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Abstract

In this study, we prove the well-posedness of both the variable-viscosity Stokes/Darcy-Brinkman
and Stokes/Darcy coupled problems governing the viscous flow in fluid-porous systems. The
coupling is made by a recent optimal stress jump interface condition associated to velocity
continuity at the bottom surface of a transition layer inside the porous region. Indeed, this original
condition has been shown to be physically relevant for multi-directional flows and optimal by
minimizing the loss of flow rate in the viscous boundary layer. Besides, its inherent tensorial
form ensures to handle arbitrary flow directions with anisotropic effects of the microstructure.
The analysis of the transmission problem is carried out by introducing a unified mixed variational
framework with no Lagrange multiplier at the interface. Moreover, the analysis of variable-
viscosity fluid-porous flows seems new in the literature.

Keywords: Fluid-porous flow, Stokes/Darcy-Brinkman model, Stokes/Darcy model,
Variable-viscosity, Optimal stress jump condition, Reduction of flow-rate loss, Well-posedness
analysis
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1. Introduction

The P.D.E.’s governing the incompressible viscous creeping flow in fluid-porous systems Ω
(see Figure 1), i.e. the Stokes and Darcy equations, are not of the same order. In order to solve
the coupling in the transmission problem, a pioneering approach dates back from Brinkman [1, 2]
who early introduces the Darcy-Brinkman equation and the notion of effective viscosity of a
porous medium. Some authors have then followed and extended such a single-domain continuum
modelling, i.e. assuming the continuity of velocity and stress vectors between the fluid domain
Ωf and the porous one Ωp, e.g. [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

Following the pioneering work of Beavers and Joseph [13] introducing the two-domain
approach, many authors use velocity slip interface conditions associated with continuity of the
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Ω := Ωf ∪ Σ ∪ Ωp Γ := ∂Ω = Γf ∪ Γp

Γp := ∂Ωp \ Σ = Γpd ∪ Γpn

Γf := ∂Ωf \ Σ = Γfd ∪ Γfn

free-fluid domain Ωf

porous domain Ωp

interface Σ

ν

τn

arbitrary flow direction

Figure 1: General configuration of the flow in a fluid-porous domain Ω at a macroscale length L.

normal velocity and stress vector to couple the Stokes/Darcy or Navier-Stokes/Darcy problems.
These conditions are extended ad-hoc for the multi-dimensional case from the 1-D flow inherited
from the heuristic conditions of Beavers-Joseph-Jones [13, 14]; see also the comments in [15, 16,
17]. With usual notations precised in the next section 2, the set of multi-dimensional extended
Beavers-Joseph-Jones conditions applied at the fluid-porous interface Σ = Σt (originally chosen
at the top surface Σt of the transition layer and tangent to the upper solid inclusions) reads:

[[v ·n]]Σ = 0

τ j ·
(
∇v +∇vT

)
Σ
·n =

αbj√
Kp

[[v · τ j ]]Σ, for j = 1, 2

n · [[σ(v, p) ·n]]Σ = 0

on Σ = Σt, (1)

where the Cauchy stress vector σ(v, p) ·n is defined as: σf (v, p) ·n := µ (∇v +∇vT )f ·n−
pfn in the free-fluid region Ωf and σp(v, p) ·n := −ppn in the porous bulk Ωp. Besides,
the scalar parameter αbj > 0 denotes the dimensionless velocity-slip coefficient that should be
estimated by experimental data or averaged pore-scale simulations. The jump quantity [[.]]Σ on Σ
is oriented by the unit normal vector n on Σ (directed arbitrarily outwards of the porous region
Ωp). The couple of vectors (τ 1, τ 2) denotes a local orthonormal basis of tangential vectors on
the surface Σ. However for the mathematical and numerical analysis, many authors then consider
the following simplified Beavers-Joseph-Saffman form [18]. In this approximate condition, the
velocity jump is no more explicitly included by neglecting the porous slip velocity with respect
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to the fluid slip velocity, as derived later by [19, 20] for the one-dimensional flow:
[[v ·n]]Σ = 0

τ j ·
(
∇v +∇vT

)
Σ
·n =

αbj√
Kp

vfΣ · τ j , for j = 1, 2

n · [[σ(v, p) ·n]]Σ = 0

on Σ = Σt, (2)

We refer to [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39] and many
others for the numerous related numerical methods and analyses using the set (2). Only a few
authors, e.g. [40, 41, 42, 43], consider the full Beavers-Joseph-Jones conditions (1) and the
solvability is proved in [44, 45] with no restriction on the size of the slip coefficient αbj ≥ 0.
Moreover, the generalization below of (1) that also includes a jump of the stress vector is derived
by asymptotic analysis in [46]:

[[v ·n]]Σ = 0,

τ j ·
(
σf

v (v) ·nΣ

)
=

µ√
Kp

αΣ [[v · τ j ]]Σ, for j = 1, 2

[[σ(v, p) ·n]]Σ =
µ√
Kp

βΣ ·v
f
Σ

on Σ = Σt, (3)

where βΣ denotes the symmetric and positive semi-definite friction tensor on Σ. Using such
interface conditions (3), the boundary layer is theoretically calculated by WKB expansions of
which the convergence is proved in [47]. Moreover, the resulting Stokes/Darcy-Brinkman and
Stokes/Darcy coupled problems are proved to be well-posed with no restriction on the size of the
data in [44, 45].

The present analysis is carried out for a different original set of interface conditions (20), i.e.
velocity continuity and stress vector jump at the bottom surface Σb of a suitable transition layer
inside the porous layer, as recently derived in [46] by asymptotic modeling. This condition is
shown to be optimal to minimize the loss of flow rate in [48]; see an example in Appendix B.
Moreover, the further analysis considers the variable-viscosity (and density) flow in view of a
potential coupling with a convective heat transfer. Up to our knowledge, this seems new in the
literature in the context of fluid-porous flows.

The paper is organized as follows. The next Section 2 describes the flow models and the
set of boundary and interface conditions. In Section 3, the solvability of the variable-viscosity
Stokes/Darcy-Brinkman coupled flow is proved in Theorem 1. In Section 4, the main result of
well-posedness of the variable-viscosity Stokes/Darcy coupled flow is finally proved in Theorem
2 for the existence of solution and its Corollary 2 for the uniqueness.

2. Coupled fluid-porous flow models

2.1. Notations and definitions
Let Ω ⊂ Rd (for d ≤ 3) be an open bounded and connected set with Lipschitz-continuous

boundary Γ := ∂Ω and ν be the outward unit normal vector on Γ; see Figure 1. The domain Ω is
composed of two disjoint connected subdomains, the fluid domain Ωf and the porous domain Ωp,
each one with a Lipschitz-continuous boundary ∂Ωf and ∂Ωp, respectively. They are separated
by a Lipschitz-continuous surface Σ ⊂ Rd−1 such that: Ω = Ωf ∪Σ∪Ωp with Σ = ∂Ωf ∩ ∂Ωp
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(meas(Σ) > 0), Γf := ∂Ωf ∩ ∂Ω and Γp := ∂Ωp ∩ ∂Ω. Let n be the unit normal vector on
the interface Σ arbitrarily directed from Ωp to Ωf , and let the set {τ j} for 1 ≤ j ≤ d − 1, be a
local orthonormal basis of vectors on the tangent plane to Σ, the unit vector τ being any of these
tangential vectors. We use the standard definitions and properties of the Lebesgue and Sobolev
spaces, e.g. [49, 50]. In particular, ‖.‖s,Ω denotes the usual norm or semi-norm |.|s,Ω of the
Sobolev spacesHs(Ω) := W s,2(Ω) for Ω = Ωf or Ωp and 〈., .〉−1,Ω denotes the duality pairing
betweenH−1(Ω) andH1

0 (Ω). We also define the (real) Hilbert spaces below endowed with their
respective usual inner products and associated norms [51, 52]:

Hdiv(Ω) :=
{
u ∈ L2(Ω)d; ∇ ·u ∈ L2(Ω)

}
,

L2
0(Ω) :=

{
q ∈ L2(Ω);

∫
Ω

q dx = 0

}
.

