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Abstract. Photometric stereo infers the 3D-shape of a surface from a
sequence of images captured under moving lighting and a static camera.
However, in real-world scenarios the viewing angle may slightly vary,
due to vibrations induced by the camera shutter, or when the camera
is hand-held. In this paper, we put forward a low-rank affine registra-
tion technique for images captured under unknown, varying lighting.
Optimization is carried out using convex relaxation and the alternating
direction method of multipliers. The proposed method is shown to sig-
nificantly improve 3D-reconstruction by photometric stereo on unaligned
real-world data, and an open-source implementation is made available.

Keywords: Photometric stereo · registration · shape-from-X.

1 Introduction

Photometric stereo is a 3D-reconstruction technique pioneered by Woodham [17].
It infers the geometry of a surface from a set of images captured under the
same viewing angle, but varying illumination. The camera is thus assumed to be
perfectly still, an assumption which may be violated when the camera is hand-
held or when it is manually triggered (which induces slight vibrations of the
sensor). Consequently, 3D-reconstruction by photometric stereo may be blurry
(cf. Fig. 1), and geometric information may even be hallucinated (cf. Fig. 2). To
prevent this, the image sequence could be registered prior to 3D-reconstruction.

We focus in this work on quasi-planar scenes, such that the geometric trans-
formation between images can be assumed affine. Despite this simplifying as-
sumption, registration remains arduous due to lighting variations, which may
induce cast-shadows or specularities. In the present work, we propose an open-
source1, robust affine registration technique for images captured under unknown,
varying lighting, based on low-rank approximation and convex relaxation.

The rest of this paper is organized as follows. After reviewing related works
in Sect. 2, we introduce in Sect. 3 a variational approach to image registration
under varying lighting. Then, we describe in Sect. 4 an augmented Lagrangian
approach for numerically solving this inverse problem. The implementation of
this scheme is discussed in Sect. 5, along with experimental evaluation. Our
conclusions and perspectives are eventually drawn in Sect. 6.

1 https://github.com/mpizenberg/lowrr

https://github.com/mpizenberg/lowrr
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Fig. 1: Top, left: three (out of m = 13) images of the Bayeux Tapestry, acquired
under varying lighting, using a hand-held camera. Top, right: images registered
using the proposed low-rank technique. Bottom: estimated reflectance and 3D-
shape, using the original (left) or the registered (right) images. Registering im-
ages allows one to use a hand-held camera while obtaining a 3D-reconstruction
comparable to that obtained using a high-quality tripod (cf. Fig. 3).

2 Related works

Low-rank techniques in photometric stereo Early works on photometric
stereo have focused on the ideal case of a Lambertian surface lit by directional
sources [17]. In practical setups, these assumptions are however rarely met: low-
rank approximation techniques have thus been developed to solve photometric
stereo under less restrictive assumptions. Based on earlier investigations on the
linear image subspaces spanned by Lambertian surfaces [2], Basri et al. have
shown in [3] how to handle general, unknown lighting using spherical harmonics
approximation. Non-Lambertian phenomena such as specularities or cast shad-
ows can also be viewed as sparse outliers, and removed from the photometric
stereo images by seeking a low-rank observation map sparsely deviating from
the input one [18]. Such low-rank approximation techniques for outliers han-
dling also relate to sparsity-promoting estimators used in robust calibrated pho-
tometric stereo, see e.g. [11,13]. Low-rank approximation was also considered
for solving the uncalibrated case by jointly minimizing the rank and enforcing
integrability [15].
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Fig. 2: Top, left: a photometric stereo sequence acquired using a tripod, while
manually triggering the camera. Manual trigger induces slight image transfor-
mations, which are compensated with the proposed registration technique (top,
right). Bottom: shape and reflectance estimated by photometric stereo, using
either the unregistered (left) or the registered sequence (right). The misalign-
ment causes the estimated reflectance to appear blurry, and induces geometry
hallucination (the pictured surface is a perfectly planar book cover).

Image registration in photometric stereo All the works mentioned above
assume that the input images have been registered beforehand. When this is
not the case, the geometry recovered by using photometric stereo might appear
blurry. In some sense, the effect would be similar to observing a translucent
object where scattering is observed. In the latter case, the estimated geome-
try could be deconvolved a posteriori, as suggested in [12]. Yet, pre-registering
the images seems more relevant in the absence of scattering. Registration is a
long-standing problem in imaging, which has been addressed using e.g., phase
correlation [8] or feature matching [9]. On the other hand, photometry-aware
criteria have recently proved promising for camera pose optimization [14]. This
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invites us to design an image registration technique which is specifically tai-
lored for photometric 3D-reconstruction. To the best of our knowledge, image
registration under the photometric stereo perspective has been explored only
in [4,10]. However, the former is based on feature detection, hence it may fail
when the data lacks texture and geometry variation; and the latter is restricted
to perfectly Lambertian surfaces and known illumination.

