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Abstract

This article considers the problem of community detection in sparse dynamical
graphs in which the community structure evolves over time. A fast spectral al-
gorithm based on an extension of the Bethe-Hessian matrix is proposed, which
benefits from the positive correlation in the class labels and in their temporal evolu-
tion and is designed to be applicable to any dynamical graph with a community
structure. Under the dynamical degree-corrected stochastic block model, in the
case of two classes of equal size, we demonstrate and support with extensive
simulations that our proposed algorithm is capable of making non-trivial commu-
nity reconstruction as soon as theoretically possible, thereby reaching the optimal
detectability threshold and provably outperforming competing spectral methods.

1 Introduction

Complex networks are a powerful tool to describe pairwise interactions among the members of a
multi-agent system [1]. One of the most elementary tasks to be performed on networks is community
detection [2, 3], i.e., the identification of a non overlapping partition of the members (or nodes) of
the network, representing its “mesoscale” structure. Although most of the attention is still focused
on static community detection [3], many real networks are intimately dynamic: this is the case of
networks representing physical proximity of mobile agents, collaboration interactions in the long run,
biological and chemical evolution of group members, etc. (see [4] for a review).

There are many ways to define the concept of communities, particularly in dynamical networks (see
e.g., [3, 5]). In this article, we focus on the dynamical degree corrected stochastic block model (D-
DCSBM), formally defined in Section 2, which is a variation of the static DCSBM [6, 7]. Specifically,
letting Gt be the k-community graph at time instant t, Gt is generated independently of Gt′ for all
t′ 6= t, but only a fraction 1 − η (for η ∈ [0, 1]) of the nodes changes class association between
time t and time t + 1. The degree correction lets the nodes have an arbitrary degree distribution,
thereby possibly accounting for the broad distributions typical of real networks [8]. Of fundamental
importance, in the static regime, two-class DCSBM graphs exhibit a detectability threshold below
which no algorithm can asymptotically find a node partition non trivially aligned to the genuine classes
[9, 10, 11, 12, 13]. Under a D-DCSBM model, one can similarly define a dynamical detectability
threshold which considers the inference problem on the graph sequence {Gt}t=1,...,T [14]. For k > 2
classes, the identification of a detectability threshold remains an open problem.

Spectral clustering is arguably one of the most successful ways to perform community detection
[15]. Instances of spectral methods are indeed known to attain the detectability threshold in various
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contexts (in dense [16, 17] or sparse [13, 18, 19, 20] stochastic block models) and are experimentally
observed to perform competitively with the Bayes optimal solution [18, 19]. Recently, spectral
clustering algorithms have also been explored in the dynamic regime [21, 22, 23, 24, 25, 26].

Two of the major pitfalls of dynamical spectral methods are sparsity, when the node degrees do not
scale with the size n of the graph, and small label persistence, when the fraction of nodes 1− η that
change label at any time instant t is of order On(1). Small persistence realistically assumes that,
successive observations of the graph being independent across time, their community configuration
must also evolve non-trivially. Under a sparse regime, but for 1−η = on(1), [26] suggests to average
the adjacency matrices over multiple time instances to obtain efficient community reconstruction. To
the best of our knowledge, the work of [14] provides the only existing spectral algorithm properly
treating both sparsity and small label persistence. In the spirit of [18], the proposed method arises
from a linearization of the (asymptotically optimal) belief propagation algorithm (BP), which is
capable of obtaining non-trivial partitions (i.e., better than random guess) as soon as theoretically
possible. However, their resulting dynamical non-backtracking matrix depends on an a priori
unknown parameter1, so the algorithm is practically inapplicable.

As an answer to these limitations, this article proposes a new spectral algorithm adapted to the
sparse regime, which is able to detect communities even under little (or no) persistence in the
community labels and which benefits from persistence to improve classification performance over a
static algorithm run independently at each time-step. Specifically,

1. We introduce a dynamical Bethe-Hessian matrix which, for k = 2, retrieves non-trivial communi-
ties as soon as theoretically possible. As a by-product, we offer new results on the spectrum of the
dynamical non-backtracking of [14].

2. We provide an algorithm applicable to any graph with k ≥ 2 communities of arbitrary sizes.2.
On top of Python codes to reproduce most of the figures of this paper (available in the supple-
mentary material), we provide an efficient Julia implementation, part of the CoDeBetHe package
(community detection with the Bethe-Hessian), available at github.com/lorenzodallamico.

Notations. Function 1x is the indicator equal to 1 if condition x is verified and 0 otherwise. Column
vectors are indicated in bold (v), matrices (M ) and vector elements (vi) in standard font. Vector
1n ∈ Rn is the all-ones vector. The index t always refers to time. The set ∂i = {j : (i, j) ∈ E} are
the neighbors of i in graph G = (V, E) with edge set E . The spectral radius of matrix M is ρ(M).

2 Model and setting

Let {Gt}t=1,...,T be a sequence of unweighted and undirected graphs, each with n nodes. At time step
t, Et and Vt denote the set of edges and nodes, respectively, which form Gt, with Vt ∩ Vt′ = ∅, for
t′ 6= t: each node has T copies, each copy being a different object. We denote with it, for 1 ≤ i ≤ n
and 1 ≤ t ≤ T , a node in Vt. We call A(t) ∈ {0, 1}n×n the symmetric adjacency matrix of Gt,
defined as A(t)

ij = 1(ij)∈Et , and D(t) = diag(A(t)1n) ∈ Nn×n its associated degree matrix. We now
detail the generative model for {Gt}t=1,...,T .

2.1 The dynamical degree corrected stochastic block model

For readability, until Section 4, where among other generalizations, we will consider graphs with an
arbitrary number of classes k, we focus on a model with two classes of equal size. Let `it ∈ {1, 2}
be the label of node it. The vector {`it=1

}i=1,...,n is initialized by assigning random labels (1 or 2)
with equal probability. The labels are then updated for 2 ≤ t ≤ T according to the Markov process

`it =

{
`it−1

w.p. η
a w.p. 1−η

2 , a ∈ {1, 2}, (1)

i.e., the label of node it is maintained with probability η and otherwise reassigned at random with
probability 1 − η. Note that a proportion of the reassigned nodes from time t will be affected the

1In order to design their dynamical non-backtracking matrix, the average number of connections among
nodes in the same and across communities must be known.

2The algorithm a priori requires that η be known; otherwise, η can be estimated through cross-validation.
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Figure 1: Three successive instances of a dynamical network G. Classes are emphasized by node
colors and can evolve with time. Network edges, that change over time, are indicated in solid lines,
while “temporal edges” in dashed lines connect each graph to its temporal neighbors. Nodes of a
common time step are circled in orange.

same labels at time t+ 1. The entries of the adjacency matrix A(t) of Gt are generated independently
and independently across t, according to:

P(A
(t)
ij = 1) = θiθj

C`it ,`jt
n

, ∀ i > j. (2)

The vector θ = (θ1, . . . , θn) enables to induce any arbitrary degree distribution and satisfies
1
n

∑n
i=1 θi = 1 and 1

n

∑n
i=1 θ

2
i ≡ Φ = On(1). The matrix C ∈ R2×2 contains the class affinities

with Ca=b ≡ cin and Ca6=b ≡ cout, cin and cout being independent of n. The expected average graph
degree is c ≡ (cin + cout)/2 = On(1) assumed to satisfy cΦ > 1: according to (1)–(2), this is the
necessary (and sufficient) condition such that, at each time step, Gt has a giant component3 [27]. This
condition imposes constraint on c, hence on how sparse the graphs {Gt}t=1,...,T can be.

We insist that the process (1)–(2) builds on a dual time-scale assumption: a short range governing the
evolution of graph edges (reconfigured at each time step) and a long range governing the evolution
of communities. The article mainly focuses on the long range evolution as independent realizations
of Gt are assumed at successive times. Appendix D discusses the extension of this framework to Gt
evolving slowly with time, thereby allowing for edge persistence across time.

Our objective is to solve the problem of community reconstruction on the dynamical graph G
constructed, as illustrated in Figure 1, from the T independent instances {Gt}t=1,...,T .

Definition 1 Letting {Gt}t=1...T be a sequence of graphs independently generated from (1)–(2),
G = G(V, E) is the graph with V = ∪Tt=1Vt and E =

(
∪Tt=1Et

)
∪
(
∪T−1
t=1 ∪ni=1 (it, it+1)

)
. The

adjacency and degree matrices of G are denoted with A,D ∈ NnT×nT , respectively. In other words,
the graphs Gt are joined adding extra edges between the nodes it and their temporal neighbors it±1.

2.2 Detectability threshold in the D-DCSBM

Let λ = (cin − cout)/(cin + cout) be the co-variance between neighboring labels [13, 28]. Based on
[29], the authors of [14] conjecture that, for the D-SBM (for which θi = 1 for all i), as n, T →∞,
non-trivial class reconstruction is feasible if and only if α ≡

√
cλ2 > αc(∞, η), where αc(∞, η) is

the detectability threshold defined as the unique value of ᾱ > 0 for which the largest eigenvalue of

M∞(ᾱ, η) =

(
ᾱ2 2η2

ᾱ2 η2

)
(3)

is equal to one. Inspired by [13] who adapted the detectability condition to the DCSBM model in
the static case, we show (see Appendix A) that this result can be extended to the D-DCSBM by
(i) redefining α as α ≡

√
cΦλ2 and (ii) for finite T (but n→∞) by redefining αc(T, η) as the value

3The existence of a giant component at each time t ensures a well-defined community detection problem when
n→∞. In practice, Gt will typically be the union of a giant connected sub-graph, in which all communities are
represented, and a few isolated nodes. These isolated nodes can be understood as nodes of a network absent at
time t. In this sense, the D-DCSBM is suitable to model dynamic networks with varying size across time.
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Figure 2: Sketch of the 4 stable modes for two communities and T = 2. In black we indicate the
direction si > 0, in white si < 0. The red edges correspond to the frustrated edges connecting spins
with opposite direction.

of ᾱ for which the largest eigenvalue of

MT (ᾱ, η) =



Md M+ 0 . . . 0

M− Md
. . . . . . 0

0 M−
. . . M+ 0

...
...

. . . Md M+

0 0 . . . M− Md

 , where



Md =
( 0 0 0
η2 ᾱ2 η2

0 0 0

)
,

M+ =
( 0 0 0

0 0 0
0 ᾱ2 η2

)
,

M− =
(
η2 ᾱ2 0
0 0 0
0 0 0

)
,

(4)

is equal to one. The detailed derivation of MT (ᾱ, η) are reported in Appendix A, which provides
an explicit expression to αc(T, η), following the arguments of [14]. The definition of MT (ᾱ, η) is
more elaborate than M∞(ᾱ, η) due to the finite-time structure of G: each node it has two temporal
connections with it+1 and it−1, except for the “time boundary” nodes of Gt=1 and Gt=T . As
T →∞, these boundaries can be neglected and the leading eigenvalue of MT (ᾱ, η) reduces to that
of M∞(ᾱ, η). The expression of αc(T, η) can be computed analytically for T = 2, 3, 4 and T →∞:

αc(T = 2, η) =
(
1 + η2

)− 1
2 ; αc(T = 3, η) =

√
2
(

2 + η4 + η2
√

8 + η4
)− 1

2

(5)

αc(T = 4, η) =
√

2
(

2 + η2 + η6 + η
√
η8 + 2η4 + 8η2 + 5

)− 1
2

; αc(∞, η) =

(
1 + η2

1− η2

)− 1
2

.

