
HAL Id: hal-03172480
https://hal.science/hal-03172480v1

Preprint submitted on 18 Mar 2021 (v1), last revised 28 Apr 2023 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantifying the overall effect of biotic interactions on
species communities along environmental gradients
Vincent Miele, Catherine Matias, Marc Ohlmann, Giovanni Poggiato,

Stéphane Dray, Wilfried Thuiller

To cite this version:
Vincent Miele, Catherine Matias, Marc Ohlmann, Giovanni Poggiato, Stéphane Dray, et al.. Quan-
tifying the overall effect of biotic interactions on species communities along environmental gradients.
2021. �hal-03172480v1�

https://hal.science/hal-03172480v1
https://hal.archives-ouvertes.fr


Quantifying the overall effect of biotic interactions on
species communities along environmental gradients

Vincent Miele1,*, Catherine Matias2, Marc Ohlmann3,4, Giovanni
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Abstract

Separating environmental effects from those of biotic interactions on species dis-
tributions has always been a central objective of ecology. Despite years of effort in
analysing patterns of species co-occurrences and communities and the developments of
sophisticated tools, we are still unable to address this major objective. A key reason is
that the wealth of ecological knowledge is not sufficiently harnessed in current statistical
models, notably the knowledge on biotic interactions.

Here, we develop ELGRIN, the first model that combines simultaneously knowledge
on species interactions (i.e. metanetwork), environmental data and species occurrences
to tease apart the relative effects of abiotic factors and overall biotic interactions on
species distributions. Instead of focusing on single effects of pair-wise interactions,
which have little sense in complex communities, ELGRIN contrasts the overall effects
of biotic interactions to those of the environment.

Using simulated and empirical data, we demonstrate the suitability of ELGRIN to
address the objectives for various types of interactions like mutualism, competition and
trophic interactions.

Data on ecological networks are everyday increasing and we believe the time is ripe
to mobilize these data to better understand biodiversity patterns. We believe that
ELGRIN will provide the unique opportunity to unravel how biotic interactions truly
influence species distributions.

Key-words: biodiversity patterns, C-score, species co-occurrence, metanetwork, Markov
random fields, environmental niche.
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1 Introduction

Ecologists have always strived to understand the drivers of biodiversity patterns with the
particular interest to tease apart the effects of environment and biotic interactions on species
distributions and communities (Ricklefs, 2008; Thuiller et al., 2015). Species distributions
are influenced by the abiotic environment (e.g. climate or soil properties) because of their
own physiological constraints that allow them or not to sustain viable populations in specific
environmental configurations. However, the occurrence of a species in a given site is also
influenced by other species through all sort of interactions that can be trophic (e.g. a predator
needs prey), non-trophic (e.g. plant species need to be pollinated by insects) or competitive
(two species with the same requirements might exclude each other) (Guisan et al., 2017;
Gravel et al., 2019).

Teasing apart the effects of environmental variations and biotic interactions on species
distributions and communities from observed co-occurrence patterns has always been a hot
topic in ecology since the earlier debate between Diamond (1975) and Connor & Simberloff
(1979), to the recent syntheses on the subject (Blanchet et al., 2020). More than anything,
with a few exceptions and despite recent advances like joint species distribution models
(Ovaskainen et al., 2017) or elegant null model developments (Peres-Neto et al., 2001; Chal-
mandrier et al., 2013), the conclusion has been that is almost impossible to retrieve and
estimate biotic interactions from observed spatial patterns of species communities (Zurell
et al., 2018). This conclusion should thus preclude any attempt to disentangle the relative
effects of environment and biotic interactions. A major difficulty of this long-standing issue
is that biotic interactions could be of any type (i.e. positive, negative, asymmetric) and that
observed patterns average out all these interactions. Observed communities reflect the overall
outcome of biotic interactions that is difficult to dissect, especially when analysing pairwise
species spatial associations as it is commonly done. Yet, this overall outcome might be worth
analysing on its own, for instance to measure the overall strength of biotic interactions in a
given community and between communities, how it depends on the co-existing species, and
how it varies in space.

Interestingly, so far there have been few attempts to integrate the wealth of existing knowl-
edge to address this fundamental ecological issue (Blanchet et al., 2020; Holt, 2020). Indeed,
the spatial analysis of biotic interactions is gaining an increased interest with novel technolo-
gies to measure interactions in the field (e.g. camera-traps, gut-content), open databases (i.e.
GLOBI, Fungal) and the developments of new statistical tools to analyse them (Tylianakis &
Morris, 2017; Pellissier et al., 2018; Ohlmann et al., 2019). The combination of expert knowl-
edge, literature, available databases, and phylogenetic hypotheses has also given rise to large
metanetworks that generalise the regional species-pool of community ecology by incorporat-
ing the potential interactions between species from different trophic levels along with their
functional and phylogenetic characteristics (Maiorano et al., 2020; Morales-Castilla et al.,
2015). Despite a single attempt (Staniczenko et al., 2017), information on interaction net-
works has been poorly integrated to understand and model biodiversity patterns. We believe
that the time is ripe to consider network information in the process of modelling species dis-
tributions and communities. It implies to integrate both biotic and abiotic information (and
their spatial variations) as explanatory factors in statistical models to weight their relative
strength.
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In this paper, we propose a novel statistical model, called ELGRIN (in reference to
Charles Elton and Joseph Grinnell) that can handle the effects of both environmental factors
and known ecological interactions (aka a metanetwork) on species distributions. We rely
on Markov random fields (MRF, also called Gibbs distribution, e.g., Brémaud, 1999), a
family of flexible models that can handle dependencies between variables using a graph. By
considering both abiotic and biotic processes in the modelling framework, our approach allows
to capture the spatial variation of the relative effects of environmental and biotic dimensions
on the composition of ecological communities. It thus provides a convenient way to integrate
network ecology in joint species community modeling. More specifically, ELGRIN jointly
models the presence and absence of all species in a given area in function of environmental
covariates and the topological structure of the known metanetwork. The outcome of the
model allows interpreting the relative strength of environment against overall species spatial
associations and analysing how this relative strength varies across space (Figure 1). In this
paper, we first present the overall modelling framework, then validate its performance using
simulations and finally apply the model on vertebrate trophic networks in the European Alps.

2 Material and methods

2.1 Species data and potential interactions

We consider a set of sites or locations indexed by l ∈ {1, . . . , L}, where the occurrence
(presence/absence) of N species and a set of environmental variables (stored in the vector
Wl) are recorded. For the same set of N species, we assume that we know how they interact,
i.e. the metanetwork which can be summarised with a graph G? = (V ?, E?) over the set of
nodes V ? = {1, . . . , N} and edges E?. This graph represents all potential interactions between
any pair of species that could occur in a site. This graph represents a common regional pool
of both species and interactions, which might be obtained, for instance, by aggregating local
networks at different locations or from expert knowledge and literature review (e.g., Cirtwill
et al., 2019; Maiorano et al., 2020). Note that various types of interactions can be considered
here (e.g., trophic, mutualism, competition). Using a mixture of them is technically feasible,
G? recording the presence of an interaction but not its type. For our model, this graph
is undirected with no self-loops (see model specification below). Hereafter, we refer to co-
present (or co-absent) species when these species are connected in the metanetwork and
jointly present (or absent, respectively) at a given location.

2.2 The statistical model of ELGRIN

Model description For each location l ∈ {1, . . . , L}, we consider a set of random variables
{X l

i}i∈V ? taking values in {0, 1} and that represent the presence/absence of species i ∈ V ? at
location l ∈ {1, . . . , L}. We rely on a Markov random field (see for instance Brémaud, 1999)
to model the dependencies between species occurrences at location l. These dependencies
are encoded through the metanetwork G?. For each location l ∈ {1, . . . , L}, we thus assume
that these random variables are distributed according to a Gibbs distribution specifying the
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joint associations between the species occurrence variables {X l
i}i∈V ? , as follows:

P({X l
i}i∈V ?) =

1

Z
exp

(∑
i∈V ?

[al + ai +W ᵀ
l bi + (W 2

l )ᵀci]X
l
i (1a)

+ βl,co−pres
∑

(i,j)∈E?

1{X l
j = X l

i = 1} (1b)

+ βl,co−abs
∑

(i,j)∈E?

1{X l
j = X l

i = 0}
)
, (1c)

where 1{E} is the indicator function of event E (either co-absence X l
j = X l

i = 0 or co-
presence X l

j = X l
i = 1) and Z a normalising constant discussed below. All the model param-

eters have an ecological interpretation (Table 1). The use of Wl and W 2
l allows modelling

species response to environmental gradient following a bell-shaped relationship, as expected
under classical niche theory (Chase & Leibold, 2003).