On the contrary, the low-rank approach discussed in the next section avoids
feature detection; it does not require any pre-calibration; and it is robust to
sparse deviations from the Lambertian model.

3 Low-rank registration of photometric stereo images

Basri and Jacob have shown that, if the surface is Lambertian, the observation
matrix formed by stacking all the graylevels in an n ×m matrix, where n ≥ m
is the number of pixels and m ≥ 3 is the number of images, should lie in a
low-dimensional subspace [2].

To verify whether this result could be used for image registration, we con-
sidered a set of m = 13 real-world photometric stereo images, captured under
varying illumination. One (unaligned) sequence was acquired with a hand-held
camera (cf. Fig. 1), the other (aligned) with a tripod. We then compared the
singular values of each sequence. As can be seen in Fig. 3, the singular values
of the aligned sequence are smaller. This invites us to recast photometric stereo
images registration as a low-rank optimization problem.

Fig. 3: Left: singular values of the observation matrix for the data in Fig. 1, using
either a hand-held camera (without, or with the proposed registration technique)
or a tripod ensuring perfect alignment. The singular values of the aligned se-
quences are smaller than those of the unaligned sequence. Right: reflectance and
3D-shape recovered from the (aligned) tripod sequence, which are comparable
with those obtained from the registered, hand-held sequence, cf. Fig. 1-right.
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3.1 Displacement parameterization

Let us denote by u1, . . . , um ∈ Rn, n� m ≥ 3 the vectorized (graylevel) images
(m is the number of images and n is the number of pixels in each image), by
uij := ui(xj) the graylevel of the i-th image at pixel xj ∈ R2, and by u =[
u1
>
, . . . , um>

]>
∈ Rmn the full observation set in vector form.

We are looking for a set W (u; θ) ∈ Rmn of registered images, where W is a

warping function and θ :=
[
θ1>, . . . , θm>

]> ∈ Rmp is the unknown set of warp
parameters. Therein, the i-th transformation, i ∈ {1, . . . ,m}, is characterized by
the subset of parameters θi ∈ Rp. We will focus in this paper on invertible para-
metric image registration i.e., a closed-form expression for the warping function
W and its inverse W−1 will be assumed, which both will depend on a “small”
number of parameters (p ≤ 2n).

In particular, in our experiments we focus on affine transformations, which
combine translation, rotation, scaling and shearing. In this case, p = 6, and the

warping depends on parameters θi :=
[
θi1, . . . , θ

i
6

]> ∈ R6 according to:

W (u; θ) = vec

u
1
(
w1(x1; θ1)

)
. . . um (wm(x1; θm))

...
...

u1
(
w1(xn; θ1)

)
. . . um (wm(x1; θm))

 ,
where the i-th warping is locally defined as

wi(·; θi) : R2 → R2

xj 7→
[
1 + θi1 θi3
θi2 1 + θi4

]
xj +

[
θi5
θi6

]
(1)

and its inverse by

wi
−1

(·; θi) : R2 → R2

xj 7→
[
1 + θi1 θi3
θi2 1 + θi4

]−1(
xj −

[
θi5
θi6

])
. (2)

3.2 Low-rank formulation and convex relaxation

Our approach consists in seeking the warping function which minimizes the rank
of the warped observation matrix. Formally, this would come down to solving

min
θ∈Rmp

rank (Mat(W (u; θ))) , (3)

where operator Mat is such that vec ◦Mat = id: it reorganizes the elements of a
vector into a matrix according to

Mat : Rmn → Rn×m

u :=
[
u1
>
, . . . , um>

]>
7→ Mat(u) =

[
u1, . . . , um

] .
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However, both the camera small displacements and specular spots in the
image may break the low-rank assumption, by generating occlusions and outliers
to the Lambertian model. To take such outliers into account, we simultaneously
estimate the displacement parameters θ and a restored observation matrix A,
which would sparsely deviate from Mat (W (u; θ)), and have minimal rank:

min
A∈Rn×m

θ∈Rmp
rank (A) + λ ‖vec(A)−W (u; θ)‖0 (4)

with λ ≥ 0 some tuning parameter and ‖·‖0 the number of nonzero elements in
a vector. Let us remark that if W is the identity transform, then the proposed
model comes down to the low-rank image correction technique advocated in [18].