(4)

The space L2
0(Ω) is equipped with the L2(Ω) norm ‖.‖0,Ω and Hdiv(Ω) is equipped with the

graph norm defined by:

‖u‖2Hdiv(Ω) := ‖u‖20,Ω + ‖∇ ·u‖20,Ω for all u ∈Hdiv(Ω). (5)

Since the Lipschitz surface Σ (with meas(Σ) > 0) is not closed, 〈., .〉−1/2,Σ denotes the
duality pairing between H̃1/2(Σ) := H

1/2
00 (Σ) and its topological dual space H̃−1/2(Σ) that is

a distribution space on Σ. We refer to [53, 54] for more background information on the space
H

1/2
00 (Σ) and its dual, and to [22, 37] for the context of fluid-porous flows; see also an illustrative

related counterexample provided in [55, Exercise 2.24]. Following [37], H̃1/2(Σ) = H
1/2
00 (Σ)

is the space of traces of all functions of H1
0,∂Ωf\Σ (i.e. vanishing on ∂Ωf \ Σ) or of H1

0,∂Ωp\Σ.
The spaces H1/2(Σ) ↪→ L2(Σ) and H̃1/2(Σ) ↪→ L2(Σ) are respectively equipped with the
semi-norms and norms defined as follows:

|u|2H1/2(Σ) :=

∫
Σ

∫
Σ

|u(x)− u(y)|2
|x− y|d dxdy, ‖u‖2H1/2(Σ) := ‖u‖20,Σ + |u|2H1/2(Σ), (6)

|u|2
H̃1/2(Σ)

:= |u|2H1/2(Σ) +

∫
Σ

|u(x)|2
d(x, ∂Σ)

dx, ‖u‖2
H̃1/2(Σ)

:= ‖u‖20,Σ + |u|2
H̃1/2(Σ)

, (7)

where d(x, ∂Σ) := infy∈∂Σ |x − y| denotes the distance from any point x ∈ Σ to the border
∂Σ. Since Σ is a bounded Lipschitz surface, the latter distance function belongs to W 1,∞(Σ).
Thus, the continuous imbedding H̃1/2(Σ) ↪→ H1/2(Σ) holds. However, the norms defined in
(6) and (7) are not equivalent except when Σ is a closed surface (or curve for d = 2). Besides,
for any function ũ ∈ H̃1/2(Σ), its extension by zero to the whole boundary ∂Ωf and denoted by
u satisfies u ∈ H1/2(∂Ωf ) and for some c(Σ, ∂Ωf ) > 01:

‖u‖1/2,∂Ωf
≤ c(Σ, ∂Ωf ) ‖ũ‖H̃1/2(Σ), for all ũ ∈ H̃1/2(Σ). (8)

Moreover, the normal trace u ·n on the border ∂Ωf of any function u ∈ Hdiv(Ωf ) belongs to
H−1/2(∂Ωf ) and the normal trace linear operator: Hdiv(Ωf ) 7→ H−1/2(∂Ωf ) is continuous
and surjective with [51, Theorem 2.5 and Corollary 2.8] (and similarly on ∂Ωp). The same result

1Without any more precision, c > 0 or C > 0 will denote a positive generic quantity depending only of the data.
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holds on a part of ∂Ωf if this part is a closed surface. But on the surface Σ that is not closed,
then we have u ·n ∈ H̃−1/2(Σ) := H̃1/2(Σ)′.

For any quantity ψ defined all over Ωf ∪ Ωp, the restrictions on Ωf or Ωp are respectively
denoted by ψf := ψ|Ωf

and ψp := ψ|Ωp
. For a function ψ having a jump on Σ, let ψ− := ψp

Σ

and ψ+ := ψf
Σ
2 be the traces of ψp and ψf on each side of Σ (at least defined in a weak sense),

respectively. Following the general framework introduced in [56], let us choose as reduced
variables at the interface Σ, the jump of traces of ψ on Σ oriented by n and the arithmetic mean
of traces of ψ defined by:

[[ψ]]Σ := ψ+ − ψ− =
(
ψf − ψp

)
Σ
,

ψΣ :=
1

2

(
ψ+ + ψ−

)
=

1

2

(
ψf + ψp

)
Σ
.

(9)

2.2. Creeping flow in the porous medium: variable-viscosity Darcy’s model
The single-phase incompressible creeping flow in the saturated porous bulk Ωp is described

by the Darcy law (see e.g. [57]), here considered with variable viscosity and density:{
∇ ·v = qm in Ωp,

µK−1
p v +∇p = ρf in Ωp,

(10)

where µ > 0 is the dynamic viscosity of the fluid with µ ∈ L∞(Ω), ρ > 0 its mass density
with ρ ∈ L∞(Ω). With the porosity φp (volume fraction of fluid pores, 0 < φp < 1), the
intrinsic permeability tensorKp(φp) of the porous regionΩp (a symmetric and uniformly positive
definite bounded matrix in L∞(Ωp)d×d) can be given by a porosity-permeability correlation or
experimental data. For example, we can use the porosity-permeability correlation Kp(φp) of
Kozeny-Carman that has been calibrated for many random packed beds of spherical grains of
variable sizes [58, 57, 59]. Besides in (10), v denotes the filtration velocity defined as the
superficial average over a representative unit volume and p is the pressure defined as the intrinsic
average. The external force per mass unit f ∈ L2(Ω)d (e.g. gravitational acceleration), is
included in the right-hand side, whereas qm ∈ L2(Ω) denotes a given mass source or sink term.
With (10), the Cauchy stress tensor in Ωp reduces to the pressure term with no viscous stress, I
being the unit tensor:

σp(v, p) := −pp I in Ωp. (11)
The Darcy number Da is classically introduced as a dimensionless parameter to characterize the
flow in the porous medium:

Da :=
Kp

L2
, (12)

whereKp := ‖Kp‖∞ and L is the macroscopic length scale.
On the external boundary of the porousmedium, i.e. Γp = ∂Ωp\Σ, mixedDirichlet/Neumann

boundary conditions are assigned with zero normal flux on the part Γp
d and a null traction on Γp

n

which can be interpreted with (11) as an homogeneous Dirichlet condition for the pressure p = 0
on Γp

n: {
vp ·ν = 0 on Γp

d,

σp(v, p) ·ν = 0 on Γp
n,

(13)

where Γp := Γp
d ∪ Γp

n with Γp
d ∩ Γp

n = ∅ and meas(Γp
d) > 0.

2The upper or lower index of ψf
Σ, ψ

p
Σ will be sometimes omitted when there is no possible confusion.
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2.3. Creeping flow in the porous medium: variable-viscosity Darcy-Brinkman’s model
The incompressible creeping flow in the saturated porous medium Ωp can be also governed

by the Darcy-Brinkman equations [1, 2, 7], here considered with variable viscosity and density:
∇ ·v = qm in Ωp,

−∇ ·
(
µ

φp

(
∇v +∇vT

))
+ µK−1

p v +∇p = ρf in Ωp,
(14)

where µ > 0 is the dynamic viscosity of the fluid with µ ∈ L∞(Ω), ρ > 0 its mass density
with ρ ∈ L∞(Ω). With the porosity φp (volume fraction of fluid pores, 0 < φp < 1), the
intrinsic permeability tensorKp(φp) of the porous regionΩp (a symmetric and uniformly positive
definite bounded matrix in L∞(Ωp)d×d) can be given by a porosity-permeability correlation or
experimental data. For example, we can use the porosity-permeability correlation Kp(φp) of
Kozeny-Carman that has been calibrated for many random packed beds of spherical grains of
variable sizes [58, 57, 59]. Besides in (10), v denotes the filtration velocity defined as the
superficial average over a representative unit volume and p is the pressure defined as the intrinsic
average. The external force per mass unit f ∈ L2(Ω)d (e.g. gravitational acceleration), is
included in the right-hand side. With (14), the Cauchy stress tensor in Ωp reads:

σp(v, p) := σp
v(v)− p I where σp

v(v) := 2
µp

φp
D(v)

with D(v) :=
1

2

(
∇v +∇vT

)
,

in Ωp, (15)

where σp
v(v) is the viscous stress tensor and D(v) is the strain rate tensor (symmetric part of

∇v).
On the external boundary of the porousmedium, i.e. Γp = ∂Ωp\Σ, mixedDirichlet/Neumann

boundary conditions are assigned with a null velocity on the part Γp
d and a given traction g ∈

H̃−1/2(Γp
n)d on Γp

n: {
vp = 0 on Γp

d,

σp(v, p) ·ν = g on Γp
n,

(16)

where Γp := Γp
d ∪ Γp

n with Γp
d ∩ Γp

n = ∅ and meas(Γp
d) > 0.