Sub-equation (1a) is the Grinnellian part of ELGRIN, as it represents some prior proba-
bility of species occurrences independently of their interactions. The real-valued parameter al
controls the expected species richness at location l and can been seen as the richness capacity
of the site (Storch & Okie, 2019). Parameters ai, bi, ci capture the response of species i to
environment, seen through a vector of environmental covariates Wl. The intercept ai can be
interpreted as the prevalence of species i whereas the vectors bi, ci deal with its environmental
niche, like in a standard species distribution model (Guisan et al., 2017).

Sub-equations (1b) and (1c) form the Eltonian part of ELGRIN. It considers only inter-
actions (i, j) ∈ E?, i.e. the edges of the metanetwork. The βl represent the overall influence
of the interactions (as encoded through G?) on all species presence/absence at location l.
However, this influence may be different for co-presence and co-absence, with parameters
βl,co−pres and βl,co−abs respectively (see Table 2). When a βl,co−pres is positive, it represents a
positive driving force of co-presence on species distributions. By contrast, when it is negative,
it indicates that species co-presence are avoided. The same reasoning holds with βl,co−abs for
co-absence. Note that we chose the parameters βl to be specific to location l ∈ {1, . . . , L}
such that the effect of species interactions can vary across space. Finally, Z is a normal-
ising constant that cannot be computed for combinatorial reasons, although the statistical
inference procedure will deal with that. All the details of the estimation procedure and
parameters identifiability are available in Supporting Information.

Lastly, it is important to note that the metanetwork G? cannot be directed in our mod-
elling procedure. Indeed, Markov random fields specify conditional dependencies between
random variables {X l

i} in a non-directed way. Our model assumes that these dependencies
are given by the interaction network without considering the direction of edges. Conse-
quently, this statistical model of interaction cannot be read in the light of causality. In case
of trophic interactions, it consists in assuming that presence/absence of a predator and its
prey are intertwined, without specifying top-down or bottom-up control.

ELGRIN is implemented in C++ for efficiency and is available as part of the R package
econetwork available at CRAN (https://cran.r-project.org/).

Model interpretation In an hypothetical example where G? is an empty graph (no edges,
none of the species interact), the random variables {X l

i}i∈V ? are independent and each species
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is present with probability eαi,l/(1 + eαi,l) ∈ (0, 1), where αi,l = al + ai + W ᵀ
l bi + (W 2

l )ᵀci.
In other words, αi,l is the logit of the probability of presence of species i at location l in the
absence of interactions. Assuming that we have included all important environmental covari-
ates, that there is no dispersal limitation, and no model mis-specifications, αi,l is analogous
to the fundamental niche parameters of the species (sensu Hutchinson, 1959). It gives the
probability of presence of species i at location l when there is no known effect of interactions.

However, when dealing with potential known species interactions (as recorded in G?),
presence/absence information is smoothed across neighbouring nodes in G? (see Table 2).
More precisely, whenever two species i, j ∈ V ? can potentially interact, i.e. whenever (i, j) ∈
E?, the presence or absence of one species influences the other so that both variables tend
to be equal to 1 (i.e. both species present) when regulated by a positive βl,co−pres, or equal
to 0 (i.e. both species absent) with a positive βl,co−abs. On the other hand, when βl,co−pres
(or βl,co−abs, respectively) is negative, co-presence configurations (or co-absence, respectively)
tend to be avoided, meaning that only one of the two species tends to be present. The larger
the absolute value of βl, the stronger the strength of the effects.

2.3 Application to simulated data

Simulation model We used an updated version of the model developed by Münkemüller
& Gallien (2015) to simulate communities whose composition is driven simultaneously by
biotic and abiotic environmental effects. We considered N species in the species pool and L
communities to simulate (i.e. the number of locations). For each community, we associated
a single environmental covariate (hereafter called ”environment”) that we uniformly drew
from a range of values between 0 and 100. Each community has the same carrying capacity
K (i.e. the exact number of individuals in each location). We defined the environmental
niche (or preference) of each species as a Gaussian distribution centered on a given optimum.
The environmental niches optima were regularly taken on a grid between 0 and 100, whereas
the standard deviations were all equal to a given value σ for simplicity (to define in the
set-up procedure). Finally, we considered an undirected network of species interactions, the
metanetwork G?, under two different scenarios: considering these interactions were reciprocal
and all negative (competition) or all positive (mutualism), and randomly drawn according
to the following rules. Regarding mutualism, we considered that species that facilitate each
other tend to have an abiotic niche that is not too close and not too far from each other.
The underlying hypothesis is that a species whose niche optimum is really far from the
environmental conditions of the location will anyway be maladapted and will not survive.
Reciprocally, as we consider only one environmental variable, if two species have the same
niche, we considered that there is no reason why they will facilitate each other, they will
rather compete. The details of the model as well as the simulation set-up are described in
Supporting Information.

2.4 Application to real data

We analyse the newly available Tetra-EU 1.0 database, a species-level trophic meta-web of
European tetrapods (Maiorano et al., 2020). This dataset comprises a continental scale,
species-level, metanetwork of trophic interactions (i.e. food web) connecting all tetrapods
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(mammals, birds, reptiles, amphibians) occurring in Europe. This metanetwork is based
on data extracted from scientific literature, including published papers, books, and grey
literature (see Maiorano et al., 2020, for a complete description of the data and the ref-
erence list used to build the metanetwork). We decided to restrict our analyses on the
European Alps that show sharp environmental gradients and varying trophic web distribu-
tions (O’Connor et al., 2020). We extracted the species distribution data from Maiorano
et al. (2013) at a 300 m resolution. We upscaled all species ranges maps to a 10x10 km
equal-size area grid and cropped the distribution data on the European Alps. Species were
considered present on a given 10x10 km cell if they were present in at least one of the 300
x 300 m cells within it. This yielded species distributions maps for 257 breeding birds, 99
mammals, 36 reptiles, and 30 amphibians over 2138 locations. Environmental covariates
were extracted at the same resolution and were selected following previous work on those
data (Braga et al., 2019). For climate, we used mean annual temperature, temperature
seasonality, temperature annual range, total annual precipitation and coefficient of varia-
tion of precipitation that were all extracted from the Worldclim v2 database (http://www.
worldclim.org/bioclim). Using GlobCover (GlobCover V2.2; http://due.esrin.esa.

int/page_globcover.php), we extracted the number of habitats present in a given pixel,
habitat diversity in a given pixel based on Simpson index and habitat evenness as a measure of
habitat complexity. Finally, we added an index of annual net primary productivity (Global
Patterns in Net Primary Productivity, v1 (1995), http://sedac.ciesin.columbia.edu/

data/set/hanpp-net-primary-productivity) and the human footprint index (http://
sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-geographic).
Since these data were highly correlated, we used a PCA to retain the three leading vectors
as environmental covariates (Wl) in ELGRIN.

3 Results

3.1 Simulated communities

When analysing the data simulated under a competition mechanism, we observed that the
estimated ai’s were linearly correlated to species frequencies (Figure 2a). However, the esti-
mated al’s were only slightly correlated with species richness, with a high variability (Figure
2b). This was expected since, in our simulated procedure, we included a carrying capacity in
terms of number of individuals but not in terms of species number. In other words, we did not
introduce a direct mechanism that would control richness in the simulations. Interestingly,
we discovered that the estimated niche parameters were coherent with the species niche as
they were introduced in the simulation (Figure 2c). As expected, the quality of estimations
is lower at the extrema of the gradient as bell-shaped species response are truncated. There-
fore, the estimation of the parameters of the Grinnellian part of our model (subequation (1a))
seems relevant. For the Eltonian part of our model (subequations (1b),(1c)), we noticed that
the parameters βl,co−pres and βl,co−abs were mostly negative (Figures 2d-e). Strikingly, the
more negative βl,co−pres, the less frequent co-presence was as compared to expectation in
random assemblages (see Supporting Information). A similar effect was observed for βl,co−abs
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and co-absence. These negative values demonstrates that ELGRIN captures the mark of
the impact of competition. They indicated that co-presence and co-absence were avoided,
leading to some level of competitive exclusion. This phenomenon was clearly the by-product
of the competitive interactions and the carrying capacity in terms of number of individuals
(that explicitly induced exclusion). Finally, βl,co−pres tended to be much more negative on
locations with extreme environmental conditions whereas βl,co−abs slightly increased (Figure
2f). Indeed, two interacting species with a niche optimum close to one extreme condition
are jointly disadvantaged in the other extreme. Consequently, these species suffered a double
penalty (bad environment fit and competition) and were very unlikely to be present, and
frequently co-absent.

