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Introduction

Context and goals

Nanofluidics is the study of the flow of materials at the nanoscale [START_REF] Bocquet | Nanofluidics, from bulk to interfaces[END_REF]. This is the scale of flow in Carbon Nanotubes which are physical systems of great interest nowadays [START_REF] Holt | Fast mass transport through sub-2-nanometer carbon nanotubes[END_REF][START_REF] Whitby | Fluid flow in carbon nanotubes and nanopipes[END_REF]. At this scale, flows present some striking features, such as the capacity for the material to slip much more easily that one would expect [START_REF] Bocquet | Flow boundary conditions from nano-to micro-scales[END_REF][START_REF] Secchi | Massive radiusdependent flow slippage in carbon nanotubes[END_REF][START_REF] Tunuguntla | Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins[END_REF]. The origin of this slip is the subject of current debate in the physics community [START_REF] Faucher | Critical knowledge gaps in mass transport through single-digit nanopores: A review and perspective[END_REF][START_REF] Lauga | Microfluidics: The No-Slip Boundary Condition[END_REF].

In classical fluid mechanics, the interaction between the fluid and the walls of a bounded domain is usually modeled via appropriate boundary conditions. Probably the three most used boundary conditions are (let us note u the velocity field of the flow)

No-slip (or adherence): imposing that u vanishes at the wall.

Slip: imposing that the normal component of u vanishes and that the tangential part of the normal stress is proportional to the tangential part of the velocity field. The inverse of the proportionality factor has the dimension of a length called the slip length.

Perfect slip: imposing that the normal component of u vanishes and that the tangential part of the normal stress also vanishes.

Let us point that, although one could expect the averaging procedure usually applied to obtain macroscopic flow equations to fail at the nanoscale, Stokes equations remain surprisingly efficient in nanofluidics [START_REF] Gravelle | Large permeabilities of hourglass nanopores: From hydrodynamics to single file transport[END_REF][START_REF] Karniadakis | Simple Fluids in Nanochannels[END_REF]. From a mathematical perspective, one successful strategy initiated in the late 1990's [2,[START_REF] Casado-Díaz | Why viscous fluids adhere to rugose walls: A mathematical explanation[END_REF][START_REF] Jäger | On the roughness-induced effective boundary conditions for an incompressible viscous flow[END_REF] to explain the occurrence of adherence or partial slip on solid walls, consists in modeling micro-asperities on the surface and analyzing their effect on the flow by an homogenisation process, imposing only a mild non penetration boundary condition on the rugous wall, i.e. that the normal component of the fluid velocity vanishes. This so-called "rugosity effect" has been studied quite extensively in the last decades, which has led to a rather complete description of the asymptotic effect of rough patterns on viscous flow [START_REF] Bucur | Boundary behavior of viscous fluids: influence of wall roughness and friction-driven boundary conditions[END_REF][START_REF] Bucur | On the asymptotic limit of the Navier-Stokes system on domains with rough boundaries[END_REF][START_REF] Dalibard | Effective boundary condition at a rough surface starting from a slip condition[END_REF][START_REF] Gérard-Varet | Relevance of the slip condition for fluid flows near an irregular boundary[END_REF][START_REF] Jäger | Couette flows over a rough boundary and drag reduction[END_REF].

In this paper, we consider a completely different interpretation of the apparent slip length measured in nanoscopic devices, proposed in [START_REF] Myers | Why are why are slip lengths so large in carbon nanotubes? Microfluid[END_REF], where the author postulates that the source of this slip arises from a "depletion layer with reduced viscosity near the wall". This hypothesis is supported by experimental evidence [START_REF] Poynor | How water meets a hydrophobic surface[END_REF] and Molecular Dynamics simulations [START_REF] Joseph | Why are carbon nanotubes fast transporters of water?[END_REF] bringing out that the viscosity drops near the wall of the nanotube. In [START_REF] Myers | Why are why are slip lengths so large in carbon nanotubes? Microfluid[END_REF], the flow is modeled as a Stokes flow in an infinite cylindrical pipe, with no-slip boundary condition, but two viscosities: a "bulk" one at the center of the pipe and a "wall" one near the walls which is smaller than the bulk one. In this model, the fluid is supposed to adhere at the wall. Yet, by solving the equation in this simple geometry, the author was able to describe the resulting flow as if it had an effective slip length and a constant viscosity equal to the one in the bulk, computing this length in terms of the viscosity drop and the sizes of the depletion layer and tube radius. From this result we started wondering: is there a general mathematical framework to study the passing from a model with varying viscosity and no-slip to a model with constant viscosity and slip?

The question is to link two models with different equations in the same domain and different boundary conditions. Many different problems of this type are (or have been) studied with the help of asymptotic analysis in PDE: one expresses the parameters of one of the model as function of small parameter ε and by studying the behaviour of the solution as ε goes to 0, one proves that the solution converges to the second model. The now classical problem that might be the most closely related to ours, and that we already mentioned, is the rugosity effect. In that case, one attempts to link a model posed on a family of domains depending on a parameter ε and "converging" in some sense with the perfect slip boundary condition on each domain, and to explain how one obtains a positive slip length, or no-slip on the limit domain. In a certain sense, the problem that we propose to address is the opposite: whereas rugosity aims at explaining how a fluid can "slow down" because of the wall, our problem is to explain and justify mathematically the "speeding up" of the fluid caused by a drop of viscosity near the wall.

The problem we consider is strongly related to the so-called reinforcement problems introduced by Sanchez-Palencia in [START_REF] Sanchez-Palencia | Problèmes de perturbations liés aux phénomènes de conduction à travers des couches minces de grande résistivité[END_REF], where an elastic medium is reinforced by the adjunction of a thin layer of very strong material. From a mathematical point of view, such models give rise to singular perturbation problems, where the modulus of ellipticity of the operator tends to zero in the thin layer of extra material, as the layer shrinks.

Brézis, Caffarelli and Friedman solved the interior and boundary reinforcement problems for elliptic equations, in the case of Dirichlet boundary conditions on a C 2 boundary and using strong solutions in [START_REF] Brézis | Reinforcement problems for elliptic equations and variational inequalities[END_REF]. A few years later, geometric measure theory and Gamma-convergence were successfully applied to boundary reinforcement problems (see for instance Acerbi and Buttazzo [START_REF] Acerbi | Reinforcement problems in the calculus of variations[END_REF], Buttazzo and Kohn [START_REF] Buttazzo | Reinforcement by a thin layer with oscillating thickness[END_REF], Buttazzo, Dal Maso and Mosco [START_REF] Buttazzo | Asymptotic Behaviour for Dirichlet Problems in Domains Bounded by Thin Layers[END_REF]).

In a recent paper [START_REF] Bonnivard | From adherence to slip in nanofluidics: a mathematical justification based on a drop of viscosity[END_REF], we have proposed a different approach based on a rescaling of the solution in the depletion layer, in the spirit of the unfolding method [START_REF] Arbogast | Derivation of the double porosity model of single phase flow via homogenization theory[END_REF][START_REF] Casado-Díaz | Two-scale convergence for nonlinear dirichlet problems in perforated domains[END_REF][START_REF] A. Damlamian | Periodic unfolding and homogenization[END_REF], and on the construction of a relevant sequence of test functions that are able to capture the asymptotic behaviour of the problem in the boundary layer associated with the region of low viscosity.

In this paper, we adapt this approach to treat the case of a three-dimensional Stokes system. Starting from the natural energy bound associated with the problem, we obtain compactness on the rescaled velocity and pressure fields in the low viscosity layer by adapting arguments from [START_REF] Casado-Díaz | Asymptotic Behavior of the Navier-Stokes System in a Thin Domain with Navier Condition on a Slightly Rough Boundary[END_REF], and derive the Reynolds equation for the rescaled pressure. Then, we use a sequence of well-adapted test functions, whose behaviour in the vicinity of the wall is also determined by a Reynolds equation. This procedure allows us to determine the boundary condition satisfied by the limit velocity field, which depends, as expected, on the ratio between the value of the viscosity and the thickness of the depletion layer.