For other values of T , αc(T, η) is best evaluated numerically. For all T : (i) if η = 0 (no correlation
among the labels), one recovers αc = 1, the transition’s position in the static DCSBM [13], as
expected; (ii) if η = 1, αc = 1/

√
T , the static threshold obtained by averaging the adjacency matrix

over its T independent and identically distributed realizations. We also numerically confirm that for
all T , αc(T, η) is a decreasing function of η: higher label persistence allows to solve harder problems.

3 Main results

This section develops a new “dynamical” Bethe-Hessian matrix associated to the graph G, for which
we show there exists at least one eigenvector (recall that k = 2 classes so far) strongly aligned to
the community labels if α > αc(T, η), thereby allowing for high performance community detection
down to the detectability threshold. The eigenvectors containing information can be up to T , but only
one of them is guaranteed to exist when α > αc(T, η) and it can alone reconstruct communities.

3.1 The dynamical Bethe-Hessian matrix

As in [19, 28], our approach exploits a statistical physics analogy between the modelling of sponta-
neous magnetization of spins with ferromagnetic interaction [30] and the modelling of communities
of nodes in sparse graphs. We attach to each node a spin variable sit ∈ {±1}, for 1 ≤ i ≤ n and
1 ≤ t ≤ T . The energy of a spin configuration s ∈ {±1}nT is given by the Hamiltonian

Hξ,h(s) = −
T∑
t=1

 ∑
(it,jt)∈Et

ath(ξ) sitsjt +
∑
it∈Vt

ath(h) sitsit+1

 (6)

with siT+1
= 0 by convention. Here, the coupling constants ξ, h ∈ [0, 1) modulate the interaction

among nodes at time t and between the same node at time instants t and t + 1, respectively, and
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appear inside inverse hyperbolic tangents for notational ease. Intuitively, the spin vector s can be
mapped to the class affiliation vector σ = 2` − 3. The first term in the main parenthesis of (6)
favors configurations in which neighboring nodes have the same label, while the second term favors
configurations in which the label is kept across successive time instants. This last term enforces
persistence in the community evolution.

The configurations s representing the local minima of Hξ,h(s) are determined by the mesoscale
structure of G and are sketched for T = 2 in Figure 2. The lowest energy state corresponds to
s = 1nT : this is the non-informative ferromagnetic configuration. Similarly, mode 3 of Figure 2
groups together nodes in the same community and is equally useless for reconstruction. On the
opposite, modes 2 and 4 of Figure 2 divide the nodes according to the class structure of G and can
be used for community reconstruction. In general, for k classes and T > 2 time frames, kT local
minima arise, mixing together time and class clusters. Note importantly that mode 1 always has a
lower energy than mode 3 and mode 2 a lower energy than mode 4. However, the ordering of energies
of modes 2 and 3 is in general not a priori known. We will further comment on this remark which
has important consequences for the subsequent analysis as well as for the design of our proposed
community detection algorithm.

We show in Appendix B that these lowest energy modes can be approximated by the eigenvectors
associated with the smallest eigenvalues of the Bethe-Hessian matrix Hξ,h ∈ RnT×nT , defined by

(Hξ,h)it,jt′
=


(
ξ2D(t)−ξA(t)

1−ξ2 + 1+h2(φt−1)
1−h2 In

)
ij

if t = t′(
− h

1−h2 In

)
ij

if t = t′ ± 1,
(7)

in which φt = 1 if t = 1 or t = T and φt = 2 otherwise. The aforementioned lack of a precise
knowledge of the relative position of the informative modes in the energy spectrum of the Hamiltonian
hampers the identification of the position of the corresponding informative eigenvectors of Hξ,h. This
is of major importance when designing a spectral clustering algorithm based on Hξ,h.

3.2 Community detectability with the dynamic Bethe-Hessian

We thus now turn to our main result (Proposition 1), whose theoretical support is given in Appendix C,
centered on the question of appropriately choosing a pair (ξ, h) which ensures non-trivial community
detection with Hξ,h as soon as α > αc(T, η) and which, in addition, necessarily exploits the
informative eigenvectors of Hξ,h without knowing their precise location in the spectrum.

Let us first introduce an important intermediary object: the weighted non-backtracking matrix Bξ,h,
defined on the set of directed edges Ed of G. Letting ωij = ξ if there exists a time instant t such that
nodes i, j belong to Vt, and ωij = h for time edges, the entries (ij), (kl) ∈ Ed of Bξ,h are defined as

(Bξ,h)(ij)(kl) = 1jk(1− 1il) ωkl. (8)

The spectra, and notably the isolated eigenvalues and their associated eigenvectors, of the matrices
Bξ,h and Hξ,h have important common properties [31, 32]. As n → ∞, both the spectra of the
Bethe-Hessian and non-backtracking matrices are the union of isolated eigenvalues (the eigenvectors
of which carry the information on the mesoscale structure of G) and of a bulk of uninformative
eigenvalues [20, 12]. This relation allows us to establish the following key result.

Proposition 1 Let λd = αc(T,η)√
cΦ

. Then, as n → ∞, (i) the complex eigenvalues forming the bulk
spectrum of Bλd,η are asymptotically bounded within the unit disk (ii) the smallest eigenvalues of
the (real) bulk spectrum of Hλd,η tend to 0+ and (iii) the number of isolated negative eigenvalues of
Hλd,η is equal to the number of real isolated eigenvalues of Bλd,η greater than 1.

In particular, if α > αc(T, η), at least one of the isolated real eigenvalues of Bλd,η larger than 1 and
one of the negative isolated eigenvalues of Hλd,η are informative in the sense that their associated
eigenvectors are correlated to the vector of community labels.

Proposition 1 indicates that, if α > αc(T, η), certainly there is one informative eigenvector (more
precisely, mode 2 of Figure 2) which is associated with one of the few isolated negative eigenvalues
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of Hλd,η. Other informative eigenvectors (e.g. mode 4 of Figure 2) may be associated to negative
eigenvalues of Hλd,η, but their existence is not guaranteed. By performing spectral clustering on
these few negative eigenvalues and appropriately handling the size-nT eigenvectors, one can then
be assured to extract the desired community information. We empirically confirm that using all the
eigenvectors associated with the isolated negative eigenvalues (instead of only the desired informative
eigenvector with unknown location) to form a low dimensional vector embedding of the nodes is
redundant but it does not severely compromise the performance of the final k-means step of the
standard spectral clustering method [33]. The choice ξ = λd and h = η therefore almost immediately
induces an explicit algorithm applicable to arbitrary networks and which, as later discussed in
Section 4, straightforwardly extends to graphs with k > 2 communities.

To best understand the structure of Hλd,η , a further comment should be made on the expected number
of its negative eigenvalues. It may in particular be shown that, in the limit η → 0, the off-diagonal
blocks of Hλd,η vanish and exactly 2T negative eigenvalues get isolated, the T smallest negative
being almost equal and uninformative and the latter T almost equal but informative. In the limit
η → 1 instead, the configurations alike modes 3 and 4 of Figure 2 are energetically penalized (recall
(6)) and do not produce any isolated eigenvalue, thus Hλd,η only has two negative eigenvalues.

Appendix C shows that a better choice for ξ is in fact λ, instead of λd. Experimental verification
confirms that, as in the static regime [28], this is due to the fact that, unlike Hλ,η, the entries of
the informative eigenvectors of Hλd,η are tainted by the graph degrees, thereby distorting to some
extent the class information.4. On the opposite, the eigenvector of Hλ,η associated to the eigenvalue
closest to zero (which in this case is isolated while the bulk is away from zero) is informative but not
tainted by the graph degree heterogeneity. Although both choices of ξ provably enable non-trivial
community recovery down to the threshold, ξ = λ is expected to outperform ξ = λd, especially as α
increases away from the threshold. Consequently, if one has access to prior knowledge on λ, then the
eigenvectors of Hλ,η should be used for best performance. However, in practice, providing a good
estimate of λ in reasonable time remains a challenge, especially for k ≥ 2. This is why we prefer the
choice ξ = λd, as λd is an explicit function of αc(T, η), c and Φ all of which can be easily estimated.

4 Algorithm and performance comparison

These discussions place us in a position to provide an algorithmic answer to the dynamic community
detection problem under study. The algorithm, Algorithm 1, is shown here to be applicable, up to a
few tailored adjustments, to arbitrary real dynamical graphs.

4.1 Algorithm implementation on arbitrary networks

We have previously summarized the main ideas behind a dynamical version of spectral clustering
based on Hλd,η. These form the core of Algorithm 1. Yet, in order to devise a practical algorithm,
applicable to a broad range of dynamical graphs, some aspects that go beyond the D-DCSBM
assumption should be taken into account.

So far, the article dealt with k = 2 equal-size communities for which the D-DCSBM threshold is
well defined. Real networks may of course have multiple asymmetrical-sized classes. As in the
static case [20], we argue that, under this general D-DCSBM setting and the classical assumption
that the expected degree of each node is class-independent, the left edge of the bulk spectrum of
Hλd,η is still asymptotically close to zero and that some of the eigenvectors associated with the
isolated negative eigenvalues carry information for community reconstruction.5 The value k is, in
practice, also likely unknown. This also does not affect the idea of the algorithm which exploits
all eigenvectors associated to the negative eigenvalues of Hλd,η, without the need of knowing k.
The very choice of k is only required by k-means in the last step of spectral clustering and may be
performed using off-the-shelf k-means compliant tools, e.g., the silhouettes method [34].

4In the present symmetric k = 2 setting, one expects the entries of the informative eigenvector to be noisy
versions of ±1 values in which the degree dependence intervenes only in the variance, but not in the mean (see
[28, 27] for a thorough study in the static case). For ξ = λd though, the mean itself depends on the node degree
and impedes the performance of k-means

5In passing, while αc(T, η) is well defined for all k ≥ 2, when k > 2, its value no longer corresponds to the
position of a detectability threshold, the very notion of which remains an open riddle for k > 2.
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Algorithm 1 Community detection in sparse, heterogeneous and dynamical graphs

1: Input : adjacency matrices {A(t)}t=1,...,T of the undirected graphs {Gt}t=1,...,T ; label persis-
tence, η; number of clusters k.

2: for t = 1 : T − 1 do
3: Remove from A(t+1) the edges appearing in both A(t) and A(t+1) (Appendix D)

4: Compute: d(t)
i ←

∑n
j=1A

(t)
ij ; c ← 1

nT

∑T
t=1

∑n
i=1 d

(t)
i ; Φ ← 1

nTc2

∑T
t=1

∑n
i=1

(
d

(t)
i

)2

;

αc(T, η) from Equation (4); λd ← αc(T,η)√
cΦ

.
5: Stack the m eigenvectors of Hλd,η with negative eigenvalues in the columns of X ∈ RnT×m
6: Normalize the rows of Xi,: ← Xi,:/‖Xi,:‖
7: for t = 1 : T do
8: Estimate the community labels {ˆ̀it}i=1,...n using k-class k-means on the rows {Xit}i=1,...,n.
9: return Estimated label vector ˆ̀∈ {1, . . . , k}nT .