When focusing on mutualism, we reached similar conclusions than previously about the
Eltonian part of our model and the parameters ai, al and niche parameters (Figures 3a–c).
Regarding the Eltonian part, we observed a mixture of positive and negative βl values. A
large series of locations had a positive βl,co−pres correlating with frequent observed co-presence
as compared to expectation (Figure 3d). This observation was due to our simulation frame-
work integrating mutualism that promoted co-presence of interacting species in simulated
communities. On the other hand, the negative estimated βl,co−abs were linked to more fre-
quent co-absence than expected (Figure 3e). These locations tended to avoid interacting
species. For a further analysis, we checked the possible link between environment and βl
values (Figure 3f). We noticed that βl,co−pres was negative in extreme environmental condi-
tions whereas βl,co−abs increased. Indeed, in a pair of interacting species, it is possible that
one species is not adapted to these conditions and the effect of mutualism was not strong
enough to make this species present. Since mutualistic interactions are reciprocal, a cascad-
ing effect induced that the other species did not benefit any more from mutualism and also
disappeared. This was confirmed by the dramatic increase in βl,co−abs that we observed in
extreme environmental conditions.

3.2 Empirical case study

When we fitted our model to the European vertebrate dataset, the parameters βl,co−pres
and βl,co−abs were highly correlated (see Supporting Information) suggesting joint effects on
predator/prey co-presence and co-absence (being in this case two sides of the same coin). In
what follows, we therefore mainly dealt with βl,co−pres.

Parameters ai and species frequencies were linked by a clear logit function (Figure 4a),
showing that the ai perfectly fitted the empirical species prevalence. The estimated al’s
were linearly correlated with species richness, but with significant variability: indeed, for
any given richness value, al tends to be greater when βl was low and negative, but smaller
when βl was high (bluish and reddish points respectively above and below the regression line
in Figure 4b). It indicates that the effects of interactions, as measured by the βl, become
partly responsible for species richness. For instance, a richness of 200 species can be due to
a moderate richness capacity (al close to -1) plus a large co-presence effect (reddish points in
Figure 4b). The Eltonian effects are visible here, highlighted by our model when the βl are
high in absolute value.

We also observed a spatial pattern of the βl estimates, with regions of negative or positive
βl,co−pres (bluish or reddish colors respectively in Figure 4c). The largest βl,co−pres values
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were found mainly in the french Alps and in the Eastern zone. Almost all the highest
βl,co−pres (> 0.05) are in locations with an altitude below 1600 m (Figure 4d, left). In these
regions, richness and more importantly connectance tend to be high (see Figure 4e). Since
βl,co−abs is also positive, co-presence as well as co-absence are favored here: this is the sign
of high inter-dependence between preys and predators that were concomitantly present, and
sometimes absent. In the opposite, the higher up, the more likely βl,co−pres is negative. This
is particularly above 1600 m in the central Alps, where almost all the smallest βl,co−pres
(< −0.5) were estimated (Figure 4d, right).

Locations with negative βl,co−pres have a lower richness (Figure 4e). Since βl,co−abs tend
to be negative as well, co-presence as well as co-absence are disfavored here. Interestingly,
these locations also have a different trophic network structure. Relying on the trophic group
definition proposed by O’Connor et al. (2020), we observed a lower richness in trophic groups
in these locations (Figure 4f) as compared to locations with a higher βl,co−pres, but also a
lower diversity in trophic groups. This latter observation suggested the trophic groups were
not distributed in a constant manner over the whole region. In summary, where βl,co−pres is
negative, in particular in higher altitude, the biotic effects captured by ELGRIN are linked
to a peculiar structure of the trophic networks observed in these locations. This is confirmed
by the analysis of trophic group 4 that gathers about 15 to 20% of the metanetwork species
(Figure 4f). These species were more prominent and as well as less connected to the other
species when βl,co−pres is highly negative (Figure 4g; the reverse holds with highly positive
βl,co−pres). If they are less connected with their potential preys or predators, this means
that co-presence is disfavored: this is exactly what negative βl,co−pres values in ELGRIN are
supposed to model.

4 Discussion

Deciphering the mechanisms explaining spatial patterns of species distributions and com-
munities is likely one of the most active fields of ecological research since the early days of
biogeography and community ecology. Still, there was so far no comprehensive statistical ap-
proach able to make the best of existing knowledge on biotic interactions, species occurrence
and environmental data to measure and quantify the dual effects of environment and biotic
interactions on species distributions. Our proposed model that relies on Markov random
fields builds on the ability of graph theory to represent known species interactions under
a network formalism. This formalism is ideal because it allows within the same model to
account for both the effects of the environment and the biotic interactions, which reconciles
the Grinnellian vision of species niches (i.e. how species respond to the abiotic environment)
with its Eltonnian counterpart (i.e. how species respond to the biotic environment). The
mathematical foundations of ELGRIN are strong and its framework is flexible allowing for
useful extensions to handle interaction strength, sampling effects and plasticity of interactions
(see Supporting Information).

A key element of ELGRIN is the ability to measure the overall effects of biotic interac-
tions on species distributions, which allows to summarise all local pairwise interactions in
a single measure (i.e. βl,co−abs or βl,co−pres). This measure can then be mapped, related to
spatial layers to understand how the overall effect of biotic interactions vary in space and
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in function of the environment or the ecosystem types. Importantly, this measure can also
be carefully investigated at a given location in function of the constituent species, trophic
groups, specialists vs generalists, connectance and so on. Interestingly, we can thus see our
βl estimates as an extended and more meaningful version of the famous checkerboard score
or C-score (Stone & Roberts, 1990), which has been used to quantify local biotic interactions
from co-occurrence pattern (e.g., Boulangeat et al., 2012). The main advantage of ELGRIN
over the C-score is that instead of inferring biotic interactions from co-occurrences, it quan-
tifies the effects of biotic interactions on species occurrences, while knowing the interactions
between species. Our approach is thus not comparable with recent developments on joint
species distribution models (JSDMs) that relate species occurrences to environmental con-
ditions, and provides a residual covariance matrix that could be interpreted on the light of
missing predictors, mis-specifications and biotic interactions (Ovaskainen et al., 2017; Zurell
et al., 2018). This matrix represents covariances between model residuals (the left-over from
the environmental effects) and actually provides little information about biotic interactions
(Zurell et al., 2018). ELGRIN does not infer any residual covariance and directly accounts
for the known interactions through the metanetwork. In JSDM, missing covariates will in-
evitably lead to spurious estimates of biotic interactions. In ELGRIN, the parameter al is
supposed to capture most of the unexplained information that is independent of the biotic
interactions. This parameter acts as a site random effect in mixed models and is expected
to filter out the effects of missing covariates, although some remaining species-specific effects
might still percolate into the betal estimates.

In the presentation of ELGRIN and in our two case studies, we focused on a single inter-
action type (e.g. competition, mutualism or trophic interaction). When dealing with a single
type of interaction, competition for instance, the modelling is explicit since we clearly under-
stand the effect that one species can have on another species. However, it is more problematic
but technically possible to handle a metanetwork composed of different types of interactions.
They can have opposite effects such as competition (a species excludes other species) and
facilitation (a species facilitates other species) and, since ELGRIN captures an overall impact
of these interactions on the distributions at each location, interpreting ELGRIN’s results can
be tricky in this case. Additionally, it worth noting that since ELGRIN relies on a Markov
random field, G? is undirected. In other words, when the original metanetwork G encodes
asymmetric interactions (e.g. predator-prey), they are then converted in undirected edges
that only represent the presence of interactions (whatever their direction). It is thus critical
to keep that in mind when interpreting the results of ELGRIN, and when merging different
types of interactions together. The same issue happens when hoping to interpret the residual
covariance matrix of JSDM through the lens of biotic interactions, since the values of the
covariance matrix could reflect any type of interactions between species, that could be asym-
metric or symmetric, or both. Finally, ELGRIN does not incorporate spatial dependencies
between the locations. Incorporating or not spatial autocorrelation into the understanding
of biodiversity patterns is a long standing question in ecology (F. Dormann et al., 2007). In-
deed, spatial dependency between locations might bias the statistical estimates since similar
locations could be used as replicates. However, this bias might be an issue only if the under-
lying factors that created this spatial autocorrelation are not included into the environmental
covariates. Meanwhile, the integration of the spatial dependency in the model is likely to
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complicate the estimation procedure and could dramatically inflate the computing time.

