PRL/FARANDA

1	Supplemental Material for: Interrupting vaccination policies can
2	greatly spread SARS-CoV-2 and enhance mortality from
3	COVID-19 disease: the AstraZeneca case for France and Italy
4	Davide Faranda [*]
5	Laboratoire des Sciences du Climat et de l'Environnement,
6	CEA Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ,
7	Université Paris-Saclay & IPSL, 91191, Gif-sur-Yvette, France
8	London Mathematical Laboratory, 8 Margravine Gardens, London, W6 8RH, UK and
9	LMD/IPSL, Ecole Normale Superieure,
10	PSL research University, 75005, Paris, France
11	Tommaso Alberti
12	National Institute for Astrophysics-Institute for
13	Space Astrophysics and Planetology (INAF-IAPS),
14	via del Fosso del Cavaliere 100, 00133, Rome, Italy
15	Maxence Arutkin
16	UMR CNRS 7083 Gulliver, ESPCI Paris,
17	10 rue Vauquelin, 75005 Paris, France
18	Valerio Lembo
19	Institute of Atmospheric Sciences and Climate (ISAC-CNR), Bologna, Italy
20	Valerio Lucarini
21	Department of Mathematics and Statistics,
22	University of Reading, Reading, UK and
23	Centre for the Mathematics of Planet Earth,
24	University of Reading, Reading, UK

(Dated: March 17, 2021)

26

Abstract

²⁷ The supplemental Material for "Interrupting vaccination policies can greatly spread SARS-CoV-

28 2 and enhance mortality from COVID-19 disease: the AstraZeneca case for France and Italy"

²⁹ contains: i) the numerical code used in this study, ii) 2 supplementary figures.

30 I. NUMERICAL CODE

- 31 %Numerical SEIR code for "Interrupting vaccination policies can greatly spread
- 32 %SARS-CoV-2 and enhance mortality from COVID-19 disease: the AstraZeneca case
- 33 %for France and Italy" by Faranda et al.
- ³⁴ %This code integrates the SEIR Model with vaccination policies interrupted for 7 days.
- $_{\rm 35}\,$ %The data are referred to the Italian population

```
36
```

```
37 Country='Italy';
```

- 38 %Population;
- ³⁹ N=6000000;
- 40

```
41 %Initial conditions
```

- $_{42}$ S(1)=N-9000000-2000000; %Susceptibles, including those
- 43 %who had the virus in the first and second wave (9 millions)
- 44 % and those who received two doses vaccines
- 45 E(1)=20000; %Exposed
- 46 I(1)=20000; %Infected
- 47 R(1)=11000000; %Recovered
- 48

```
49 %Parameters
```

- $_{\rm 50}$ alpha0=100000./N ; %Vaccination rate
- sigma0=0.59 ; % Vaccine Efficacy
- $_{\rm 52}$ epsilon0=0.27 ; %Incubation Rate
- 53 beta0=0.37; %Recovery Rate

^{*} davide.faranda@cea.fr

```
lambda0=0.45 %Infection Rate
54
  mort0=0.015; %Mortality
55
  RO=lambda0./beta0; %Basic Reproduction number
56
57
  %Dynamical steps
58
  t_susp=7; %example where the vaccination is suspended for one week
59
  Tint=500;
60
61
  for t=1:Tint
62
  %F
63
  if t<t_susp
64
  alpha=0;
65
  sigma=0;
66
  epsilon=epsilon0 +0.2*epsilon0*randn;
67
  beta=beta0+0.2*beta0*randn;
68
  lambda=lambda0+0.2*lambda0*randn;
69
  else
70
  alpha=alpha0+0.25*alpha0*randn;
71
   sigma=sigma0+0.1*sigma0*randn;
72
   epsilon=epsilon0 +0.2*epsilon0*randn;
73
  beta=beta0+0.2*beta0*randn:
74
   lambda=lambda0+0.2*lambda0*randn;
75
   end
76
77
      K(t)=I(t)*S(t)./N;
78
      S(t+1)=S(t)-lambda*(1-alpha)*K(t)-(1-sigma)*alpha*lambda*K(t)-sigma*alpha*S(t);
79
      E(t+1)=E(t)+lambda*(1-alpha)*K(t)+(1-sigma)*alpha*lambda*K(t)-epsilon*E(t);
80
      I(t+1)=I(t)+epsilon*E(t)-(alpha+beta)*I(t);
81
      R(t+1)=R(t)+sigma*alpha*S(t)+beta*I(t);
82
      M(t+1)=0.015*I(t);
83
84
```

```
85 end
```

SUPPLEMENTARY FIGURES II. 86

FIG. 1. Average over $N_r = 1000$ realizations of the SEIR model showing the excess deaths $m \times I(t)$ as a function of the number of the days of interruption of AstraZeneca vaccinations (x-axis) and R_0 (y-axis) for Italy with R(1) = 7 millions (a) and R(1) = 13 millions (b). The excess deaths are computed with respect to a base scenario where vaccine injections are never interrupted. Arrows indicate the values of R_0 chosen for Figs. 2 and 3. The model is integrated for 500 days.

FIG. 2. Convergence in number of realisation N_r (x-axis) of the average excess deaths (y-axis) in Italy after a 5 days interruption of AstraZeneca vaccinations. The excess deaths are computed with respect to a base scenario where vaccine injections are never interrupted. The average excess death achieve a good convergence at 10^3 realizations.

87 III. ACKNOWLEDGEMENTS

This work has been greatly supported by the London Mathematical Laboratory and we acknowledge the logistic support of SCuP. VLu acknowledges the support received from the EPSRC project EP/T018178/1 and from he EU Horizon 2020 project TiPES (Grant no. 820970).