up

∆3

a)

clo2
clo1

clo3

e1

e2

e3

∆3
lo

∆3

b)

Fig. 1: In R3: (a) standard simplex ∆3, and a simplex of upper
constraints ∆3

up; (b) standard simplex ∆3, and simplex of lower
constraints ∆3

lo; (c) Intersection of both simplexes ∆3
up ∩∆3

lo.

C. Definition of the proposed escort functions

Let us consider a vector state x ∈ (∆K
up ∩ ∆K

lo ). From
eqs. (10), (11) and (12) it is direct to verify that,

α = C−1
up x = 1

σup
(I− xup1

T )x = 1
σup

(x− xup1
Tx),

β = C−1
lo x = 1

σlo
(I− xlo1

T )x = 1
σlo

(x− xlo1
Tx),

which are the representations of x in the basis Cup and Clo of
RK . Since 1Tx =

∑K
k=1 xk = m, the entries of vectors β and

α are given by,

αk = 1
σup

(xk − xupk ), (15)

βk = 1
σlo

(xk − xlok ). (16)

Expressions (15) and (16) provide direct useful information
of x approaching to the boundaries of ΨK = ∆K

up ∩ ∆K
lo .

It is important to notice that αk and βk depend only on xk.
Moreover, it must be stressed that taking the inverse of Cup and
Clo, or even computing them, is not a requirement for ERD.

As general observation, from a population dynamics perspec-
tive, the column vectors of Cup and Clo, are the vertices of
simplexes ∆K

up and ∆K
lo respectively, and can intuitively be

interpreted as the pure strategies in those simplexes. The portion
of population using the k-th pure strategy in ∆K

up (or in ∆K
lo )

depends only on the portion of population using the k-th pure
strategy in ∆K .

Expressions (15) and (16) are the first candidates for es-
cort functions proposed in this paper. Some typical plots for
φk(xk) = αk = (xk − xupk )/σup and φk(xk) = βk =
(xk − xlok )/σlo are shown in Fig.2. It is important to highlight

x
lo k

σ
lo
+
x
lo k

x
k

φ
k

1

x
u
p

k

σ
u
p
+
x
u
p

k

x
k

φ
k

0

1

φ
k
= α

k

x
k

φ
k

1
σup < 0 σup < 0 σ

lo
> 0

0
0

x
u
p

kx
lo k

(x
lo k
+
x
lo k
)/
2

φ
k
= β

k

σ
lo
> 0

φ
k
= α

k
β
k

Fig. 2: Typical plots for the proposed escort functions (αk, βk, and
αkβk).

that αk and βk reach the unity at xk = σup + xupk and
xk = σlo + xlok respectively. Additionally, αk is monotonically
decreasing while βk is monotonically increasing. This occurs
because of the inequality conditions of eqs. (14). Moreover, the
point where αk or βk reach the unity, also corresponds to the
point where the vertex of the corresponding simplex is placed.
The third escort function given by φk(xk) = αkβk is the most
interesting and relevant. It is quadratic, concave, positive at
xlok < xk < xupk and it includes the desirable characteristics
of the other two candidates. It is displayed at the right of Fig.2.

D. Using αk, βk and αkβk as escort functions

As it was explained before, ERD guarantees x ∈ HKm for all
t > 0. Given a continuous escort function φk(xk), if at t = 0,
xk is such that φk(xk) > 0 for all k, then the escort replicator
dynamics will provide states x for t > 0 such that φk(xk) ≥ 0
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for all k. From eq. (1), if φk(xk) approaches to zero then ẋk
approaches to zero as well. Thus the zeros of the escort functions
represent barriers for the feasible states x, as it was explained
for the replicator dynamics in section II.

If φk(xk) = αk, and at t = 0, xk is such that αk > 0 for
all k, then the escort replicator dynamics will provide states x
such that αk ≥ 0. Since it is guaranteed that x ∈ HKm, from
eq. (15) it is also guaranteed that,

Φ(x) =
∑K
k=1 αk = 1

σup

∑K
k=1(xk − xupk ) = 1.