2.4. Flow in the free-fluid region: variable-viscosity Stokes model
The incompressible viscous flow in the pure fluid domain Ωf is here governed by the Stokes

model with a variable viscosity and density:{
∇ ·v = qm in Ωf ,

−∇ ·
(
µ
(
∇v +∇vT

))
+∇p = ρf in Ωf ,

(17)

For writing Eqs. (17) and (10) with the stress formulation, the Cauchy stress tensor σ(v, p) for a
Newtonian fluid in Ωf associated with the stress vector σ(v, p) ·n on the surface Σ:σ

f (v, p) := σf
v (v)− p I where σf

v (v) := 2µf D(v)

with D(v) :=
1

2

(
∇v +∇vT

)
,

in Ωf , (18)
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where σf
v (v) is the viscous stress tensor and D(v) is the strain rate tensor (symmetric part of

∇v).
On the external boundary of the fluid region, i.e. Γf = ∂Ωf \ Σ, mixed Dirichlet/Neumann

boundary conditions are applied with null velocity on the part Γf
d and a given stress vector

h ∈ H̃−1/2(Γf
n)d on Γf

n: {
vf = 0 on Γf

d ,

σf (v, p) ·ν = h on Γf
n.

(19)

where Γf := Γf
d ∪ Γf

n with Γf
d ∩ Γf

n = ∅ and meas(Γf
d) > 0, meas(Γf

n) > 0.

2.5. Fluid-porous stress jump interface conditions
The coupling of the fluid-porous flow (17, 10) requires additional interface conditions on Σ.

Here, we deal with a new setting issued from recent advances on fluid-porous flows carried out in
[46, 48] with an asymptotic modeling and analysis to couple the Stokes problem with either the
Darcy-Brinkman or Darcy models. Hence, the following set of stress jump interface conditions
associated to velocity continuity is derived in [46, Section III] (when Σ is non-centered inside the
inter-region; see also the summary supplied in [60, Eqs. (18) with (30) and Remark 3]) to couple
the Stokes and Darcy models at the bottom surface Σ = Σb of a thin transition layer between the
fluid and porous regions:

[[v]]Σ = 0, i.e. vfΣ = vpΣ := vΣ

[[σ(v, p) ·n]]Σ =
µp

Σ√
Kp

βΣ vΣ − fΣ

on Σ = Σb, (20)

where Kp := ‖Kp‖∞ (or any permeability reference) and fΣ ∈ L2(Σ)d is a given external
surfacic force on Σ (fΣ ∈ H̃−1/2(Σ)d is also admissible). The stress jump friction tensor
βΣ denotes a uniformly positive semi-definite bounded matrix (possibly symmetric) with thus
βΣ ∈ L∞(Σ)d×d.

Compared to the usual velocity slip conditions with no normal stress jump, extended ad-hoc
from the 1-D Beavers-Joseph [13] or simplified Beavers-Joseph-Saffman [18, 19] conditions used
by almost all authors, e.g. [22, 28, 29, 37], the jump interface set (20) is shown in [48] to be
optimal to reduce the loss of flow rate in the viscous boundary layer of the porous medium.
Moreover, a calibration procedure is proposed in [48] to determine the optimal location of Σb, i.e.
the thickness d from the top surface Σt of the transition layer (where Beavers-Joseph’s conditions
of velocity slip are applied), together with the friction tensor βΣ. A typical example for the
benchmark of Poiseuille’s channel flow through fluid-porous layers is provided in Appendix B.

However with the regularity of the data in Ωp chosen here, we have vp ∈Hdiv(Ωp) and thus
the normal trace vp ·n on Σ can be defined in a weak sense, but there is no guarantee to define the
tangential trace vp∧n on Σ since the curl∇× vp does not a priori belong to L2(Ωp)d (unless
the tensorKp and the viscosity µ are constant). Therefore with less smooth data as it is the case
in practical applications, we shall also consider the following admissible modified version of (20)
to couple the Stokes and Darcy flows:

[[v ·n]]Σ = 0, vΣ := vfΣ

[[σ(v, p) ·n]]Σ =
µp

Σ√
Kp

βΣ vΣ − fΣ

on Σ = Σb. (21)

7



Under the above form, the stress jump interface conditions (20) can be viewed from a variational
point of view as a dual version of the extended Beavers-Joseph-Saffman velocity jump conditions
(2). Unlike the latter conditions (2) or (1) where the velocity slip coefficient αΣ is a scalar
parameter only (see the derivation of this equation in [46]), the intrinsic vector form of the stress
jump conditions (20) or (21), where βΣ is a symmetric and positive semi-definite tensor, is likely
to actually handle multi-dimensional cases with arbitrary flow directions and anisotropic effects
of the microstructure.

3. Solvability of the coupled Stokes/Darcy-Brinkman fluid-porous flow

The set of interface conditions (20) being formulated in terms of velocity and stress vectors,
it is more suitable to write the fluid-porous model (10, 17) in the following divergential form with
the Cauchy stress formulation using (15, 18) for f ∈ L2(Ω)d and qm ∈ L2(Ω):

∇ ·v = qm in Ω,

−∇ ·σp(v, p) + µpK−1
p vp = ρf in Ωp,

−∇ ·σf (v, p) = ρf in Ωf .

(22)

The interest of the stress formulation (22) is also to deal with the case of variable viscosity
µ ∈ L∞(Ω)when for example, the flow has to be coupled with a convective heat transfer governed
by an advection-diffusion equation for the temperature, thus with a temperature-dependent density
ρ ∈ L∞(Ω) too. Then to give a sense to (20), we assume that µ ∈M defined by:

M :=
{
µ ∈ L∞(Ω); µp := µ|Ωp

∈ H1(Ωp), µf := µ|Ωf
∈ H1(Ωf )

}
, (23)

Hence, the Sobolev continuous imbedding yields: µp
Σ ∈ H1/2(Σ) ↪→ L4(Σ) (for d ≤ 3),

although µp
Σ ∈ L2(Σ) is sufficient here. We have also the natural assumptions of boundedness

issued from physical properties and there exists constants φm > 0, µM ≥ µm > 0 and kM ≥
km > 0 such that:

φp ∈]0, 1[; 0 < φm ≤ φp(x) < 1 a.e. x ∈ Ω,

µ ∈M ; 0 < µm ≤ µ(x) ≤ µM a.e. x ∈ Ω,

βΣ ∈ L∞(Σ)d×d; β∞ := ‖βΣ‖L∞(Σ)d×d ,

K−1
p ∈ L∞(Ωp)d×d; k∞ := ‖K−1

p ‖L∞(Ωp)d×d ,

km |y|2 ≤
(
K−1

p (x)y
)
·y ≤ kM |y|2, ∀y ∈ Rd a.e. x ∈ Ωp,

ρ ∈ L∞(Ω); ρ∞ := ‖ρ‖L∞(Ω),

(24)

where |.| denotes the Euclidean vector norm in Rd.
Then for the velocity and pressure solutions spaces and test function spaces, we define the

following (real) Hilbert spaces endowedwith their natural respective inner products and associated
norms:

H1
0,Γf

d

(Ωf )d :=
{
u ∈ H1(Ωf )d; u = 0 on Γf

d

}
,

W := H1
0,Γf

d∪Γp
d

(Ω)d =
{
w ∈ H1(Ω)d; w = 0 on Γf

d ∪ Γp
d

}
,

Q := L2(Ω),

(25)
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with theHilbertian norms (and naturally associated inner products) inW (inherited fromH1(Ω)d)
and Q defined by:

‖w‖2W := ‖w‖20,Ω + ‖∇w‖20,Ω = ‖w‖21,Ω, for all w ∈W ,

‖q‖Q := ‖q‖0,Ω, for all q ∈ Q.
(26)

Hence,W is a Hilbert space as a closed subspace of H1(Ω)d, and we have thus the continuous
imbeddingW ↪→ H1(Ω)d. Then for all v ∈W , we have continuity of the traces onΣ: [[v]]Σ = 0

and thus vΣ := vpΣ = vfΣ ∈ H̃1/2(Σ)d ↪→ H1/2(Σ)d. Moreover, we have by Sobolev imbedding
for all v ∈W : vΣ ∈ H1/2(Σ)d ↪→ L4(Σ)d (for d ≤ 3) with the related continuity inequality of
the imbedding.

Let us now introduce two bilinear forms a(., .), b(., .) and two linear functionals `(.), g(.):

a(., .) : W ×W 7→ R, b(., .) : W ×Q 7→ R, `(.) : W 7→ R, g(.) : Q 7→ R, (27)

respectively defined for all v,w ∈W and p ∈ Q by:

a(v,w) := 2

∫
Ωf

µf D(v) :D(w) dx+ 2

∫
Ωp

µp

φp
D(v) :D(w) dx (28)

+

∫
Ωp

µp
(
K−1

p v
)
·w dx+

∫
Σ

µp
Σ√
Kp

(βΣ vΣ) ·wΣ ds,

b(w, p) := −
∫

Ωf

p∇ ·w dx−
∫

Ωp

p∇ ·w dx = −
∫

Ω

p∇ ·w dx, (29)

`(w) :=

∫
Ω

ρf ·w dx+

∫
Σ

fΣ ·wΣ ds+ 〈g,w〉−1/2,Γp
n

+ 〈h,w〉−1/2,Γf
n
, (30)

g(p) := −
∫

Ωf

qm p dx−
∫

Ωp

qm pdx = −
∫

Ω

qm p dx, (31)

where 〈., .〉−1/2,Γp
n
denotes the duality pairing between the spaces H̃−1/2(Γp

n) and H̃1/2(Γp
n)

and similarly on Γf
n.

Let us first prove some preliminary results.

Lemma 1 (Equivalent forms of the Stokes/Darcy-Brinkman transmission problem). For all
data as mentioned above, the boundary-value problem (22, 16, 19, 20) with (15, 18) assuming
solutions (v, p) ∈W ×Q is equivalent to the following mixed weak problem:

find a pair (v, p) ∈W ×Q such that:
a(v,w) + b(w, p) = `(w), for all w ∈W ,

b(v, q) = g(q), for all q ∈ Q = L2(Ω),

(32)

with the definitions (28–31).

Proof. Firstly, let (v, p) ∈ W × Q be a solution to the transmission problem (22, 16, 19, 20).
Since f ∈ L2(Ω)d, we have with (15, 18) and (22): σf (v, p) ∈ Hdiv(Ωf )d and σp(v, p) ∈
Hdiv(Ωp)d. With the normal trace operator Hdiv(Ω) 7→ H−1/2(∂Ω) (cf. [51, Theorem
2.5]) applied in the domains Ωf and Ωp, we have thus: σf (v, p) ·ν ∈ H−1/2(∂Ωf )d and
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σp(v, p) ·ν ∈ H−1/2(∂Ωp)d. Using now Green’s formulas, the L2(Ωf ) scalar product by any
test function w ∈W of the momentum equation in Ωf yields from (22) with (18):

2

∫
Ωf

µf D(v) :D(w) dx−
∫

Ωf

p∇ ·w dx−
〈
σf (v, p) ·ν,w

〉
−1/2,∂Ωf

=

∫
Ωf

ρf ·w dx,

(33)

where the first term is obtained using the equality: 2D(v) : ∇w = D(v) : (∇w +∇wT ) that
holds because of the symmetry of the tensorD(v). Since wf = 0 on Γf

d , the duality pairing on
∂Ωf \Γf

d = Γf
n ∪Σ in (33) holds between H̃1/2(Γf

n ∪Σ)d := H
1/2
00 (Γf

n ∪Σ)d and its dual space
H̃−1/2(Γf

n ∪ Σ)d := (H̃1/2(Γf
n ∪ Σ)d)′; see [54]. Then using wf = 0 on Γf

d and incorporating
in (33) the stress boundary condition from (19), we get since h ∈ H̃−1/2(Γf

n)d:

2

∫
Ωf

µf D(v) :D(w) dx−
∫

Ωf

p∇ ·w dx+
〈
σf (v, p) ·n,wΣ

〉
−1/2,Σ

=

∫
Ωf

ρf ·w dx+ 〈h,w〉−1/2,Γf
n
.

(34)

By doing similarly in Ωp from (22, 15, 16), it yields with wp = 0 on Γp
d:

2

∫
Ωp

µp

φp
D(v) :D(w) dx−

∫
Ωp

p∇ ·w dx+

∫
Ωp

µp
(
K−1

p v
)
·w dx

− 〈σp(v, p) ·n,wΣ〉−1/2,Σ =

∫
Ωp

ρf ·w dx.+ 〈g,w〉−1/2,Γp
n
.

(35)

Now by summing (34) and (35), it turns out that for all w ∈W :

2

∫
Ωf

µf D(v) :D(w) dx+ 2

∫
Ωp

µp

φp
D(v) :D(w) dx+

∫
Ωp

µp
(
K−1

p v
)
·w dx

−
∫

Ω

p∇ ·w dx+ 〈[[σ(v, p) ·n]]Σ,wΣ〉−1/2,Σ

=

∫
Ω

ρf ·w dx+ 〈g,w〉−1/2,Γp
n

+ 〈h,w〉−1/2,Γf
n
.

(36)

For all µ ∈M , the Sobolev continuous imbedding yields: µp
Σ ∈ H1/2(Σ) ↪→ L4(Σ) (for d ≤ 3).

Then from (20), the Hölder inequality implies that [[σ(v, p) ·n]]Σ ∈ L2(Σ)d. Moreover, we have
also the functional setting below with continuous imbeddings by identifying L2(Σ)d with its dual
space:

H̃1/2(Σ)d ↪→ L2(Σ)d ↪→ H̃−1/2(Σ)d. (37)

Hence, by including in (36) the stress jump condition (20) with [[σ(v, p) ·n]]Σ ∈ L2(Σ)d, we
finally get with the definitions (28–30):

a(v,w) + b(w, p) = `(w), for all w ∈W . (38)
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Then, taking the L2 scalar product by any test function q ∈ Q = L2(Ω) of the mass conservation
equation in (22) gives with (29, 31):

b(v, q) = g(q), for all q ∈ Q. (39)

Therefore, (38) and (39) yield that the pair (v, p) ∈W ×Q solves the weak problem (32).
Conversely, let (v, p) ∈W ×Q be a solution to the weak problem (32). In particular from

the definition of W , v satisfies ∇ ·v ∈ L2(Ω) and the homogeneous boundary conditions of
(16, 19) on Γp

d and Γf
d , respectively. With the properties of Lebesgue’s integral, it is clear by

taking for example any smooth and compactly supported test function q ∈ C∞c (Ω) that (39) is
equivalent to ∇ ·v = qm in Ω, and thus v satisfies the mass conservation equation in (22). By
choosing in (38) any smooth and compactly supported test functionw ∈ C∞c (Ωf )d, we get after
integration by part:〈