Another aspect of practical concern is that successive realizations of A(t) may not be independent
across time. Appendix D, covers this issue by introducing edge persistence in the model. As
suggested in [35], by simply removing from A(t+1) all edges also present in A(t), one then retrieves
a sequence of adjacency matrices which, for sparsity reasons, (asymptotically) mimic graphs without
edge dependence. These updated adjacency matrices are a suited input replacement to the algorithm.

A last important remark is that η is an input of Algorithm 1. If unknown, as it would in general be, one
may choose an arbitrary h ∈ [0, 1) and ξ = αc(T, h), to then perform spectral clustering onHξ,h: the
leftmost edge of the bulk spectrum of Hξ,h is asymptotically close to zero for all h and consequently
Algorithm 1 can be used in the same form. However, for a mismatched h, the detectability threshold
now occurs beyond the optimal αc(T, η). Close to the transition, this mismatch would give rise
to fewer informative isolated negative eigenvalues than expected, resulting in a poor quality label
assignment. As a workaround, one may browse through a discrete set of values for h and extract the
h maximizing some quality measure, such as the resulting clustering modularity. [36].

Computation complexity. The bottleneck of Algorithm 1 is to compute the embedding X . The
number of negative eigenvalues m is not a priori known and only suspected to be in the interval
{k, . . . , kT}. Our strategy is to compute the first k + 1 eigenvectors, ensure that the associated
eigenvalues are all negative, then compute the (k+ 2)-th eigenvector, etc., until the largest uncovered
eigenvalue crosses zero. This strategy, via standard sparse numerical algebra tools based on Krylov
subspaces [37], costs O(nT

∑m
l=k l

2). In the best-case (resp., worst-case) scenario, m = k (resp.,
m = kT ): the complexity of Algorithm 1 thus scales as O(nTk2) (resp., O(nT 4k3)).

An accelerated approximate implementation. As T or k increase, the above complexity may
become prohibitive. A recent workaround strategy [38, 39, 40], based on polynomial approximation
and random projections, is here particularly adapted, and decreases the overall complexity of the
algorithm to O(nTk log(nT )), for a limited loss in precision. The resulting fast implementation is
described in Algorithm 2 and detailed in Appendix F. To give an order of magnitude, a simulation6

of Algorithm 1 for n = 105, T = 5 (resp., n = 5 000, T = 100), k = 2, c = 6, η = 0.5, Φ = 1.6,
α = 2αc(T, η) takes on average approximately 1 minute (resp., 40 minutes), whereas Algorithm 2
converges in less than 4 minutes in both cases. The reader is referred to Appendix F for more details.

4.2 Performance comparison on synthetic datasets

Figure 3 shows the performance of different clustering algorithms in terms of overlap

ov(`, ˆ̀) = max
¯̀∈P(ˆ̀)

1

1− 1
k

(
1

n

n∑
i=1

1`i,¯̀i −
1

k

)
, (9)

where `, ˆ̀∈ {1, . . . , k}n are the ground truth and estimated label vectors, respectively, while P(`)
is the set of permutations of `. The overlap ranges from zero for a random label assignment to one for
perfect label assignment. Figure 3-left compares the overlap performance as a function of α and η for

6The laptop’s RAM is 7.7 Gb with Intel Core i7-6600U CPU @ 2.6GHz x 4.
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Figure 3: Left: overlap comparison at t = T for Algorithm 1 vs. [26], in color gradient, for various
detectability hardness levels α (x-axis) and label persistence η (y-axis); n = 10 000, T = 5, c = 10,
Φ = 1; averaged over 4 samples. Right: mean overlap across all values of t, as a function of α,
for Algorithm 1 (Alg 1), BP [14], the dynamic adjacency matrix of [26] (dyn A), the dynamical
non-backtracking of [14] (dyn B and dyn B opt), the static Bethe-Hessian of [28] (static BH) and
the dynamical Louvain algorithm of [41] (dyn Louvain); n = 5 000, T = 4, c = 6, η = 0.7, Φ = 1;
averaged over 20 samples (3 for BP). For all plots, k = 2.

Algorithm 1 versus the adjacency averaging method of [26] (which we recall assumes η = 1−on(1)).
The overlap is only considered at t = T so to compare Algorithm 1 on even grounds with [26] which
only outputs one partition (rather than one for every t). The theoretical detectability threshold line
α = αc(T, η) visually confirms the ability of Algorithm 1 to assign non trivial class labels as soon as
theoretically possible, as opposed to the method of [26] which severely fails at small values of η.

Figure 3-right then compares the average overlap performance of Algorithm 1 against competing
methods, for varying detection complexities α/αc(T, η). Algorithm 1 is outperformed only by the
BP algorithm7, but has an approximate 500-fold reduced computational cost. The computational
heaviness of BP becomes practically prohibitive for larger values of n. For completeness, Appendix E
provides further numerical performance comparison tests for different values of η, Φ, for k > 2,
for larger values of n and T , and for graphs with clusters of different average sizes. Interestingly,
for large values of α, Algorithm 1 is slightly outperformed by the static Bethe-Hessian of [28],
independently run at each time-step. As discussed at the end of Section 3, the choice ξ = λd is
sub-optimal compared to the optimal (but out-of-reach in practice) choice ξ = λ, the difference
becoming more visible as α increases away from αc. Supposing one has access to an oracle for λ,
running Algorithm 1 on Hλ,η outputs a performance in terms of overlap (not shown) that is first
super-imposed with the “Alg 1” plot for small values of α and gradually converges to the performance
of “BP” as α increases; thus outperforming “static BH” everywhere. From a dynamical viewpoint,
also, the large α regime is of least importance as a static algorithm can, alone, output a perfect
reconstruction. Further numerical experiments are shown in Appendix E.

For the non-backtracking method of [14] (“dyn B”), the authors suggest to use (as we did here) the
eigenvector associated to the second largest eigenvalue of Bλ,η, which, as Hλd,η, may also have
informative and uninformative eigenvalues in reversed order. The curve “dyn B opt" shows the
performance obtained using all the isolated eigenvectors of Bλ,η and it confirms – in agreement
with Appendices C and E and the claims of [14] – that Bλ,η can indeed make non-trivial community
reconstruction for all α > αc(T, η). Note that, as in the static case [18, 19], Bλ,η is outperformed by
Hλd,η which, additionally, is symmetric and smaller in size, is well defined regardless of λ and is,
therefore, a more suitable candidate for community detection.

4.3 Test on Sociopatterns Primary school

This section shows the results of our experiments on the Primary school network [42, 43] of the
SocioPatterns project. The dataset contains a temporal series of contacts between children and teachers

7The codes used to obtain the BP performance displayed in Figure 3 are courtesy of Amir Ghasemian.
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Figure 4: Modularity as a function of time for Algorithm 1 (Alg 1) for η = 0.55, the dynamic
adjacency matrix of [26] (dyn A), the dynamic Louvain algorithm [41] (dyn Louvain) and the static
Bethe-Hessian of [28] (static BH). The graph {Gt}t=1,...,T is obtained from the Primary school
network [42, 43] dataset, as in Section 4.3. For Algorithm 1, [28] and [26], k = 10 is imposed.

of ten classes of a primary school. For each time 1 ≤ t ≤ T , Gt is obtained considering all interactions
from time t to time t+ 15 min, starting from t1 = 8:30 am until tT = 5 pm for T = 33. Figure 4
compares the modularity as a function of time for different clustering techniques. We empirically
observe that, for this dataset, multiple values of η give similar results: this is not surprising because
the clusters are here well delineated and we are in the (less interesting) easy detection regime. The
value η = 0.55 is considered as an input of Algorithm 1, because it approximately matches the value
of η estimated from the inferred label vector ˆ̀(see Equation (1)).

Figure 4 shows that Algorithm 1 is better than [26, 41] at all times, with a drastic gain during the
lunch break, in which the community structure is harder to delineate. As compared to the static
Bethe-Hessian, Algorithm 1 is slightly outperformed only on some times during the lunch break,
while for other times it benefits from the positive correlation of the labels. Defining a unique, time
independent η certainly hampers the performance on this specific dataset in which a very large η is
expected during the lesson times, while a small η may be more appropriate during the lunch break.

5 Concluding remarks

By means of arguments at the crossroads between statistical physics and graph theory, this article
tailored Algorithm 1, a new spectral algorithm for community detection on sparse dynamical graphs.
Algorithm 1 is capable of reconstructing communities as soon as theoretically possible, thereby
largely outperforming state-of-the-art competing spectral approaches (especially when classes have a
short-term persistence) while only marginally under-performing the (theoretically claimed optimal
but computationally intensive) belief propagation algorithm.

A delicate feature of Algorithm 1 concerns the estimation of the class-persistence parameter η, if not
available. We hinted in Section 4 at a greedy line-search solution which is however computationally
inefficient and lacks of a sound theoretical support. This needs be addressed for Algorithm 1 to be
more self-contained and applicable to the broadest range of practical networks.

Beyond this technical detail, the present analysis only scratches the surface of dynamical community
detection: the problem in itself is vast and many degrees of freedom have not been here accounted for.
The label persistence η and community strength matrix C (and thus the parameter λ in a symmetric
two-class setting) are likely to evolve with time as well. We empirically observed that Algorithm 1
naturally extends to this setting, each temporal block of the matrix H·,· now using its corresponding
λ

(t)
d and ηt. Yet, while Algorithm 1 seems resilient to a more advanced dynamical framework, the

very concept of detectability thresholds becomes more elusive in a symmetrical two-class setting: a
proper metric to measure the distance to optimality would thus need to be first delineated.
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Supplementary material

The supplementary material provides complementary technical arguments to the main results of the
article (Sections A–C), along with a discussion on the extension of the present setting to dynamic
graphs with link persistence across time (Section D). Further numerical tests on the performance
of Algorithm 1 are presented in Section E, while Section F presents the detailed description of
Algorithm 2 to handle fast approximate spectral clustering.

A Detectability threshold for finite T

This section discusses the conjecture of [14] in which the authors introduce a threshold αc(T, η)
(however not explicitly defined8), below which (α < αc(T, η)) community detection is not feasible.
We go here beyond [14] by providing an explicit value for αc(T, η) for all finite T .

As a consequence of the sparsity of each Gt, the graph G, obtained by connecting together the
same node at successive times as per Definition 1 (recall Figure 1) is locally tree-like, i.e. the local
structure of G around a node v ∈ V is the same as that of a Galton-Watson tree T (v) [44], rooted
at v, designed according to the following procedure: let `v ∈ {1, 2} be the label of v; next generate
its progeny by creating ds spatial children (i.e., nodes which live at the same time as v), where
ds is a Bernoulli random variable with mean cΦ, and two temporal children (i.e., nodes which are
the projection of v at neighbouring times); for each spatial child w, assign the label `w = `v with
probability cin/(cin + cout) and `w = 3− `v otherwise; the temporal children keep the same label as
v with probability (1 + η)/2 and change it with probability (1− η)/2; each node thus created further
generates its own set of offspring, with the only difference that the temporal children only bear one
extra temporal child, while spatial children bear two.