The optimization problem (4) is difficult to solve since both the rank and the
0-“norm” are nonconvex. So we rather optimize a convex relaxation of (4):

min
A∈Rn×m

θ∈Rmp
‖A‖? + λ ‖vec(A)−W (u; θ)‖1 (5)

where ‖ · ‖? denotes the sum of singular values (nuclear norm) and ‖ · ‖1 the sum
of absolute values, which are the tightest convex relaxation of rank and ‖ · ‖0,
respectively. Next, we propose an algorithm for numerically solving (5).

4 Augmented Lagrangian framework

In this section, we describe an alternating direction method of multipliers (see,
e.g., [6] for a thorough presentation of this algorithm) for solving Problem (5).

4.1 Splitting

Both terms in the objective function of (5) are convex, yet simultaneously op-
timizing them remains challenging. We therefore split the optimization problem
over both terms by turning it into the following equivalent, constrained one:

min
A∈Rn×m

e∈Rmn
θ∈Rmp

‖A‖? + λ ‖e‖1 ,

s.t. vec(A) = W (u; θ) + e.

(6)

Let us consider the augmented Lagrangian associated with this constrained
optimization problem:

L]ρ(A, e, θ, y) := ‖A‖?+λ ‖e‖1 + 〈y|W (u; θ)+e−vec(A)〉+ ρ

2
‖W (u; θ) + e− vec(A)‖2 ,

(7)

where y ∈ Rmn is the set of Lagrange multipliers, and ρ > 0 is a penalty
parameter arbitrarily set to 0.1 in all our experiments. Problem (6) can be solved
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iteratively, by alternating minimizations of (7) wrt the primal variables A, e and
θ, and a dual ascent step over the dual variable y, yielding the following sequence:

A(k+1) = argmin
A
L]ρ(A, e(k), θ(k), y(k)), (8)

e(k+1) = argmin
e
L]ρ(A(k+1), e, θ(k), y(k)), (9)

θ(k+1) = argmin
θ
L]ρ(A(k+1), e(k+1), θ, y(k)), (10)

y(k+1) = y(k) + ρ
(
W (u; θ(k+1)) + e(k+1) − vec(A(k+1))

)
,

starting from the initial estimate A(0) = Mat(u), e(0), θ(0), y(0) ≡ 0 (i.e., the
initial solution is set to the unregistered data), and until the relative residual∥∥vec

(
A(k+1) −A(k)

)∥∥ / ∥∥vec
(
A(k)

)∥∥ falls below some threshold (this threshold
is set to 10−3 in our experiments).

Next, we detail the resolution of each sub-problem in the above ADMM
algorithm.

4.2 Updating the corrected observation matrix A

Update (8) can be computed in closed-form. Indeed:

A(k+1) = argmin
A
L]ρ(A, e(k), θ(k), y(k))

= argmin
A

‖A‖? +
ρ

2

∥∥∥W (u; θ(k)) + e(k) − vec(A) + y(k)/ρ
∥∥∥2

= argmin
A

‖A‖? +
ρ

2

∥∥∥A−Mat(W (u; θ(k)) + e(k) + y(k)/ρ)
∥∥∥2
F

=
d

prox 1
ρ‖·‖?

(Mat(W (u; θ(k)) + e(k) + y(k)/ρ)),

where W (u; θ(k)) can be evaluated by interpolation (we used linear interpolation
in our experiments) of the unregistered images, and the proximity operator of
the nuclear norm admits a closed-form expression as shrinkage of the singular
values. More precisely, denoting by B = U diag(σ1, . . . , σm)V > the singular
value decomposition of some matrix B ∈ Rn×m, m ≤ n:

prox 1
ρ‖·‖?

(B) = U diag
(
shrink(σ1, 1/ρ), . . . , shrink(σm, 1/ρ)

)
V >,

using the following definition of the shrinkage (soft-thresholding) operator:

shrink(·, 1/ρ) = sign(·) max {|·| − 1/ρ, 0} .
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4.3 Updating the error vector e

Update (9) can also be computed in closed-form:

e(k+1) = argmin
e
L]ρ(A(k+1), e, θ(k), y(k))

= argmin
e

λ ‖e‖1 +
ρ

2

∥∥∥e− (vec(A(k+1))−W (u; θ(k))− y(k)/ρ
)∥∥∥2

=
d

proxλ
ρ ‖·‖1

(
vec(A(k+1))−W (u; θ(k))− y(k)/ρ

)
= shrink(vec(A(k+1))−W (u; θ(k))− y(k)/ρ, λ/ρ)

where shrinkage is to be understood component-wise.