∇ ·
(
−2µf D(v) +∇p

)
,w
〉
−1,Ωf

=

∫
Ωf

ρf ·w dx, for all w ∈ C∞c (Ωf )d, (40)

where 〈., .〉−1,Ωf
is the duality pairing between H−1(Ωf )d and H1

0 (Ωf )d. Since C∞c (Ωf )d is
dense in H1

0 (Ωf )d, (40) yields:

−2∇ ·
(
µf D(v)

)
+∇p = ρf in Ωf . (41)

Doing similarly in Ωp, we get:

−2∇ ·
(
µp

φp
D(v)

)
µpK−1

p v +∇p = ρf in Ωp. (42)

Hence, it turns out with (41) and (42) that the pair (v, p) ∈ W × Q is a solution to the set of
governing equations (22). The velocity continuity vf = vp on Σ is obviously included in the
definition of the spaceW . By taking now in (38) any test functionw ∈ H1

0 (Ω)d and comparing
with (36), it yields:

〈[[σ(v, p) ·n]]Σ,wΣ〉−1/2,Σ
=

∫
Σ

µp
Σ√
Kp

(βΣ vΣ) ·wΣ ds−
∫

Σ

fΣ ·wΣ ds,

∀w ∈ H1
0 (Ω)d.

(43)

Since the trace space of w on Σ is large enough, i.e. the linear trace operator H1
0 (Ω)d 7→

H̃1/2(Σ)d is surjective as shown at the end of the proof of Lemma 6, Eq. (43) implies that the
stress jump transmission condition in (20) is recovered on Σ. Similarly as above, by taking in
(38) any test function w ∈ H1

0,Γf
d

(Ωf )d or w ∈ H1
0,Γp

d
(Ωp)d, the traction boundary conditions

in (19, 16) are also recovered on Γf
n and Γp

n, respectively. Finally, we have shown that the pair
(v, p) ∈W ×Q solves the boundary-value problem (22, 16, 19, 20). 2

Lemma 2 (Continuity of a(., .), b(., .), `(.) and g(.)). For all data as mentioned above, there
exists Ca > 0, Cb > 0, C` > 0 and Cg > 0 depending only of the data such that the following
continuity inequalities hold:

|a(v,w)| ≤ Ca ‖v‖W ‖w‖W , for all (v,w) ∈W ×W (44)
|b(w, q)| ≤ Cb ‖w‖W ‖q‖Q, for all (w, q) ∈W ×Q (45)
|`(w)| ≤ C` ‖w‖W , for all w ∈W (46)
|g(q)| ≤ Cg ‖q‖Q, for all q ∈ Q. (47)
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Proof. For all µ ∈M and (v,w) ∈W ×W , the Sobolev continuous imbedding: H1/2(Σ) ↪→
L4(Σ) (for d ≤ 3), the Hölder inequality with the trace inequalities in H1(Ωp) and H1(Ωf )d

imply that the last term in (28) verifies the continuity bound:∣∣∣∣∣
∫

Σ

µp
Σ√
Kp

(βΣ vΣ) ·wΣ ds

∣∣∣∣∣ ≤ c(Ωf ,Ωp,Σ,Kp) ‖βΣ‖∞ ‖µp‖1,Ωp ‖v‖1,Ωf
‖w‖1,Ωf

. (48)

With the Cauchy-Schwarz inequality in Ωf and Ωp for the other terms of a(v,w) in (28) and the
bounds from (24), we have for all v,w ∈W :∣∣∣∣∣2

∫
Ωf

µf D(v) :D(w) dx

∣∣∣∣∣ ≤ 2µM ‖D(v)‖0,Ωf
‖D(w)‖0,Ωf

≤ 2µM ‖∇v‖0,Ωf
‖∇w‖0,Ωf∣∣∣∣∣2

∫
Ωp

µp

φp
D(v) :D(w) dx

∣∣∣∣∣ ≤ 2µM φ−1
m ‖∇v‖0,Ωp

‖∇w‖0,Ωp∣∣∣∣∣
∫

Ωp

µp
(
K−1

p v
)
·w dx

∣∣∣∣∣ ≤ µM ‖K−1
p ‖∞ ‖v‖0,Ωp

‖w‖0,Ωp
.

(49)

Thus, using (48) and (49), we get (44) with Ca > 0 depending only on the data.
By applying the Cauchy-Schwarz inequality in (29), it is straightforward to obtain (45) with

Cb = 2 since for all w ∈W , q ∈ Q:

|b(w, q)| ≤ ‖∇ ·w‖0,Ω ‖q‖0,Ω ≤ 2 ‖∇w‖0,Ω ‖q‖0,Ω, (50)

because usual calculations show that: ‖∇ ·w‖20,Ω ≤ 3 ‖∇w‖20,Ω, for all w ∈ H1(Ω)d.
Using the Cauchy-Schwarz inequality from (30) and the duality inequalities combined with

trace inequalities in H1(Ωp)d and H1(Ωf )d, we get for all w ∈W :

|`(w)| ≤ ‖ρ‖∞ ‖f‖0,Ω ‖w‖0,Ω + c(Ωf ,Σ) ‖fΣ‖0,Σ ‖w‖1,Ωf

+ c(Ωp,Γ
p
n) ‖g‖H̃−1/2(Γp

n)d ‖w‖1,Ωp + c(Ωf ,Γ
f
n) ‖h‖H̃−1/2(Γf

n)d ‖w‖1,Ωf
,

(51)

from which (46) is obtained with some C` > 0. The last continuity inequality (47) holds true
immediately with Cg = ‖qm‖0,Ω from (31). 2

Lemma 3 (Coercivity of a(., .) onW ). For all data asmentioned above, the bilinear forma(., .)

is coercive onW , i.e. there exists αa(Ωf ,Ωp,Γ
f
d ,Γ

p
d, µm) > 0 such that:

a(w,w) ≥ αa ‖w‖2W , for all w ∈W . (52)

Proof. The last term of a(w,w) from (28) being non-negative, we have using (24):

a(w,w) ≥ 2µm ‖D(w)‖20,Ωf
+ 2µm ‖D(w)‖20,Ωp

+ µm km ‖w‖20,Ωp
, ∀w ∈W . (53)

Then, we recall Poincaré-Friedrichs’ inequality in H1
0,Γf

d

(Ωf )d (e.g. [52, Proposition III.2.38]),

Ωf being a bounded and connected Lipschitz domain of Rd:

‖v‖0,Ωf
≤ Cf

P (Ωf ,Γ
f
d) ‖∇v‖0,Ωf

, for all v ∈ H1
0,Γf

d

(Ωf )d, (54)
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and the following Korn inequality in H1
0,Γf

d

(Ωf )d as a consequence of Korn’s second inequality

in H1(Ωf )d (see e.g. [52, Lemma IV.7.6]) combined with (54):

‖D(v)‖20,Ωf
≥ Cf

K(Ωf ,Γ
f
d) ‖v‖21,Ωf

, for all v ∈ H1
0,Γf

d

(Ωf )d. (55)

Using (55) and similar Korn’s inequality in H1
0,Γp

d
(Ωp)d on the domain Ωp in (53), we get:

a(w,w) ≥ 2µm min(Cf
K , C

p
K)
(
‖w‖21,Ωf

+ ‖w‖21,Ωp

)
≥ 2µm min(Cf

K , C
p
K) ‖w‖2W , for all w ∈W .

(56)

Hence with αa(Ωf ,Ωp,Γ
f
d ,Γ

p
d, µm) := 2µm min(Cf

K , C
p
K) > 0, the coercivity inequality (52)

holds. 2

Then, we prove the following result of well-posedness with no restriction on the natural size
of the data.