In the limit n, T →∞, for any arbitrary v ∈ V , the local structure of G around v is the same as T (v),
the Galton-Watson tree rooted at v. This means that, within a neighborhood reachable in a finite
number of steps from v in G or T (v), the probability distribution of the labels is asymptotically the
same. The local tree-like structure is preserved for finite T (and n→∞) but the boundary conditions
imposed by t = 1 and t = T must be accounted for.

This said, in [29], the authors show that, for a Galton-Watson tree in which only spatial children
are present, label reconstruction is feasible if and only if cΦλ2 = α2 > 1 = α2

c , where λ =
(cin − cout)/(cin + cout). In [14], the authors conjectured a generalization of this result for a multi-
type branching process, such as just described to construct T (v). In this setting, each node acts
differently depending on its being a spatial or a temporal child. In the former case, two temporal
children are generated (with label covariance equal to η), while in the latter only one temporal child
is generated. The conjecture of [14] (which we adapted to the D-DCSBM) states that, for T →∞,
community detection is possible if and only if the largest eigenvalue of

M∞(α, η) =

(
α2 2η2

α2 η2

)
(10)

is greater than one. This condition is verified as long as α > αc(∞, η) =
√

(1− η2)/(1 + η2).

The authors of [14] also provided directions to extend their result to finite T , which we
here make explicit. For each time instant, three types of edges exist: spatial edges (con-
necting nodes in Gt to nodes in Gt), forward temporal edges (connecting nodes in Gt to
nodes in Gt+1) and backwards temporal edges (connecting nodes in Gt to nodes in Gt−1).
We then construct a matrix M̃T (α, η) ∈ R3T×3T identifying the rows and the columns as
{(backwards temporal)t, (spatial)t, (forward temporal)t}t=1,...,T . A (backwards temporal)t
edge goes from a node in Vt to a node in Vt−1 that has, on average, cΦ spatial children with
label correlation equal to λ and one backwards temporal child, with label correlation equal to η.
Similarly (spatial)t goes from a node in Vt to a node in Vt having cΦ temporal children and, one
forward and one backwards temporal children; finally, (forward temporal)t goes from Vt to Vt+1

8Precisely, quoting the authors, this is as far as αc(T, η) is defined: “We can compute the corresponding
finite-time threshold for a fixed T by diagonalizing a (3T − 2)-dimensional matrix, where we have a branching
process with states corresponding to moving along spatial, forward-temporal, or backward-temporal edges at
each time step”.
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with one forward temporal child and cΦ spatial children. The entry i, j of M̃T (α, η) is then set equal
to the number of off-springs of type j of a node reached by an edge of type i, multiplied by the square
label correlation. As forward temporal edges do not exist for t = T and backwards temporal edges
do not exist for t = 1, the matrix M̃T (α, η) ∈ R3T×3T takes the form

M̃T (α, η) =



M̃+
d M+ 0 . . . 0

M̃− Md
. . . . . . 0

0 M−
. . . M+ 0

...
...

. . . Md M̃+

0 0 . . . M− M̃−d


(11)

where

Md =

 0 0 0
η2 cΦλ2 η2

0 0 0

 ; M+ =

0 0 0
0 0 0
0 cΦλ2 η2

 ; M− =

η2 cΦλ2 0
0 0 0
0 0 0


M̃+
d =

0 0 0
0 cΦλ2 η2

0 0 0

 ; M̃+ =

0 0 0
0 0 0
0 cΦλ2 0

 ;

M̃− =

0 cΦλ2 0
0 0 0
0 0 0

 ; M̃−d =

 0 0 0
η2 cΦλ2 0
0 0 0

 .

Note that, since the first and the last rows of M̃T (α, η) only have zero entries, M̃T (α, η) has the same
non-zero eigenvalues as MT (α, η) defined in Equation (3). This also implies that MT (α, η) shares
the non-zero eigenvalues of a matrix of size (3T − 2)× (3T − 2) as initially conjectured in [14].

The analytical expression of αc(T, η) can be obtained for T = 2, 3, 4 and is reported in the main text.
For all other values of T it can be computed numerically. The value of αc(T, η) as a function of η is
reported in Figure 5 for different values of T .
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B Derivation of the dynamic Bethe-Hessian matrix

This appendix derives the matrixHξ,h, which arises from the variational Bethe approximation applied
to the Hamiltonian of Equation (6), which we recall assumes the form

Hξ,h(s) = −
T∑
t=1

 ∑
(it,jt)∈Et

ath(ξ)sitsjt +
∑
it∈Vt

ath(h)sitsit+1

 . (12)

Collecting all time instants,Hξ,h(s) can be synthetically written under the form

Hξ,h(s) = −
∑

(ij)∈E

ath(ωij) sisj (13)

for some appropriate coupling ωij (and where we recall that E is the set of all edges of G). Each
realization s is a random variable, drawn from the Maxwell-Boltzmann distribution

µ(s) =
1

Z
e−Hξ,h(s), (14)

where Z is the normalization constant. We are interested in the average realization of s over the
distribution µ(·), that we denotem∗ = 〈s〉, with 〈·〉 being the average over (14) . From Equation (14),
configurations having a small energetic cost will occur with a larger probability but there are very few
such configurations, as opposed to the exponentially many disordered ones. The competing behavior
of these two terms defines two regimes: (i) the small interaction regime (called the paramagnetic
phase, for small ξ and h) in which the disordered configurations dominate the average configuration
(which is the null vector) and (ii) the strong interaction regime (for large ξ and h) in which the
average value of s is non-trivial and is dominated by the modes of s which are local minima of the
Hamiltonian of Equation (6). These modes are determined by the “mesoscale” structure of G.

The value ofm∗ cannot be computed exactly but, given the locally tree-like nature of G, it may be
evaluated using the asymptotically exact variational Bethe approximation [45]. This approximation
PBethe(·) of µ(·) reads

PBethe(s) =

∏
(i,j)∈E Pij(sisj)∏
i∈V [Pi(si)]di−1

, (15)

where Pij(·) and Pi(·) are the edge and node marginals of PBethe and di is the total degree on G of
node i. Further defining the free energy and the Bethe free energy respectively as

F =
∑
s

µ(s) [Hξ,h(s) + log µ(s)] = −log Z (16)

FBethe(m,χ) =
∑
s

PBethe(s) [Hξ,h(s) + log PBethe(s)] , (17)

where mi = 〈σi〉Bethe and χij = 〈σiσj〉Bethe, 〈·〉Bethe denoting the average taken over PBethe(·).
From a direct calculation, it comes that FBethe(m,χ)−F = DKL(PBethe||µ) ≥ 0, where DKL(·) is
the Kullback-Leibler divergence. Therefore, by minimizing FBethe with respect tom, one minimizes
the divergence with respect to the real distribution and obtains an optimal estimate form∗.

The Bethe free energy can be obtained by plugging Equation (15) into Equation (17) and takes the
explicit form

FBethe(m,χ) =−
∑

(ij)∈E

ath(ωij) χij +
∑

(ij)∈E

∑
sisj

f

(
1 +misi +mjsj + χijsisj

4

)

−
∑
i∈V

(di − 1)
∑
si

f

(
1 +misi

2

)
, (18)

where f(x) = xlog(x). In the case of weak interactions (small ωij), FBethe has a unique minimum
in m = 0. For larger values of ωij , it has a global minimum at m ∝ 1nT and other local minima
appear, corresponding to configurations correlated with the mesoscale structure of G. In order to
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study along which directions the function FBethe finds its local minima, one needs to evaluate the
Hessian matrix of FBethe atm = 0, as done in [32, 19], to obtain

∂2FBethe(m,χ)

∂mi∂mj

∣∣∣∣
m=0

= − χij
1− χ2

ij

Aij +

(∑
k∈∂i

1

1− χ2
ik

− (di − 1)

)
1ij , (19)

where A ∈ {0, 1}nT is the adjacency matrix of G and di = [A1n]i. Similarly minimizing FBethe

with respect to χij ,

∂FBethe(m,χ)

∂χij

∣∣∣∣
m=0

= −ath(ωij) + ath(χij) = 0 (20)

and so χij = ωij .

To finally retrieve the expression of Equation (7), note that di = d
(t)
i + 2 if 2 ≤ t ≤ T − 1 and

di = d
(t)
i + 1 otherwise, where d(t)

i is the degree of node i in Gt, and impose

χij =

{
ξ if ∃ t such that i, j ∈ Vt
h otherwise

(21)

as requested.

We therefore retrieve the matrix Hξ,h of Equation (7). When Hξ,h has a negative eigenvalue,m = 0
is a saddle point and the free energy has a local minimum for some non-trivial configuration. The
eigenvector associated to this negative eigenvalue points towards the direction of the local minimum
of FBethe. As discussed in Section 3, the directions along which stable configurations are observed
correspond to the dominant modes appearing in the Hamiltonian and are naturally correlated to
the class structure. The smallest eigenvalue-eigenvector pairs of Hξ,h may thus be used to retrieve
information on the directions of the dominant informative modes of the graph, as depicted in Figure 2.

C Technical results of Section 3.2

This section provides theoretical support to Proposition 1 of Section 3.2.

Exploiting the deep relation – which we detail in Section C.1 – that there is between the dynamical
Bethe-Hessian of Equation (7) and the weighted non-backtracking matrix of Equation (8), we study
the spectrum of the latter to infer some important properties of our proposed dynamical Bethe-Hessian.
In particular, the eigenvalues of the non-backtracking matrix can be divided into two groups: (i)
a majority of eigenvalues contained in a disc in the complex plane which delimits the bulk of this
matrix (ii) few isolated eigenvalues with modulus larger than the radius of the bulk. These properties
are known and well established in the static regime [20, 12] and we empirically observed to be
maintained also in the dynamical setting under study. Furthermore, in the case of k = 2 classes, in
the static case, the isolated eigenvectors (with largest modulus) are the Perron-Frobenius eigenvector
(with all positive entries) and the eigenvector useful for community reconstruction. Similarly, in the
dynamical case we have two families of eigenvectors (see Figure 2) coming from these two modes.
We will refer to them as informative family and uninformative family.

Based on these empirical observations, we formulate the following assumption:

Assumption 1 Let G be a graph generated according to Definition 1 and Bξ,h the matrix defined in
Equation (8). The bulk of Bξ,h is bounded by a disk in the complex plane with radius denoted by Lξ,h.
The eigenvalues with modulus larger than Lξ,h are isolated and their corresponding eigenvector are
determined by the mesoscale structure of G.