Thus, 0 ≤ αk ≤ 1, or equivalently σup + xupk ≤ xk ≤ xupk
for all strategy k, and for all t > 0. This implies that an escort
replicator dynamics of the form:

ẋk = αk(fk(x)− f̄α(x)) =
(xk − xupk )

σup
(fk(x)− f̄α(x)), (17)

with eq. (2) as definition of the weighted average payoff, will
always result in states x ∈ ∆K

up, i.e. the simplex ∆K
up is invariant

under ERD of the form of eq. (17).
A similar reasoning applies if an escort function of the form

φk(xk) = βk is employed. If at t = 0, xk is such that βk > 0
for all strategy k, then 0 ≤ βk ≤ 1, or equivalently xlok ≤ xk ≤
σlo + xlok for all strategy k, and for all t > 0. Thus, an escort
replicator dynamics of the form

ẋk = βk(fk(x)−f̄β(x)) =
1

σlo
(xk−xlok )(fk(x)−f̄β(x)), (18)

will provide states x ∈ ∆K
lo , i.e. the simplex ∆K

lo is invariant
under ERD of the form of eq. (18).

Now let us evaluate the case where φk(xk) = αkβk is chosen
as the escort function. If at t = 0, xk is such that αkβk >
0 for all k, then it is also true that both αk > 0 and βk >
0 at t = 0. Again, given that the escort replicator dynamics
guarantees x ∈ HKm for t > 0, then from eq. (15) and eq. (16),∑K
k=1 αk = 1 and

∑K
k=1 βk = 1 are also guaranteed for t > 0.

Then both intervals 0 ≤ αk ≤ 1 and 0 ≤ βk ≤ 1 are respected,
or equivalently both σup + xupk ≤ xk ≤ xupk and xlok ≤ xk ≤
σlo + xlok are respected. This last statement is only valid if the
intersection exists. Thus, an ERD of the form

ẋk = αkβk(fk(x)− f̄αβ(x))

=
(xk − xupk )(xk − xlok )

σupσlo
(fk(x)− f̄αβ(x)), (19)

will provide states x ∈ ∆K
up ∩∆K

lo . Thus the intersection of the
two simplexes is invariant under an escort replicator dynamics
of the form of eq. (19). Taking into account the nature of the
proposed escort functions, it is possible to propose candidates
for Lyapunov functions to prove the stability of the dynamics
at a local equilibrium point x̂.

IV. LOCAL STABILITY WITH ESCORT FUNCTIONS

In this section, the main result of the paper is stated.

Theorem 1. Consider the generalized Escort Replicator Dy-
namics eq.1, with one the of the following escort functions
φk(xk) = αk, φk(xk) = βk, or φk(xk) = αkβk, then an
equilibrium state x̂ is locally stable.

x ∈ (∆3
up ∩ ∆3

lo)

θk =
φ
k

Φ(x) =
α
k
β
k

Φ(x)

x ∈ ∆3
up x ∈ ∆3

lo

θk =
φ
k

Φ(x) = βkθk =
φ
k

Φ(x) = αk

θ ∈ ∆3

Fig. 3: Mapping of points x in the feasible regions ∆K
up, ∆K

lo ,
and ∆K

up ∩∆K
lo , defined by the proposed escort functions (αk,

βk, and αkβk respectively), to the standard probability simplex
∆K where the distributions θ lie. Example simplexes for K = 3,
and some random constraints.

The proof is divided into two parts. First the escort functions
φk(xk) = αk, and φk(xk) = βk are considered, then the third
escort φk(xk) = αkβk is studied.