Theorem 1 (Solvability of variable-viscosity Stokes/Darcy-Brinkman flow coupled with (20)).
Under the assumptions (24), let us consider any data ρ ∈ L∞(Ω), µ ∈ M , f ∈ L2(Ω)d,
qm ∈ L2(Ω), fΣ ∈ L2(Σ)d, g ∈ H̃−1/2(Γp

n)d, h ∈ H̃−1/2(Γf
n)d, any bounded, symmetric

and uniformly positive definite tensor Kp ∈ L∞(Ωp)d×d and any bounded uniformly positive
semi-definite tensor βΣ ∈ L∞(Σ)d×d.

Then, there exists a unique solution (v, p) ∈ W × Q to the mixed weak problem (32), i.e.
also to the Stokes/Darcy-Brinkman fluid-porous flow (22, 16, 19) coupled with the stress jump
interface conditions (20) on Σ. In addition, the solution satisfies the following energy estimate:

‖v‖W + ‖p‖Q ≤ C(αa, βb, ‖a‖, ‖b‖) (‖`‖W ′ + ‖qm‖0,Ω) . (57)

Proof. By using the above Lemmas 1, 2, 3 and applying [51, Theorem 4.1 & Corollary 4.1]
resulting from the Banach-Nečas-Babuška theory [61, 62], it remains to prove that b(., .) satisfies
the inf-sup condition, i.e. there exists βb > 0 depending only on the data such that:

sup
w∈W ;w 6=0

b(w, q)

‖w‖W
≥ βb ‖q‖Q, for all q ∈ Q. (58)

This stems from Nečas’ Theorem in [63], e.g. [52, Theorem IV.3.1], stating that for any q0 ∈
L2

0(Ω), there exists a function u0 ∈ H1
0 (Ω)d such that with some CN (Ω) > 0:

∇ ·u0 = q0 in Ω and ‖u0‖1,Ω ≤ CN (Ω) ‖q0‖0,Ω. (59)

By considering now any function q ∈ Q = L2(Ω) and denoting by m(q) its mean all over the
domain Ω:

m(q) :=
1

|Ω|

∫
Ω

q dx where |Ω| := meas(Ω), (60)

then we have q0 := q −m(q) ∈ L2
0(Ω) and thus (59) holds true. Following [52, Section IV.7.1]

to get a lifting of the mass source term q, let us now define the vector field ũ ∈W by:

ũ :=
m(q)

d
x for all x := (x1, · · · , xd)T ∈ Ω ⊂ Rd, with u = 0 on Γf

d ∪ Γp
d, (61)

13



that verifies:
∇ · ũ = m(q) and ∇ũ =

m(q)

d
I in Ω. (62)

Thus, using the Cauchy-Schwarz inequality to boundm(q), there exists C̃(Ω, d) > 0 such that:

‖ũ‖1,Ω ≤ C̃(Ω, d) ‖q‖0,Ω. (63)

Therefore, we have constructed a function u := (u0 + ũ) ∈W such that, using (59) and (63),
we have with some C(Ω, d) > 0:

∇ ·u = q0 +m(q) = q in Ω and ‖u‖W = ‖u‖1,Ω ≤ C(Ω, d) ‖q‖0,Ω, (64)

i.e. that the Divergence operator ∇ · : W ⊂ H1(Ω)d 7→ Q = L2(Ω) admits a right-inverse.
Now taking w = −u as a particular candidate for a lower bound in (58), we get with (64):

sup
w∈W ;w 6=0

b(w, q)

‖w‖W
≥ −b(u, q)‖u‖W

=
‖q‖20,Ω
‖u‖W

≥ 1

C(Ω, d)
‖q‖Q, (65)

from which the inf-sup condition (58) holds with βb(Ω, d) = 1/C(Ω, d) since q was chosen
arbitrary in L2(Ω) in the above construction.

Then, the energy estimate (57) follows with usual arguments. 2

Remark 1 (Generalizations). Replacing the assumption of fΣ given in L2(Σ)d by a data fΣ ∈
H̃−1/2(Σ)d is straightforward throughout the analysis, which can be required for the multi-
physics coupling where complex phenomena occur at the interface Σ. Moreover, the case with
non-homogeneous velocity boundary conditions on Γf

d or Γp
d is admissible too. These extensions

are not considered here for the sake of brevity.

4. Solvability of the coupled Stokes/Darcy fluid-porous flow

As carried out in [44, 45], the strategy to prove the well-posed coupling of Stokes/Darcy flows
uses a regularization with a vanishing effective viscosity µ̃p = ε > 0 in the porous domain Ωp,
and then passes to the limit when ε→ 0.

Let us define the following (real) Hilbert spaces endowed with their natural respective inner
products and associated norms:

X :=
{
u ∈Hdiv(Ω); uf ∈ H1(Ωf )d

}
,

V :=
{
v ∈X; vf ∈ H1

0,Γf
d

(Ωf )d, vΣ := vfΣ, v
p ·ν = 0 on Γp

d

}
,

V 0 := {v ∈ V ; ∇ ·v = 0 in Ω} ,
(66)

with the Hilbertian norms (and naturally associated inner products) inX , V (inherited fromX)
defined by:

‖u‖2X := ‖u‖20,Ω + ‖∇ ·u‖20,Ω + ‖∇uf‖20,Ωf
, for all u ∈X,

‖v‖2V := ‖v‖20,Ω + ‖∇ ·v‖20,Ω + ‖∇vf‖20,Ωf
, for all v ∈ V ,

‖v‖2V 0
:= ‖v‖20,Ω + ‖∇vf‖20,Ωf

, for all v ∈ V 0.

(67)
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Hence,V is a Hilbert space as a closed subspace of theHilbert space (X, ‖.‖X); see Propositions
1 and 2 in Appendix A. Besides, we have the following continuous imbeddings: W ↪→ V ↪→X
and W is dense in V because H1(Ωp)d is dense in Hdiv(Ωp). Then for all v ∈ V , we
have: [[v ·n]]Σ = 0 on Σ from Lemma 6 in Appendix A and thus v ·n := vp ·n = vf ·n ∈
H̃1/2(Σ) ↪→ H1/2(Σ) since vf ·n ∈ H̃1/2(Σ). Moreover, we have by Sobolev imbedding for
all v ∈ V : vΣ := vfΣ ∈ H1/2(Σ)d ↪→ L4(Σ)d (for d ≤ 3) with the related continuity inequality
of the imbedding.

4.1. Solvability of the regularized Stokes/Darcy problem
In the regularized procedure, we consider for all ε > 0 the Stokes/Darcy-Brinkman problem

with no velocity jump onΣ as follows still with natural bounds of the data (24) and forf ∈ L2(Ω)d

and qm ∈ L2(Ω): 
∇ ·vε = qm in Ω,

−2 ε∇ ·D(vpε) + µpK−1
p vpε +∇ppε = ρf in Ωp,

−2∇ ·
(
µf D(vfε )

)
+∇pfε = ρf in Ωf ,

(68)

still supplemented with the boundary conditions (16) on Γp and 19 on Γf and coupled with the
stress jump interface conditions below on Σ with the definitions (9) and fΣ ∈ L2(Σ)d:

[[vε]]Σ = 0 i.e. vfεΣ = vpεΣ := vεΣ

[[σ(vε, pε) ·n]]Σ =
µp

Σ√
Kp

βΣ vεΣ − fΣ

on Σ. (69)

Let us now consider the bilinear form aε(., .) below, the other forms in (27, 29–31) remaining
unchanged:

aε(., .) : W ×W 7→ R, (70)
defined for all v,w ∈W by:

aε(v,w) := 2

∫
Ωf

µf D(v) :D(w) dx+ 2 ε

∫
Ωp

D(v) :D(w) dx (71)

+

∫
Ωp

µp
(
K−1

p v
)
·w dx+

∫
Σ

µp
Σ√
Kp

(βΣ vΣ) ·wΣ ds.

Then we have the following solvability result as a consequence of Theorem 1.