Based on this assumption, in Section C.2 we determine the asymptotic position of the isolated
eigenvalues with modulus larger than the radius of the bulk, as well as the radius of the bulk itself;
from these results, Sections C.3 concludes on Proposition 1. In passing, with the results of C.2, some
properties of the spectrum of the dynamical non-backtracking matrix of [14] are also discussed.
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C.1 Bethe-Hessian and weighted non-backtracking matrices

Let us first elaborate on an important property connecting the spectra of the Bethe-Hessian and
non-backtracking matrices. This relation is well known in the literature (see e.g [46, 31, 32]). For
sake of clarity, we here report the main results that relate the eigenvalues and eigenvectors of the two
matrices. Let us consider the following two matrices for arbitrary weights ω = {ωij}(ij)∈E such that
ωij < 1 for all (ij) ∈ Ed, the set of directed edges of G:

(Bω)(ij)(k`) = 1jk(1− 1il) ωkl ∀ (ij), (kl) ∈ Ed, (22)

(Hω)ij =

(
1 +

∑
k∈∂i

(ωik/x)2

1− (ωik/x)2

)
1ij −

(ωik/x)

1− (ωik/x)2
Aij , ∀ i, j ∈ V, x ∈ (1,∞)

(23)

We now show that, for ωij < 1, whenever x ≥ 1 is a real eigenvalue of Bω , det[Hω/x] = 0. Indeed,
let g ∈ R|Ed| be an eigenvector of Bω with eigenvalue x ≥ 1. Then

(Bωg)ij =
∑

k∈∂j\i

ωjkgjk = mj − ωjigji = xgij , (24)

where mj ≡
∑
k∈∂j ωjkgjk. We may gather this relation under the system of equations(

mj

mi

)
=

(
x ωij
ωij x

)(
gij
gji

)
. (25)

Since ω2
ij < 1 for all (i, j), the system is invertible and a straightforward calculation gives

mi =
∑
j∈∂i

ωijx

x2 − ω2
ij

mj −mi

∑
j∈∂i

ω2
ij

x2 − ω2
ij

(26)

which eventually leads to
Hω/xm = 0. (27)

This confirms that, not only there is a connection among the spectra of the Bethe-Hessian and
non-backtracking matrices, but also between their eigenvectors. Note that, by choosing ωij = ξ is
there if t such that i, j ∈ Vt and ωij = h otherwise, we precisely recover the definitions of Bξ,h and
Hξ/x,h/x as per Equations (7, 8).

We now further comment how the spectra of Bξ,h and Hξ/y,h/y are related when y ∈ R is not an
eigenvalue of Bξ,h. First recall that, as per Assumption 1, the large majority of the eigenvalues
of Bξ,h are asymptotically bounded by a circle in the complex plane and that only few isolated
eigenvalues are larger in modulus with associated eigenvectors representative of the mesoscale
structure of G. First consider the case where y →∞. Then, letting ξ̃ = ξ/y → 0 and h̃ = h/y → 0,
by definition (Equation (7)), it comes that Hξ̃,h̃ � 0, i.e., all the eigenvalues are positive. Now,
decreasing y to y = ρ(Bξ,h), from Equation (27), Hξ̃,h̃ has one eigenvalue equal to zero, which is
necessarily the smallest and for all y > ρ(Bξ,h), Hξ̃,h̃ is positive definite. This is because if there
was a y > ρ(Bξ,h) such that det[Hξ̃,h̃] = 0, then y would have to be an eigenvalue of Bξ,h, which is
absurd by construction.

For y lying between the first and the second largest real eigenvalues of Bξ,h, no eigenvalue of Hξ̃,h̃

is equal to zero, and the smallest one is negative and isolated. Further decreasing the value of y,
the smallest (isolated) eigenvalues of Hξ̃,h̃ become progressively negative in correspondence of the
largest isolated eigenvalues of Bξ,h.

Formally, this discussion may be summarized as follows.

Property 1 Let Lξ,h be the radius of the bulk of Bξ,h and let y ≥ Lξ,h. Then, the number of real
(isolated) eigenvalues of Bξ,h which are greater (or equal) to y is equal to the number of (isolated)
eigenvalues of Hξ/y,h/y which are smaller (or equal) to zero. In particular, for y = Lξ,h, the left
edge of bulk spectrum of Hξ/y,h/y is asymptotically close to 0+.

A pictorial representation of Property 1 is given in Figure 6. With this result, we know how to relate
the spectrum of Hξ,h to the spectrum of Bξ,h that we study in the next section.
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Figure 6: Left : spectrum of the matrix Bξ,h in the complex plane. In blue the considered value of
y and in larger size the two eigenvalues of Bξ,h larger than y. Right : histogram of Hξ/y,h/y with
evidenced the two negative eigenvalues. For both simulations: n = 1 000, T = 3, k = 4, c = 6,
cout = 2 for all off-diagonal elements of C, Φ = 1, η = 0.9, ξ = 0.8, h = 0.6 and y = 4.2.

C.2 Spectrum of the weighted non-backtracking matrix

We now proceed in our agenda by studying the spectrum ofBξ,h under Assumption 1. The method we
use can be seen as a generalization of [18]. By considering the expression of the expected eigenvector,
we first determine the position of the eigenvalues belonging to the informative family (starting from
the largest) and then of the uninformative family. Secondly, we analyze the variance of the expression
of the expected eigenvector and see under what condition the expectation is meaningful. With this
result we finally determine the value of Lξ,h (the radius of the bulk of Bξ,h) and summarize our
findings in Proposition 2.

C.2.1 The position of the informative eigenvalues

In this section we determine the position of the informative eigenvalues of Bξ,h with modulus larger
than Lξ,h. To do so, we first study the largest of them in the limiting case T →∞, to then extend our
findings for finite T to all other eigenvalues.

The limiting case of T →∞
Consider the graph G generated according to Definition 1. Let ωij = ξ if there exists t such that
i, j ∈ Vt and ωij = h otherwise, and let g(r) ∈ R|E|d , for r ∈ N, be the vector with entry

g
(r)
ij =

1

µr1

∑
(wx) : d(jk,wx)=r

k 6=i

W(jk)→(wx)σx, (28)

where {(jk) : d(jk, wx) = r} is the set of directed edges (jk) such that the shortest directed
non-backtracking path connecting (jk) to (wx) is of length r, and where W(jk)→(wx) is the “total
weight” of this shortest path defined as the product of each edge weight ωij , i.e,

W(jk)→(wx) = ω(jk)ω(k·) · · ·ω(·w)ω(wx). (29)

The quantity σx ∈ {±1} takes its value according to the label of node x. The value of µ1 appearing
in Equation (28) will be chosen in order to enforce the vector g(r) to be an approximate eigenvector
of Bξ,h, defined in Equation (22). By the definition of g(r), recalling the expression of Bξ,h in (22),
we find that

(Bξ,hg
(r))ij = µ1g

(r+1)
ij . (30)

We now analyze this expression exploiting the tree-like approximation elaborated in Appendix A.
Resuming from this approximation, the expectation of g(r)

ij may be written under the following form:

E[g
(r)
ij ] =

1

µr1

(
cΦλξχ(r−1)

s + φiηhχ
(r−1)
t

)
σj . (31)
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Here the first addend is the contribution of the spatial children of j which are on average cΦ in
number, and for each of them the weight of the connecting edge is equal to ξ while the correlation
between the labels λ = E[σjσk]. Each spatial child being at a distance r − 1 from the target edges
– themselves at a distance r from (jk) – contributes to the sum through a term which we denoted
χ

(r−1)
s > 0. Similarly, the second addend is the contribution of the temporal children which are
φi = 2 in number if (ij) is a spatial edge or φi = 1 if (ij) is a temporal edge; their own contribution
is denoted χ(r−1)

t > 0. The correlation of the labels of temporal children is equal to η and the weight
of the edges is equal to h. Importantly note that, as a consequence of λ, ξ, η, h being assumed to be
all positive, both χ(r)

s and χ(r)
t are positive as well.

By recurrence, the values of χ(r)
s/t, which we just defined, then undergo the following relation(

χ
(r)
s

χ
(r)
t

)
=

(
cΦλξ 2ηh
cΦλξ ηh

)(
χ

(r−1)
s

χ
(r−1)
t

)
=

(
cΦλξ 2ηh
cΦλξ ηh

)r (
χ

(0)
s

χ
(0)
t

)
(32)

≡
(
M∞(

√
cΦλξ,

√
hη)
)r (χ(0)

s

χ
(0)
t

)
, (33)

where M∞(·, ·) is the matrix introduced in Equation (3). For simplicity we will denote it as M∞.
For, say, r ∼ log(n), χ(r)

s/t ≈ ρr(M∞)vs/t, where v = (vs, vt) is the eigenvector associated to the
eigenvalue of M∞ of largest amplitude. Equation (31) can therefore be further approximated as

E[g
(r)
ij ] =

(
ρ(M∞)

µ1

)r
(cΦλξvs + φiηhvt)σj + o

(
ρ(M∞)

µ1

)r
. (34)

This expression naturally leads to the choice µ1 = ρ(M∞) for which E[g
(r)
ij ] is independent of r, thus

turning Equation (30) into an approximate eigenvector equation and µ1 into a close approximation of
one of the real eigenvalues of Bξ,h.

We now extend this result to the case of finite T , and bring further conclusion on all the eigenvalues
of Bξ,h belonging to the informative family.

The case of finite T

As we discussed already along Appendix A, the case of finite T introduces further difficulties due to
the time-boundaries t = 1 and t = T . This being accounted for, when analyzing the contribution of
each edge, not only we have to distinguish between spatial and temporal edges, but also to specify
the time at which the edge lives. More precisely, suppose that j ∈ Vt for 1 ≤ t ≤ T . We can rewrite
Equation (31) as

E[g
(r)
ij ] =

1

µ1

[
cΦλξχ

(r−1)
s,t + (1− δ1,t)ηhχ(r−1)

b,t + (1− δT,t)ηhχ(r−1)
f,t

]
, (35)

where χ(·)
s,t, χ

(·)
b,t, χ

(·)
f,t are respectively the contributions to the of a spatial, a backwards temporal

and a forward temporal child of a node j ∈ Vt. The relation between all the χ’s directly unfolds
from the branching process at finite T that we already discussed in Appendix A. More precisely, let
χ(r) = {χ(r)

b,t , χ
(r)
s,t , χ

(r)
f,t}t=1,...,T , then the following relation holds:

χ(r) = MT

(√
cΦλξ,

√
ηh
)
χ(r−1), (36)

where MT (·, ·) is the matrix defined in Equation (4). Following the argument we just detailed for
T →∞, we then get that the largest eigenvalue of the informative family is asymptotically close to
µ1 = ρ

(
MT

(√
cΦλξ,

√
ηh
))

.

This analysis also allows us to describe the subsequent eigenvalues µi≥2 belonging to the informative
family that have a smaller modulus. These modes are metastable configurations of the branching
process as in configuration 4 of Figure 2. In these modes, nodes belonging to different communities
are still distinguished (hence the reason why these modes are informative), but the class identification
σx may be reversed across time. This results in a state in which neighbours are more likely to change
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label than to keep it, hence they have negative label correlation and lead to negative values of χ. This
means to relax the constraint χ > 0 and thus no longer looking for the leading eigenvalue of MT .
From this intuition we argue that the subsequent informative eigenvalues of Bξ,h coincide with the
subsequent eigenvalues of MT

(√
cΦλξ,

√
ηh
)
.

A further important remark should be made on the eigenvalues µi≥1. The matrix MT is real and
non-negative, but it is not symmetric. Consequently, the leading eigenvalue, µ1 will certainly be
real (due to Perron-Frobenius theorem), while the subsequent eigenvalues are potentially complex.
Although we cannot offer a clear interpretation for the complex nature of some of these isolated
eigenvalues, our study is experimentally verified to hold also in this case as shown in Figure 7.

We now proceed extending our arguments to the uninformative family of isolated eigenvalues of Bξ,h.