The model

The model we will study is as follows. Throughout the paper, we consider a spatial domain which is periodic with period (0, 1) 2 in the horizontal direction. More precisely, let T 2 = (R/Z) 2 be the two-dimensional torus and define Ω = T 2 × (0, 1). We note x = (x , x 3 ) ∈ Ω the macroscopic variable, of horizontal component x = (x 1 , x 2 ). Analogously, any vector field u defined on Ω will be decomposed as u = (u , u 3 ) with u 3 = u • e 3 and u = u -u 3 e 3 , where (e 1 , e 2 , e 3 ) is the canonical basis of R 3 . We denote by

• Γ t = T 2 × {1} the upper boundary of Ω, • Γ b = T 2 × {0} the lower boundary,
The depletion layer will thus be located around Γ t and we will model it to have a typical size of ε. More precisely, let us introduce a function d :

T 2 → R such that d ∈ W 1,∞ (T 2 ) and d > 0 in T 2 , (1) 
and the function γ ε defined on T 2 by

γ ε (x ) = 1 -εd(x ) . (2) 
We denote by Γ ε the graph of γ ε , defined by

Γ ε = (x , γ ε (x )), x ∈ T 2 . (3) 
In our setting, the depletion layer is defined as

B ε = {(x , x 3 ) ∈ Ω, γ ε (x ) < x 3 < 1} ⊂ Ω .
To simplify notation we will note

Ω ε = Ω \ B ε .
To the macroscopic variable x = (x , x 3 ) ∈ B ε , we associate the microscopic variable y = (y , y 3 ) defined by

y = x , y 3 = 1 -x 3 ε . (4) 
The depletion layer is then described in microscopic variable by

B ε = {(y , 1 -εy 3 ), (y , y 3 ) ∈ ω} ,
where ω is defined by ω = (y , y 3 ) ∈ T 2 × (0, 1), 0 < y 3 < d(y ) .

We denote by

• Γ t = {(y , d(y )), y ∈ T 2 } the upper boundary of ω,
• Γ b = {(y , 0), y ∈ T 2 } the lower boundary,

• Γ = ∂Ω \ ( Γ t ∪ Γ b ) the lateral boundary.
Let u ε be the velocity of the fluid and p ε the pressure, and let f be a right-hand side defined on Ω. The viscosity µ ε is defined by

µ ε (x , x 3 ) = 1 Ωε (x , x 3 ) + ε α 1 Bε (x , x 3 ) (5) 
where 1 Ωε and 1 Bε stand for the indicator functions of Ω ε and B ε respectively. We will work with Stokes equation

-div(2µ ε D(u ε )) + ∇p ε = f in Ω (6) div u ε = 0 in Ω (7) 
In equation [START_REF] Bogovskii | Solution of Some Vector Analysis Problems connected with Operators div and grad[END_REF], D(u ε ) stands for the symmetric part of the Jacobian matrix of u ε , defined by

[D(u ε )] i,j = 1 2 (∂ j u ε,i + ∂ i u ε,j ) 1 ≤ i, j ≤ 3.
As usual this system is supplemented with boundary conditions. For the sake of simplicity we have chosen to put no-slip boundary condition at the bottom Γ b . So in the sequel we will always have

u ε = 0 on Γ b , (8) 
as well as periodic boundary conditions on Γ . Finally our main concern is with the boundary condition on Γ t . Since our aim is to determine if the drop of viscosity occuring in the depletion layer B ε (see formula [START_REF] Bocquet | Nanofluidics, from bulk to interfaces[END_REF]) may increase slippage in the limit ε → 0, we consider the least favorable situation where no-slip is also imposed on Γ t , that is

u ε = 0 on Γ t . (9) 

Functional spaces and useful inequalities

We denote by V D the space

V D = v ∈ H 1 0 (Ω, R 3 ), div v = 0 a.e. in Ω ,
which is the space where we define solutions of problem ( 6)-( 9). We will also use the space V N where the prescribed boundary condition on Γ t is the non penetration:

V N = v ∈ H 1 (Ω, R 3 ), div v = 0 a.e. in Ω, v = 0 on Γ b , v 3 = 0 on Γ t .
In the above definitions, to lighten the notation, we do not use any special symbol to emphasize that in this context, the Sobolev spaces H 1 (Ω, R 3 ) and H 1 0 (Ω, R 3 ) contain functions that are (0, 1) 2 -periodic with respect to the x variable. Throughout the paper, any function of variable x = (x , x 3 ) or y = (y , y 3 ) will be tacitly periodic in the horizontal variable.

Let us state some well-known inequalities that will be often used in the sequel, where C stands for a nonnegative constant independent on ε.

Poincaré inequalities Since the family Ω ε is uniformly bounded in the vertical direction, there holds for any ε > 0

and v ∈ H 1 (Ω ε ) such that v = 0 on Γ b , Ωε |v| 2 ≤ C Ωε |∇v| 2 . ( 10 
)
Finally, since the domains B ε have thickness ε, for any ε > 0

and v ∈ H 1 (B ε ) such that v = 0 on Γ t , Bε |v| 2 ≤ Cε 2 Bε |∇v| 2 . ( 11 
)
Korn inequalities In V D , there holds Korn inequality

∀v ∈ V D Ω |∇v| 2 ≤ 2 Ω |D(v)| 2 (12) 
where ∇v is the Jacobian matrix of v. This is indeed the classical Korn inequality in H 1 0 (Ω, R 3 ) for any bounded domain (see for instance [START_REF] Boyer | Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models[END_REF]Remark IV.7.3]).

In Ω ε , we will apply the following version of Korn inequality, which is proved in [START_REF] Bucur | and year=2008 pages=957-973 Nečasová, Š. Influence of wall roughness on the slip behaviour of viscous fluids[END_REF] in a very similar geometric setting. Let L > 0 such that

∀ε > 0 ∀x ∈ [0, 1] 2 |∇γ ε (x )| ≤ L .
There exists a constant C K (depending solely on L) such that for any function

v ∈ H 1 (Ω ε , R 3 ) satisfying v = 0 on Γ b , Ωε |∇v| 2 ≤ C K Ωε |D(v)| 2 . ( 13 
)
The fact that the constant C K in Korn inequality (13) depends only on the Lipschitz constant of γ ε was first remarked by Nitsche [START_REF] Nitsche | On Korn's second inequality[END_REF]. As a consequence, the following uniform Korn inequality is is also valid in B ε : there exists a constant C K (depending solely on L) such that for any function

v ∈ H 1 (B ε , R 3 ) satisfying v = 0 on Γ t , Bε |∇v| 2 ≤ C K Bε |D(v)| 2 . ( 14 
)
Indeed, extending by zero such function v for y 3 > 1 and replacing variable x 3 by 1 -x 3 , we can apply [START_REF] Bucur | and year=2008 pages=957-973 Nečasová, Š. Influence of wall roughness on the slip behaviour of viscous fluids[END_REF] to deduce [START_REF] Buttazzo | Asymptotic Behaviour for Dirichlet Problems in Domains Bounded by Thin Layers[END_REF].

Main results

Existence and uniqueness of u ε From standard theory on Stokes equation, because we have the global Korn inequality [START_REF] Bucur | On the asymptotic limit of the Navier-Stokes system on domains with rough boundaries[END_REF], we can rely on the following theorem:

Proposition 1. Let f be in L 2 (Ω, R 3
). There exists a unique function u ε in V D solution of the following problem

     -div (2µ ε D(u ε )) + ∇p ε = f in Ω div u ε = 0 in Ω u ε = 0 on Γ t ∪ Γ b (15) 
which means that for all φ ∈ V D ,

Ωε 2 D(u ε ) : D(φ) + ε α Bε 2 D(u ε ) : D(φ) = Ω f • φ . ( 16 
)
Energy bound We say that a family of solutions u ε ∈ V D to ( 16) satisfies the energy bound if there exists a constant C > 0 such that

Ωε |D(u ε )| 2 + ε α Bε |D(u ε )| 2 ≤ C . ( 17 
)
Proposition 2. Let f be in L 2 (Ω, R 3 ). Then for any 0 < α ≤ 2, the weak solution u ε to (15) satisfies the energy bound [START_REF] Casado-Díaz | Why viscous fluids adhere to rugose walls: A mathematical explanation[END_REF].

Proof of Proposition 2.