Corollary 1 (Solvability of the regularized Stokes/Darcy flow (68) coupled with (69)). Under
the assumptions of Theorem 1 and for all ε > 0, there exists a unique solution (vε, pε) ∈W ×Q
to the coupled Stokes/Darcy-Brinkman fluid-porous flow (68, 16, 19) supplemented with the stress
jump interface conditions (69) that is also equivalent to the following mixed weak problem:

find a pair (vε, pε) ∈W ×Q such that:
aε(vε,w) + b(w, pε) = `(w), for all w ∈W ,

b(vε, q) = g(q), for all q ∈ Q = L2(Ω),

(72)

with the definitions (71, 29–31).

Proof. The result directly stems from Lemmas 1, 2, 3 and Theorem 1. 2
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4.2. Solvability of the Stokes/Darcy problem
Now to recover the Stokes/Darcy problem from the study in the previous section 4.1, it is

necessary to pass to the limit in the mixed weak formulation (72) when ε goes to zero. This
requires uniform energy estimates proved further in Lemma 4. Henceforth to get (13) with (11),
we consider an homogeneous Dirichlet boundary condition for the pressure p = 0 on Γp

n, i.e.
g = 0. Besides in addition to (24), we assume the following bounds on the data on Σ with
µm > 0 and βM ≥ βm > 0 to be compatible with the coupling of Stokes/Darcy flows:

µ ∈M ; µp
Σ(s) ≥ µm > 0 a.e. s ∈ Σ,

βΣ ∈ L∞(Σ)d×d; β∞ := ‖βΣ‖L∞(Σ)d×d ,

βm |y|2 ≤ (βΣ(s)y) ·y ≤ βM |y|2, ∀y ∈ Rd a.e. s ∈ Σ.

(73)

Lemma 4 (Uniform energy estimates for the weak problem (72) with vanishing viscosity). Under
the assumptions of Corollary 1, with (73) and g = 0, the unique solution (vε, pε) ∈W ×Q of
the mixed weak problem (72) satisfies the following uniform energy estimate for all ε > 0 such
that ε ≤ 1:

µm

2
Cf

K ‖vfε‖21,Ωf
+ εCp

K ‖vpε‖21,Ωp
+
µm

2
km ‖vpε‖20,Ωp

+
µm

2
√
Kp

βm ‖vεΣ‖20,Σ

+
β2
b

2
‖pε‖20,Ω

≤ C
(
‖qm‖20,Ω + ρ2

∞‖f‖20,Ω + ‖fΣ‖20,Σ + β2
∞‖µ‖21,Ωp

+ ‖h‖2
H̃−1/2(Γf

n)d

)
,

(74)

with some C(Ωf ,Ωp,Σ,Γ
f
d ,Γ

p
d,Γ

f
n,Kp, µM , µm, βm, km, k∞, βb) > 0 depending only on the

data and Cf
K(Ωf ,Γ

f
d), Cp

K(Ωp,Γ
p
d) > 0 coming from Korn’s inequalities in Ωf (55) and Ωp,

respectively.

Proof. By taking w = vε and q = pε in the weak problem (72) and substracting the two
equations, we have:

aε(vε,vε) = `(vε)− g(pε) ≤ |`(vε)|+ |g(pε)|. (75)

More precisely with the definition (71), aε(vε,vε) reads:

aε(vε,vε) = 2

∫
Ωf

µf |D(vε)|2 dx+ 2 ε

∫
Ωp

|D(vε)|2 dx+

∫
Ωp

µp
(
K−1

p vε
)
·vε dx

+

∫
Σ

µp
Σ√
Kp

(βΣ vεΣ) ·vεΣ ds,

(76)

that can be lower bounded as follows using Korn’s inequalities (55) on Ωf and Ωp and the bounds
(24,73):

aε(vε,vε) ≥ 2µm Cf
K(Ωf ,Γ

f
d) ‖vε‖21,Ωf

+ 2 εCp
K(Ωp,Γ

p
d) ‖vε‖21,Ωp

+ µm km ‖vε‖20,Ωp
+

µm√
Kp

βm ‖vεΣ‖20,Σ.
(77)
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Then with the definitions (30,31) and g = 0, the right-hand side terms in (75) are upper bounded
as below using arguments already invoked above and the inequality a b ≤ (a2 + b2)/2:

|`(vε)| ≤ ρ∞ ‖f‖0,Ω ‖vε‖0,Ω + ‖fΣ‖0,Σ ‖vεΣ‖0,Σ + ‖h‖H̃−1/2(Γf
n)d ‖vε‖H̃1/2(Γf

n)d

≤ ρ∞ ‖f‖0,Ω
(
‖vε‖0,Ωp + ‖vε‖1,Ωf

)
+ ‖fΣ‖0,Σ ‖vεΣ‖0,Σ

+ c(Ωf ,Γ
f
n) ‖h‖H̃−1/2(Γf

n)d ‖vε‖1,Ωf

≤ µm Cf
K ‖vε‖21,Ωf

+
µm

4
km ‖vε‖20,Ωp

+
1

4

µm√
Kp

βm ‖vεΣ‖20,Σ

+ C(Ωf ,Γ
f
d ,Γ

f
n, µm, km,Kp, βm)

(
ρ2
∞‖f‖20,Ω + ‖fΣ‖20,Σ + ‖h‖2

H̃−1/2(Γf
n)d

)
.

(78)

|g(pε)| ≤ ‖qm‖0,Ω ‖pε‖0,Ω
≤ 1

2
β2
b‖pε‖20,Ω +

1

2β2
b

‖qm‖20,Ω.
(79)

Besides, by estimating the pressure pε with the inf-sup condition (58), we have using (72):

βb ‖pε‖0,Ω ≤ sup
w∈W ;w 6=0

b(w, pε)

‖w‖W
= sup

w∈W ;w 6=0

|`(w)− aε(vε,w)|
‖w‖W

, (80)

and the bounds of the two terms in the right-hand side follow with the definitions (71,30) and
g = 0:

|`(w)| ≤ ρ∞ ‖f‖0,Ω ‖w‖0,Ω + ‖fΣ‖0,Σ ‖wΣ‖0,Σ + ‖h‖H̃−1/2(Γf
n)d ‖w‖H̃1/2(Γf

n)d

≤
(
ρ∞ ‖f‖0,Ω + c(Ωf ,Σ) ‖fΣ‖0,Σ + c(Ωf ,Γ

f
n) ‖h‖H̃−1/2(Γf

n)d

)
‖w‖W ,

(81)

|aε(vε,w)| ≤ 2µM ‖∇vε‖0,Ωf
‖∇w‖0,Ωf

+ 2 ε ‖∇vε‖0,Ωp
‖∇w‖0,Ωp

+ µM k∞ ‖vε‖0,Ωp
‖w‖0,Ωp

+ c(Ωf ,Ωp,Σ,Kp)β∞ ‖µ‖1,Ωp
‖vεΣ‖0,Σ ‖w‖W

≤
(
2µM ‖∇vε‖0,Ωf

+ 2 ε ‖∇vε‖0,Ωp
+ µM k∞ ‖vε‖0,Ωp

)
‖w‖W

+ c(Ωf ,Ωp,Σ,Kp)β∞ ‖µ‖1,Ωp
‖vεΣ‖0,Σ ‖w‖W .

(82)
By gathering (81,82) in (80), it gives:

βb ‖pε‖0,Ω ≤ 2µM ‖∇vε‖0,Ωf
+ 2 ε ‖∇vε‖0,Ωp

+ µM k∞ ‖vε‖0,Ωp

+ c(Ωf ,Ωp,Σ,Kp)β∞ ‖µ‖1,Ωp
‖vεΣ‖0,Σ

+ ρ∞ ‖f‖0,Ω + c(Ωf ,Σ) ‖fΣ‖0,Σ + c(Ωf ,Γ
f
n) ‖h‖H̃−1/2(Γf

n)d .