In terms of further perspectives, we might wonder whether this model could be extended
for prediction purposes. In principle, it is possible to draw presence/absence data from
the model for different values of the environment variables. These different values could
allow for predictions in space but also in time. In ELGRIN, known biotic interactions are
also introduced in the modelling framework. However, something to keep in mind is that
metanetwork will not change and will thus be considered as static and thus representative in
space (or in time). If the metanetwork has not been built with that prediction perspective
in mind, this might be an issue since we will miss interaction rewiring effects on species
distributions. Instead, if the metanetwork is truly a potential metanetwork that tries to
incorporate these potential interactions that have been observed yet (i.e. Maiorano et al.,
2020), it might be interesting to investigate how biotic interactions might further influence
future species distributions in response to environmental changes.
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Variables Ecological interpretation

G? Metanetwork of interactions (undirected)
X l
i Presence/absence of species i at location l

Wl Environmental covariates at location l

Parameters

ai Prevalence of species i
al Richness capacity (or expected number of species) at location l
bi, ci Environmental (abiotic) parameters of species i
βl,co−pres Co-presence strength (or avoidance when < 0) at location l
βl,co−abs Co-absence strength (or avoidance when < 0) at location l

Table 1: Definition of variables and parameters of the Markov random field model ELGRIN.
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βl,co−pres � 0 βl,co−pres = 0 βl,co−pres � 0
(avoided co-presence) (random presence) (favored co-presence)

βl,co−abs � 0
(avoided co-absence)

2 3

6 7 8

1

4 5

1

4 5

6

2 3

7 8

1

3

4 5

7

2

6 8

βl,co−abs = 0
(random absence)

2 3

7 8

1

4 5

6

2

5

6 7

1

3

4

8

4 5

6 7

1

2 3

8

βl,co−abs � 0
(favored co-absence)

2

6 7 8

1

3

4 5

1

2

7 8

3

4 5

6

1

2 3

4 5

6 7 8

Table 2: Simplified view of the different behaviours of the model in function of the param-
eters βl,co−pres and βl,co−abs. The graph represents the metanetwork containing all potential
interactions where species can be either present (gray node) or absent (white node) in a
given location l leading to different estimated βl,co−pres and βl,co−abs. When βl,co−pres � 0 or
βl,co−abs � 0, interacting species in the metanetwork tend to avoid each other: whenever one
is absent, the other tend to be present and conversely. This situation favors a checkerboard
pattern on the metanetwork. Reversely, whenever βl,co−pres � 0 (resp. βl,co−abs � 0), there
are groups of interacting species that tend to be all present (resp. all absent), inducing
sets of gray (resp. white) neighbour nodes in the metanetwork. Whenever βl,co−pres = 0
or βl,co−abs = 0, there are sets of interacting species whose states are independent from one
another and thus purely random (the proportions of gray and white nodes are governed by
the values of the parameters in the Grinnellian part of the model).
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Figure 1: Schematic view of ELGRIN’s framework. Given an interaction metanetwork,
presence/absence data and environmental covariates for a set of sites, ELGRIN estimates the
overall effect of biotic interactions on species distributions at every site, and the environmental
response of each species along all sites.
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Figure 2: Results of ELGRIN on simulated ecological communities with competition. a)
Estimated ai compared to species frequency. b) Estimated al compared to species richness
computed at each location. c) Estimated niche optimum (maximum value of the polynomial
obtained with the estimated bi and ci) versus the optimum chosen for each species (see Ma-
terial and Methods) d) Scatter plot between βl,co−pres and βl,co−abs with a color scale showing
the difference between the observed and expected number of co-presence of interacting species
(see Supporting Information). e) Same as d) but for co-absence. f) Estimated βl,co−pres and
βl,co−abs compared to the environment.
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Figure 3: Same as Figure 2 with mutualism.
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Figure 4: (Previous page.) Results of ELGRIN on the European tetrapods case study. In
the following, the color scale indicates the βl,co−pres values. For the sake of representation,
β values above 0.1 in absolute value were set to 0.1. a) Estimated ai compared to species
frequency. b) Estimated al compared to species richness computed at each location. c)
Map of estimated βl,co−pres (one dot per location). d) Scatter plot between altitude and
βl,co−pres. e) Scatter plot between richness and connectance at each location. f) Scatter
plot between richness and diversity in trophic groups defined in O’Connor et al. (2020). g)
Scatter plot between the proportion of trophic group 4 defined in O’Connor et al. (2020) and
its connectivity, as defined by its number of interactions over the total number of possible
interactions.
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Supporting information for “Quantifying the overall effect of biotic
interactions on species communities along environmental gradients”,
by V. Miele, C. Matias, M. Ohlmann, G. Poggiato, S. Dray and W.

Thuiller.

A Model extensions

A.1 Interaction strength

Besides the binary case, it is also possible to handle interaction strengths. An interaction
strength can represent a frequency (e.g., the number of visits of a pollinator to a plant),
an intensity (e.g., rate of predation, Berlow et al., 2004) or a preference (e.g. modulating
trophic links with known affinities of a predator to its preys).

We write A? = (A?ij)i,j∈V ? the adjacency matrix of the graph G?. Now, each edge (i, j) ∈
E? is modulated through the weight A?ij of the interaction. In this case, sub-equations (1b)
and (1c) are replaced by

βl,co−pres
∑

(i,j)∈E?

A?ij1{X l
j = X l

i = 1}

and

βl,co−abs
∑

(i,j)∈E?

A?ij1{X l
j = X l

i = 0},

respectively.

A.2 Sampling effects

The random variables X l
i that indicate the presence of species i at location l might not be

exactly observed due to sampling effects. Here, we propose to account for these effects by
assuming that each species i ∈ V ? is sampled with probability pi,l ∈ (0, 1) at location l ∈
{1, . . . , L}. We therefore introduce a new set of random variables Y l

i , i ∈ V ?, l ∈ {1, . . . , L}
such that each Y l

i only depends on X l
i and is distributed as

P(Y l
i |X l

i) = p
Y l
i
i,l (1− pi,l)

1−Y l
iX l

i + (1−X l
i)(1− Y l

i )

= p
Xl

iY
l
i

i,l (1− pi,l)X
l
i(1−Y l

i )1{(1−X l
i)Y

l
i 6= 1}. (A.1)

Specifically, wheneverX l
i = 0 (species i is absent from location l), species i cannot be observed

at location l and Y l
i = 0. Now, when X l

i = 1 (species i is present at location l), it is observed
(Y l

i = 1) with sampling probability pi,l and unobserved (Y l
i = 0) with probability 1−pi,l. The

parameter pi,l must be given by the user considering three possible cases: species dependent
sampling (pi,l := pi; i ∈ V ?), location dependent sampling (pi,l := pl; 1 ≤ l ≤ L) or constant
sampling (pi,l := p). In this case, the X l

i become latent variables as we only observe the Y l
i ’s.

The model turns out to be a hidden Markov random field.
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A.3 Plasticity of interactions

Our model is able to assume that interactions are not necessarily induced by the pres-
ence/absence variables (we can assume that two species interact in a given location but
not in another location). In this case, we consider a sample of observed graphs G1, . . . , GL

where each Gl = (V l, El) is such that V l ⊂ V ?. These graphs represent local interactions
that are observed at the different locations l ∈ {1, . . . , L}. The main point here is that we
assume that these interactions are sampled from the pool of potential interactions encoded
in the metanetwork G?. Let Al = (Ali,j)i,j∈V l denote the adjacency matrix of the graph Gl.
We assume that any two species that are observed and that can potentially interact (i.e. are
linked in the metanetwork G?) do effectively interact at location l with a probability that
depends only on these two species. Namely for any (i, j) ∈ E?, conditional on the fact that
two species i, j ∈ V ? were observed at location l (namely Y l

i Y
l
j = 1), we set

Ali,j|Y l
i Y

l
j = 1 ∼ B(εij), (A.2)

and Ali,j ≡ 0 whenever (i, j) /∈ E? or Y l
i = 0 or Y l

j = 0. This additional parameter ε =
{εi,j}i,j∈V ? allows us to handle interaction plasticity directly in the model.

B Mathematical details on the model

B.1 Identifying the parameters of the Gibbs distribution

We first address the issue of the identifiability of the parameters from the Gibbs distribution.
In what follows, we focus on the case of a binary metanetwork G?. However, our results
remain valid in the weighted case, where degrees are replaced by weighted degrees and the
cardinality |E?| becomes the total sum of the weights.

Let us focus on the model with no covariates (Wl = 0) and consider for each location
l ∈ {1, . . . , L} the maps ψl = ({ai}i, al, βl,co−pres, βl,co−abs) 7→ Pψl

, where

Pψl
({X l

i}i∈V ?) =
1

Zψl

exp
(∑
i∈V ?

(ai + al)X
l
i + βl,co−pres

∑
(i,j)∈E?

1{X l
j = X l

i = 1}

+ βl,co−abs
∑

(i,j)∈E?

1{X l
j = X l

i = 0}
)
.

