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Order selection with confidence for finite mixture models

The determination of the number of mixture components (the order) of a finite mixture model has been an enduring problem in statistical inference. We prove that the closed testing principle leads to a sequential testing procedure (STP) that allows for confidence statements to be made regarding the order of a finite mixture model. We construct finite sample tests, via data splitting and data swapping, for use in the STP, and we prove that such tests are consistent against fixed alternatives. Simulation studies are conducted to demonstrate the performance of the finite sample tests-based STP, yielding practical recommendations, and extensions to the STP are considered. In particular, we demonstrate that a modification of the STP yields a method that consistently selects the order of a finite mixture model, in the asymptotic sense. Our STP not only applicable for order selection of finite mixture models, but is also useful for making confidence statements regarding any sequence of nested models.

1. Choose some significance level α ∈ (0, 1) and initialize ĝ = 0;

Introduction

Let X ∈ X be a random variable. Let K (X) be a class of probability density functions (PDFs), defined on the set X, which we shall refer to as components. We say that X arises from a g component mixture model of class K if the PDF f 0 of X belongs in the convex class

M g (X) = f (x) : f (x) = g z=1 π z f z (x) ; π z ≥ 0, g z=1 π z = 1, f z ∈ K (X) , z ∈ [g] ,
where g ∈ N and [g] = {1, . . . , g}.

Suppose that we observe an independent and identically distributed (IID) sample sequence of data X n = (X i ) n i=1 , where each X i has the same data generating process (DGP) as X, which is unknown. Under the assumption that f 0 ∈ M g0 (X) for some g 0 ∈ N, we wish to use the data X n in order to determine the possible values of g 0 . This problem is generally referred to as order selection in the mixture modeling literature, and reviews regarding the problem can be found in McLachlan and Peel [2000, Ch. 6], [START_REF] Mclachlan | On the number of components in a Gaussian mixture model[END_REF], and [START_REF] Celeux | Model selection for mixture models -perspectives and strategies[END_REF], for example.

Notice that the sequence (M g ) ∞ g=1 is nested, in the sense that M g ⊂ M g+1 , for each g, and that g 0 ∈ N is equivalent to f 0 ∈ M = ∞ g=1 M g . We shall write the null hypothesis that f 0 ∈ M g (or equivalently, g 0 ≤ g) as H g , and we assume that we have available a p-value for each hypothesis P g (X n ) is available, and that P g (X n ) correctly controls the size of the hypothesis test, in the sense that

sup f ∈Mg Pr f (P g (X n ) ≤ α) ≤ α, (1) 
for any α ∈ (0, 1). Here, Pr f is the probability measure corresponding to the PDF f . In [START_REF] Wasserman | Universal inference[END_REF], the following simple sequential testing procedure (STP) is proposed for determining the value of g 0 (for general nested models, not necessarily mixtures):

2. Set ĝ = ĝ + 1;

3. Test the null hypothesis H ĝ using the p-value P ĝ (X n );

(a) If P ĝ (X n ) ≤ α, then go to Step 2. (b) If P ĝ (X n ) > α, then go to Step 4.

4. Output the estimated number of components ĝn = ĝ.

It was informally argued in [START_REF] Wasserman | Universal inference[END_REF] that, although the procedure above involves a sequence of multiple tests, each with local size α, it still correctly controls the Type I error in the sense that Pr f0 (f 0 ∈ M ĝn-1 ) ≤ α (2)

for any f 0 ∈ M. Here, we note that the complement of the event {f 0 ∈ M ĝn-1 } is {f 0 ∈ M\M ĝn-1 } or equivalently {g 0 ≥ ĝn }. Thus, from (2), we can make the confidence statement that Pr f0 (g 0 ≥ ĝn ) ≥ 1 -α,

for any f 0 ∈ M.

In the present work, we shall provide a formal proof of the result (2) using the closed testing principle of [START_REF] Marcus | On closed testing procedures with special reference to ordered analysis of variance[END_REF] and Sonnemann [2008] (see also Dickhaus, 2014, Sec. 3.3). Using this result and the universal inference framework of [START_REF] Wasserman | Universal inference[END_REF], we construct a sequence of tests for (H g ) ∞ g=1 with p-values satisfying (1) and prove that each of the tests is consistent under some regularity conditions. We then demonstrate the performance of our testing procedure for the problem of order selection for finite mixtures of normal distributions, and verify the empirical manifestation of the confidence result (3). Extensions of the STP are also considered, whereupon we construct a method that consistently estimates the order g 0 , and consider the application of the STP to asymptotically valid tests.

We note that hypothesis testing for order selection in mixture models is a well-studied area of research. Difficulties in applying testing procedures to the order selection problem arise due identifiability and boundary issues of the null hypothesis parameter spaces (see, e.g., [START_REF] B G Quinn | A note on the Aitkin-Rubin approach to hypothesis testing in mixture models[END_REF], and references therein regarding parametric mixture models, and Andrews, 2001, more generally). Examples of testing methods proposed to overcome the problem include the parametric bootstrapping techniques of [START_REF] Mclachlan | On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture[END_REF], [START_REF] Feng | On the likelihood ratio test statistic for the number of components in a normal mixture with unequal variances[END_REF], [START_REF] Feng | Using bootstrap likelihood ratios in finite mixture models[END_REF], and [START_REF] Polymenis | On the determination of the number of components in a mixture[END_REF], and the penalization techniques of [START_REF] Chen | Penalized likelihood-ratio test for finite mixture models with multinomial observations[END_REF], [START_REF] Chen | Hypothesis test for normal mixture models: the EM approach[END_REF], [START_REF] Li | Testing the order of a finite mixture[END_REF], [START_REF] Chen | Inference on the order of a normal mixture[END_REF], and [START_REF] Huang | Model selection for Gaussian mixture models[END_REF].