Let f ∈ L 2 (Ω) and u ε ∈ H 1 0 (Ω, R 3 ) be the weak solution to [START_REF] Buttazzo | Reinforcement by a thin layer with oscillating thickness[END_REF]. Combining Poincaré inequality [START_REF] A. Damlamian | Periodic unfolding and homogenization[END_REF] with Korn inequality [START_REF] Bucur | and year=2008 pages=957-973 Nečasová, Š. Influence of wall roughness on the slip behaviour of viscous fluids[END_REF], and ( 11) with ( 14), there holds

Ωε |u ε | 2 dx ≤ C Ωε |D(u ε )| 2 dx , Bε |u ε | 2 dx ≤ Cε 2 Bε |D(u ε )| 2 dx .
Summing the previous inequalities and testing against φ = u ε in the weak formulation [START_REF] Casado-Díaz | Two-scale convergence for nonlinear dirichlet problems in perforated domains[END_REF], we deduce that for 0 < α ≤ 2,

Ω |u ε | 2 dx ≤ C Ωε |D(u ε )| 2 dx + ε 2 Bε |D(u ε )| 2 dx ≤ C Ωε |D(u ε )| 2 dx + ε α Bε |D(u ε )| 2 dx ≤ C Ω f • u ε dx .
Hence, by Cauchy-Schwarz inequality, Ω |u ε | 2 dx ≤ C, which in turn implies the energy bound [START_REF] Casado-Díaz | Why viscous fluids adhere to rugose walls: A mathematical explanation[END_REF]. Now we are in a position to state the main result of the paper. To express the boundary condition that we obtain on Γ t , we need some extra notation: for a vector field ξ defined on Γ t , we denote by [ξ] tan its tangential part, defined by [ξ] tan := ξ -(ξ • e 3 )e 3 .

Theorem 1. Let f ∈ L 2 (Ω), α ∈ (0, 2] and let (u ε ) ε be the family of solutions obtained from Proposition 2. Then u ε converges weakly in L 2 (Ω) toward a function ū such that if 0 < α < 1, ū is the variational solution to the problem:

     -div (2D(ū)) + ∇p = f in Ω div ū = 0 in Ω ū = 0 on Γ t ∪ Γ b (18) 
if α = 1, ū is the variational solution to the problem:

           -div (2D(ū)) + ∇p = f in Ω div ū = 0 in Ω ū3 = 0, 2[D(ū)e 3 ] tan + 1 d(x ) ū = 0 on Γ t ū = 0 on Γ b (19) if 1 < α ≤ 2, ū
is the variational solution to the problem:

         -div (2D(ū)) + ∇p = f in Ω div ū = 0 in Ω ū3 = 0, 2[D(ū)e 3 ] tan = 0 on Γ t ū = 0 on Γ b (20) 
3 Compactness results on a sequence (u ε ) satisfying the energy bound [START_REF] Casado-Díaz | Why viscous fluids adhere to rugose walls: A mathematical explanation[END_REF] In this section, we consider a general sequence (u ε ) ∈ V D satisfying the energy bound [START_REF] Casado-Díaz | Why viscous fluids adhere to rugose walls: A mathematical explanation[END_REF], and gather compactness results that we will use in the proof of Theorem 1.

Modifying u ε in B ε

Since u ε vanishes on Γ b , by Poincaré inequality, there exists a constant C > 0 such that

Ωε |u ε | 2 ≤ C Ωε |∇u ε | 2 . ( 21 
)
In this inequality, the constant C can be chosen independent of ε since the domains Ω \ B ε are uniformly bounded in the x 3 direction. Combining [START_REF] A. Damlamian | Periodic unfolding and homogenization[END_REF] with the energy bound [START_REF] Casado-Díaz | Why viscous fluids adhere to rugose walls: A mathematical explanation[END_REF] and the uniform Korn inequality [START_REF] Bucur | and year=2008 pages=957-973 Nečasová, Š. Influence of wall roughness on the slip behaviour of viscous fluids[END_REF], we obtain the existence of a constant C > 0 such that

∀ε > 0 Ωε |u ε | 2 + |∇u ε | 2 ≤ C . ( 22 
)
Since the family of functions γ ε defined by ( 2) is uniformly Lipschitz, there exists a family of linear extension operators

E ε : H 1 (Ω ε , R 3 ) → H 1 (Ω, R 3 ) such that for any ε > 0, ∀w ∈ H 1 (Ω ε , R 3 ) E ε (w) |Ωε = w and a constant C > 0 such that ∀ε > 0 E ε L(H 1 (Ωε,R 3 ),H 1 (Ω,R 3 )) ≤ C
(see for instance [START_REF] Chenais | On the existence of a solution in a domain identification problem[END_REF]). Throughout the paper, we will note ūε the function in

H 1 (Ω, R 3 ) defined by ūε = E ε (u ε ) . ( 23 
)
3.2 Existence of a limit ū ∈ V N

Combining the previous bound with [START_REF] Dalibard | Effective boundary condition at a rough surface starting from a slip condition[END_REF], we get that the sequence

(ū ε ) ε is bounded in H 1 (Ω, R 3 ). Since H 1 (Ω) is compactly embedded in L 2 (Ω)
, there exists a function ū in H 1 (Ω, R 3 ) such that, up to extracting a subsequence, ūε converges to ū weakly in H 1 (Ω, R 3 ) and strongly in L 2 (Ω, R 3 ).

Let us show that ū is at least in V N . The following Lemma will be useful several times:

Lemma 1. Let Λ be Γ t or Γ b . Denote by T Λ : H 1 (Ω, R 3 ) → H 1/2 (Λ, R 3 ) the trace operator. Then T Λ ūε converges strongly to T Λ ū in L 2 (Λ, R 3 ).
Indeed, T Λ is linear and strongly continuous and since ūε converges weakly to ū in H 1 (Ω, R 3 ) then T Λ ūε converges weakly to T Λ ū in H 1/2 (Λ, R 3 ) (see, for instance, [9, Theorem III.9]). But since the embedding from [START_REF] Reed | Methods of Modern Mathematical Physics, Volume I : Functional Analysis[END_REF]Theorem VI.11]).

H 1/2 (Λ) into L 2 (Λ) is compact, then T Λ ūε converges strongly to T Λ ū in L 2 (Λ, R 3 ) (see for instance
In the case Λ = Γ b , since we know that T Λ ūε = 0 for all ε, and that T Λ ūε converges weakly to

T Λ ū in H 1/2 (Λ, R 3 ), we get that T Λ ū = 0 in H 1/2 (Λ, R 3 ). Hence, ū = 0 on Γ b . Now let us establish that div ū = 0 a.e. in Ω. Let ζ ∈ C ∞ c (Ω, R 3
). There exists ε 0 > 0 such that for any 0 < ε < ε 0 , ζ is supported in Ω ε . Using integration by part, the convergence of ūε to ū in L 2 (Ω, R 3 ), the fact that ūε and u ε coincide in Ω ε and the incompressibility condition div u ε = 0 in Ω, we obtain

Ω (div ū)ζ = - Ω ū • ∇ζ = lim ε→0 - Ω ūε • ∇ζ = lim ε→0 - Ωε ūε • ∇ζ = lim ε→0 - Ωε u ε • ∇ζ = lim ε→0 Ωε (div u ε )ζ = 0 .
3.3 Case 0 < α < 1: obtention of the boundary condition ū = 0 on Γ t

By the energy bound [START_REF] Casado-Díaz | Why viscous fluids adhere to rugose walls: A mathematical explanation[END_REF] and Korn inequality [START_REF] Buttazzo | Asymptotic Behaviour for Dirichlet Problems in Domains Bounded by Thin Layers[END_REF], there holds

Bε |∇u ε | 2 ≤ C ε -α .
We claim that if 0 < α < 1, the limit ū actually satisfies the same boundary condition

ū = 0 on Γ t ,
in other words, ū ∈ V D . The distinction between the cases α < 1 and α ≥ 1 comes from the following estimate of the L 2 -norm of the trace of u ε on Γ ε (defined by (3)):

Γε |u ε | 2 ≤ C ε 1-α . ( 24 
)
The previous inequality can be obtained using the energy bound, the boundary condition u ε (x , 1) = 0 for a.e. x ∈ (0, 1) 2 and integrating on vertical lines {x } × (1 -εd(x ), 1), as follows.