4.4 Updating the displacement coefficients θ

Let us now consider the update (10), which writes as

θ(k+1) = argmin
θ

∥∥∥W (u; θ)−
(

vec(A(k+1))− e(k+1) − y(k)/ρ
)∥∥∥2 . (11)

This is a classic least-squares warping problem resembling the Kanade-Lucas-
Tomasi (KLT) problem, and we refer the interested reader to [1] for an in-
depth presentation. Therein, several iterative algorithms are discussed, which
have different preconditions but are shown to be equivalent if the set of warps
forms a group and if warps are differentiable - as it is the case for affine warping.
Among the various possibilities, we chose the forward compositional algorithm
for the simpler expression of the Jacobian in general.

Let us denote v(k) := vec(A(k+1))− e(k+1) − y(k)/ρ. Instead of solving (11),
one step of the forwards compositional algorithm computes θ(k+1) as follows:

δθ(k+1) = argmin
δθ

∥∥∥W (W (u; δθ); θ(k))− v(k)
∥∥∥2 , (12)

W (·; θ(k+1)) = W (·; θ(k)) ◦W (·; δθ(k+1)).

This update can be carried out independently for each image ui. We denote
θi(k) ∈ Rp the warp parameters for image i at step k, such that θ(k) ∈ Rmp is
the concatenation of all θi(k) at step k. Similarly, we denote vi(k) ∈ Rn the part
of v(k) ∈ Rmn corresponding to the i-th image. As explained in [1], performing
a first-order Taylor expansion of the expression in (12) gives

δθi(k+1) = argmin
δθ

∑
j

[
W (u; θ(k))ij +∇W (u; θ(k))ij

∂W

∂θ

∣∣∣
xj
δθ − vi(k)j

]2
, (13)

where (∇W (u; θ(k))ij)
> ∈ R2 is the warped image gradient at pixel j and

∂W
∂θ

∣∣∣
xj
∈ R2×p are the partial derivatives of the warp function relative to warp

parameters. The solution to this least-squares optimization problem is

δθi(k+1) = H−1
(
J>[vi(k) −W (u; θ(k))i]

)
,
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where J ∈ Rn×p is the Jacobian matrix and H = J>J is the Gauss-Newton
approximation of the Hessian matrix. The rows of J are computed as

Jj = ∇W (u; θ(k))ij
∂W

∂θ

∣∣∣
xj
.

Therein, for any point xj := [xj,1, xj,2]
> ∈ R2:

∂W

∂θ

∣∣∣
xj

=

[
xj,1 0 xj,2 0 1 0
0 xj,1 0 xj,2 0 1

]
,

since we focus on affine transformations as defined in (1),
We now have all the ingredients for solving the low-rank registration prob-

lem (5). In the next section, we discuss the practical implementation of the
proposed scheme, and evaluate it on synthetic and real-world data.

5 Implementation

The numerical solution comes down to iterating steps (8) to (10). Yet, conver-
gence of these steps can be established only towards a locally optimum solution,
which may be far away from the global optimum if the displacements are impor-
tant. In order to ease convergence towards a reasonable solution, as well as to
accelerate the algorithm, we embed this algorithm inside a multi-scale scheme.

5.1 Multi-scale scheme

The first-order Taylor expansion done in (13) is only viable in the case of small
displacements, when the image gradients and the residuals v(k)−W (u; θ(k)) are
correlated. Yet at full resolution, warps may generate displacements of dozens
of pixels. One workaround, commonly used in KLT-related problems [5], is to
consider a multi-scale approach, by generating a pyramid of images as in Fig. 4.
Each level halves/doubles the resolution of the previous one, and the only pa-
rameter to tune is the number of levels of the pyramid. At the lowest resolution,
every pixel covers a much larger area, therefore artificially reducing the image
displacement, and improving the conditions for the first-order Taylor approxi-
mation. Once the algorithm has converged at one level, we adapt the resulting
registration parameters to the next level of the pyramid and use those as initial-
ization. In the case of the affine warp, θi1 to θi4 stay unchanged, and θi5 and θi6
are doubled at a level transition.

5.2 Using a sparse subset of pixels

Engel et al. showed in [7] that direct image alignment is possible with a sparse
subset of points as long as they are well distributed in the image, and located at
pixels with higher gradient magnitude. This can be used as a trick to accelerate
the proposed algorithm.
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If the scene is highly textured, as in the datasets of Figs. 1 and 2, it is
possible to restrict our attention to pixels where the gradient magnitude is max-
imal. At the coarsest level, all pixels can be considered. Then, for each selected
pixel, only one or two of the four subpixels can be selected at the next pyramid
level, as illustrated in Fig. 4. Let us emphasize, however, that this feature-based
speed up is only a way to accelerate the process, unlike e.g. in [10] where the
whole registration builds upon feature detection, hence cannot be employed for
unsufficiently textured scenes.