In fact, the sequential procedure described above was also considered for order selection in the mixture model context by [START_REF] Windham | Information ratios for validating mixture analyses[END_REF] and [START_REF] Polymenis | On the determination of the number of components in a mixture[END_REF], although no establishment of the properties of the approach was provided. The possibility of constructing intervals of form (3) via bounding of discrete functionals of the underlying probability measure is discussed in [START_REF] Donoho | One-sided inference about functionals of a density[END_REF], although no implementation is suggested. Citing observations made by [START_REF] Donoho | One-sided inference about functionals of a density[END_REF] and [START_REF] Cutler | Information-based validity functionals for mixture analysis[END_REF], it is suggested in McLachlan and Peel [2000, Sec. 6.1] that intervals of form (3) are sensible in practice, because reasonable functionals that characterize properties of f 0 , such as for the number of components g 0 , can be lower bounded with high probability from data, but often cannot be upper bounded.

As previously mentioned, we plan to prove that (2) holds by demonstrating that the sequential test is a closed testing procedure. However, we note that the procedure may also be considered under the sequential rejection principle of [START_REF] Goeman | The sequential rejection principle of familywise error control[END_REF], and if M = G g=1 M g for some fixed G ∈ N, then we may also consider the procedure as a fixed sequence procedure, as considered by [START_REF] Maurer | Multiple comparisons in drug clinical trials and preclinical assayss: a priori ordered hypotheses[END_REF]. Another perspective regarding the sequential test is via the general procedures of [START_REF] Bauer | A unified approach for confidence intervals and testing of equivalence and difference[END_REF]. We also remark that the use of multiple testing procedures for model selection is well studied in the literature, as exemplified by the works of [START_REF] Finner | Duality between multiple testing and selecting[END_REF], Goeman and[START_REF] Goeman | Multiple testing for exploratory research[END_REF][START_REF] P R Hansen | The model confidence set[END_REF].

For completeness, we note that apart from hypothesis testing, numerous solutions to the order selection problem for finite mixture models have been suggested. These related works include the use of information criteria [START_REF] Leroux | Consistent estimation of a mixing distribution[END_REF][START_REF] Biernacki | Assessing a mixture model for clustering wit the integrated completed likelihood[END_REF][START_REF] Keribin | Consistent estimation of the order of mixture models[END_REF][START_REF] Naik | Extending the Akaike information criterion to mixture regression models[END_REF][START_REF] Hui | Order selection in finite mixture models: complete or observed likelihood information criteria[END_REF] and parameter regularization [START_REF] Chen | Order selection in finite mixture models with a nonsmooth penalty[END_REF][START_REF] Xu | A thresholding algorithm for order selection in finite mixture models[END_REF][START_REF] Yin | Efficient estimation of erlang mixtures using iSCAD penalty with insurance application[END_REF][START_REF] Yin | On the consistency of penalized MLEs for Erlang mixtures[END_REF], among other techniques. Furthermore, outside of the multiple testing framework, the problem of model selection with confidence has also been addressed in the articles of [START_REF] Ferrari | Confidence sets for model selection by F-testing[END_REF], [START_REF] Li | Model confidence bounds for variable selection[END_REF], [START_REF] Lei | Cross-validation with confidence[END_REF], and [START_REF] Zheng | Model selection confidence sets by likelihood ratio testing[END_REF].

The remainder of manuscript proceeds as follows. In Section 2, we recall the closed testing principle and use it to prove the inequality (2). In Section 3, we use the universal inference framework of [START_REF] Wasserman | Universal inference[END_REF] to construct a class of likelihood ratio-based tests for the hypotheses (H g ) ∞ g=1 . In the context of normal mixture models, numerical simulations are used to assess the performance of the sequential procedure using the constructed tests in Section 4. Extensions to the STP are discussed in Section 5. Finally, conclusions are provided in Section 6.

Confidence via the closed testing principle

Let H = {H g : g ∈ G} be a set of hypotheses that are indexed by some (possibly infinite) set G, where each hypothesis H g corresponds to the statement {θ ∈ T g } regarding the parameter of interest θ ∈ T, where T g ⊂ T.

We say that H is a ∩-closed system if for each I ⊆ G, either g∈I T g = ∅ or g∈I T g ∈ {T g : g ∈ G}. That is, for every set I of indices, there exists a hypothesis H g ∈ H corresponding to the statement θ ∈ g∈I T g .

Recalling the notation from Section 1, we say that H g is rejected if R g (X n ) = 1 {P g (X n ) ≤ α} is equal to 1, and we say that H g is not rejected, otherwise. Here, 1 {•} is the indicator function. We further say that the familywise error rate (FWER) of a set rejections {R g (X n )} g∈G is strongly controlled at level α ∈ (0, 1) if for all θ ∈ T,

Pr θ   g∈G0(θ) {R g (X n ) = 1}   ≤ α,
where Pr θ denotes the probability measure corresponding to parameter value θ, and G 0 (θ) ⊂ G is the set of indices with corresponding hypotheses that that are true under Pr θ .

We note that the statement g∈G0(θ) {R g (X n ) = 1} reads as at least one true hypothesis has been rejected. The complement of the statement is therefore that no true hypotheses have been rejected and hence the strong control of the FWER implies that the true parameter value lies in the complement of union of the rejected subsets with probability 1 -α, that is, for all θ ∈ T,

Pr θ   θ ∈ g∈G0(θ) T g   ≥ 1 -α,
where (•) is the set complement operation.

Define the set of closed tests corresponding to H as the rejection rules: Rg (X n ) g∈G , where for each g ∈ G,

Rg (X n ) = min {j:Tj ⊆Tg} R j (X n ) . (4) 
Then, we have the following result regarding the closed testing principle (cf. Dickhaus, 2014, Thm. 3.4).