Γε

|u ε | 2 = (0,1) 2 |u ε (x , 1 -εd(x ))| 2 1 + ε 2 |∇d(x )| 2 dx ≤ 1 + ε 2 ∇d 2 ∞ (0,1) 2 |u ε (x , 1 -εd(x ))| 2 dx ≤ 1 + ε 2 ∇d 2 ∞ (0,1) 2 1 1-εd(x ) |∂ 3 u ε (x , s)| ds 2 dx ≤ 1 + ε 2 ∇d 2 ∞ ε d ∞ (0,1) 2 1 1-εd(x ) |∂ 3 u ε (x , s)| 2 ds dx ≤ C ε Bε |∇u ε | 2 ≤ C ε 1-α .
Applying a similar argument to the function ūε , which is not vanishing on Γ t , we obtain the following trace inequality:

Γ t |ū ε | 2 ≤ C ε Bε |∇ū ε | 2 + Γε |ū ε | 2 .
Since ūε is bounded in H 1 (Ω), and ūε and u ε have the same trace on Γ ε , [START_REF] Galdi | An Introduction to the Mathematical Theory of the Navier-Stokes Equations[END_REF] implies that

Γ t |ū ε | 2 ≤ C ε + ε 1-α . Hence, if 0 < α < 1, lim ε→0 Γ t |ū ε | 2 = 0.
Combining this information with Lemma 1, we get that ū vanishes on Γ t . Since we have already proven that ū is in V N , this proves that ū ∈ V D if 0 < α < 1.

Case α ≥ 1: construction of the rescaled function v ε

In the case α ≥ 1, we need to do a finer analysis of the behaviour of u ε in B ε . In order to work only with free divergence vector field, we introduce a rescaled function v ε , depending on the micro-variable y = (y , y 3 ) ∈ ω and defined by v ε (y) = (v ε (y), v ε,3 (y)) with

v ε (y) = ε (α+3)/2 u ε (y , 1 -εy 3 ), v ε,3 (y) = -ε (α+1)/2 u ε,3 (y , 1 -εy 3 ) for a.e. y ∈ ω . (25) 
The derivatives of v ε are given by

∇ y v ε (y) = ε (α+3)/2 ∇ x u ε (y , 1 -εy 3 ) , ∂ y 3 v ε (y) = -ε (α+5)/2 ∂ x 3 u ε (y , 1 -εy 3 ) , ∇ y v ε,3 (y) = -ε (α+1)/2 ∇ x u ε,3 , ∂ y 3 v ε,3 (y) = ε (α+3)/2 ∂ x 3 u ε,3 (y , 1 -εy 3 ) .
Using the change of variable (4) and the energy bound, we obtain the following estimates:

ω |∇ y v ε,3 | 2 dy = ε α Bε |∇ x u ε,3 | 2 dx ≤ C , (26) 
ω |∇ y v ε | 2 + |∂ y 3 v ε,3 | 2 dy = ε α+2 Bε |∇ x u ε | 2 + |∂ x 3 u ε,3 | 2 dx ≤ C ε 2 , ( 27 
) ω |∂ y 3 v ε | 2 dy = ε α+4 Bε |∂ x 3 u ε | 2 dx ≤ C ε 4 . (28) 
Since u ε vanishes on Γ t , there holds v ε (y , 0) = 0 for a.e. y ∈ (0, 1) 2 . In particular, by Poincaré inequality, there exists a constant C > 0 such that

∀ε > 0 ω |v ε | 2 dy ≤ C ω |D y v ε | 2 dy .
As a result, the previous estimates yield that v ε is uniformly bounded in H 1 (ω, R 3 ). Using similar arguments as for the sequence ūε , we deduce that, up to extraction, v ε converges weakly in H 1 (ω, R 3 ) and strongly in

L 2 (ω, R 3 ) to a function v ∈ H 1 (ω, R 3 ) such that div v = 0 in ω and v = 0 on y 3 = 0 .
Moreover, by weak lower semicontinuity of the L 2 norm in ω, estimates ( 27) and ( 28) imply that ∇ y v and ∂ y 3 v vanish in ω. In particular, v 3 depends only on y and v is a constant, which is necessarily equal to zero due to the boundary condition on y 3 = 0.

Let us prove that v 3 (y ) = 0 for a.e. y ∈ (0, 1) 2 , so that v vanishes. Since v ε,3 converges weakly to v 3 in H 1 (ω), by continuity of the trace, v ε,3 (y , 0) converges to v 3 (y , 0) in L 2 ((0, 1) 2 ). But by definition [START_REF] Gérard-Varet | Relevance of the slip condition for fluid flows near an irregular boundary[END_REF] and the Dirichlet boundary condition satisfied by u ε on Γ t , v ε,3 (y , 0) = 0 a.e. in (0, 1) 2 . Hence, v 3 = 0 on y 3 = 0. Since v 3 is independent on y 3 , v 3 vanishes in ω.

Using that

1 ε ∇ y v ε , 1 ε ∂ y 3 v ε,3 and 1 ε 2 ∂ y 3 v ε are bounded in L 2 (ω, R 2×2 ), L 2 (ω) and L 2 (ω, R 2 ) respectively, we finally obtain the existence of functions M ∈ L 2 (ω, R 2×2 ), m 3 ∈ L 2 (ω) and m ∈ L 2 (ω, R 2 ) such that up to extraction, 1 ε ∇ y v ε M weakly in L 2 (ω, R 2×2 ) , 1 ε ∂ y 3 v ε,3 m 3 weakly in L 2 (ω) , 1 ε 2 ∂ y 3 v ε m weakly in L 2 (ω, R 2 ) .
In order to obtain more information on the previous limits, we introduce estimates in the space H 1 (0, 1; L 2 ((0, 1) 2 )). To lighten the presentation, we start with the case of a flat interface before giving the result in the general case.

Case of a flat interface: d(x ) ≡ 1.

Estimates in H 1 (0, 1; L 2 ((0, 1) 2 )). We refer to [START_REF] Cazenave | An Introduction to Semilinear Evolution Equations[END_REF]Chapter 1] for the main properties of vector valued Sobolev spaces.

Take d(x ) ≡ 1 for a start (so ω = T 2 × (0, 1)). We claim that

1 ε v ε,3 is bounded in H 1 (0, 1; L 2 ((0, 1) 2 )). Indeed, there holds ω | 1 ε ∂ 3 v ε,3 | 2 dy ≤ C and 1 ε v ε,3 ( 
y , 0) = 0 a.e. in (0, 1) 2 , so by integration on vertical lines:

ω | 1 ε v ε,3 (y)| 2 dy ≤ ω | 1 ε ∂ 3 v ε,3 (y)| 2 dy ≤ C .
Hence, up to extraction, there exists w 3 ∈ H 1 (0, 1; L 2 ((0, 1) 2 )) such that 1 ε v ε,3 w 3 weakly in H 1 (0, 1; L 2 ((0, 1) 2 )), so that

1 ε v ε,3 w 3 and 1 ε ∂ 3 v ε,3 ∂ 3 w 3 weakly in L 2 (ω) . (29) 
In particular, m 3 = ∂ 3 w 3 . Also, by continuity of the trace operator from H 1 (0, 1; L 2 ((0, 1) 2 )) → L 2 ({0} × (0, 1) 2 ), w 3 = 0 on y 3 = 0. Finally, by continuity of the injection of H 1 (0, 1; L 2 ((0, 1) 2 ) in L ∞ (0, 1; L 2 ((0, 1) 2 ), there exists a constant C > 0 such that for any ε > 0,

1 ε v ε,3 L ∞ (0,1;L 2 ((0,1) 2 ) ≤ C 1 ε v ε,3 H 1 (0,1;L 2 ((0,1) 2 )) ≤ C .
By an analogous argument, for j = 1, 2, there exist w j ∈ H 1 (0, 1; L 2 ((0, 1) 2 )) such that 1 ε 2 v ε,j w j weakly in H 1 (0, 1; L 2 ((0, 1) 2 )), in other words

1 ε 2 v ε,j w j and 1 ε 2 ∂ 3 v ε,j ∂ 3 w j weakly in L 2 (ω) (30) 
which implies that m = ∂ 3 w , and w = 0 on y 3 = 0. Besides,

1 ε 2 v ε L ∞ (0,1;L 2 ((0,1) 2 ,R 2 ) ≤ C .
Use of the free divergence condition on v ε By the convergences ( 29) and ( 30), there holds 1 ε 2 div y v ε div y w and

1 ε ∂ 3 v ε,3 ∂ 3 w 3 weakly in L 2 (ω) .
Since div y v ε = 0 in ω, we have for any function η ∈ L 2 (ω),

0 = ω ε 1 ε 2 div y v ε + 1 ε ∂ 3 v ε,3 η(y) dy .
Passing to the limit in the previous relation yields ω ∂ 3 w 3 η = 0, so ∂ 3 w 3 = 0 a.e. in ω and w 3 is a function of y only. Since we already established that w 3 vanishes on y 3 = 0, we conclude that w 3 = 0 a.e. in ω.