For any ψ = ({ai}i,l, {al, βl,co−pres, βl,co−abs}l) we also define the global probability distribution
Pψ as follows

Pψ({X l
i}i∈V ?;1≤l≤L) =

L∏
l=1

Pψl
({X l

i}i∈V ?).

Proposition 1 (Identifying linear combinations of the parameter). In the model without
covariate (Wl = 0, for any l), the probability distribution Pψ uniquely defines the quantities

βl,co−pres + βl,co−abs, (B.1)

and ai + al + βl,co−pres degG?(i)or equivalently ai + al − βl,co−abs degG?(i), (B.2)
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for any i ∈ V ?, l ∈ {1, . . . , L}, where degG?(i) is the degree of species i in the metanetwork
G?. Moreover, if there exist 2 species 1 ≤ i, j ≤ N such that degG?(i) 6= degG?(j) in G?, then
the probability distribution Pψ uniquely defines the additional quantities

βl,co−abs − βl′,co−abs or equivalently βl,co−pres − βl′,co−pres, (B.3)

and al − al′ , (B.4)

for any l, l′ ∈ {1, . . . , L}.

Proof. Let us denote αi,l = ai+al. As Pψl
is a marginal of Pψ, we start by fixing the location

l ∈ {1, . . . , L} and consider the probabilities of specific configurations at this location. We let
X l
−i denote the set {X l

j; j ∈ V ?, j 6= i}. From the knowledge of Pψ, we obtain for l ∈ {1, ..., L}
and i ∈ V ? the quantities

sl0 := logPψl
({0, ..., 0}) = − log(Zψl

) + |E?|βl,co−abs
sl1 := logPψl

({1, ..., 1}) = − log(Zψl
) +

∑
i

αi,l + |E?|βl,co−pres

si,l10 := logPψl
({X l

i = 1, X l
−i = 0}) = − log(Zψl

) + αi,l + βl,co−abs(|E?| − degG?(i))

si,l01 := logPψl
({X l

i = 0, X l
−i = 1}) = − log(Zψl

) +
∑
j 6=i

αj,l + βl,co−pres(|E?| − degG?(i)),

where |E?| is the cardinality of the set E?. It follows

rl1 := sl1 − sl0 =
∑
i

αi,l + |E?|(βl,co−pres − βl,co−abs)

ri,l2 := si,l10 − sl0 = αi,l − βl,co−abs degG?(i)

ri,l3 := si,l01 − sl0 =
∑
j 6=i

αj,l + (βl,co−pres − βl,co−abs)|E?| − βl,co−pres degG?(i).

From these equations, we uniquely obtain

ti,l1 :=rl1 − r
i,l
3 = αil + βl,co−pres degG?(i)

ti,l2 :=rl1 − r
i,l
2 − r

i,l
3 = (βl,co−abs + βl,co−pres) degG?(i).

As a consequence, as soon as there is at least one edge in the metanetwork G? (inducing at
least on species i with degG?(i) 6= 0) we can obtain the quantities βl,co−abs + βl,co−pres (recall
that degG?(i) is known) as well as αi,l + βl,co−pres degG?(i) uniquely from the distribution Pψ.
Note also that combining the knowledge of these two quantities, the second is equivalent to
knowing αi,l − βl,co−abs degG?(i).

Now, let us recall that αi,l = ai + al. For two different locations l 6= l′, we have access to

ti,l1 − t
i,l′

1 = al − al′ + (βl,co−pres − βl′,co−pres) degG?(i).

We now assume that there exist two species 1 ≤ i, j ≤ N such that degG?(i) 6= degG?(j) in
G? and obtain (B.3) as follows

βl,co−pres − βl′,co−pres = (ti,l1 − t
i,l′

1 − t
j,l
1 + tj,l

′

1 )[degG?(i)− degG?(j)]−1.
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Combining this with (B.1), it is equivalent to the unique identification of βl,co−abs−βl′,co−abs.
Finally, going back to ti,l1 − t

i,l′

1 we uniquely obtain al − al′ .

Definition 1 (Equivalence class). For any parameter ψ = ({ai}i, {al, βl,co−pres, βl,co−abs}l),
its equivalence class [ψ] is defined as

[ψ] := {({ai + γ degG?(i)− δ}i, {al + δ, βl,co−pres − γ, βl,co−abs + γ}l); γ ∈ R, δ ∈ R}.

Corollary 1 (Parameter identifiability up to the equivalence class). In the model without
covariate (Wl = 0, for any l) and assuming that there exist 2 species 1 ≤ i, j ≤ N such that
degG?(i) 6= degG?(j) in G?, we have that whenever there are two parameter values ψ, ψ̃ such
that Pψ = Pψ̃, then ψ̃ ∈ [ψ]. In other words, the equality Pψ = Pψ̃ implies that there exist
real values γ, δ ∈ R such that for any i ∈ V ? and l ∈ {1, . . . , L}, we have

ãi = ai + γ degG?(i)− δ
ãl = al + δ

β̃l,co−pres = βl,co−pres − γ
β̃l,co−abs = βl,co−abs + γ.

Proof. Assume that Pψ = Pψ̃ and define for any location l ∈ {1, . . . , L} the quantity γl :=

βl,co−pres − β̃l,co−pres. Then we know from Proposition 1 that

βl,co−abs + βl,co−pres = β̃l,co−abs + β̃l,co−pres

ãi + ãl + β̃l,co−pres degG?(i) = ai + al + βl,co−pres degG?(i).

This induces that

γl = β̃l,co−abs − βl,co−abs
and ãi + ãl = ai + al + γl degG?(i).

Let us further prove that γl does not depend on l. From Proposition 1 and the additional
assumption that at least two species have different degrees in the metanetwork, we have for
any locations l, l′ ∈ {1, . . . , L},

βl,co−pres − βl′,co−pres = β̃l,co−pres − β̃l′,co−pres = βl,co−pres − βl′,co−pres − γl + γl′ ,

which implies that γl = γl′ for any pair of locations. Finally, let us define for any location
and any species

δl = ãl − al and δi = ãi − ai.

We have established that δl + δi = γ degG?(i). This implies that δl is constant through
locations and equal to some δ. This concludes the proof.

Corollary 1 tells us that the model parameter is identifiable up to the equivalence class
in Definition 1. Now, we introduce our choice of the representative parameter in this class.
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Proposition 2 (Choosing a representative). In the model without covariate (Wl = 0, for
any l) and assuming that there exist 2 species 1 ≤ i, j ≤ N such that degG?(i) 6= degG?(j) in
G?, for any parameter value ψ̃, it is possible to choose a unique representative ψ ∈ [ψ̃] such
that the estimated linear regression coefficients of the set of parameters {ai}i over the degrees
{degG?(i)}i are equal to 0, namely

(γ̂, δ̂) := inf
(γ,δ)∈R2

∑
i∈V ?

(ai − γ degG?(i)− δ)2

satisfies (γ̂, δ̂) = (0, 0).

Proof. Fix a parameter value ψ̃ and consider the linear regression of the set of parameters
{ãi}i over the degrees {degG?(i)}i, namely

(γ̃, δ̃) := inf
(γ,δ)∈R2

∑
i∈V ?

(ãi − γ degG?(i)− δ)2.

Then by setting the parameter ψ = ({ai}i,l, {al, βl,co−pres, βl,co−abs}l) as

ai := ãi − γ̃ degG?(i)− δ̃;
al := ãl + δ̃;

βl,co−pres := β̃l,co−pres + γ̃ degG?(i)

βl,co−abs := β̃l,co−abs − γ̃ degG?(i)

(for any i, l), we know from Definition 1 that ψ ∈ [ψ̃] and also by definition, the estimated
values

(γ̂, δ̂) := inf
(γ,δ)∈R2

∑
i∈V ?

(ai − γ degG?(i)− δ)2

will now satisfy (γ̂, δ̂) = (0, 0).

Remark 1. The choice of the representative parameter given by Proposition 2 is such that the
response of species i to the environment does not depend on its degree in the metanetwork and
thus on its number of interactions. This is a natural choice to separate the Grinellian part
from the Eltonian one in our model. Note that this representative parameter is the one we
rely on when interpreting the model. Thus, when we comment the behaviour of the model with
respect to different values of its parameter, we always rely on this specific reprensentative.

In general, when obtaining an estimate of the parameter, we would use a simple linear
regression (as described in Proposition 2) to obtain its representative in the equivalence class.
In our simulations and applications to datasets, it turns out that because of the initialisation
of our algorithm, we never need to perform this additional regression step and the output of
the algorithm directly is the representative from Proposition 2.