Theorem 1. For an ∩-closed system of hypotheses H with corresponding α level local tests (R g (X n )) g∈G , the closed testing procedure defined by Rg (X n ) g∈G strongly controls the FWER at level α in the sense that

Pr θ   g∈G0(θ) Rg (X n ) = 1   ≤ α,
for each θ ∈ T.

We now demonstrate that the sequential procedure constitutes a set of closed tests of the form (4) and thus permits the conclusion of Theorem 1, which in turn implies (2) and thus (3).

Theorem 2. The hypotheses (H g ) ∞ g=1 and the STP from Section 1 constitute a ∩-closed system and a closed testing procedure, respectively, when testing using p-values (P g (X n )) ∞ g=1 , satisfying (1). The sequential test therefore permit conclusions (2) and (3).

Proof. Firstly, since M g ⊂ M g+1 , we have the fact that for any g ∈ I ⊂ N, g∈I M g = M min g∈I g and thus the sequence

(H g ) ∞ g=1 is ∩-closed. Next, the sequential procedure rejects H g if and only if R j (X n ) = 1 for each j ∈ [g], or more compactly, H g is rejected if and only if Rg (X n ) = min j∈[g] R j (X n ) = 1. Because M g ⊂ M g+1 , we also have the fact that {j : M j ⊆ M g } = [g], and thus Rg (X n ) ∞ g=1 is exactly the sequence of closed tests for (H g ) ∞ g=1 , of form (4).
By Theorem 1, for each f ∈ M, we have the inequality

Pr f   g∈G0(f ) Rg (X n ) = 1   ≤ α, (5) 
where the event g∈G0(f ) Rg (X n ) = 1 can be written as f ∈ j∈[ĝn-1] M j , since the sequential procedure first fails to reject hypothesis H ĝn . Again, since M g ⊂ M g+1 , j∈[ĝn-1] M j = M ĝn-1 and thus ( 5) can be written in form (2). This completes the proof.

Test of order via universal inference

Let X n be split into two subsequences of lengths n 1 and n 2 , where X

1 n = (X i ) n1 i=1 and X 2 n = (X i ) n i=n1+1
, and n 1 + n 2 = n. Assume that X has DGP characterized by the PDF f 0 and for each g ∈ N, let f 1 g ∈ Mg and f 2 g ∈ Mg be estimators of f 0 (not necessarily maximum likelihood estimators), based on X 1 n and X 2 n , respectively, where

Mg ⊆ M. Write X k n = X k i n k
i=1 , for each k ∈ {1, 2}, and let

L f X k n = n k i=1 f X k i ,
be the likelihood function corresponding to subsample X k n , evaluated under PDF f . We wish to test the null hypothesis H g : f 0 ∈ M g against the alternative Hg : f 0 ∈ Mg using the Split test statistics

V k g (X n ) = L f 3-k g X k n L f k g (X k n )
, for k ∈ {1, 2}, and the Swapped test statistic

Vg (X n ) = 1 2 V 1 g (X n ) + V 2 g (X n ) .
Here f k g is the maximum likelihood estimator of f 0 , based on X k n under the null hypothesis H g , in the sense that

f k g ∈ f ∈ M g : L f X k n = max f ∈Mg L f X k n .
We define the p-values for the Split and Swapped test statistics as

P k g (X n ) = 1/V k g (X n ) and Pg (X n ) = 1/ Vg (X n ),
respectively. The adaptation of Wasserman et al. [2020, Thm. 3] demonstrates that the two tests have correct size for any sample size n (i.e., P k g (X n ) and Pg (X n ) satisfy condition (1), for any n).

Theorem 3. For any n ∈ N and α ∈ (0, 1), sup

f ∈Mg Pr f P k g (X n ) ≤ α ≤ α and sup f ∈Mg Pr f Pg (X n ) ≤ α ≤ α.
It is suggested by [START_REF] Windham | Information ratios for validating mixture analyses[END_REF], [START_REF] Polymenis | On the determination of the number of components in a mixture[END_REF], and Wasserman et al.

[2020] that the alternative hypothesis for each H g should be that f 0 ∈ Mg = M g+1 . However, since we are only looking to reject H g , rather than making conclusions regarding the alternative, we can take Mg to be a richer class of PDFs that is still feasible to estimate. Thus, in the sequel, we shall consider the possibility that Mg = M g+lg for some l g ∈ N, for each g ∈ N. Typically, we can let l g = l for all g, but we anticipate that there may be circumstances where one may wish for l g to vary.

Consistency of order tests

Although Theorem 3 guarantees the control of the Type I error for each local test of H g , it makes no statement regarding the power of the tests. For tests against alternatives of the form: Mg = M g+lg , we shall consider the issue of power from an asymptotic perspective in the parametric context. That is, we suppose that

K (X) = {f (x) = f (x; θ) : θ ∈ T} ,
where T ⊆ R p for some p ∈ N, and thus

M g (X) = f x; ϑ (g) : f x; ϑ (g) = g z=1 π z f (x; θ z ) ; π z ≥ 0, g z=1 π z = 1, θ g ∈ T, z ∈ [g] .
We put the pairs ((π z , θ z )) is the maximum likelihood estimator of f 0 ∈ M g , we also write

g z=1 in the vector ϑ (g) ∈ ([0, 1] × T) g = T g .
θ(g) n ∈ θ(g) ∈ T g : n1 i=1 f X 1 i ; θ(g) = max ϑ (g) ∈Tg n1 i=1 f X 1 i ; ϑ (g) . ( 6 
)
Following DasGupta [2008, Def. 23.1], we say that a sequence of tests

(R g (X n )) ∞ n=1 for H g is consistent if under the true DGP, characterized by f 0 / ∈ M g , it is true that Pr f0 (R g (X n ) = 1) → 1, as n → ∞.
Let • denote the Euclidean norm and define the Kullback-Leibler divergence between two PDFs on X: f 1 and f 2 , as

D (f 1 , f 2 ) = X f 1 (x) log f 1 (x) f 2 (x) dx.
Further, say that a class of parametric mixture models M g is identifiable if

g z=1 π z f (x; θ z ) = g z=1 π z f (x; θ z ) if and only if g z=1 π z 1 (θ = θ z ) = g z=1 π z 1 (θ = θ z ), where 1 (•) is the usual indicator function. For R g (X n ) = 1 P 1 g (X n ) < α , where P 1 g (X n
) is obtained from testing H g against the alternative Mg = M g+lg , we obtain the following result. The equivalent result regarding Pg (X n ) can be established analogously.