In the critical case α = 1, coming back to the definition of v ε,3 [START_REF] Gérard-Varet | Relevance of the slip condition for fluid flows near an irregular boundary[END_REF], we get that the sequence of functions y ∈ ω → u ε,3 (y , 1 -εy 3 ) converges weakly to zero in H 1 (0, 1; L 2 ((0, 1) 2 )). Now, by continuity of the trace on y 3 = 1, we deduce that y ∈ (0, 1) 2 → u ε,3 (y , 1 -ε) converges weakly to zero in L 2 ((0, 1) 2 ). By definition of ūε , this also holds for the sequence of functions y ∈ (0, 1) 2 → ūε,3 (y , 1 -ε).

General case (W 1,∞ interface). In the general case of a function d(x ), we can set

ṽε (z) = v ε (z , d(z )z 3 ) for z ∈ (0, 1) 3 , (31) 
and notice that 1 ε ṽε,3 remains bounded in H 1 (0, 1; L 2 ((0, 1) 2 )). Hence, there exists w3 in H 1 (0, 1; L 2 ((0, 1) 2 )) such that 1 ε ṽε,3 w3 weakly in H 1 (0, 1; L 2 ((0, 1) 2 )), yielding

1 ε ṽε,3 w3 and 1 ε ∂ 3 ṽε,3 ∂ 3 w3 weakly in L 2 ((0, 1) 2 × (0, 1)) .
Moreover, w3 = 0 on z 3 = 0. Now defining w 3 (y) = w3 (y , y 3 d(y ) ) for y ∈ ω, it is easy to check that w 3 and ∂ 3 w 3 are in L 2 (ω) and satisfy [START_REF] Jäger | On the roughness-induced effective boundary conditions for an incompressible viscous flow[END_REF]. For instance, taking η ∈ C 1 c (ω) and setting (y , y 3 ) = (z , d(z )z 3 ), there holds

ω 1 ε v ε,3 (y) η(y) dy = (0,1) 3 1 ε v ε,3 (z , d(z )z 3 ) η(z , d(z )z 3 ) d(z ) dz = (0,1) 3 1 ε ṽε,3 (z) η(z , d(z )z 3 ) d(z ) dz . Since the function z → η(z , d(z )z 3 ) d(z ) is in C 1 c ((0, 1)
3 ), we can pass to limit by weak convergence of 1 ε ṽε,3 in L 2 ((0, 1) 3 ), and obtain by definition of w 3 lim ε→0 ω

1 ε v ε,3 (y) η(y) dy = (0,1) 3 w3 (z) η(z , d(z )z 3 ) d(z ) dz = ω w 3 (y) η(y) dy .
Also, w 3 = 0 on y 3 = 0. By a similar argument, we can prove the existence of w ∈ H 1 (0, 1; L 2 ((0, 1) 2 )) such that 1 ε 2 ṽ ε converges to w weakly in H 1 (0, 1; L 2 ((0, 1) 2 )), and w = 0 on z 3 = 0. Setting w (y) = w (y , y 3 d(y ) ), we deduce [START_REF] Jäger | Couette flows over a rough boundary and drag reduction[END_REF] (which implies that m = ∂ 3 w ) and that w = 0 on y 3 = 0. Using that div y v ε = 0 in ω and the convergences ( 29) and ( 30), we conclude as in the case of a flat interface that w 3 is independent on y 3 , hence w 3 = 0 in ω. As a result, w vanishes in (0, 1) 3 , so the sequence of functions z ∈ (0, 1) 2 → 1 ε ṽε,3 (z , 1) converges weakly to 0 in L 2 ((0, 1) 2 ).

In the critical case α = 1, coming back to the definitions of v ε,3 [START_REF] Gérard-Varet | Relevance of the slip condition for fluid flows near an irregular boundary[END_REF] and ṽε,3 (31), we get that the sequence of functions z ∈ (0, 1) 3 → u ε,3 (z , 1 -εz 3 d(z )) converges weakly to zero in H 1 (0, 1; L 2 ((0, 1) 2 )). Now, by continuity of the trace on z 3 = 1, we deduce that y ∈ (0, 1) 2 → u ε,3 (y , 1 -εd(y )) converges weakly to zero in L 2 ((0, 1) 2 ). By definition of ūε , this also holds for the sequence of functions y ∈ (0, 1) 2 → ūε,3 (y , 1 -εd(y )). Now we are in position to prove that the sequence y ∈ (0, 1) 2 → ūε,3 (y , 1) converges weakly to 0 in L 2 ((0, 1) 2 ), which implies that ū3 = 0 on Γ t .

Let η = η(y ) ∈ L 2 ((0, 1) 2 ). Integrating on vertical lines, we obtain By the previous result, lim ε→0 (0,1) 2 ūε,3 (y , 1 -εd(y )) η(y ) dy = 0. The other term can be estimated as follows:

(0,1) 2 

≤ Bε |∂ 3 ūε,3 | 2 1/2 ε d ∞ (0,1) 2 |η(y )| 2 dy 1/2 . ( 32 
)
Since ūε,3 is uniformly bounded in H 1 (Ω), we can pass to the limit and obtain

lim ε→0 (0,1) 2 1 1-εd(y )
∂ 3 ūε,3 (y , y 3 ) dy 3 η(y ) dy = 0 .

We conclude that lim ε→0 (0,1) 2 ūε,3 (y , 1) η(y ) dy = 0.

Convergence in H 2 (0, 1; H -1 ((0, 1) 2 )). Consider the flat configuration d(x ) ≡ 1. We claim that there exists w

(2) 3 ∈ H 2 (0, 1; H -1 ((0, 1) 2 )) such that 1 ε 2 v ε,3 w (2) 3
weakly in

H 2 (0, 1; H -1 ((0, 1) 2 )) . ( 33 
)
It is a consequence of the fact that

div y ( 1 ε 2 v ε ) div y w weakly in H 1 (0, 1; H -1 ((0, 1) 2 )) , (34) 
which can be proved as follows. Let φ ∈ C ∞ ([0, 1], H 1 0 ((0, 1) 2 )). Using the incompressibility condition on v ε , there holds

1 0 ∂ 3 (div y ( 1 ε 2 v ε )), ∂ 3 φ H -1 ((0,1) 2 )×H 1 0 ((0,1) 2 ) dy 3 = 1 0 div y (∂ 3 ( 1 ε 2 v ε )), ∂ 3 φ H -1 ×H 1 0 dy 3 = - 1 0 (0,1) 2 ∂ 3 ( 1 ε 2 v ε ) • ∇ y (∂ 3 φ) dy dy 3 = - ω ∂ 3 ( 1 ε 2 v ε ) • ∇ y (∂ 3 φ) dy
and the last integral converges to

- ω ∂ 3 w • ∇ y (∂ 3 φ) dy = 1 0 div y (∂ 3 w ), ∂ 3 φ H -1 ×H 1 0 dy 3 = 1 0 ∂ 3 (div y w ), ∂ 3 φ H -1 ×H 1 0 dy 3 .
Also,

1 0 div y w , φ H -1 ×H 1 0 dy 3 = - ω w • ∇ y φ dy = lim ε→0 - ω 1 ε 2 v ε • ∇ y φ dy = lim ε→0 1 0 div y ( 1 ε 2 v ε ), φ H -1 ×H 1 0 dy 3 .
(34) is proved. Now, since div y v ε = 0 in ω, there holds

1 ε 2 ∂ 3 v ε,3 = -div y ( 1 ε 2 v ε ) , so that 1 ε 2 ∂ 3 v ε,3 is weakly convergent in H 1 (0, 1; H -1 ((0, 1) 2 )). Since 1 ε 2 v ε,3 = 0 on y 3 = 0, it implies that 1 ε 2 v ε,3 is bounded in H 2 (0, 1; H -1 ((0, 1) 2 )), hence (33) 
. In the general case of a W 1,∞ interface, we claim that there exists w(2)

3 in H 2 (0, 1; H -1 ((0, 1) 2 )) such that, up to extraction, 1 ε 2 ṽε • (-∇ y d(z ), 1) w(2) 3 weakly in H 2 (0, 1; H -1 ((0, 1) 2 )) , (35) 
where ṽε is defined by [START_REF] Joseph | Why are carbon nanotubes fast transporters of water?[END_REF]. This results from the fact that div z ṽ ε can be expressed by