Fig. 4: Top row: pyramid of resolutions for one image of the sequence in Fig. 1.
The resolution doubles at each level. Bottom row: sparse subset of pixels (in-
dicated in red) which can be selected at each level, in order to accelerate the
process.

5.3 Empirical evaluation

We first quantitatively evaluated our method on simulated image transforma-
tions. We considered two challenging real-world photometric stereo datasets
from [16], namely the “Buddha” and “Harvest” sequences. Both consist of m =
96 images of a shiny surface (exhibiting significant deviations from the Lamber-
tian assumption) taken from the same viewing angle under varying lighting. For
each object, we generated random synthetic translations, with the parameters
uniformly taken between 0 and 1% of the image width. We then evaluated the
accuracy of different algorithms by measuring their mean displacement error.
This process was repeated 40 times per object image sequence. The results in
Fig. 5 show that the proposed method estimates the correct displacement in
most cases. It outperforms standard image registration algorithms which are
not designed for handling illumination changes. This can be seen by comparing
with Matlab’s implementation of similarity optimization (imregtform) or phase
correlation (imregcorr).
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(a) Buddha, lowrr (b) Buddha, imregcorr (c) Buddha, imregtform

(d) Harvest, lowrr (e) Harvest, imregcorr (f) Harvest, imregtform

Fig. 5: Mean displacement error (in pixels) of every warp estimation for our
approach (lowrr), and the imregtform and imregcorr Matlab’s algorithms, on
two sequences (“Buddha” and “Harvest”) of the DiLiGenT dataset [16].

Next, we considered a real-world hand-held sequence of m = 13 images of a
medieval embrodery (cf. Fig. 1), exhibiting fine-scale geometric variations. We
registered the images with the proposed method, and then observed the impact
of image registration on the results of a recent photometric stereo algorithm [13].
The proposed approach allows to reach results comparable with those obtained
from perfectly aligned images acquired with a tripod (compare with Fig. 3).
Lastly, we carried out a similar experiment, on a perfectly planar surface with
spatially-varying reflectance (cf. Fig. 2). In this experiment, the camera stands
on a tripod, yet the camera is manually triggered, inducing tiny displacements
(a few pixels). Taking into account these displacements improves the sharpness
of the estimated reflectance, and avoids the hallucination of geometric details.

6 Conclusions and perspectives

We have presented an affine registration technique for images captured under
unknown, varying lighting. The proposed approach seeks the registration param-
eters which minimize the rank of the warped observations, while robustness is
ensured by sparsity enforcement. An efficient solution based on the augmented
Lagrangian has also been introduced. Experiments on real-world data show that
the proposed approach significantly improves 3D-reconstruction by photometric
stereo on unaligned data, and even allows using hand-held images. In future
work, we will extend the proposed formulation so as to handle non-affine trans-
formations, by inserting optical flow constraints inside the variational problem.
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13. Quéau, Y., Wu, T., Lauze, F., Durou, J.D., Cremers, D.: A non-convex variational
approach to photometric stereo under inaccurate lighting. In: CVPR. pp. 99–108
(2017)

14. Schmitt, C., Donne, S., Riegler, G., Koltun, V., Geiger, A.: On joint estimation of
pose, geometry and svBRDF from a handheld scanner. In: CVPR. pp. 3493–3503
(2020)

15. Sengupta, S., Zhou, H., Forkel, W., Basri, R., Goldstein, T., Jacobs, D.: Solving
uncalibrated photometric stereo using fewer images by jointly optimizing low-rank
matrix completion and integrability. JMIV 60(4), 563–575 (2018)

16. Shi, B., Mo, Z., Wu, Z., Duan, D., Yeung, S., Tan, P.: A benchmark dataset and
evaluation for non-Lambertian and uncalibrated photometric stereo. PAMI 41(2),
271–284 (2019)

17. Woodham, R.J.: Photometric method for determining surface orientation from
multiple images. Opt. Eng. 19(1), 134–144 (1980)

18. Wu, L., Ganesh, A., Shi, B., Matsushita, Y., Wang, Y., Ma, Y.: Robust photometric
stereo via low-rank matrix completion and recovery. In: ACCV. pp. 703–717 (2010)


	Low-rank registration of images captured under unknown, varying lighting