Theorem 4. Make the following assumptions:

(A1) for each g ∈ N, the class M g is identifiable;

(A2) the PDF f (x; θ) > 0 is everywhere positive and continuous for all (x, θ) ∈ X × T, where X and T are Euclidean spaces and T is compact;

(A3) for all x ∈ X and θ 1 , θ 2 ∈ T, |log f (x; θ 1 )| ≤ M 1 (x) and |log f (x; θ 1 ) -log f (x; θ 2 )| ≤ M 2 (x) θ 1 -θ 2 , where E f0 M 1 (X) < ∞ and E f0 M 2 (X) < ∞. (A4) the estimator θ(g+lg) n → ϑ (g+lg) 0
, in probability, as n 2 → ∞, where

ϑ (g+lg) 0 ∈ θ(g+lg) ∈ T g+lg : E f0 log f X; θ(g+lg) = max ϑ (g+lg) ∈T g+lg E f0 log f X; ϑ (g+lg) . Under Assumptions (A1)-(A4), if f 0 ∈ M\M g , and n 1 , n 2 → ∞, then R g (X n ) = 1 P 1 g (X n ) < α is a consistent test for H g . Proof. Write the event P 1 g (X n ) < α as n1 i=1 f X 1 i ; θ(g) n n1 i=1 f X 1 i ; θ(g+lg) n < α, or equivalently 1 n 1 n1 i=1 log f X 1 i ; θ(g) n - 1 n 1 n1 i=1 log f X 1 i ; θ(g+lg) n - log α n 1 < 0. (7) 
Thus, it suffices to show that the left-hand side converges in probability to a constant that is bounded above by zero. By (A2) and (A3), we have the facts that (i): g+lg) , and (ii):

θ(g) n → ϑ (g) 0 , in probability as n 1 → ∞, where ϑ (g+lg) 0 ∈ θ(g+lg) ∈ T g+lg : E f0 log f X; θ(g+lg) = max ϑ (g+lg) ∈T g+lg E f0 log f X; ϑ (
1 n 1 n1 i=1 log f X 1 i ; θ(g) n → E f0 log f X; ϑ (g) 0 ,
in probability, as n 1 → ∞, by application of Atienza et al. [2007, Lem. 1], which states that

log f X; ϑ (g) ≤ g z=1 |log f (X; θ z )| , (8) 
and using the classic uniform weak law of large numbers of Jennrich [1969, Thm. 2]. That is, (A2) permits the use of Potscher and Prucha [1997, Lem. 4.2] to prove result (i), by verifying the conditions for the uniform law, which can be done via the bound (8) and the existence of moments from (A3). Next, using (i), we show (ii) by considering the decomposition:

1 n 1 n1 i=1 log f X 1 i ; θ(g) n -E f0 log f X; ϑ (g) 0 ≤ 1 n 1 n1 i=1 log f X 1 i ; θ(g) n -E f0 log f X; θ(g) n + E f0 log f X; θ(g) n -E f0 log f X; ϑ (g) 0
,

where the first term on the right-hand side converges to zero in probability, by the uniform law, and using (A3), the second term is bounded from above by

E f0 log f X; θ(g) n -log f X; ϑ (g) 0 ≤ 2gE f0 M 1 (X) < ∞. (9) 
The continuity from (A2) and bound (9) then implies that the second term is continuous with respect to the argument θ(g) n (cf. Makarov and Podkorytov, 2013, Thm. 7.1.3). The continuous mapping theorem then implies that the second term converges in probability to zero, as n 1 → ∞.

Next, we write

1 n 1 n1 i=1 log f X 1 i ; θ(g+lg) n -E f0 log f X; ϑ (g+lg) 0 ≤ 1 n 1 n1 i=1 log f X 1 i ; θ(g+lg) n - 1 n 1 n1 i=1 log f X 1 i ; ϑ (g+lg) 0 + 1 n 1 n1 i=1 log f X 1 i ; ϑ (g+lg) 0 -E f0 log f X; ϑ (g+lg) 0
.

Using (A3), the first term on the right-hand side can be bounded from above by

1 n 1 n1 i=1 log f X 1 i ; θ(g+lg) n -log f X 1 i ; ϑ (g+lg) 0 ≤ 1 n 1 n1 i=1 M 2 X 1 i θ(g+lg) n -ϑ (g+lg) 0 .
Thus, the first term converges to zero in probability, as n 1 → ∞, by the law of large numbers (since E f0 M 2 (X) < ∞), and since θ(g+lg)

n → ϑ (g+lg) 0
, in probability, as n 2 → ∞. The second term converges to zero, in probability, as n 1 → ∞, by the law of large numbers, since

E f0 log f X; ϑ (g+lg) 0 ≤ 2 (g + l g ) EM 1 (X) < ∞,
by application of bound (8).