B.2 Hidden Markov random field and its interpretation

We discuss here the model in its full generality, including possible weights on the metanet-
work, sampling effects and plasticity of interactions. We thus have X := {Xl}1≤l≤L =
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{X l
i}i∈V ?,1≤l≤L (resp. Y := {Yl}1≤l≤L = {Y l

i }i∈V ?,1≤l≤L and A := {Al}1≤l≤L = {Ali,j}i,j∈V l,1≤l≤L)
denoting the set of true occurrence variables (resp. observed occurrences and observed inter-
actions). We assume that we observe (Y,A), while X are latent random variables.

A Gibbs distribution specifies the joint associations between the species occurrence vari-
ables {X l

i}i∈V ? , as follows

Pψl
({X l

i}i∈V ?) =
1

Zψl

exp
(∑
i∈V ?

[al + ai +W ᵀ
l bi + (W 2

l )ᵀci]X
l
i + βl,co−pres

∑
(i,j)∈E?

A?ij1{X l
j = X l

i = 1}

+ βl,co−abs
∑

(i,j)∈E?

A?ij1{X l
j = X l

i = 0}
)
. (B.5)

First note that the normalizing constant Zψl
is given by

Zψl
=

∑
{xi}i∈V ?∈{0,1}N

exp
(∑
i∈V ?

[al + ai +W ᵀ
l bi + (W 2

l )ᵀci]xi

+ βl,co−pres
∑

(i,j)∈E?

A?ij1{xi = xj = 1}+ βl,co−abs
∑

(i,j)∈E?

A?ij1{xi = xj = 0}
)
.

In general, this normalising constant Zψl
cannot be computed due to the large number of

possible configurations appearing in the sum. The statistical inference procedure needs to
deal with that.

The model interpretation strongly builds on the Markov property, a fundamental char-
acteristic of Markov random fields. Let us denote N ?

i the set of species j ∈ V ? that are
connected to i in the graph G? (namely {j ∈ V ?;A?ij 6= 0}) and X l

N ?
i
, the set of corresponding

random variables X l
j for j ∈ N ?

i . We also recall that X l
−i denotes the set {X l

j; j ∈ V ?, j 6= i}.
Then, under the Markov property we have

Pψl
(X l

i |X l
−i) = Pψl

(X l
i |X l

N ?
i
) ∝ exp

(
[al + ai +W ᵀ

l bi + (W 2
l )ᵀci]X

l
i

+ βl,co−pres
∑
j∈N ?

i

A?ij1{X l
j = X l

i = 1}

+ βl,co−abs
∑
j∈N ?

i

A?ij1{X l
j = X l

i = 0}
)
, (B.6)

where ∝ means proportional (equals up to a normalising constant). More specifically, it
means that the conditional occurrence probability of a species i is modulated by the occur-
rences of the species interacting with i in G?. In other words, a species presence only depends
on abiotic environment and on the species it interacts with. Moreover, the presence/absence
variables of any two species are not statistically independent of each other if G? is con-
nected (namely, if there exists a path between any two species in G?). Meanwhile, if G? has
more than one connected component (i.e. disconnected compartments, Krause et al., 2003),
then the presence/absence of species in different components are independent. The Markov
property is the cornerstone idea of our model. Indeed, the conditional probabilities of each
random variable is specified through (B.6) and is rooted on the idea that the occurrence of
a species i at location l depends both on a suitability term, specific to that species and the
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local environment, and on the presence/absence of other species with whom it interacts (as
encoded in the metanetwork). From this set of conditional probabilities, the Hammersley-
Clifford theorem (Besag, 1974) ensures that there exists a proper joint distribution on the
random variables {X l

i}i,l and that it is given by equation (B.5).

Now, the observed species occurrence variables Y l
i , i ∈ V ?, l ∈ {1, . . . , L} are distributed

such that each Y l
i only depends on X l

i (the true occurrence variable) with

P(Y l
i |X l

i) = p
Y l
i
i,l (1− pi,l)

1−Y l
iX l

i + (1−X l
i)(1− Y l

i )

= p
Xl

iY
l
i

i,l (1− pi,l)X
l
i(1−Y l

i )1{(1−X l
i)Y

l
i 6= 1}. (B.7)

In what follows, we choose to impose that the sampling parameters pi,l are set by the user.
A consequence of this is that the quantity (B.7) will play no role in the inference procedure.
Indeed, it is a constant quantity with respect to the parameter. Finally we set

Ali,j|Y l
i Y

l
j = 1 ∼ B(εij), (B.8)

and Ali,j ≡ 0 whenever (i, j) /∈ E? or Y l
i = 0 or Y l

j = 0.
Building on Equations (B.7) and (B.8), we first obtain the conditional distribution of all

observations (Y,A) given the latent variables X

Pφ(Y,A|X) =
L∏
l=1

Pφ(Al|Yl)P(Yl|Xl)

=
L∏
l=1

∏
i∈V ?

[
p
Xl

iY
l
i

i,l (1− pi,l)X
l
i(1−Y l

i )1{(1−X l
i)Y

l
i 6= 1}

]
×

∏
(i,j)∈E?

ε
Y l
i Y

l
jA

l
i,j

ij (1− εij)Y
l
i Y

l
j (1−Al

i,j).

Here, the parameter ε = {εij}i,j∈V ? drives the distribution of the observation process from
the latent one.

Finally, our model is obtained by combining this with Equation (B.5) for the distribution
of the latent variables X. Thus the global model is parameterised by θ = {θl}1≤l≤L where
each θl = (ψl, ε). This amounts to the following sets of parameters

({ai, bi, ci}i∈V ? , {al, βl,co−abs, βl,co−pres}1≤l≤L, {εij}i,j∈V ?)

so there are 3N + 3L+N(N − 1) parameters when the observed graphs Al are directed (and
3N+3L+N(N−1)/2 when the observed graphs Al are undirected) compared with N(N−1)L
observations. However note that in the model inference (see next section), the parameters εij
are pre-estimated (see Equation (C.1)) and do not appear in the main inference algorithm
(see Algorithm 1). In what follows, we often use the notation

αi,l = ai + al +W ᵀ
l bi + (W 2

l )ᵀci.

A chain graph (Lauritzen, 1996) describing the dependencies among the random variables
in this model is given in Figure 5.
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X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

A12 A13 A14 A15 A23 A24 A25 A34 A35 A45

Figure 5: Example of a metanetwork G? (relations among the random variables {Xi}i∈V ? with
V ? = {1, . . . , 5}, on the top row) and induced dependency chain graph of all the variables in
the model for one observed undirected graph A = (Aij)i<j with no self-loops.

C Model inference

We present the inference procedure in the most general case, namely with weighted metanet-
work, sampling effects and plasticity of interactions. This means that our inference procedure
takes place in the context of a hidden Markov random field model.

C.1 Likelihood

The log-likelihood for observing independent interaction graphs G1, . . . , GL at the different lo-
cations (and thus species occurrences variables ; indeed it is equivalent to observe G1, . . . , GL

or (Y1, A1, . . . ,YL, AL)) in this model is given by

`n,L(θ) =
L∑
l=1

logPθl(G
l),

where
Pθl(G

l) =
∑

{xli}i∈V ?∈{0,1}N
Pθl(G

l, {X l
i = xli; i ∈ V ?}).

As usual in latent variables models, this sum over all possible configurations {xli}i∈V ? ∈
{0, 1}N cannot be computed (unless N is really small). The inference procedure in latent
variable models generally relies on the Expectation-Maximisation (EM) algorithm (Dempster
et al., 1977). In the context of hidden Markov random fields (HMRF), many difficulties arise
that prevent from using this simple strategy.

The complete log-likelihood `cn,L(θ) contribution of all observations and all latent config-
urations is given by

`cn,L(θ) := logPθ(X, Gl, . . . , GL) =
L∑
l=1

logPθl(X
l,Yl, Al)

=
L∑
l=1

logPψl
(Xl) +

L∑
l=1

∑
i∈V ?

logP(Y l
i |X l

i) +
L∑
l=1

∑
i,j∈V l

logPφ(Ali,j|Y l
i , Y

l
j ).
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This can be written as

`cn,L(θ) =
L∑
l=1

∑
i∈V ?

log(1− αi,l) +
L∑
l=1

∑
i∈V ?

X l
i log

(
αi,l

1− αi,l

)
+

L∑
l=1

c
∑

(i,j)∈E?

A?ij1{X l
j = X l

i = 1}

+
L∑
l=1

βl,co−abs
∑

(i,j)∈E?

A?ij1{X l
j = X l

i = 0} −
L∑
l=1

log(Zψl
)

+
∑
i∈V ?

L∑
l=1

X l
i

{
Y l
i log(pi,l) + (1− Y l

i ) log(1− pi,l)
}

+
∑
i,j∈V ?

L∑
l=1

Y l
i Y

l
j

{
Ali,j log εij + (1− Ali,j) log(1− εij)

}
.