C.2.2 The position of the uninformative isolated eigenvalues

As in the static case, not all stable configurations of the branching process of Appendix A are
informative. In particular, two nodes of G might be considered to belong to the same community only
because they live at the same time. Based on the technique detailed in Section C.2.1, we now describe
the position of the eigenvalues forming the uninformative family. Although these eigenvalues are not
informative, the awareness of their presence is crucial if one has to avoid to mistakenly use one of
these for community reconstruction.

We proceed again by studying the largest of these eigenvalues (which is also the largest eigenvalue
of Bξ,h), to then extended the result to all the others. Let us denote {γi}i=1,...,T this second set of
(trivial and non-informative) eigenvalues. The approximate Perron-Frobenius eigenvector b ∈ R2|E|

can be written as

b
(r)
ij =

1

γr1

∑
(wx) : d(jk,wx)=r

k 6=i

W(jk)→(wx). (37)

According to this expression, we set σx = 1 for all nodes and thus the correlation between σx and σy
is always unitary. Following the argument developed to determine the value of µ1, we then obtain

γ1 = ρ
(
MT

(√
cΦξ,

√
h
))

. (38)

As in Section C.2.1, this eigenvalue is necessarily real and the subsequent eigenvalues of the unin-
formative family are given by the subsequent eigenvalues of MT

(√
cΦξ,

√
h
)

and can be complex.
Note importantly that the ordering of {µi}i≥1 and {γi}i≥1 is not a priori well defined.

So far we determined the position of the isolated eigenvalues under the assumption that the expectation
of the approximate eigenvectors are significant. In order to know when this analysis holds, we have
to study the variance of the entries of the approximate eigenvectors and see under what conditions it
vanishes. This analysis will also allow us to determine the value of the radius of the bulk of Bξ,h.

C.2.3 The bulk eigenvalues of Bξ,h

To begin with, we investigate under which conditions the approximate eigenvector Equations (31, 37)
hold. We then proceed with a study of the variance of g(r)

ij (and b(r)ij ). When the variance vanishes, the
eigenvector is well approximated by its expectation and we conjecture it is isolated. On the contrary,
when the variance diverges it is because it gets asymptotically close to the bulk of uninformative
eigenvalues and is no longer isolated.

Let us first consider the eigenvector attached to µ1:

E
[(
g

(r)
ij

)2
]

=
1

µ2r
1

∑
(wx) : d(jk,wx)=r

k 6=i

W 2
(jk)→(wx) +

∑
(vy) : d(jk,vy)=r

(vy)6=(wx),k 6=i

σxσyW(jk)→(wx)W(jk)→(vy)

 .

(39)
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The first addend of (39) can be evaluated as previously done in Equation (33), getting

E

 1

µ2r
1

∑
(wx) : d(jl,wx)=r

l6=i

W 2
(jl)→(wx)

 = O

ρr
(
MT (

√
cΦξ2, h)

)
µ2r

1

 . (40)

If µ2
1 < ρ

(
MT (

√
cΦξ2, h)

)
, this addend of (39) diverges, and so does the variance of g(r)

ij : in this

case, g(r) cannot be an approximate eigenvector of Bξ,h.

Consider next the second addend of Equation (39):

E

 1

µ2r
1

∑
(wx) : d(jk,wx)=r

l6=i

∑
(vy) : d(jk,vy)=r

(vy)6=(wx),k 6=i

σxσyW(jk)→(wx)W(jk)→(vy)


=

1

µ2r
1

∑
(wx) : d(jk,wx)=r

l 6=i

∑
(vy) : d(jk,vy)=r

(vy)6=(wx),k 6=i

E[σjσxW(jk)→(wx) · σjσyW(jk)→(vy)]

≈ 1

µ2r
1

∑
(wx) : d(jk,wx)=r

l 6=i

E[σjσxW(jk)→(wx)]
∑

(vy) : d(jk,vy)=r
(vy)6=(wx),k 6=i

E[σjσyW(jk)→(vy)]

≈ 1

µ2r
1

∑
(wx) : d(jk,wx)=r

l 6=i

E[σjσxW(jk)→(wx)]
∑

(vy) : d(jk,vy)=r
k 6=i

E[σjσyW(jk)→(vy)]

= E2
[
g

(r)
ij

]
, (41)

where we exploited the fact that the paths (jk → wl) and (jk → vl) are asymptotically independent
and that the number of paths leading to nodes a distance r from (jk) is exponentially large in r,
unlike the number of paths leading to (vy) from (jk). We thus obtain that the variance V[g

(r)
ij ] of

g
(r)
ij grows as

V
[
g

(r)
ij

]
= O

ρr
(
MT (

√
cΦξ2, h)

)
µ2r

1

 . (42)

As a consequence, the variance of g(r)
ij vanishes if and only if µ1 >

√
ρ
(
MT (

√
cΦξ2, h)

)
.

Considering now the problem of evaluating the variance for all the {µi}i≥1 and {γi}i≥1, note that,
the variance is only determined by the first addend of Equation (39). This term does not depend
on the configuration σ and is, therefore, the same for all the isolated eigenvectors. Consequently,
for all the isolated eigenvectors, the variance vanishes if the corresponding eigenvalue is greater

than Lξ,h =

√
ρ
(
MT (

√
cΦξ2, h)

)
, which is precisely the radius of the bulk of Bξ,h, since an

informative eigenvalue-eigenvector pair (µi, gi), (resp. (γi, bi)), for Bξ,h can only exist provided
that µi (resp. γi) is greater than Lξ,h.

The results of this section may be summarized as follows.

Proposition 2 Letting G be a graph generated as per Definition 1, in the n→∞ limit, the complex
eigenvalues forming the bulk of Bξ,h are bounded by a disk in the complex plane of radius Lξ,h =√
ρ(MT (

√
cΦξ2, h)), for MT (·, ·) defined in Equation (4). All the eigenvalues of Bξ,h of magnitude

larger than Lξ,h are isolated and are asymptotically close to one of the eigenvalues of either
MT (
√
cΦξλ,

√
ηh) (in which case they correspond to non-trivial modes) or MT (

√
cΦξ,

√
h) (in

which case they correspond to trivial modes).
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Figure 7: The 150 eigenvalues of Bξ,h with largest real part, for n = 10 000, T = 5, η = 0.4, c = 10,
cout = 4, Φ = 1.64. Left ξ = 0.2, h = 0.9. Right ξ = 0.4, h = 0.7. The blue dashed lines are the
theoretical positions of the eigenvalues forming the informative family, while the black dashed-dotted
lines indicate the uninformative family. The thickest blue and black lines are µ1 and γ1, respectively.
The imaginary eigenvalues are represented with a circle in the complex plane. The solid black line is
a part of a circle of radius Lξ,h.

Figure 7 confirms numerically Proposition 2 for two choices of values of (ξ, h), one in which all the
isolated eigenvalues are real and one in which there are complex isolated eigenvalues. We choose
to compute only the 150 eigenvalues with largest real part to keep a reasonable computational time,
while having a large value of n.

Based on these results, we now proceed giving the supporting arguments of Proposition 1.

C.3 Supporting arguments for Proposition 1

This section provides the final theoretical support to Proposition 1 at the core of the article, being
at the root of our proposed dynamic clustering algorithm. To this end, we need to show how the
bulk spectrum of Bξ,h relates to the bulk spectrum of Hξ,h for the values of (ξ, h) proposed in
Proposition 1, i.e., ξ = λd = αc(T,η)√

cΦ
and h = η.

Exploiting the result of Proposition 2, the matrix Bλd,η has an eigenvector correlated to the class
labels equal to µ1 = ρ(MT (

√
cΦλλd, η)). First note that, by definition,

√
cΦλ2

d = αc(T, η), while√
cΦλ2 = α. For α > αc(T, η), then λ > λd, and, consequently

√
cΦλλd > αc(T, η). From this

last equation and the definition of αc(T, η) provided in Section 2.2, we conclude that µ1 > 1.

From Proposition 2, we further have that the radius of the bulk spectrum of Bλd,η is equal to
Lλd,η = 1. As such, the informative eigenvalue µ1 of Bλd,η exists as soon as α > αc(T, η).

From Property 1, the smallest eigenvalue of the bulk (i.e., its left-edge) of Hλd,η is asymptotically
close to zero and all the eigenvectors associated to the negative eigenvalues are correlated to the
mesoscale structure of G, thereby entailing the validity and optimal performance down to the
detectability threshold of our proposed Algorithm 1.

In Figure 8 (subplots 2 and 4) we provide numerical support to Proposition 1, showing the spectra of
Bλd,η and Hλd,η .

C.4 Analysis of the spectrum of Bλ,η

In the previous sections we studied the spectrum of Bξ,h for generic (ξ, h). We now focus on the
particular choice (ξ = λ, h = η) that leads to Bλ,η, sharing the same eigenvalues of the dynamical
non-backtracking of [14]. First we show that this matrix has an informative isolated eigenvalue (not
necessarily the second largest) for all α > αc(T, η). We then show that the matrix Hλ,η shares the
same property. We further comment that, however, the choice (ξ = λ, η = h) is impractical from an
algorithmic standpoint.
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Figure 8: Sub-figures 1, 2: spectrum of Bξ,η for ξ = λ and ξ = λd, respectively. The green dashed
line is the position of 1, while the black circle is of radius Lξ,η. Sub-figures 3, 4: histogram of
Hξ,η for ξ = λ and ξ = λd, respectively. The black dashed line indicates the position of 0. For all
simulations, T = 2, η = 0.4, c = 6, cout = 1, Φ = 1, n = 2 000.

Community detectability with Bλ,η
The fact that the matrix Bλ,η can be used for community reconstruction is a straightforward con-
sequence of Proposition 2. In fact, letting ξ = λ and h = η, we obtain that the leading in-
formative eigenvalue is equal to µ1 = ρ(MT (α, η)), while the radius of the bulk is equal to
Lλ,η =

√
ρ(MT (α, η)) =

√
µ1. By definition, if α > αc(T, η), then µ1 > 1, therefore µ1 > Lλ,η.

So for all α > αc(T, η), µ1 is an isolated eigenvalue in the spectrum of Bλ,η, but it does not
correspond, in general, to the second largest eigenvalue.

We now proceed our discussion studying the matrix Hλ,η .

Community detectability with Hλ,η

In order to fully grasp the properties of the matrix Hλ,η , one has to consider its relation with Bλ,η and
the belief propagation (BP) equations. Specifically this allows us to show that the most informative
eigenvalue of Bλ,η is 1 < Lλ,η and lies isolated inside the bulk. Consequently, as per Section C.1,
the most informative eigenvalue of Hλ,η is equal to zero.