We have thus established that the left-hand side of ( 7) converges in probability to

E f0 log f X; ϑ (g) 0 -E f0 log f X; ϑ (g+lg) 0 = D f 0 , f •; ϑ (g+lg) 0 -D f 0 , f •; ϑ (g) 0 , ( 10 
)
as n 1 , n 2 → ∞. Suppose, for contradiction, that ( 10) is equal to zero. Then, for all f x; ϑ

(g+lg) ∈ M g+lg , D f 0 , f •; ϑ (g+lg) -D f 0 , f •; ϑ (g) 0 ≥ 0.
In particular, for some θ ∈ T and ∈ (0, 1), we have

X f 0 (x) log    (1 -) f x; ϑ (g) 0 + f (x; θ) f x; ϑ (g) 0    dx ≤ 0. By Fatou's Lemma, 0 ≥ X f 0 (x) lim inf →0 1 log    (1 -) f x; ϑ (g) 0 + f (x; θ) f x; ϑ (g) 0    dx = X f 0 (x)    f (x; θ) f x; ϑ (g) 0 -1    dx, which implies that X f 0 (x) f (x; θ) f x; ϑ (g) 0 dx ≤ 1. (11) Since f 0 ∈ M\M g , we have f 0 = f •; ϑ (g0) 0
∈ M g0 , where g 0 > g and ϑ g0 contains the pairs (π 0,z , θ 0,z ) g0 z=1 . By taking the expectation of both sides of (11) with respect to the probability measure on θ, defined by

Pr (θ = θ ) = g0 z=1 π 0,z 1 (θ = θ 0,z ) , we have g0 z=1 X f 0 (x) π 0,z f (x; θ 0,z ) f x; ϑ (g) 0 dx = X f 2 0 (x) f x; ϑ (g) 0 dx ≤ 1.
Finally, by the fact that log a ≤ a -1, for all a > 0, we have

D f 0 , f •; ϑ (g) 0 = X f 0 (x) log    f 0 (x) f x; ϑ (g) 0    dx ≤ X f 0 (x)    f 0 (x) f x; ϑ (g) 0 -1    dx ≤ 0, which implies that f •; ϑ (g) 0
= f 0 , by (A1) and the definition of the Kullback-Leibler divergence (cf. Leroux, 1992, Lem. 1). Thus, we have the contradiction that f 0 ∈ M g , and hence

E f0 log f X; ϑ (g) 0 -E f0 log f X; ϑ (g+lg) 0 < 0, as required.

Normal mixture models

We apply the STP with the Split and Swapped tests from Section 3 to the classic problem of order selection for normal mixture models, whereby X = R d for some d ∈ N and

K (X) = K R d = f (x) = φ (x; µ, Σ) : φ (x; µ, Σ) = |2πΣ| -1/2 exp - 1 2 (x -µ) Σ -1 (x -µ) ,
where µ ∈ R d and Σ ∈ R d×d is symmetric positive definite. Here, the pairs (g 0 , ω) visualized in subplots a, b, c, and d are (5, 0.01), (5, 0.05), (5, 0.1), and (10, 0.01), respectively.

To assess the performance of the STP, we conduct a thorough simulation study, within the R programming environment [R Core [START_REF] Core | R: a language and environment for statistical computing[END_REF]. For each d ∈ {2, 4}, we generate data sets X n , with n 1 = n 2 ∈ {1000, 2000, 5000, 10000} observations (recall that n = n 1 + n 2 ), where each X i ∈ R d , from a multivariate normal mixture model in M g0 R d for g 0 ∈ {5, 10}, with parameter elements (π z , µ z , Σ z ) g0 z=1 of M g0 R d generated using the MixSim package [START_REF] Melnykov | MixSim: an R package for simulating data to study performance of clustering algorithms[END_REF], using the setting ω ∈ {0.01, 0.05, 0.1} and min z∈[g0] π z ≥ (2g 0 )

-1 . Here, the ω parameter is described in [START_REF] Maitra | Simulating data to study performance of finite mixture modeling and clustering algorithms[END_REF] and [START_REF] Melnykov | MixSim: an R package for simulating data to study performance of clustering algorithms[END_REF], and controls the level of overlap between the normal components of the mixture model. Four examples of data sets generated using various combinations of simulation parameters (g 0 , ω), with d = 2 and n 1 = 1000, are provided in Figure 1.

For each set of simulation parameters (g 0 , ω, d, n 1 ), we simulate r = 100 replicate data sets, whereupon we apply the STP at the α = 0.05 level, using the Split and Swapped test p-values of the forms P 1 g and Pg , for each of the r data sets. To compute the maximum likelihood estimators

f k g = f •; θ(g) n
, under the null hypotheses that f 0 ∈ M g , we use the gmm_full function from the Armadillo C++ library, implemented in R using the RcppArmadillo package [START_REF] Eddelbuettel | RcppArmadillo: accelerating R with high-performance C++ linear algebra[END_REF]. We also use the maximum likelihood estimator as

f 3-k g = f •; θ(g+lg) n , under
the alternative hypotheses f 0 ∈ Mg = M g+lg , where we set l g = l ∈ {1, 2}, for all g ∈ N. From each of the r STP results, we compute the coverage proportion (CovProp; proportion of r for which g 0 ≥ ĝn ), the mean estimated number of components (MeanComp; the average of ĝn over the r repetitions), and the proportion of times that the estimated number of components corresponded with the g 0 (CorrProp; the proportion of times the event ĝn = g 0 occurs out of the r repetitions). All of our R codes are made available at https://github.com/ex2o/oscfmm.