Here, we restrict our attention to complete datasets (Xl, Gl) which are compatible, in the
sense that whenever X l

i = 0 we also have Y l
i = 0. Otherwise the probability above is 0 and

its log is −∞.

C.2 Estimating the frequency of interactions

First, it is important to note that a consequence of the dependence among the {X l
i}i∈V ? is

that the random variables Ali,j and Ali′j′ are dependent. However, this dependency is entirely

carried by the species observations Y l
i ’s (which themselves are dependent through the species

latent presences X l
i ’s). In other words, we have Pφ(Al|Yl,Xl) = Pφ(Al|Yl). A consequence

is that the parameters ε that describe the graph distribution are directly estimated from the
data. While the sampling parameters and the random field ones (βl,co−abs, βl,co−pres and αi,l’s)
require a sophisticate inference procedure, the εij parameters are directly estimated by the
frequencies

ε̂ij =

∑L
l=1 A

l
ij∑L

l=1 Y
l
i Y

l
j

. (C.1)

Here, the normalising term
∑L

l=1 Y
l
i Y

l
j is simply the number of simultaneous observations of

species i and j across the L different locations, while the numerator counts the number of
observed interactions between those species across locations.

C.3 Inference of the random field parameters with simulated field
algorithm

Now, we focus on the estimation of random field parameters βl,co−abs, βl,co−pres and αi,l’s. A
classical EM algorithm would consist in (iteratively) optimising with respect to ψ = {ψl}1≤l≤L
the quantity

Q(ψ) =
L∑
l=1

E
(

logPψl
(Xl,Yl)|ψ(t)

l ,Y
l
)

=
L∑
l=1

E
(

logPψl
(Xl)|ψ(t)

l ,Y
l
)
, (C.2)
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computed with the current value of the parameter ψ(t) = {ψ(t)
l }1≤l≤L. The above quantity

has many drawbacks: first it contains the partition functions Zψl
that are unknown and

cannot be computed. Second, the conditional distribution of Xl given Yl has an intricate
dependency structure and thus may not be computed (in fact it is also a Markov random
field).

We thus follow the simulated field algorithm proposed in Celeux et al. (2003). It is based
on two different approximations of probability distributions plus a simulation step, as follows.
First, the distribution Pψ(X) appearing in the complete likelihood is replaced by a mean-field
approximation, namely the product distribution

P1(X|ψ, x̃) =
L∏
l=1

∏
i∈V ?

Pψl
(X l

i |X l
N ?

i
= x̃lN ?

i
), (C.3)

for some well chosen fixed configuration x̃ = (x̃li)1≤l≤L,i∈V ? . Second, the conditional distribu-
tion Pψ(X|Y) used for integrating the complete log-likelihood in (C.2) is also replaced by a
mean-field approximation, that is

P2(X|ψ, x̃,Y) =
L∏
l=1

∏
i∈V ?

Pψl
(X l

i |X l
N ?

i
= x̃lN ?

i
, Y l

i ). (C.4)

Note that both distributions (C.3) and (C.4) are probability distributions, contrarily to what
happens when relying on pseudo-likelihoods. Third, the choice of the fixed configuration
x̃ relies on a sequential Gibbs sampling from the approximate distribution (C.4). With
these three tools at hand, the algorithm consists in iteratively optimising with respect to
ψ = {ψl}1≤l≤L the quantity

E2
[

logP1(X|ψ, x̃)
∣∣ψ(t), x̃,Y

]
,

computed with the current value of the parameter ψ(t) and current simulated field x̃. Here,
E2 denotes expectation under the probability distribution P2. This quantity should be com-
pared to the original criterion (C.2).

Let us now fully describe the procedure. For any current parameter value ψ(t) and fixed
state value x̃, we let

Q̃(ψ|ψ(t), x̃) =
L∑
l=1

∑
i∈V ?

∑
x∈{0,1}

Pψ(t)(X l
i = x|X l

N ?
i

= x̃lN ?
i
, Y l

i ) logPψ(X l
i = x|X l

N ?
i

= x̃lN ?
i
).

The algorithm consists in iterating the following two steps at time t,

• SE-step: sequentially sample a configuration x̃(t) as follows for 1 ≤ l ≤ L and 1 ≤ i ≤ n,
sample (X l

i)
(t) according to the conditional distribution

x 7→ Pψ(t−1)(X l
i = x|{X l

j = (x̃lj)
(t), j ∈ N ?

i , j < i}, {X l
j = (x̃lj)

(t−1), j ∈ N ?
i , j > i}, Y l

i ).
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This means that we sample the value 0 with probability

c exp
(
β

(t−1)
l,co−abs

∑
j∈N ?

i

A?ij
[
1{(x̃lj)(t) = 0, j < i}+ 1{(x̃lj)(t−1) = 0, j > i}

])
1{Y l

i = 0}

(C.5)
and we sample the value 1 with probability

c exp
(
α

(t−1)
i,l + β

(t−1)
l,co−pres

∑
j∈N ?

i

A?ij
[
1{(x̃lj)(t) = 1, j < i}+ 1{(x̃lj)(t−1) = 1, j > i}

]
+Y l

i log(p
(t−1)
i,l ) + (1− Y l

i ) log(1− p(t−1)
i,l )

)
, (C.6)

where c is a normalising constant (set such that the 2 probabilities sum to 1).

• M-step: Optimize Q̃(ψ|ψ(t), x̃(t)) with respect to ψ = {αi,l, βl,co−abs, βl,co−pres}i,l.

We now express the quantity Q̃ in our model and derive update formulas in our model.
First we set

p̃i,l,t(0) = c exp
(
β

(t)
l,co−abs

∑
j∈N ?

i

A?ij1{(x̃lj)(t) = 0}
)

1{Y l
i = 0}

p̃i,l,t(1) = c exp
(
α

(t)
i,l + β

(t)
l,co−pres

∑
j∈N ?

i

A?ij1{(x̃lj)(t) = 1}+ Y l
i log(p

(t)
i,l ) + (1− Y l

i ) log(1− p(t)
i,l )
)
,

with the normalising constant c such that p̃i,l,t(0)+p̃i,l,t(1) = 1. Then the vector (p̃i,l,t(0), p̃i,l,t(1))
is nothing else than the probability distribution P

ψ
(t)
l

(X l
i = ·|X l

N ?
i

= x̃lN ?
i
, Y l

i ). From this

quantity, we obtain

Q̃(ψ|ψ(t), x̃)

=
∑
i∈V ?

L∑
l=1

{
p̃i,l,t(0) log

 exp
[
βl,co−abs

∑
j∈N ?

i
A?ij(1− x̃lj)

]
exp

(
βl,co−abs

∑
j∈N ?

i
A?ij(1− x̃lj)

)
+ exp

(
αi,l + βl,co−pres

∑
j∈N ?

i
A?ijx̃

l
j

)


+p̃i,l,t(1) log

 exp
[
αi,l + βl,co−pres

∑
j∈N ?

i
A?ijx̃

l
j

]
exp

(
βl,co−abs

∑
j∈N ?

i
A?ij(1− x̃lj)

)
+ exp

(
αi,l + βl,co−pres

∑
j∈N ?

i
A?ijx̃

l
j

)
}

=
∑
i∈V ?

L∑
l=1

{
p̃i,l,t(0)

[
βl,co−abs

∑
j∈N ?

i

A?ij(1− x̃lj)
]

+ p̃i,l,t(1)
[
αi,l + βl,co−pres

∑
j∈N ?

i

A?ijx̃
l
j

]
− log

[
exp

(
βl,co−abs

∑
j∈N ?

i

A?ij(1− x̃lj)
)

+ exp
(
αi,l + βl,co−pres

∑
j∈N ?

i

A?ijx̃
l
j

)]}
.

(C.7)

Optimising this quantity with respect to ψ is done numerically. To this aim, we provide
below the derivatives of Q̃ wrt ψ.
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Let us introduce the following quantities

w?i =
∑
j∈N ?

i

A?ij,

w?i,l =
∑
j∈N ?

i

A?ijX
l
j

which are the sum of weights of the neighbours of i in G? and the sum of weights of the
neighbours of i in G? that are present at location l, respectively. Note that we have∑

j∈N ?
i

A?ij(1−X l
j) = w?i − w?i,l.

the sum of weights of the neighbours of i in G? that are absent at location l. We also use

deni,l(βl,co−abs, βl,co−pres, αi,l) = exp[βl,co−abs(w
?
i − w?i,l)] + exp(αi,l + βl,co−presw

?
i,l).

With these quantities at hand and relying on (C.7), we obtain

Q̃(ψ|ψ(t), x̃) =
∑
i∈V ?