(div z ṽ ε )(z) = (div y v ε )(z , d(z )z 3 ) + ∇ y d(z ) • ∂ y 3 v ε (z , d(z )z 3 ) = -∂ y 3 v ε,3 (z , d(z )z 3 ) + ∇ y d(z ) • ∂ y 3 v ε (z , d(z )z 3 ) = 1 d(z ) -∂ z 3 ṽε,3 (z) + ∇ y d(z ) • ∂ z 3 ṽ ε (z) so that ∂ z 3 1 ε 2 ṽε • (-∇ y d, 1) = -div z ( 1 ε 2 ṽ ε ) a.
e. in (0, 1) 3 . By the same argument as above, the right hand side of this equality is bounded in H 1 (0, 1; H -1 ((0, 1) 2 )), and since 1 ε 2 ṽε vanishes on z 3 = 0, we deduce the claim [START_REF] Nitsche | On Korn's second inequality[END_REF].

is bounded in L 2 ((0, 1) 2 ) (as the trace on z 3 = 1 of the function 1 ε 2 ṽ ε , which is bounded in H 1 (0, 1; L 2 ((0, 1) 2 ))), this implies that the sequence 1 ε 2 v ε,3 (y , d(y )) is also bounded in H -1 ((0, 1) 2 ). By definition [START_REF] Gérard-Varet | Relevance of the slip condition for fluid flows near an irregular boundary[END_REF], this means that the sequence

y ∈ (0, 1) 2 → ε (α-3)/2 u ε,3 (y , d(y ))
is bounded in H -1 ((0, 1) 2 ). As a result, for any α < 3, u ε,3 (•, d(•)) converges to 0 in H -1 ((0, 1) 2 ), and since this sequence is in L 2 ((0, 1) 2 ), it implies that for any η ∈ C 1 c ((0, 1) 2 ), lim ε→0 (0,1) 2 u ε,3 (y , d(y ))η(y ) dy = 0 .

From this step, we conclude as in the critical case that ū3 = 0 on Γ t .

4 Derivation of the Reynolds equation

Mixed formulation of the problem (15)

The mixed formulation of the problem reads:

A ε (u ε , φ) -B(p ε , φ) = L(φ) ∀ϕ ∈ H 1 0 (Ω, R 3 ) , (38) 
B(q, u ε ) = 0 ∀q ∈ L 2 (Ω) . (39) 
where :

• A ε : H 1 0 (Ω, R 3 ) × H 1 0 (Ω, R 3 ) → R is defined by A ε (u, φ) = Ω 2µ ε D(u) : D(φ) • B : L 2 (Ω) × H 1 0 (Ω, R 3 ) → R is defined by B(p, φ) = Ω p div φ • L : H 1 0 (Ω, R 3 ) → R is defined by L(φ) = Ω f • φ Fix ε > 0. A ε and B are continuous bilinear forms on H 1 0 (Ω, R 3 ) × H 1 0 (Ω, R 3 ) and L 2 (Ω) × H 1 0 (Ω, R 3
) respectively, and L is a continuous linear form on H 1 0 (Ω, R 3 ). Moreover, by Korn inequalities ( 13) and ( 14), there holds

A ε (φ, φ) ≥ C ε α Ω |∇φ| 2
where C > 0 is a constant, so A ε is coercive on H 1 0 (Ω, R 3 ). By classical results (see for instance [26, paragraph 4.1]), the existence and uniqueness of a solution (u ε , p ε ) ∈ V D × L 2 0 (Ω) to the mixed formulation ( 38)-( 39) can be established provided that the following inf-sup condition is fulfilled:

∃δ > 0, such that inf q∈L 2 0 (Ω)\{0} sup v∈H 1 0 (Ω,R 3 )\{0} B(q, v) q L 2 0 (Ω) v H 1 0 (Ω,R 3 ) ≥ δ . (40) 
By [START_REF] Galdi | An Introduction to the Mathematical Theory of the Navier-Stokes Equations[END_REF]Theorem III.3.1] (following the construction in [START_REF] Bogovskii | Solution of Some Vector Analysis Problems connected with Operators div and grad[END_REF]), for any q ∈ L 2 0 (Ω), there exists a constant C > 0 and w ∈ H 1 0 (Ω, R 3 ) such that div w = q in Ω and

w H 1 0 (Ω,R 3 ) ≤ C q L 2 (Ω) . (41) 
The inf-sup condition ( 40) is a direct consequence of that statement. Indeed, let q ∈ L 2 (Ω)\{0} and w ∈ H 1 0 (Ω, R 3 ) satisfying [START_REF] Whitby | Fluid flow in carbon nanotubes and nanopipes[END_REF]. Then

sup v∈H 1 0 (Ω,R 3 )\{0} B(q, v) q L 2 0 (Ω) v H 1 0 (Ω,R 3 ) ≥ B(q, w) q L 2 0 (Ω) w H 1 0 (Ω,R 3 ) ≥ B(q, w) C q 2 L 2 0 (Ω) ≥ 1 C . Bogov
Estimates on the pressure. In order to estimate p ε L 2 (Ω) , we consider a function m ∈ L 2 (Ω) and the associated function

w ∈ H 1 0 (Ω, R 3 ) such that div w = m -Ω m (in this case Ω is of volume 1) and w H 1 0 (Ω,R 3 ) ≤ C m -Ω m L 2 (Ω)
. Using that Ω p ε = 0, we can write

Ω p ε m = Ω p ε m - Ω m = Ω p ε div w = Ωε 2 D(u ε ) : D(w) + Bε 2ε α D(u ε ) : D(w) - Ω f • w .
Hence, by Cauchy-Schwarz inequality, Poncaré inequality and Korn inequality [START_REF] Bucur | On the asymptotic limit of the Navier-Stokes system on domains with rough boundaries[END_REF], there exists a constant C > 0 such that

Ω p ε m ≤ C D(u ε ) L 2 (Ω,R 3 ) + f L 2 (Ω,R 3 ) w H 1 0 (Ω,R 3 ) .
Using the energy bound and that m -Ω m L 2 (Ω) ≤ m L 2 (Ω) , we conclude that

p ε L 2 (Ω) ≤ C 1 + ε -α 1/2 ≤ Cε -α/2 .
We can also introduce a different pressure pε defined in Ω, such that p ε and pε differ by a constant, and that Ωε pε = 0 for any ε > 0. Now fix ε > 0 and consider m ∈ L 2 (Ω ε ) and w ∈ so that by similar arguments as above,

H 1 0 (Ω ε , R 3 ) such that div w = m -1 |Ωε| Ωε m in Ω ε and ∇ w L 2 (Ωε,R 3×3 ) ≤ C m -Ωε m L 2 (Ωε) (the fact that C is independent on ε is proven in [13,
pε L 2 (Ωε) ≤ C( D(u ε ) L 2 (Ωε,R 3×3 ) + f L 2 (Ω,R 3 ) ) .
Using the energy bound, we get that pε is uniformly bounded in L 2 (Ω), hence there exists p ∈ L 2 (Ω) such that, up to extraction, pε p weakly in L 2 (Ω) .

Rescaled pressure in B ε Define q ε : ω → R by q ε (y) = ε (α+1)/2 p ε (y , 1 -ε y 3 ) for a.e. y ∈ ω.