Simulation results

For all scenario combinations (g 0 , ω, d, n 1 , l), the CovProp was 100% over the r repetitions. This confirms the conclusions of Theorems 2 and 3. This also implies that the tests are underpowered, which is conforming to the observations from the simulations of [START_REF] Wasserman | Universal inference[END_REF]. This result is unsurprising since the tests are constructed via a Markov inequality argument, which makes no use of the topological features of the sets M g and Mg that can be used to derive more specific results. We report the MeanComp and CorrProp results for all of the combinations (g 0 , ω, d, n 1 , l), partitioned by (g 0 , w) in Tables 123456. Here, Tables 1-6 contain results for pairs (5, 0.01), (5, 0.05), (5, 0.1), (10, 0.01), (10, 0.05), and (10, 0.1), respectively. In the (5, 0.01) case, we observe that both the Split and Swapped test-based STPs were able to identify the generative value of g in over 90% of the cases, except when (d, n 1 , l) = (4, 1000, 2). There is some evidence that the Swapped test is more powerful than Split test in all cases, as indicated by the higher values of MeanComp and CorrProp. Furthermore, the l = 2 alternative appears to be more powerful than the l = 1 alternative in all cases except when (d, n 1 ) = (4, 1000). For the other pairs of (g 0 , w), we observe the same relationships between the values of l and the Split and Swapped tests. That is, l = 2 tends to be more powerful than l = 1 (except when n 1 is relatively small, i.e. n 1 ∈ {1000, 2000}), and the Swapped test tends to be more powerful than the Split test. In addition, we also observe that the STP becomes more powerful as n 1 increases, which supports the conclusions of Theorem 4, which applies to the normal mixture model that is under study.

For small sample sizes, we observe that the STP tended to be more powerful when d = 2 in almost all cases, and for larger sample sizes, the opposite appears to be true. This is likely due to a combination of the variability of the maximum likelihood estimator and the increase in separability of higher dimensional spaces. Finally, we notice that the STP was more powerful when the data were more separability (i.e., for larger values of ω). Here, we can see that for n 1 = 10000, the STP can identify the generative value of g in the g 0 = 5 scenarios, in a large proportion of cases. However, when g 0 = 10, the STP becomes less powerful. It is particularly remarkable that even when n 1 = 10000, the highest detection proportion was 7% in the (g 0 , ω) = (10, 0.1) scenarios. This again implies that the STP lacks power, when applied with the Split or Swapped tests, especially when component densities of the generative mixture model are not well separated.

Overall, we observe that the conclusions of Theorems 2-4 appear to hold over the assessed simulation scenarios. From a practical perspective we can make the following recommendations. Firstly, the STP based on the Swapped test is preferred over the Split test. Secondly, the alternative based on l = 2 is preferred over l = 1. Thirdly, larger sample sizes are necessary when data arise from mixture models with larger numbers of mixture components and when the mixture components are not well separated.

Extensions

A consistent sequential testing procedure

Important criteria regarding the validity of an order selection method are the large sample properties of conservativeness and consistency. These properties are defined by [START_REF] Leeb | Model selection[END_REF], in the context of this work, as lim n1,n2→∞

Pr f0 (g 0 ≥ ĝn ) = 1 and lim n1,n2→∞

Pr f0 (g 0 = ĝn ) = 1, for all f 0 ∈ M, respectively (see also Dickhaus, 2014, Sec. 7.1). By Theorem 2, we have the fact that (3) holds for all n, and thus the STP, as stated in Section 1, cannot be conservative, nor consistent. However, if we replace α by a sequence (α n ) ∞ n=1 , where α n → 0 as n 1 , n 2 → ∞, then we can conclude that the modified procedure is conservative by taking the limits on both sides of inequality (3).

We now specialize our focus, again, to the parametric setting. To construct a procedure that is consistent requires further modification to the STP. Namely, we require additionally that the individual tests of H g are consistent (i.e., that Theorem 4 holds for the sequence (α n ) ∞ n=1 , replacing α in each test). Thus, to make (7) hold with probability approaching one, we require that the third term on the left-hand side converges to zero. Thus, the sequence (α n ) ∞ n=1 must simultaneously satisfy the conditions that α n → 0 and n -1 1 log α n → 0, as n 1 , n 2 → ∞. For instance, we may choose to set α n = n -κ 1 , with κ > 0. We thus have the following result regarding the STP when applied using the sequence of p-values P 1 g (X n ) ∞ g=1 .

Corollary 1. Assume (A1)-(A4) from Theorem 4, and that g 0 < ∞. If α n → 0 and n -1 1 log α n → 0, as n 1 , n 2 → ∞, then the STP for testing the sequence (H g ) ∞ g=1 is consistent, when applied using the rules (R g (

X n )) ∞ g=1 , where R g (X n ) = 1 P 1 g (X n ) < α n .
Proof. It suffices to show that for each > 0, there exists a N ( ) ∈ N, such that for all n 1 , n 2 ≥ N ( ), we have for any f 0 ∈ M: Pr f0 (g 0 = ĝn ) ≥ 1 -. Firstly, using the form of the sequential testing procedure, we can write

Pr f0 (g 0 = ĝn ) = Pr f0 g0-1 g=1 R n g = 1 ∩ R n g0 = 0 = 1 -Pr f0 g0-1 g=1 R n g = 0 ∪ R n g0 = 1 ≥ 1 - g0-1 g=1 Pr f0 R n g = 0 -Pr f0 R n g0 = 1 .
By n -1 1 log α n → 0 and Theorem 4, and by α n → 0 and Theorem 3, we have for any δ > 0, there exist N g0 (δ) ∈ N, such that Pr f0 R n g = 0 ≤ δ, and Pr f0 R n g0 = 1 ≤ δ, for all n 1 , n 2 ≥ N g0 (δ) and g ∈ [g 0 -1]. Thus, setting = g 0 δ and N ( ) = max g∈[g0] N g (δ), we have

Pr f0 (g 0 = ĝn ) ≥ 1 -(g 0 -1) δ -δ = 1 -g 0 δ = 1 -, as required.
We note that the modified STP resembles the time series order selection procedure of [START_REF] Potscher | Order estimation in ARMA-models by Lagrangian multiplier tests[END_REF]. In fact, the conditions placed on the sequence (α n ) ∞ n=1 are the same as those imposed in Potscher [1983, Thm. 5.7]. Furthermore, we note that the conditions placed on (α n ) ∞ n=1 also closely resembles the conditions that are required for the consistent application of information criteria methods; see [START_REF] Sin | Information criteria for selecting possibly misspecified parametric models[END_REF], [START_REF] Keribin | Consistent estimation of the order of mixture models[END_REF], and [START_REF] Baudry | Estimation and model selection for model-based clustering with the conditional classification likelihood[END_REF], for example.