Proof. It has been observed that the escort functions φk(xk) =
αk and φk(xk) = βk injectively map states x in ∆K

up, and ∆K
lo

respectively, into states θ in the standard simplex ∆K , as it is
shown on Fig. 3. This means that, through eq. (3), each state
x in the simplexes ∆K

up or ∆K
lo , corresponds to only one image

point θ in the standard simplex ∆K , where discrete probability
distributions lie. It is then possible to consider a statistical
distance measure function as candidate Lyapunov function,
which is not novel for the replicator dynamics for instance
[20], [18]. It is proposed to measure the statistical distance
between two escort probability distributions: θ̂ corresponding
to the equilibrium state x̂, and θ corresponding to a state x
in the vicinity of x̂. The well-known Kullback-Leibler (K-L)
divergence is a statistical distance measuring function, and for
the distribution θ given by escort functions φk(xk) = αk, it
takes the form,

DK-L
up (θ̂, θ) =

∑

k∈sp(θ̂)

θ̂k log

(
θ̂k
θk

)

=
∑

k∈sp(φ(x̂))

x̂k − xupk
σup

log

(
x̂k − xupk
xk − xupk

)
, (20)

which is defined for all k such that φk(x̂k) = (x̂k−xupk )/σup >
0 and xk < xupk . In other words, it is valid for states in the
interior of the simplex ∆K

up, or in its boundaries (which are also
simplexes of reduced dimensions) if the ESS does not lie in the
interior of ∆K

up. Notice that the argument of the logarithm is
positive since both terms of the division are negative. Similarly,
the coefficient (x̂k − xupk )/σup accompanying the logarithm is
also positive because both terms in the division are negative by
condition (14).

Intuitively, the K-L divergence is the weighted average of
the logarithmic difference between the discrete probability dis-
tributions θ̂, and θ, where the weighting coefficients are the
probabilities θ̂k. For φk = αk, the K-L divergence on eq. (20)
is a potential Lyapunov function candidate. 1) For the function
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φk = αk: Take the time derivative of the Lyapunov function
candidate (20) and apply then chain rule to get,

L̇(x) =
∑

k∈sp(φ(x̂))

( −1

σup

)
x̂k − xupk
xk − xupk

ẋk (21)

Replacing ẋk by eq. (17), and reducing terms results in,

L̇(x) =
−1

σ2
up

∑

k∈sp(φ(x̂))

(x̂k − xupk )(fk(x)− f̄α(x))

=
−1

σ2
up

∑

k∈sp(φ(x̂))

(x̂k − xk)fk(x) =
−(x̂− x) · f(x)

σ2
up

,

and if x̂ is an ESS, it fulfills the inequality condition (6).
Thus, knowing that σ2

up > 0, the expression before becomes
L̇(x) = − 1

σ2
up

(x̂ − x) · f(x) < 0 only when x 6= x̂. This
implies that the chosen divergence is a valid Lyapunov function
candidate if and only if x̂ is an ESS. Equivalently, since the
chosen divergence is a valid Lyapunov function candidate, then
x̂ must be an ESS.
2) For the function φk(xk) = βk: An identical procedure can
be applied with with a similar Lyapunov function candidate
for states in the interior of the simplex ∆K

lo . Due to space
limitations, this exercise is left to the reader.
3) For the function φk(xk) = αkβk: Here, a divergence function
can be constructed taking into account the procedures followed
in [1] and [22] to construct generalized information divergences.
First, a generalization of the natural logarithm, called the escort
logarithm, is defined based on the proposed escort function as,

logφ(xk) =

∫ xk

(xlo
k +xup

k )/2

1

φk(xk)
dxk

=

∫ xk

(xlo
k +xup

k )/2

σupσlo
(xk − xupk )(xk − xlok )

dxk

logφ(xk) =
σupσlo
xupk − xlok

log

(
xupk − xk
xk − xlok

)
. (22)

The lower boundary of the integral is the argument that min-
imizes the 1/αkβk in the feasible interval xlok ≤ xk ≤ xupk .
It is also the argument that maximizes αkβk and the argument
where the resulting escort logarithm is zero. Replacing (22) in,