We first establish that Bλ,η naturally comes into play by linearizing BP equations: these consist
of a set of fixed-point equations defining “messages” mij exchanged between the nodes i and j,
and ultimately providing an asymptotically optimal community clustering algorithm. Specifically,
from the expression of the whole set of messages mij , one can estimate the marginal probability
distribution of the label of each node. To this end, first define

H =

(
1+η

2
1−η

2
1+η

2
1−η

2

)
, C =

(
cin cout

cout cin

)
. (43)

Letting a, b ∈ {±1}, the BP equations take the form [14, Equations 5,6,8]

mjt,it(a) =
e−ht(a)

Zjt,it

(∑
b

Hab mit,it+1(b)

)(∑
b

Hab mit,it−1(b)

) ∏
lt∈∂it\jt

∑
b

Cabmit,lt(b)

mit+1,it(a) =
e−ht(a)

Zit+1,it

(∑
b

Hab mit,it−1
(b)

) ∏
lt∈∂it

∑
b

Cabmit,lt(b) (44)

where

ht(a) =
1

n

∑
j∈Vt

∑
b

Cabmit,jt(b). (45)
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The above messages can be expanded around the so-called trivial fixed point9 mjt,it(±1) = 1/2±
εit,jt , mit,it±1(±1) = 1/2± εit,it±1 , yielding

εjt,it = η(εit,it−1
+ εit,it+1

) + λ
∑

`t∈∂it\jt

εit,`t (46)

εit+1,it = ηεit,it−1
+ λ

∑
`t∈∂it

εit,`t . (47)

These equations can be rewritten in synthetic form introducing the weighted non-backtracking matrix

Bλ,ηε = ε. (48)

In agreement with our empirical observations, we predict that the matrix Bλ,η has an eigenvalue
asymptotically close to one, so that, as a consequence of the property discussed in Appendix C.1,Hλ,η

has an eigenvalue asymptotically close to zero. The corresponding eigenvector of Bλ,η represents
the deviation from the trivial fixed point and is naturally connected to the community structure. The
presence (and importance) of this isolated eigenvalue has been already observed and studied in the
static regime [28, 47] and is visually depicted in Figure 8 (subplots 1 and 3).

We finally argue that this eigenvalue of Bλ,η exists and is isolated as soon as α > αc(T, η). Indeed,
the eigenvalue equal to one lies isolated inside the bulk of Bλ,η, the radius of the bulk spectrum
of Bλ,η being Lλ,η =

√
ρ(MT (α, η)). There further exists another informative eigenvalue which

is equal to µ1 = ρ(MT (α, η)). The eigenvalue equal to 1 remains isolated inside the bulk for
all α > αc(T, η) and meets the outer-bulk isolated eigenvalue, µ1, right at the edge of the bulk
when α = αc(T, η) (i.e., at the precise detection threshold). Below the transition threshold, when
α < αc(T, η), the two eigenvalues then become complex conjugate.

This result can be summarized in the form of the following proposition.

Proposition 3 Let G be a graph generated as per Definition 1. As n→∞, the complex eigenvalues
forming the bulk of of the non-symmetric matrix Bλ,η are asymptotically bounded by a circle in the
complex plane of radius Lλ,η =

√
ρ(MT (α, η)), with α =

√
cΦλ2 and MT (α, η) defined in (3).

Besides, if α > αc(T, η), then 1 < Lλ,η, 1 is an isolated eigenvalue of Bλ,η and 0 is an isolated
eigenvalue of Hλ,η , and the corresponding eigenvectors for both matrices are correlated to the vector
of community labels.

Proposition 3 states that one informative eigenvector of Hλ,η (the one corresponding to the mode
2 of Figure 2) is associated to the zero eigenvalue, but nothing is said on its relative position in the
spectrum of Hλ,η . This is a practical issue: indeed, as λ is also a priori unknown, one cannot simply
browse over values of λ in search for an isolated zero eigenvalue of Hλ,η , which may correspond to a
non-informative mode.

The numerical support of Proposition 3 (subplots 1 and 3) is provided by Figure 8.

D Dependence of the realizations of A(t) by adding edge persistence

This section provides hints to generalize the main results of the article to networks with persistence
not only in the labels, but also in the links that can be maintained across successive (therefore non
longer independent) realizations of the graph. Link persistence has a deleterious effect on community
detection because it introduces lagged inference [35, 48], i.e., the reconstruction at time t accounts
for the realization of the network at earlier than present time. Specifically, the following generative
model is now assumed:

A
(t+1)
ij =

{
A

(t)
ij w.p. τ

∆
(t)
ij w.p. (1− τ)

where ∆
(t)
ij =

{
1 w.p. θiθj

C`it ,`jt
n

0 otherwise.
(49)

9In this fixed point the messages are independent of the class labels, hence it is called trivial. From a simple
substitution one can indeed verify that it is a fixed point.
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The scenario covered in Section 2 of the main article allows one to infer the community structure
from {∆(t)}t=1,...,T but we only observe its "spoiled" version {A(t)}t=1,...,T . In order to overcome
this limitation, we introduce the following matrix:

Ã
(t+1)
ij =

{
1 if A

(t+1)
ij = 1 and A

(t)
ij = 0

0 else.
(50)

In other words, if the same link is repeated at two successive time steps, it is deleted, because, if it
was repeated, with high probability it must have been copied (recall that the probability of a link to
spontaneously appear in our sparse regime is of order O(1/n)). Given the sparsity of ∆, the matrices
Ã

(t+1)
ij and Ã(t)

ij are asymptotically independent and we thus recover the framework considered
in Section 2 of the main article, when using Ã(t) (instead of A(t)), provided that the detectability
conditions on Ã(t) are met.

Let us investigate this detectability aspect. Starting from

P(Ã
(t+1)
ij = 1) = P(A

(t+1)
ij = 1|A(t)

ij = 0)
(
1− P(A

(t)
ij = 1)

)
(51)

we compute the value of P(A
(t+1)
ij = 1) recursively:

P(A
(t+1)
ij = 1) = τP(A

(t)
ij = 1) + (1− τ) P(∆

(t+1)
ij = 1) (52)

and thus, from time t = 1,

P(A
(t+1)
ij = 1) =

t∑
m=1

P
(

∆
(t+1−m)
ij = 1

)
τm −

t−1∑
m=1

P
(

∆
(t+1−m)
ij = 1

)
τm+1 = On

(
1

n

)
.

(53)

Hence, injecting Equation 53 into Equation 51, we obtain

P(Ã
(t+1)
ij = 1) = P(A

(t+1)
ij = 1|A(t)

ij = 0)(1 + on(1)) = (1− τ)θiθj
C`it ,`jt
n

+ on(1). (54)

The generative model of Ã(t)
ij thus asymptotically follows a DC-SBM in which the entries of C are

multiplied times (1− τ).

To test our theoretical analysis, we evaluate numerically the percolation threshold and the detectability
threshold on the matrix Ã(T ). More specifically, the percolation threshold defines the condition under
which the graph corresponding to Ã(T ) has a giant component. For the DC-SBM (which generates
∆(T )), this condition is met whenever cΦ > 1 [27]. The generative model of Ã(T ) is asymptotically
a DC-SBM in which all entries of the matrix C are multiplied times a factor (1− τ). The percolation
threshold hence becomes

(1− τ)cΦ > 1 (55)

In the left plot of Figure 9 we generated, for different values of cΦ and different values of τ , a
sequence of T = 15 snapshots according to Equation (49) and plotted in color code the size of
the giant component of GT , divided by the size of the graph. The dash-dotted black line indicates
the position of the percolation threshold that evidences a good agreement between the theoretical
prediction and the numerical experiment.

Concerning the detectability threshold, instead, the updated (static) detectability threshold here reads

α >
1√

1− τ
. (56)

In order to estimate α we compute α̂

α̂ =
ĉin − ĉ√

ĉ

√
Φ̂, (57)
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Figure 9: Left: Size of the biggest connected component divided by n as a function of c and τ . The
black line indicates the theoretical percolation threshold on the matrix Ã, Equation (55). Right Plot
of th(3.5(α̂− 1)) (see text) as a function of α and τ . The black line indicates the static detectability
threshold on the matrix Ã, Equation (56). For both figures: T = 15, n = 5 000, k = 2, Φ = 1.65,
η = 0.8. Averages are taken over three samples.

where

ĉ =
1

n

∑
i,j∈VT

Ã
(T )
ij ; ĉin =

2

n

∑
i,j∈VT :`i=`j

Ã
(T )
ij ; Φ̂ =

1

nĉ2

∑
i∈VT

∑
j∈VT

Ã
(T )
ij

2

(58)

With a similar procedure as the one described to evaluate numerically the percolation threshold, in
the right subplot of Figure 9, we display in color code the value of th(3.5(α̂ − 1)), saturating the
negative values to zero. When α̂ > 1 the plotted function is between zero and one and we are above
the transition. On the opposite, when α̂ < 1 we are below the transition. The black dash-dotted line
confirms the theoretical prediction of the detectability threshold, confirming also in this case our
theoretical results.

Concluding, to get rid of the lag effect introduced by the persistence in the edges, one needs to remove
at each time step the edges that are repeated. The positions of the information-theoretic transitions
are asymptotically the same as those of a D-DCSBM model in which the entries of the matrix C are
re-scaled by a factor 1− τ , the proportion of edges that do not get copied.

E Performance comparison

This section compares numerically the performance of Algorithm 1 against the main spectral methods
commented along the paper. In Figure 10 the algorithms are tested for a different number of
classes, value of η and degree distribution. For k > 2 a symmetric setting with classes of equal
size and Cab = cout for all a 6= b is considered, so that the spectral algorithm of [14] is still well
defined. Figure 10 indeed confirms that Algorithm 1 (i) benefits from high label persistence η; (ii)
systematically outperforms the two considered competing dynamical sparse spectral algorithms [26],
[14]; (iii) is capable of handling an arbitrary degree distribution.

To compare the performance of Algorithm 1 and the static Bethe-Hessian of [28], the case of small
and large values of α should be treated separately. Close to the transition, Algorithm 1 improves over
the static Bethe-Hessian and this gets more evident as η increases: the joint solution of the problem
at all times allows to improve the clustering performance in the hard detection regime. For large
values of α, instead, there seems to exist α∗(η) beyond which regularity only marginally improves the
detection performance and Algorithm 1 performs equally (or slightly worse) than the static algorithm
of [28]. Here, Algorithm 1 suffers the sub-optimal choices commented in Section 3 made to obtain a

23



0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

0.2

0.4

0.6

0.8

1.0

ov
er

la
p

k = 2, = 1

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

0.0

0.2

0.4

0.6

0.8

1.0

k = 5, = 1

0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

k = 2, = 1.95

0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

=
0.2

k = 5, = 1.95
Alg 1
Dyn A
Dyn B
Static BH

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

ov
er

la
p

0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

=
0.5

1.0 1.5 2.0 2.5 3.0 3.5 4.0

/ c(T, )

0.2

0.4

0.6

0.8

1.0

ov
er

la
p

1.0 1.5 2.0 2.5 3.0 3.5 4.0

/ c(T, )
0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

/ c(T, )
0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

/ c(T, )
0.0

0.2

0.4

0.6

0.8

1.0

=
0.9

Figure 10: Overlap comparison of Algorithm 1 (Alg 1), the dynamic adjacency matrix of [26] (Dyn A),
the dynamic non-backtracking of [14] (Dyn B) and the static Bethe-Hessian of [28] (Static BH). The
title of each row ant column indicates the values of η, k,Φ considered. For Φ 6= 1 a power law degree
distribution is adopted. The value of α is defined as α =

√
cΦλ2, where λ = (cin − cout)/(kc). The

vertical line indicates the position of α/αc(T, η) = 1. For all simulations: c = 6, cout = 0.5→ 5,
n = 25 000, T = 4. Averages are taken over 10 samples.

practical algorithm achieving non-trivial reconstruction when close to αc(T, η). On the opposite, the
static Bethe-Hessian of [28] is explicitly designed to optimally perform community detection for all
values of α and any degree distribution, thereby justifying the two curves for large values of α.