Asymptotic tests

Throughout the manuscript, we have assumed that the p-values from which tests are constructed satisfy (1) for all n. This assumption is compatible with our application of the STP using the local tests proposed in Section 3. We note that the STP still provides guarantees for p-values that only satisfy (1) asymptotically, in the sense that 

lim sup n→∞ Pr f (P g (X n ) ≤ α) ≤ α (12)
lim inf n→∞ Pr f0 (g 0 ≥ ĝn ) ≥ 1 -α. (13) 
To obtain (13), suppose that f 0 ∈ M g0 , for some finite g 0 ∈ N. In the notation of Section 2, we can write

G 0 (f 0 ) = N\ [g 0 -1], and hence Pr f0 (f 0 ∈ M ĝn-1 ) = Pr f0   g∈N\[g0-1] Rg (X n ) = 1   = Pr f0 Rg0 (X n ) = 1 = Pr f0   g∈[g0] {P g (X n ) ≤ α}   ≤ Pr f0 (P g0 (X n ) ≤ α) , (14) 
Then, since ( 14) holds for all n, we can apply Rudin [1976, Thm. 3.19] to obtain

lim sup n→∞ Pr f0 (f 0 ∈ M ĝn-1 ) ≤ lim sup n→∞ Pr f0 (P g0 (X n ) ≤ α) ≤ α,
as required. Via (13), we can justify the use of the STP with asymptotically valid tests, such as the procedure of [START_REF] Li | Testing the order of a finite mixture[END_REF].

Aggregated tests

Under the null hypothesis that f 0 ∈ M g , both the Split and Swapped statistics, V k g (X n ) and Vg (X n ), are examples of e-values (which we shall write generically as E g ), as defined in [START_REF] Vovk | E-values: calibration, combination, and application[END_REF] (note that these values also appear as s-values in [START_REF] Grunwald | Safe testing[END_REF]as betting scores in Shafer, 2021), based on the defining feature that sup

f ∈Mg E f (E g ) ≤ 1. (15) 
By Markov's inequality, (15) implies sup

f ∈Mg Pr f (E g ≥ 1/α) ≤ α,
for any α ∈ (0, 1), from which we can derive the p-value P g = 1/E g , which satisfies (1). As discussed in [START_REF] Wasserman | Universal inference[END_REF] and [START_REF] Vovk | E-values: calibration, combination, and application[END_REF], any set of possibly dependent e-values E 1 g , . . . , E m g (m ∈ N) can be combined by simple averaging to generate a new e-value Ēg = m -1 m j=1 E j g , which the Split or Swapped statistics, using different partitions of the data into subsequences X 1 n and X 2 n . For any fixed n 1 and n 2 , there are only a finite number of such partitions and thus one may imagine an aggregated e-value that averages over all such partitions. This hypothetical process was referred to as derandomization in [START_REF] Wasserman | Universal inference[END_REF], since the resulting p-value is no longer dependent on any particular random partitioning of X n .

We further note that one can also aggregate the results from multiple instances of the Split and Swapped statistics via methods for aggregating over p-values. These methods are discussed at length in the works of [START_REF] Diciccio | Exact tests via multiple data splitting[END_REF] and [START_REF] Vovk | Combining p-values via averaging[END_REF].

Conclusions

In this work, we proved that the closed testing principle could be used to construct a sequence of null hypothesis tests that generates a confidence statement regarding the true number of mixture components of a finite mixture model. Further, we derive tests for each of the null hypotheses in the STP, using the universal inference framework of [START_REF] Wasserman | Universal inference[END_REF], and proved that in the parametric case, under regularity conditions, such tests are consistent against fixed alternative hypotheses.

The performance of the STP for order selection of normal mixture models was considered via a comprehensive simulation study. We observe from the study that the constructed confidence statements were conservative, as predicted by the theory, and we were also able to make recommendations regarding the different variants of the tests, for practical application.

Extensions of the STP were also discussed, including the possibility of aggregating over multiple tests, and performing the STP with asymptotic tests. Of particular interest is a proof that the testing procedure could be modified to generate a order selection procedure that is consistent determination of the true number of mixture components, in the asymptotic sense. Our proof shows that such a procedure was essentially equivalent to other asymptotic model selection methods such as the Bayesian information criterion and its variants.

We note that our general order selection confidence result of Theorem 2 applies not only to finite mixture models, but also to any nested sequences of models. For example, we may consider the same STP to generate confidence statements regarding the number of factors in a factor analysis model or the degree of a polynomial fit. We leave the application of the STP to such problems for future work, along with the applications of our discussed variants on the testing procedures. 
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 1 Figure 1: Example data sets of n 1 = 1000 random observations from a d = 2 dimensional g 0 component normal mixture model, with parameters determined via parameter ω. Here, the pairs (g 0 , ω) visualized in subplots a, b, c, and d are (5, 0.01), (5, 0.05), (5, 0.1), and (10, 0.01), respectively.
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Table 1 :

 1 MeanComp and CorrProp results for different values of (d, n 1 , l), when (g 0 , ω) = (5, 0.01).

			MeanComp	CorrProp
	d	n 1 l Split	Swapped Split Swapped
	2	1000 1 4.88	4.95 0.95	0.98
		2 4.92	4.96 0.92	0.96
		2000 1 4.89	4.94 0.96	0.98
		2 5.00	5.00 1.00	1.00
		5000 1 4.94	4.98 0.97	0.99
		2 5.00	5.00 1.00	1.00
		10000 1 4.93	4.96 0.97	0.98
		2 4.99	4.99 0.99	0.99
	4	1000 1 4.87	4.97 0.92	0.97
		2 4.85	4.86 0.85	0.86
		2000 1 4.94	4.98 0.97	0.99
		2 5.00	5.00 1.00	1.00
		5000 1 4.98	5.00 0.99	1.00
		2 5.00	5.00 1.00	1.00
		10000 1 4.98	4.98 0.99	0.99
		2 5.00	5.00 1.00	1.00