L(x) =
∑

k∈sp(φ(x̂))

∫ x̂k

xk

(
logφ(y)− logφ(xk)

)
dy,

and analytically solving the integral results in,

L(x) =
∑

k∈sp(φ(x̂))

σupσlo
xupk − xlok

[
(x̂k − xupk ) log

(
x̂k − xupk
xk − xupk

)

−(x̂k − xlok ) log

(
x̂k − xlok
xk − xlok

)]
, (23)

which is defined for all k such that φk(x̂k) = (x̂k − xupk )(x̂k −
xlok )/(σupσlo) > 0 (or equivalently (x̂k − xupk )/σup > 0 and
(x̂k − xlok )/σlo > 0 simultaneously), and xlok < xk < xupk .
In other words, it is valid only for states in the interior of the
intersection ∆K

up ∩ ∆K
lo , or in its boundaries if the ESS does

not lie in the interior of the intersection. The resulting escort
divergence is strictly convex on intervals xlok < xk < xupk , for
all the strategies k, given an equilibrium state x̂ on the same
interval. It is also L(x̂) = 0 and L(x) > 0 for x 6= x̂. It

is possible to observe that the resulting divergence is a linear
combination of both Kullback-Leibler divergences for the first
two proposed escort functions, with coefficients depending on
the allowed interval for each xk. Taking the time derivative and
then replacing ẋk by (19) results in,

L̇(x) =
∑

k∈sp(φ(x̂))

−σupσlo(x̂k − xx)

(xk − xupk )(xk − xlok )
ẋk (24)

= −
∑

k∈sp(φ(x̂))

(x̂k − xk)fk(x) = −(x̂− x) · f(x).

Again, if x̂ is an ESS it must fulfill condition (6). Then the
last expression is,

dL(x)

dt
= −(x̂− x) · f(x) < 0,

only when x 6= x̂, which implies that the chosen divergence is
a valid Lyapunov function candidate if and only if x̂ is an ESS.
It also means that if the chosen Lyapunov function candidate is
valid, then x̂ has to be an ESS.

V. DRIVING x TOWARDS A HYPER-PLANE HKm
The purpose of this section is to illustrate how the ERD can

drive an initial state x ∈ HKm0
defined by eq. (5), to an ESS

that lies in a different hyper-plane HKm, provided that the initial
state fulfills certain conditions. Let us consider that the initial
state x also lies in BK = {x ∈ RK : xlok < xk < xupk }, which
is the interior of the hyper-rectangle defined by upper and lower
boundaries. Recalling eq. (4), the hyper-plane where the state
initially lies is invariant under the ERD. Thus, the dynamics
asymptotically reach an ESS in both HKm0

and in the interior of
BK .

However, since it is desirable to drive the initial state from
HKm0

towards a local ESS in the hyper-plane HKm, it is possible
to use an augmented version xz of the original state vector,
defined by,

xz = [xT , z]T

where z is a slack state variable also described by ERD as,

ż = φz(z)(fz(z)− f̄αβ(xz)). (25)

The value of z at t = 0 is simply set to,

z(0) = m−∑K
k=1 xk(0) = m−m0, (26)

and the payoff fz(z) for this slack portion of the population is
defined such that z is strongly attracted towards −ζz(0), where
ζ is a scalar such that ζ > 1. Please refer to section VI for an
example of fz(z).

The escort function φz(z) is defined from upper and lower
constraints zlo ≤ z ≤ zup, such that φz(0) = 0. These limits
are defined depending on the initial value z(0). If z(0) > 0,
then zlo = 0 and zup = z(0)+εz . On the contrary, if z(0) < 0,
then zup = 0 and zlo = z(0) − εz . In both cases, a dummy
constant εz > 0 is used.