More specifically, Figure 11.A confirms that one can devise an optimal (but impractical) algorithm
that exploits the eigenvector of Hλ,η with null eigenvalue, as suggested in Section C.4. Close to the
transition, the two dynamical methods perform similarly and largely outperform the static algorithm.
For large values of α, instead, Algorithm 1 suffers the sub-optimal (but practical) choice of ξ = λd,
while for ξ = λ the dynamical Bethe-Hessian is never beaten by the static Bethe-Hessian.
Figure 11.B instead compares the performance of Algorithm 1 with the dynamical adjacency matrix
[26] and the static Bethe-Hessian [28] for a large value of T = 25, well evidencing the advantage of
finding a joint solution of the clustering problem at all times.

A last remark concerns the capability of Algorithm 1 to recover communities of unequal sizes.
Figure 11.C shows the accuracy of reconstruction of two communities of different size, as a function
of the size of the smallest cluster over the size of the biggest. In order to obtain comparable results
for different values of the ratio of the sizes of the two clusters, the following strategy is adopted: let
Π ∈ R2×2 be the diagonal matrix defined so that Πii is the fraction of nodes belonging to class i
(Tr(Π) = 1). By imposing CΠ12 = c1n, the expected average c is independent of the class label and
it corresponds to the leading eigenvalue of CΠ. The second eigenvalue of CΠ, instead, determines
the hardness of the detection problem (in the case of two classes of equal size it equal (cin− cout)/2).
For a given ratio Π11/Π22, the matrix C is constructed so to let the leading eigenvalue of CΠ equal
to c, and the second eigenvalue equal to a fixed value. For each time t ≥ 2, the size of each class is
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Figure 11: A: overlap comparison of Algorithm 1 (Alg 1), the static Bethe-Hessian of [28] (Static
BH) and the reconstruction obtained using the eigenvector with zero eigenvalue of Hλ,η (opt. BH
dyn). For this simulation n = 25 000, k = 2, Φ = 1, cout = 0.5 → 5, c = 6, T = 4, η = 0.9.
Averages are taken over 10 samples. B: overlap comparison for Algorithm 1 (Alg 1), the dynamical
adjacency matrix of [26] (dyn A) and the static Bethe-Hessian of [28] (static BH) for large T . For this
simulation n = 500, k = 2, Φ = 1, cout = 2→ 5.5, c = 6, T = 25, η = 0.8. C: Overlap averaged
over time achieved by Algorithm 1 on graphs with two communities of different size, as a function of
the ratio of the size of the two communities. For this simulation n = 10 000, T = 5, c = 6, Φ = 1,
η = 0.7. The second largest eigenvalue of CΠ is fixed to s2(CΠ) = 4. Averages over 15 samples.

kept fixed, by reassigning the labels according to the rule

`it =

{
`it−1

w.p. η
a w.p. (1− η)Πaa, a ∈ {1, 2}.

(59)

The overlap (averaged over time) is then evaluated independently over the large and small class, to
keep this measure meaningful: in the case |Vsmall| � |Vlarge|, assigning all nodes to the same cluster
would output a large overlap.

F A fast implementation

A naive implementation of Algorithm 1 runs in O(nT
∑m
l=k l

2) where m is the a priori unknown
number of negative eigenvalues of Hλd,η. Indeed, one (i) starts by computing the k eigenvectors
associated to the lowest eigenvalues of Hλd,η, costing O(nTk2) via for instance classical restarted
spectral Arnoldi algorithms [37]; (ii) verifies that the largest found eigenvalue is still negative; (iii)
computes the k + 1 eigenvectors associated to the lowest eigenvalues of Hξ,λd ; (iv) checks that the
largest found eigenvalue is still negative; (v) iterates this process until the largest found eigenvalue
crosses zero.

A much faster approximate implementation is described in Algorithm 2. The computation of
the embedding Y (line 10) should be done iteratively and thus costs O(pnT log(nT )), where p
indicates the order of the polynomial approximation f̃ (defined in line 8). The T k-means steps cost
O(nTk log(nT )). The overall cost is thus O(nTk log(nT )), where the constant p is omitted as it is
a problem-independent numerical factor.

To be complete, we recall here the two main arguments behind this accelerated algorithm: random
projections and polynomial approximation. Further details may be found in [38, 39, 40].

A preliminary observation. Let X ∈ RnT×m be the exact eigenvectors of Hλd,η associated to
negative eigenvalues. They are obviously also the eigenvalues between 0 and−µmin > 0 of the shifted
matrix (used in Algorithm 2) H ′λd,η = Hλd,η − µminInT , where µmin is the smallest eigenvalue
of Hλd,η. Algorithm 1 then performs k-means on the rows of {Xit}i=1,...,n for any t = 1, . . . , T .
An important observation is that k-means only relies on the Euclidean distance between the feature
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Algorithm 2 A fast approximate implementation of Algorithm 1.

1: Input : adjacency matrices {A(t)}t=1,...,T of the undirected dynamical graph G = {Gt}t=1,...,T ,
label persistence η, number of clusters k; and parameters typically set to p = 50 (the order of the
polynomial approximation) and r = 10 log(nT ) (the dimension of the random projection)

2: for t = 1 : T − 1 do
3: Remove from A(t+1) the edges appearing in both A(t) and A(t+1) (Appendix D)
4: Compute λd as in Algorithm 1 and create the dynamical Bethe-Hessian matrix Hλd,η ∈ RnT×nT
5: Compute µmin and µmax the minimal and maximal eigenvalues of Hλd,η

6: Build H ′λd,η = Hλd,η − µminI , the shifted positive semi-definite version of Hλd,η .
7: Consider the step function f(µ) = 1 if µ ≤ −µmin and 0 if µ > −µmin.
8: Compute the coefficients {αk}k=0,...,p of the order p Jackson-Chebychev polynomial approxi-

mation of f on the interval [0, µmax − µmin]:

∀µ ∈ [0, µmax − µmin], f(µ) ' f̃(µ) =

p∑
k=0

αkµ
k.

9: Generate a random matrix R ∈ RnT×r with iid Gaussian entries such that E(RRT ) = I .
10: Compute Y ∈ RnT×r as

Y = f̃(H ′λd,η)R =

p∑
k=0

αkH
′k
λd,η

R

11: Normalize the rows of Yi,: ← Yi,:/‖Yi,:‖
12: for t = 1 : T do
13: Estimate the community labels {ˆ̀it}i=1,...n using k-class k-means on the rows {Yit}i=1,...,n.
14: return Estimated label vector ˆ̀∈ {1, . . . , k}nT .

vectors fi = XT δit ∈ Rm, where the only non-zero entry of δit ∈ {0, 1}nT is precisely it,

d2
ij = ||fi − fj ||22. (60)

As such, k-means does not need the exact matrix X , but rather only feature vectors whose interdis-
tances verify the above. The random projections discussed in the next paragraph aim at creating
random feature vectors whose interdistances concentrate around the above Euclidean distance.

Random projection. Denote by R ∈ RnT×r a random matrix with for example Gaussian i.i.d.
entries verifying E(RRT ) = I . Define Y = XXTR ∈ RnT×r and new feature vectors f̄i =
Y T δi ∈ Rr. One has, denoting δij = δi − δj :

∀ i, j d̄2
ij = ||f̄i − f̄j ||22 = ||RTXXT δij ||2 (61)

and in expectation:

∀ i, j E
(
d̄2
ij

)
= E

(
δTijXX

TRRTXXT δij
)

= δTijXX
TE
(
RRT

)
XXT δij

= δTijXX
TXXT δij

= δTijXX
T δij

= d2
ij .

Importantly, the concentration of the expectation around its expected value is fast. The Jonhson
Lindenstrauss lemma states that r = O( 1

ε2 log nT ) suffices for a (1+ ε) multiplicative approximation
of the Euclidean distance (see [38, 39] for a lengthier discussion).

Polynomial approximation. In our context, these random projections are pointless as long as
we do not have an efficient way to obtain Y without actually computing X . This problem can
be solved using a polynomial approximation. Let us write the diagonalized form of H ′λd,η as
H ′λd,η = UΛ′UT where Λ′ is the diagonal matrix of eigenvalues {µ′i}. Let us write the matrix
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Figure 12: Top: computation time of Algorithm 2 versus the number of nodes n (left, for T = 2),
the number of timesteps T (middle, for n = 1000) and the number of communities k (right, for
n = 1000), with parameters η = 0.7, average degree c = 6, Φ = 1.6, and α = 1.5αc(T, η). Bottom:
performance comparison between Algorithm 1 and Algorithm 2 in terms of (left) overlap versus
α/αc(T, η) for n = 5000, T = 10, k = 2, c = 6, η = 0.5, Φ = 1.6 and in terms of (right)
computation time versus T for n = 300, k = 2, c = 6, α = 1.5αc(T, η), η = 0.5, Φ = 1.6. On all
figures, the results are the average over 40 experiments.

function f(H ′λd,η) = Uf(Λ′)UT for any function f defined on the spectrum of H ′λd,η. Let us
consider the particular step-function function f(µ) that is equal to 1 if µ ≤ −µmin and to 0 if
µ > −µmin. Note that XXT = f(H ′λd,η).

Define f̃(µ) =
∑p
k=0 αkµ

k a polynomial approximation of order p of f(µ) on the interval [0, µmax−
µmin] (the larger p the better the approximation). One can compute an approximation of Y using f̃ :

Y = f(H ′λd,η) R

' f̃(H ′λd,η)R = U

p∑
k=0

αkΛ′kUTR =

p∑
k=0

αkH
′k
λd,η

R.

The choice of which polynomial approximation to choose is not straightforward. One possible choice
is to use Chebychev polynomials as they have a guarantee on the infinite norm of the approximation
error. However, they tend to create Gibbs oscillation around sharp cut-offs of the function to
approximate. As the function we wish to approximate here is a step function, it is customary to
choose Jackson-Chebychev polynomials (which explicitly dampen these unwanted oscillations). See
discussions in [40, 49, 50].

In practice. Fig. 12 (top) experimentally illustrates that the complexity of Algorithm 2 is indeed
linear in n, T and k. The bottom of Fig. 12 compares both Algorithms in terms of overlap and
computation time: Algorithm 2, being only an approximation, never performs as well as Algorithm 1,
especially as the detection problem becomes more difficult and the control parameter α approaches
the transition point αc. However, the gain in computation time is drastic as m increases (here k is
fixed to 2 and T increases).
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Broader impact

Community detection algorithms have a broad interest as they can be applied to a very vast class of
problems and settings. An interesting example, of utmost importance in the present days, was given
by [51] were the authors showed the importance of keeping track of the time-evolving community
structure of social networks to properly model an epidemic spreading. Not unlike any other clustering
algorithm, however, when applied to a real social network, our algorithm can potentially evidence
differences in terms of e.g. race, sex, religion. As discussed in [52], if such an output is used in some
decision process, the result can indeed produce discriminatory choices.

Although we are aware of the potential weaknesses, the mainly theoretical nature of our study, as
well as the nowadays vast literature in the field of community detection, allows us to not foresee any
major negative consequence from our study. On the contrary, keeping into account of the realistic
time-evolving nature of networks can allow to improve and better understand our studies in the field.
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