Table 2 :

 2 MeanComp and CorrProp results for different values of (d, n 1 , l), when (g 0 , ω) = (5, 0.05).

			MeanComp	CorrProp
	d	n 1 l Split	Swapped Split Swapped
	2	1000 1 4.41	4.52 0.57	0.62
		2 4.51	4.60 0.53	0.60
		2000 1 4.82	4.92 0.88	0.94
		2 4.85	4.88 0.85	0.88
		5000 1 4.96	4.96 0.98	0.98
		2 4.90	4.93 0.90	0.93
		10000 1 4.92	4.92 0.96	0.96
		2 4.95	4.98 0.97	0.98
	4	1000 1 3.98	4.25 0.22	0.37
		2 4.20	4.27 0.21	0.27
		2000 1 4.71	4.85 0.77	0.87
		2 4.73	4.79 0.73	0.79
		5000 1 4.96	5.00 0.98	1.00
		2 4.96	4.98 0.96	0.98
		10000 1 4.98	4.98 0.99	0.99
		2 4.99	5.00 0.99	1.00

Table 3 :

 3 MeanComp and CorrProp results for different values of (d, n 1 , l), when (g 0 , ω) = (5, 0.1).

			MeanComp	CorrProp
	d	n 1 l Split	Swapped Split Swapped
	2	1000 1 3.86	3.98 0.18	0.22
		2 4.13	4.22 0.20	0.26
		2000 1 4.41	4.60 0.57	0.67
		2 4.51	4.58 0.51	0.58
		5000 1 4.71	4.75 0.77	0.80
		2 4.83	4.84 0.83	0.84
		10000 1 4.87	4.88 0.90	0.91
		2 4.88	4.90 0.88	0.90
	4	1000 1 3.44	3.70 0.03	0.09
		2 3.82	3.94 0.01	0.03
		2000 1 4.05	4.35 0.32	0.44
		2 4.35	4.48 0.35	0.48
		5000 1 4.96	4.97 0.96	0.97
		2 4.87	4.91 0.87	0.91
		10000 1 4.98	5.00 0.99	1.00
		2 5.00	5.00 1.00	1.00

Table 4 :

 4 MeanComp and CorrProp results for different values of (d, n 1 , l), when (g 0 , ω) = (10, 0.01).

			MeanComp	CorrProp
	d	n 1 l Split	Swapped Split Swapped
	2	1000 1 6.46	7.50 0.04	0.13
		2 8.69	9.05 0.25	0.29
		2000 1 7.59	8.42 0.29	0.40
		2 9.31	9.52 0.47	0.58
		5000 1 8.76	9.14 0.69	0.78
		2 9.50	9.79 0.76	0.84
		10000 1 8.81	9.19 0.75	0.82
		2 9.60	9.81 0.82	0.90
	4	1000 1 5.83	6.50 0.00	0.00
		2 7.17	7.77 0.00	0.00
		2000 1 7.04	7.82 0.07	0.12
		2 8.81	9.14 0.16	0.26
		5000 1 8.54	9.25 0.47	0.60
		2 9.65	9.73 0.73	0.76
		10000 1 9.37	9.68 0.84	0.91
		2 9.87	9.93 0.90	0.93
	for all f ∈ M			

g . In such a case, we have the limiting version of the confidence statement (3):

Table 5 :

 5 MeanComp and CorrProp results for different values of (d, n 1 , l), when (g 0 , ω) = (10, 0.05).

			MeanComp	CorrProp
	d	n 1 l Split	Swapped Split Swapped
	2	1000 1 4.78	5.44 0.01	0.01
		2 6.11	6.68 0.00	0.00
		2000 1 5.74	6.56 0.01	0.01
		2 6.96	7.85 0.02	0.11
		5000 1 7.21	7.82 0.06	0.11
		2 8.59	8.91 0.14	0.19
		10000 1 7.62	8.38 0.17	0.26
		2 8.86	9.04 0.24	0.33
	4	1000 1 3.89	4.32 0.00	0.00
		2 4.98	5.30 0.00	0.00
		2000 1 5.07	5.63 0.00	0.00
		2 6.30	6.63 0.00	0.00
		5000 1 6.63	7.45 0.00	0.04
		2 8.35	8.71 0.01	0.05
		10000 1 8.25	8.57 0.13	0.18
		2 9.23	9.36 0.32	0.42

we shall call the aggregated e-value. As such, one may consider generating m different e-values based on either

Table 6 :

 6 MeanComp and CorrProp results for different values of (d, n 1 , l), when (g 0 , ω) = (10, 0.1).

			MeanComp	CorrProp
	d	n 1 l Split	Swapped Split Swapped
	2	1000 1 4.14	4.74 0.00	0.00
		2 5.02	5.28 0.00	0.00
		2000 1 4.99	5.55 0.00	0.00
		2 5.87	6.30 0.00	0.00
		5000 1 6.02	6.51 0.00	0.00
		2 7.16	7.60 0.00	0.01
		10000 1 6.75	7.45 0.02	0.07
		2 7.75	8.06 0.04	0.06
	4	1000 1 3.07	3.37 0.00	0.00
		2 3.61	3.82 0.00	0.00
		2000 1 4.12	4.52 0.00	0.00
		2 4.99	5.22 0.00	0.00
		5000 1 5.40	6.09 0.00	0.00
		2 6.95	7.32 0.00	0.00
		10000 1 6.90	7.60 0.01	0.03
		2 8.38	8.54 0.02	0.02