L∑
l=1

p̃i,l,t(0)βl,co−abs(w
?
i − w?i,l) + p̃i,l,t(1)[αi,l + βl,co−presw

?
i,l]

− log deni,l(βl,co−abs, βl,co−pres, αi,l).

Let us recall that αi,l is a shorthand for the quantity ai + al + W ᵀ
l bi + (W 2

l )ᵀci, so that
we finally get, for each 1 ≤ l ≤ L and each 1 ≤ i ≤ n, the derivatives

∂Q̃

∂ai
=

L∑
l=1

[
p̃i,l,t(1)−

exp(αi,l + βl,co−presw
?
i,l)

deni,l(βl,co−abs, βl,co−pres, αi,l)

]
(C.8)

∂Q̃

∂al
=
∑
i∈V ?

[
p̃i,l,t(1)−

exp(αi,l + βl,co−presw
?
i,l)

deni,l(βl,co−abs, βl,co−pres, αi,l)

]
∂Q̃

∂bi
=

L∑
l=1

W ᵀ
l

[
p̃i,l,t(1)−

exp(αi,l + βl,co−presw
?
i,l)

deni,l(βl,co−abs, βl,co−pres, αi,l)

]
∂Q̃

∂ci
=

L∑
l=1

(W 2
l )ᵀ
[
p̃i,l,t(1)−

exp(αi,l + βl,co−presw
?
i,l)

deni,l(βl,co−abs, βl,co−pres, αi,l)

]
∂Q̃

∂βl,co−abs
=
∑
i∈V ?

p̃i,l,t(0)(w?i − w?i,l)−
(w?i − w?i,l) exp[βl,co−abs(w

?
i − w?i,l)]

deni,l(βl,co−abs, βl,co−pres, αi,l)

∂Q̃

∂βl,co−pres
=
∑
i∈V ?

p̃i,l,t(1)w?i,l −
w?i,l exp[αi,l + βl,co−presw

?
i,l]

deni,l(βl,co−abs, βl,co−pres, αi,l)
. (C.9)

The simulated field algorithm is described in Algorithm 1.
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Algorithm 1: Simulated field algorithm

Input: Observed presence/absence data Y, adjacency matrix of metanetwork A?.
Initialization: Choose initial values x̃(0), ψ(0).
Set t = 1.
while not converged do

Simulation step:
for 1 ≤ l ≤ L do

for 1 ≤ i ≤ n do
Sample (x̃li)

(t) from {0, 1} relying on the vector of probabilities (C.5) and (C.6).
end for

end for
Compute Q̃(ψ|ψ(t); x̃) from (C.7).
Maximization step:
Compute the value ψ̂ zeroing the derivatives (C.8)–(C.9).
Update parameter ψ(t) = ψ̂.
Increment t.

end while

Remark 2. In the case with no sampling effects (namely pi,l = 1), the simulation step is
skipped (since X = Y) and the algorithm reduces to optimizing the quantity

Q̃direct(ψ|ψ(t)) =
L∑
l=1

∑
i∈V ?

∑
x∈{0,1}

Pψ(t)(X l
i = x|X l

N ?
i
) logPψ(X l

i = x|X l
N ?

i
).

This means that in this specific case, our method roughly consists in a pseudo-likelihood
estimation, which is known to be consistent as the number of observations increases (Besag,
1975).

Therefore, the estimation algorithm is more computationally affordable in this case since
it consists in a simple iteration of the M-step (i.e. the “maximization step” in Algorithm 1).

C.4 Additional details on the implementation

The “maximization step” in Algorithm 1 is performed using the vector Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm implemented in the GNU Scientific Library ( https://
www.gnu.org/software/gsl/). We observed that this algorithm was sensitive to the initial
value of the parameters. After analyzing synthetic datasets simulated from the model (see
Supplementary Figure 6) and estimating the model with various initial values, we validated
the following combination of initial parameters:

ai = al =
a0

2
bi = ci = 0

βl,co−abs = βl,co−pres = 0

with a0 = log( Ȳ
1−Ȳ ) and Ȳ =

∑
il Yil/(nL).
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Figure 6: The estimation procedure successfully retrieves the original parameters used to
simulate a dataset from the model. Simulation of a community of 100 species in 400 locations.
Species are linked in a trophic network generated with the niche model (Williams & Martinez,
2000) with expected connectance of 0.07. Presence/absence data matrix X were simulated
with a model with varying ai, bi and ci among species and varying al, βl,co−pres and βl,co−abs
among locations. All the parameters were varying at the same time.
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D Simulated communities

D.1 Simulation model

The community assembly process was randomly initialized with a set of individuals that were
randomly selected in the species pool until the carrying capacity K was reached. At each
time step, the probability of an individual from species i to replace a random individual of
the community l is Ri,l. This probability depends on how the environmental conditions at
location l are suitable for species i (environmental filter) and on the number of individuals
present in community l that interact with species i (competition or mutualism filter). More
precisely, we consider the following equation defining the relative importance of environmental
and biotic filters respectively:

Ri,l = exp [γenv log(Penv,i,l) + γmetanetwork log(Pmetanetwork,i,l)]

where γenv and γmetanetwork are tuning parameters giving weights to abiotic and biotic com-
ponents, and Penv,i,l and Pmetanetwork,i,l are probabilities of species replacement with different
filters. Penv,i,l accounts for the environmental filtering and is a rescaled density of the Gaus-
sian niche of species i at the environmental value of location l (the scaling ensures this value
ranges in [0, 1]). When the environment in community l is suitable to species i, the proba-
bility that this species enters this community becomes high.

We then have a term dealing with species interactions, defined as

Pmetanetwork,i,l =

{
K−1

∑
j;(i,j)∈E? Kj,l for mutualism,

1−K−1
∑

j;(i,j)∈E? Kj,l for competition,

where Kj,l is the number of individuals of species j in community l, such that the total
carrying capacity K =

∑
jKj,l. In case of mutualism, the larger number of individuals

of species connected with i in the metanetwork are present in location l, the higher is the
probability of an individual of species i to enter the community. For competition, the opposite
effect is induced. The tuning parameters γenv and γmetanetwork weight the relative importance
of the different filters. This algorithm updates the communities until an equilibrium is
reached. To assess the equilibrium state, we calculated the Shannon diversity for each location
over time, and checked for convergence. Lastly, we deduced species presence/absence by
examining species composition in each location.

D.2 Simulation set-up

Let µ1 and µ2 be the niche optima of two species, and σ the standard deviation of their
niche. Then, we considered that two species can interact in the mutualistic metanetwork
if σ < |µ1 − µ2| < 2σ. Regarding competition, two species tend to compete if they share
the same environmental niche, and thus if |µ1 − µ2| < σ. Among all potential species
interactions, we randomly sampled 20% of them for both competition and mutualism (see
Supporting Information).

We performed simulations with N = 50 species and L = 400 locations, with a carrying
capacity of K = 40 individuals. The standard deviations of the Gaussian niche distributions
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were set to σ = 20 for all species. We chose γenv = 1 and γmetanetwork = 10 in case of
competition and 5 in case of mutualism. We simulated 100 time steps such that the algorithm
convergence was achieved in practice. We repeated the whole procedure 10 times and verified
that we obtained equivalent qualitative results. Simulations were implemented with R version
3.6.2 and a modified version of the VirtualCom package.

D.3 Adjacency matrices of the metanetworks representing com-
petitive or mutualistic interactions

Figure 7 shows the adjacency matrices simulated under the 2 scenarios (competitive or mu-
tualistic interactions).
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Figure 7: Synthetic adjacency matrices of the metanetworks representing a) competitive (left)
or b) mutualistic (right) interactions. Species in rows/columns are ordered according to their
increasing species niche optimum.

D.4 Computation of the expected co-presence and co-absence

To demonstrate how ELGRIN captures the effect of species interactions by using parameters
βl,co−pres and βl,co−abs, we computed the expected number of co-presences of interacting (in
the sense of the metanetwork) species at each location. To do this, we made the hypoth-
esis that interactions do not affect species distributions. In this hypothesis, we considered
that co-presence and co-absence were only the byproduct of metanetwork connectance (in
other words, interacting species are co-present or co-absent just by chance). More precisely,
we computed the expected number of co-presences by multiplying this connectance by the
number of possible edges at each location (deduced from the number of present species).
Conversely, we computed the expected number of co-absences with the same reasoning but
using the connectance of the complement metanetwork (i.e. the network composed by the
edges that are not in the metanetwork) and the number of absent species.
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E Empirical case study : relation between βl,co−pres and

βl,co−abs

Figure 8 shows the correlation between the values βl,co−pres and βl,co−abs estimated through
ELGRIN on the European tetrapods case study.
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Figure 8: Results of ELGRIN on the European tetrapods case study. The parameters
βl,co−pres and βl,co−abs were highly correlated.
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