It can be noticed that the augmented state vector xz lies in
the hyper-plane HK+1

m at t = 0, and by ERD, it will always
stay in that hyper-plane. However, since z will be attracted
towards −ζz(0), it will be asymptotically blocked at z = 0
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by either zup = 0 or zlo = 0. Thus, the original state vector
will also asymptotically converge towards the hyper-plane HKm.
Moreover, the contribution of fz(ẑ) to the weighted average
payoff at a given rest point will be zero since at ẑ = 0 its
escort function is φz(0) = 0. Consequently the state x will be
asymptotically driven to the original intersection ∆K

up∩∆K
lo and

any rest point will have payoffs provided by the original payoff
landscape.

A. Strictly stable games and basin of attraction

If the underlying symmetric game is strictly stable [16], also
known as strictly contractive [23], it has a unique strict NE x̂, or
equivalently a globally ESS [23, Section 13.7.4]. In that context,
the ERD defined by either eq. (17), (18) or (19), asymptotically
converges to the ESS x̂ from any initial state in the interior of
the corresponding feasible region as shown in section IV.

The basin of attraction of x̂ for ERD in the context of a
strictly stable symmetric game is the interior of the simplex ∆K

up

if escort functions are φk(xk) = αk; the interior of the simplex
∆K
lo if escort functions are φk(xk) = βk; and the interior of the

intersection ∆K
up ∩∆K

lo if escort functions are φk(xk) = αkβk.
Nevertheless, if a slack state variable z is introduced as

described in this section, then the basin of attraction for ERD
for an underlying symmetric strictly stable game is defined
according to the escort functions as:
• If escort functions are φk(xk) = αk, then the basin

of attraction is defined by the hyper-octant OKup ={
x ∈ RK : xk < xupk

}

• If escort functions are φk(xk) = βk, then the basin
of attraction is defined by the hyper-octant OKlo ={
x ∈ RK : xk > xlok

}

• Finally, if escort functions are φk(xk) = αkβk, then the
basin of attraction is defined by the hyper-rectangle BK ={
x ∈ RK : xlok < xk < xupk

}

In the following section, some illustrative examples are intro-
duced to clarify the purpose of the proposed escort functions.

VI. EXAMPLE WITH THE PROPOSED ESCORT FUNCTIONS

In this section, an example in R4, using a symmetric game
configuration with a non-potential function and unfeasible start-
ing states is used to illustrate the use of the ERD with the
proposed escort functions. Let us consider a payoff landscape
defined by,

f(x) =




0 −a b
b 0 −a
−a b 0


x,

where a, b > 0. These payoff functions are usually employed
to define an underlying game of the form of the classic
Rock-Paper-Scissors game [18]. Now, let us describe a set of
boundaries defining upper and lower simplexes ∆3

up = {x1 ≤
0.75, x2 ≤ 0.4, x3 ≤ 0.5, x1 + x2 + x3 = 0.95}, and ∆3

lo =
{x1 ≥ 0.075, x2 ≥ −0.05, x3 ≥ 0.1, x1 + x2 + x3 = 0.95}.

Let us assume that it is desirable to drive initial states to
the hyper-plane H3

m=0.95. Initial states are assumed to fail to
lie in the desired hyper-plane but they do lie in the interior of
the hyper-rectangle B3. To drive states towards the hyper-plane
H3
m=0.95, the strategy of section V is applied here. A slack

variable z is defined with payoff function given by f(z) =
−2(z− ζz(0)) with ζ = −5 in this example. Moreover, for the
underlying game and the desired hyper-plane H3

m=0.95, there is
a global attractor at x̂ = [0.95/3, 0.95/3, 0.95/3]T for a < b (in
this example a = 1, and b = 2).