Then,

ω |q ε (y)| 2 dy = 1 ε Bε ε α+1 |p ε (x)| 2 dx = ε α Bε |p ε | 2 ≤ C .
In particular, there exists q ∈ L 2 (ω) such that, up to extraction,

q ε q weakly in L 2 (ω) . ( 43 
)

Limit equation in the depletion layer

Let us start with the critical case α = 1. Let φ ∈ H 1 0 (ω, R 3 ) and define

φ ε ∈ H 1 0 (B ε , R 3 ) by φ ε (x) = φ (x , 1 -x 3 ε ) and φ ε,3 (x) = -ε φ3 (x , 1 -x 3 ε ) .
We also have

u ε (x) = 1 ε 2 v ε (x , 1 -x 3 ε ) and u ε,3 (x) = - 1 ε v ε,3 (x , 1 -x 3 ε ) and p ε (x) = 1 ε q ε (x , 1 -x 3 ε ) .
Setting φ ε = 0 in Ω ε and testing against φ ε in the mixed formulation [START_REF] Sanchez-Palencia | Problèmes de perturbations liés aux phénomènes de conduction à travers des couches minces de grande résistivité[END_REF], we obtain the relation 2ε

Bε D(u ε ) : D(φ ε ) - Bε p ε div φ ε = Bε f • φ ε . Writing D(u ε ) = 1 ε 2 D y (v ε ) -1 2 1 ε 3 ∂ y 3 v ε + 1 ε ∇ y v ε,3 -1 2 1 ε 3 ∂ y 3 v ε + 1 ε ∇ y v ε,3 1 
ε 2 ∂ y 3 v ε,3 D(φ ε ) =   D y ( φ ) -1 2 1 ε ∂ y 3 φ + ε ∇ y φ 3 -1 2 1 ε ∂ y 3 φ + ε ∇ y φ 3 ∂ y 3 φ 3  
and using the change of variables x = y , x 3 = 1 -εy 3 , we obtain

ω 1 ε 2 ∂ 3 v ε • ∂ 3 φ - ω q ε div y φ = ε ω f (y , 1 -ε y 3 ) • φ (y) dy -ε 2 ω f 3 (y , 1 -ε y 3 ) φ 3 (y) dy -2ε 2 ω 1 ε 2 D y (v ε ) : D y ( φ ) -2ε ω 1 ε ∂ 3 v ε,3 ∂ 3 φ 3 -ε 3 ω 1 ε ∇ y v ε,3 • ∇ y φ 3 -ε 2 ω 1 ε 2 ∂ 3 v ε • ∇ y φ 3 -ε ω 1 ε ∇ y v ε,3 • ∂ 3 φ (44) 
For 1 ≤ j ≤ 3, using Cauchy-Schwarz inequality and Poincaré inequality in ω, we obtain the estimate

ω f j (y , 1 -ε y 3 ) φ(y) dy = 1 ε Bε f j (x) φ j (x , 1 -x 3 ε ) dx ≤ 1 ε Bε f j (x) 2 dx 1/2 Bε φ j (x , 1 -x 3 ε ) 2 dx 1/2 ≤ 1 ε Ω f j (x) 2 dx 1/2 ε ω φ j (y) 2 dy 1/2 ≤ C ε -1/2 f L 2 (Ω,R 3 ) φ H 1 0 (ω,R 3 ) . In particular, ε ω f (y , 1 -ε y 3 ) • φ (y) dy ≤ C ε 1/2 f L 2 (Ω,R 3 ) φ H 1 0 (ω,R 3 ) , ε 2 ω f 3 (y , 1 -ε y 3 ) φ 3 (y) dy ≤ C ε 3/2 f L 2 (Ω,R 3 ) φ H 1 0 (ω,R 3 ) .
Using the convergences established in subsections 3.4 and 4, we can pass to the limit in (44) to obtain

ω ∂ 3 w • ∂ 3 φ - ω q div y φ = 0 .
Taking φ = (0, φ 3 ), we deduce ω -q ∂ 3 φ 3 = 0, so that ∂ 3 q = 0 a.e. in ω and q depends only on y . Now, taking φ = ( φ , 0), we get

ω ∂ 3 w • ∂ 3 φ -ω q div y φ = 0, hence -∂ 2 3,3 w + ∇ y q = 0 in H -1 (ω, R 2 ) . (45) 
Since w = 0 on y 3 = 0, integrating the previous equation in the y 3 variable yields the existence of a function c (y ) a such that

w (y) = y 2 3 2 ∇ y q(y ) + y 3 c (y ) . (46) 
Coming back to expression (46), we get that

c (y ) = ū (y , 1) d(y ) - d(y ) 2 ∇ y q(y ) (47) 
hence

w (y) = y 2 3 2 ∇ y q(y ) + y 3 ū (y , 1) d(y ) - d(y ) 2 ∇ y q(y ) = - y 3 2 (d(y ) -y 3 )∇ y q + y 3 d(y ) ū (y , 1) .
Integrating the previous expression on y 3 ∈ (0, d(y )), we obtain

d(y ) 0 w (y) dy 3 = 1 2 - d(y ) 3 6 ∇ y q + d(y ) ū (y , 1)
and plugging this expression in [START_REF] Poynor | How water meets a hydrophobic surface[END_REF], we get the Reynolds equation on q:

∀η ∈ H 1 (T 2 ) (0,1) 2 d(y ) 3 6 ∇ y q • ∇ y η dy = (0,1) 2 d(y ) ū (y , 1) • ∇ y η dy (48) 
By density, we may assume that φ(x , x 3 ) = 0 for x 3 > 1 -δ, where δ is small. But then for any 0 < ε < δ/ d ∞ , the variational formulation ( 16) reduces to

Ωε 2D(u ε ) : D(φ) = Ω f • φ ,
which can be rephrased as

Ω 2D(ū ε ) : D(φ) = Ω f • φ since φ is supported in Ω ε . ( 52 
) follows by weak convergence of ūε to ū in H 1 0 (Ω).

Limit problem in the case α ≥ 1

Let φ ∈ H 1 (Ω, R 3 ) such that div φ = 0 in Ω and satisfying the boundary conditions

φ 3 = 0 on Γ t , φ = 0 on Γ b , (53) 
and

φ ∈ H 1 (ω, R 2 ) such that φ (y , 0) = -φ (y , 1) φ (y , d(y )) = 0 for y ∈ (0, 1) 2 . ( 54 
)
We test in the mixed formulation [START_REF] Sanchez-Palencia | Problèmes de perturbations liés aux phénomènes de conduction à travers des couches minces de grande résistivité[END_REF] against the test function

φ ε ∈ H 1 0 (Ω, R 3 ) defined by    φ ε (x) = φ (x) + 1 Bε (x) φ (x , 1 -x 3 ε ) φ ε,3 (x) = φ 3 (x) for x ∈ Ω . (55) 
Recall that all functions are periodic of period (0, 1) 2 in the horizontal direction. Notice that conditions (53)-(54) guarantee that φ ε is in H 1 0 (Ω, R 3 ). The definition of function φ will be made precise later.

Testing against φ ε in (38) yields

2 Ωε D(u ε ) : D(φ) + 2ε α Bε D(u ε ) : D(φ) + 2ε α Bε ∇ x (u ε ) : ∇ y ( φ ) - 1 2 (∂ x 3 u ε + ∇ x u ε,3 ) • ( 1 ε ∂ y 3 φ ) - Bε p ε div y φ = Ω f • φ + Bε f • φ (56) 
where functions u ε , φ, f and their derivatives are computed at x, function φ and its derivatives with respect to y are computed at (x , 1-x 3 ε ), and all integrals are performed with respect to x. In order to clarify the presentation, we pass to the limit in (56) in two steps. In step 1, we deal with the integrals involving φ and we leave the integrals involving φ for step 2.

Step 1.

• Using function ūε defined by [START_REF] Faucher | Critical knowledge gaps in mass transport through single-digit nanopores: A review and perspective[END_REF], which coincides with u ε in Ω ε and is uniformly bounded in H 1 (Ω), we can write • Using Young inequality and the energy bound [START_REF] Casado-Díaz | Why viscous fluids adhere to rugose walls: A mathematical explanation[END_REF], there holds Step 2. We use the change of variables (4) to turn integrals in x ∈ B ε into integrals in y ∈ ω.

• Using the rescaled function v ε defined by [START_REF] Gérard-Varet | Relevance of the slip condition for fluid flows near an irregular boundary[END_REF], we have

2ε α Bε ∇ x (u ε ) : ∇ y ( φ ) - 1 2 (∂ x 3 u ε + ∇ x u ε,3 ) • ( 1 ε ∂ y 3 φ ) = 2ε α+1 ω 1 ε 2 ∇ y (v ε ) : ∇ y ( φ ) + 1 2 ( 1 ε 3 ∂ y 3 v ε + 1 ε ∇ y v ε,3 ) • ( 1 ε ∂ y 3 φ ) = 2ε α-1 ω ∇ y (v ε ) : ∇ y ( φ ) + 1 2ε 2 ∂ y 3 v ε • ∂ y 3 φ + 1 2 ∇ y v ε,3 • ∂ y 3 φ .
By [START_REF] Gravelle | Large permeabilities of hourglass nanopores: From hydrodynamics to single file transport[END_REF], ∇ y (v ε ) converges strongly to 0 in L 2 (ω, R 2×2 ), so that lim Finally, since q satisfies the Reynolds equation (48), q is in H 1 ((0, 1) 2 ) so by Green formula, Plugging the previous expression in (60), we conclude that ū is the variational solution to [START_REF] Cazenave | An Introduction to Semilinear Evolution Equations[END_REF].
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2 ΩεD

 2 (u ε ) : D(φ) = 2 Ω D(ū ε ) : D(φ) -2 Bε D(ū ε ) : D(φ) .