Fig. 4 (top) shows the hyper-rectangle B3 of the example,
containing the intersection of simplexes ∆3

up and ∆3
lo. It also

shows 4 trajectories of ERD starting at 4 different corners of the
hyper-rectangle B3, and asymptotically converging to the global
attractor x̂ located in the hyper-plane H3

m=0.95. Three of these
trajectories start below the hyper-plane H3

m=0.95, and the fourth
starts above the hyper-plane (upper left corner of the figure).

x1

0.1

0.3

0.5

0.7

x2

0.0

0.2

0.4

x3

0.1

0.3

0.5

traj. 1

traj. 2

traj. 3

traj. 4

B3

(∆3
up ∩∆3

up) ∈ H3
m=0.95

x̂

100 101 102 103 104

Iterations

0

1

2

3

L
ya

pu
no

v
fu

nc
’s
L

(x
z
)

L1(xz)

L2(xz)

L3(xz)

L4(xz)

Fig. 4: (top) Four trajectories for example in section VI starting
in the interior of the hyper-rectangle B3 defined by upper and
lower constraints, and converging to the hyper-plane H3 where
the global attractor x̂ lies. (bottom) Lyapunov functions of the
form of eq. (23) evaluated for each of the four trajectories.

Lyapunov functions L(x) like eq. (23) are computed for each
trajectory, and can be observed in Fig. 4 (bottom). Let us notice
the monotonic nature of the Lyapunov functions evaluated on
each trajectory, and the convergence to zero corresponding to
the convergence of the state vector towards the global attractor.

One of these trajectories starts at the hyper-plane H3
m=1.1643.

For this case, z(0) = 0.95 − 1.1643 = −0.2143 and a dummy
constant εz = 0.05 is used to set to define its lower limit to
zlo = −0.2643. From (13), σlo = 1.0893 and σup = −0.7,
including limits for z. For this case, Fig. 5(a) shows the state
variables (including z) and their boundaries. It includes also the
evolution of sums

∑3
k xk+z and

∑3
k xk. It is possible to verify

how z starts at a negative value and converges to 0, forcing the
sum

∑3
k xk to converge to m = 0.95. Its is also important to

notice that the sum
∑3
k xk + z is always equal to m = 0.95

for the whole trajectory even if some state variables (x2 and
z) are initially negative. It is possible to observe that upper
and lower boundaries are respected for each variable through
the evolution. It is also possible to verify that the original state
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Fig. 5: A trajectory in the example of section VI: (a) Upper and
lower limits and evolution of state variables, and their sum. (b)
Evolution of escort functions α1,2,3,z , β1,2,3,z , and their sums.

variables converge to x̂k = 0.95/3 which corresponds to the
global attractor.

The charts in Fig. 5(b) show the escort functions αk and
βk for each of the state variables (including those of z). It is
important to notice that the sums

∑3
k αk +αz , and

∑3
k βk +βz

are always equal to 1 for the whole trajectory (as it was for the
sum of state variables and z). Moreover, let us notice that even
if state variables are allowed to be negative, escort functions αk,
βk, and consequently their product αkβk, are always positive
for the whole trajectory.

VII. CONCLUSIONS

In this paper, several details and features of ERD are pre-
sented, as well as the proposed novelty in the use of escort
functions. In evolutionary game terms, the purpose of the
proposed escort functions can be interpreted as upper and lower
limits for the size of shares of the population that are allowed
to play each of the pure strategies. This, for instance, can
model some minimal quotas or limited hosting capacities of
pure strategies. The employed analogies can be adapted to
engineering problems of different nature where feasible regions
can be, but are not required to be, defined by non-negative
boundaries. The validity of the approach is tested with the local
stability proofs of ERD under the application of the proposed
escort functions.

As a future work, conditions for convergence of initial state
that fail to initially lie in the interior of the hyper-rectangle
formed by upper and lower constraints has to be studied. Special
attention should be given to other types of escort functions that
can model the intersection as well. For instance, escort functions
can be defined such that for half of the feasibility interval a
given escort function is employed and for the other half another

escort function is used. In such cases, special attention should be
given in the stability proof, considering the switching between
escort maps. Moreover, modeling of non- orthogonal constraints
should be considered in the definition of escort functions and
the corresponding stability proofs.
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