Since 2 . 2 ΩεD 2 Ω

 222 ūε converges weakly to ū in H 1 (Ω, R 3 ), there holds immediatelylim ε→0 Ω D(ū ε ) : D(φ) = Ω D(ū) : D(φ) . Writing Bε |D( φ)| 2 = Ω 1 Bε |D( φ)|2 and using Lebesgue dominated convergence theorem, we obtain lim ε→0 Bε |D( φ)| 2 = 0. Since ūε is uniformly bounded in H 1 (Ω, R 3 ), we deduce that lim ε→0 Bε D(ū ε ) : D(φ) = 0, and hence lim ε→0 (u ε ) : D(φ) = D(ū) : D(φ) .

2 ≤

 2 ε ) : D(φ) ≤ ε α ε α/2 Bε |D(u ε )| 2 + ε -α/2 Bε |D(φ)| 2 ≤ ε α/2 ε α Bε |D(u ε )| 2 + Ω |D(φ)| (C + D(φ) 2 L 2 (Ω,R 3×3 ) )ε α/ε ) : D(φ) = 0 .

∇ω 1 ε 2 ∂∂ y 3 w

 123 y (v ε ) : ∇ y ( φ ) = 0 .By the weak convergence[START_REF] Jäger | Couette flows over a rough boundary and drag reduction[END_REF], there holdslim ε→0 y 3 v ε • ∂ y 3 φ = ω ∂ y 3 w • ∂ y 3 φ . Finally, since v ε,3 converges weakly to 0 in H 1 (ω), lim ε→0 ω ∇ y v ε,3 • ∂ y 3 φ = 0 . y )φ (y , 1) + d(y ) 3 6 ∇ y r ,hence (61) results from the very definition of R(φ). This property will allow us to simplify the expression of the boundary layer terms ω ∂ y 3 w • ∂ y 3 φω q div y φ in (60). First,ω ∂ y 3 w • ∂ y 3 φ = ω 1 d(y ) ∂ y 3 w (y) • φ (y , 1) dy + 1 2 ω (d(y ) -2y 3 )∇ y r dy .By Fubini theorem and using that w = 0 on y 3 = 0 and condition (37), we get ω 1 d(y ) ∂ y 3 w (y) • φ (y , 1) dy = (y , y 3 ) dy 3 • φ (y , 1) dy = (0,1) 2 1 d(y ) (w (y , d(y )) -w (y , 0)) • φ (y , 1) dy = (0,1) 2 1 d(y ) ū (y , 1) • φ (y , 1) dy . Also, by Fubini theorem, noticing that d 0 (d -2s) ds = 0 for any d > 0, we obtain ω (d(y ) -2y 3 )∇ y r dy = y ) -2y 3 ) dy 3 ∇ y r dy = 0 .

φ, 1 )

 1 (y) dy 3 dy .Taking η = q in (61), we conclude that the previous integral vanishes. Gathering the previous computations, we obtain the expressionω ∂ y 3 w • ∂ y 3 φ -• φ (y , 1) dy .

Step towards Reynolds equation We claim that for any η ∈ H 1 ((0, 1) 2 ), the limit w satisfies (0,1) 2 d(y ) 0 w (y , y 3 ) dy 3 • ∇ y η(y ) dy = 0 .

(36)

By density, it is enough to prove [START_REF] Poynor | How water meets a hydrophobic surface[END_REF] for η = η(y ) ∈ C 1 ([0, 1] 2 ). Since div v ε = 0 in ω, using integration by parts, there holds

Using [START_REF] Jäger | Couette flows over a rough boundary and drag reduction[END_REF], we can pass in the limit in the previous relation and obtain ω w • ∇ y η = 0, which by Fubini theorem can be rephrased as [START_REF] Poynor | How water meets a hydrophobic surface[END_REF].

Boundary condition for w on y 3 = d(y ), in the critical case α = 1. To obtain the boundary condition satisfied by w on y 3 = d(y ), we go back to the definition [START_REF] Gérard-Varet | Relevance of the slip condition for fluid flows near an irregular boundary[END_REF] and of ṽ ε and w , and observe that, in the critical case α = 1,

Hence, by weak convergence of 1 ε 2 ṽ ε to w in H 1 (0, 1; L 2 ((0, 1) 2 )), and continuity of the trace on z 3 = 1, the sequence of function y ∈ (0, 1) 2 → u ε (y , 1-εd(y )) converges weakly to w (y , d(y )) in L 2 ((0, 1) 2 ).

Taking η = η (y ) ∈ L 2 ((0, 1) 2 , R 2 ), integrating on vertical lines, we obtain Writing a similar inequality as [START_REF] Karniadakis | Simple Fluids in Nanochannels[END_REF], there holds

Since lim ε→0 (0,1) 2 ū ε (y , 1) • η (y ) dy = (0,1) 2 ū (y , 1) • η (y ) dy , we can pass to the limit in the former inequality to obtain

Since ū ε and u ε coincide on y 3 = d(y ), by uniqueness of the weak limit in L 2 ((0, 1) 2 ), this proves that w (y , d(y )) = ū (y , 1) for a.e. y ∈ (0, 1) 2 .

(

Obtention of the boundary condition ū3 = 0 on Γ t in the supercritical case 1 < α ≤ 2 Taking the trace on z 3 = 1 in [START_REF] Nitsche | On Korn's second inequality[END_REF], and coming back to variable y, we get that the sequence of functions y ∈ (0, 1) 2 → -

Let Q be the following space:

By Poincaré-Wirtinger inequality, Q is a Hilbert space for the scalar product (r 1 , r 2 ) = ( (0,1) 2 ∇ y r 1 • ∇ y r 2 dy ) 1/2 , so by standard elliptic theory, there exists a unique solution q 0 ∈ Q to problem (48), which depends linearly on ū. Moreover, a function q 1 ∈ H 1 (T 2 ) is solution to (48) if and only if q 1 -(0,1) 2 q 1 = q 0 . Hence, there exists a constant C q such that

As a result, setting

In general, for any vector field v ∈ H 1 (Ω, R 3 ), there exists one unique function

and the operator R : H 1 (Ω, R 3 ) → L 2 (T 2 , R 2 ) is linear and continuous. Indeed, setting ∇ y η = R(v) in (50) yields

and using Hölder inequality in L 2 (T 2 , 1 d(y ) dy ), we obtain the estimate

Using ( 1) and the continuity of the trace operator H 1 (Ω) → L 2 (Γ t ), this implies in particular the existence of a constant C > 0, depending only on d,

) .

Identification of the limit problem

Using the elements gathered in the previous sections, we are able to characterize ū as the solution to one of the limit problems ( 18), [START_REF] Cazenave | An Introduction to Semilinear Evolution Equations[END_REF] or [START_REF] Chenais | On the existence of a solution in a domain identification problem[END_REF].

Subcritical case 0 < α < 1

Since we have already established that ū = 0 on Γ t , it remains to prove that for any

in the critical case α = 1,

in the super-critical case α > 1,

• Using the rescaled pressure q ε defined by (42), there holds Bε p ε div y φ = ω q ε div y φ and by the weak convergence (43), we get lim ε→0 Bε p ε div y φ = ω q div y φ .

• By Lebesgue dominated convergence theorem, writing Bε f

Gathering the previous results, we can pass to the limit in (56) and obtain:

This proves that ū is the variational solution to [START_REF] Chenais | On the existence of a solution in a domain identification problem[END_REF] ;

We will choose a particular profile for the function φ in order to express the integrals

as a boundary integral on Γ t involving ū and φ.

Construction of the function φ

By density, one can assume that φ is in C 1 (Ω, R 2 ). Then we define φ ∈ H 1 (ω, R 2 ) by φ (y) = -1 -y 3 d(y ) φ (y , 1) + 1 2 (d(y ) -y 3 )y 3 ∇ y r(y ) , y ∈ ω , with ∇ y r = R(φ), where the operator R is defined by (50). φ is periodic with respect to y and satisfies (54), as well as the analogous condition to (36):

(0,1) 2 d(y ) 0 φ (y , y 3 ) dy 3 • ∇ y η(y ) dy = 0 for any η ∈ H 1 ((0, 1) 2 ) .

(61)