(83)

Now from (83) at the power 2 and Young’s inequality, we get:

β2
b ‖pε‖20,Ω ≤

µm

2
Cf

K ‖vε‖21,Ωf
+ εCp

K ‖vε‖21,Ωp
+
µm

4
km ‖vε‖20,Ωp

+
1

4

µm√
Kp

βm ‖vεΣ‖20,Σ

+ C
(
ρ2
∞‖f‖20,Ω + ‖fΣ‖20,Σ + β2

∞‖µ‖21,Ωp
+ ‖h‖2

H̃−1/2(Γf
n)d

)
,

(84)
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with some C(Ωf ,Ωp,Σ,Γ
f
d ,Γ

p
d,Γ

f
n,Kp, µM , µm, km, k∞) > 0.

Then, by summing the inequalities (75) and (84) taking account of (77) and the estimates
(78,79), it yields after absorption of some terms in the left-hand side and for all 0 < ε ≤ 1:

µm

2
Cf

K ‖vfε‖21,Ωf
+ εCp

K ‖vpε‖21,Ωp
+
µm

2
km ‖vpε‖20,Ωp

+
µm

2
√
Kp

βm ‖vεΣ‖20,Σ

+
β2
b

2
‖pε‖20,Ω

≤ C
(
‖qm‖20,Ω + ρ2

∞‖f‖20,Ω + ‖fΣ‖20,Σ + β2
∞‖µ‖21,Ωp

+ ‖h‖2
H̃−1/2(Γf

n)d

)
,

(85)

with some C(Ωf ,Ωp,Σ,Γ
f
d ,Γ

p
d,Γ

f
n,Kp, µM , µm, βm, km, k∞, βb) > 0 depending only on the

data, which finally proves (74). 2

Lemma 5 (Weak limits in the problem (72) with vanishing viscosity). Under the assumptions
of Lemma 4, there exists v ∈ V , χp ∈ L2(Ωp)d×d and p ∈ Q such that, up to a subsequence, the
solution sequence (vε, pε)ε>0 ∈W ×Q of the mixed weak problem (72) satisfies the following
weak limits when ε→ 0:

i) vε ⇀ v weakly in V and vfε → vf strongly in L2(Ωf )d,
ii)
√
ε∇vpε ⇀ χp weakly in L2(Ωp)d×d,

iii) vpεΣ = vεΣ = vfεΣ ⇀ vΣ := vfΣ weakly in H̃1/2(Σ)d and strongly in L2(Σ)d,
iv) vpεΣ ·n = vεΣ ·n = vfεΣ ·n ⇀ vpΣ ·n = vΣ ·n = vfΣ ·n weakly in H̃1/2(Σ) and

strongly in L2(Σ),
v) pε ⇀ p weakly in L2(Ω).

Proof. From the uniform bounds in (74) or (85) of Lemma 4, the Hilbert spaces being reflexive,
it results the existence of the following weak limits by the Banach-Alaoglu theorem on compact
subsets forweak topologies and the compact injections theoremofRellich (i.e. here the continuous
injection H1(Ωf )d ↪→ L2(Ωf )d is compact), e.g. [50, Theorems III.15 & III.16] and [50,
Theorem IX.16], respectively. More precisely, there exists vf ∈ H1(Ωf )d, vp ∈ L2(Ωp)d,
χp ∈ L2(Ωp)d×d, vΣ ∈ L2(Σ)d and p ∈ L2(Ω) such that the weak limits below hold up to
subsequences when ε→ 0:

• vfε ⇀ vf weakly in H1(Ωf )d and vfε → vf strongly in L2(Ωf )d,

• vpε ⇀ vp weakly in L2(Ωp)d,

•
√
ε∇vpε ⇀ χp weakly in L2(Ωp)d×d,

• vεΣ ⇀ vΣ weakly in L2(Σ)d,

• pε ⇀ p weakly in L2(Ω).

So, the items ii) and v) hold true.
This also allows us to define a vector field v ∈ L2(Ω)d by its restrictions per subdomain

vf ∈ H1(Ωf )d and vp ∈ L2(Ωp)d. Besides with (68) or (72), we have∇ ·vε = qm, so bounded
in L2(Ω) independently of ε. Thus, ∇ ·vε has a weak limit in L2(Ω) which is nothing else
than∇ ·v because the derivation operator is continuous in the sense of distributions and because
the limit is unique. Then, it turns out that v belongs to Hdiv(Ω) with ∇ ·vε ⇀ ∇ ·v weakly
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in L2(Ω). Moreover with the linear continuous normal trace operatorHdiv(Ω) 7→ H̃−1/2(Σ),
vε ∈W satisfies Green’s formula below in Ωp (and similarly in Ωf ):∫

Ωp

vpε ·∇φ dx+

∫
Ωp

φ∇ ·vpε dx = 〈vpεΣ ·n, φ〉−1/2,Σ for all φ ∈ H1
0,Γp(Ωp). (86)

Passing to the limit in (86) when ε→ 0 with the weak limits gives:∫
Ωp

vp ·∇φ dx+

∫
Ωp

φ∇ ·vp dx = 〈vpΣ ·n, φ〉−1/2,Σ for all φ ∈ H1
0,Γp(Ωp), (87)

and similarly for vf in Ωf . So, we conclude that vpεΣ ·n ⇀ vpΣ ·n = vΣ ·n by uniqueness of
the limit and using Lemma 6, we conclude that vpΣ ·n = vΣ ·n = vfΣ ·n since v ∈ Hdiv(Ω).
By proceeding similarly with Green’s formula for the trace vfεΣ ∈ H̃1/2(Σ)d of vfε ∈ H1(Ωf )d

on Σ, we get that: vpεΣ = vεΣ = vfεΣ ⇀ vΣ := vfΣ weakly in H̃1/2(Σ)d. Hence from what
preceeds, the items iii) and iv) both hold true.

Finally, by doing once again similarly as above with the normal trace vpε ·ν = 0 on Γp
d and

the trace vfε = 0 on Γf
d , we get that these homogeneous boundary conditions are preserved at the

limit, i.e. vp ·ν = 0 on Γp
d and vf = 0 on Γf

d , because vp ∈ Hdiv(Ωp) and vf ∈ H1(Ωf )d.
Therefore with all the previous considerations, it turns out that v belongs to V and that the first
item i) finally holds true, which concludes the proof. 2

Using the fact that ε∇vpε ⇀ 0 weakly in L2(Ωp)d×d with the item ii), it is an easy matter to show
that the weak convergence stated in the above Lemma 5 is actually strong. However, the proof
will be left to the reader for the sake of shortness since the strong convergence is not necessary
further.

Now, since the Hilbert space V defined in (66) satisfies W ↪→ V and that the definition
of the bilinear form b(., .) given in (29) still makes sense in V × Q, let us still denote by
b(., .) its continuous extension to V × Q 7→ R. In addition, we define the bilinear form
asd(., .) : V × V 7→ R and extend the linear continuous form `(.) to a linear continuous
functional V 7→ R with g = 0 (still denoted by `(.)) by:

asd(v,w) := 2

∫
Ωf

µf D(v) :D(w) dx+

∫
Ωp

µp
(
K−1

p v
)
·w dx (88)

+

∫
Σ

µp
Σ√
Kp

(
βΣ v

f
Σ

)
·wf

Σ ds, ∀v, w ∈ V ,

`(w) :=

∫
Ω

ρf ·w dx+

∫
Σ

fΣ ·w
f
Σ ds+ 〈h,w〉−1/2,Γf

n
, ∀w ∈ V , (89)

the linear form g(.) in (31) being unchanged. The above extensions of b(., q) and `(.) can be
actually extended by continuity using the direct consequence [50, Corollary I.2] of the analytic
version of Hahn-Banach’s Theorem. Following Lemma 2, it is also an easy matter to show that
the bilinear form asd(., .) is continuous on V × V .

Then, the main result of solvability of the variable-viscosity Stokes/Darcy problem can be
proved below with no restriction on the size of the data.
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Theorem 2 (Solvability of variable-viscosity Stokes/Darcy flow coupled with (21)). Under the
assumptions (24,73), let us consider any data ρ ∈ L∞(Ω), µ ∈ M , f ∈ L2(Ω)d, qm ∈ L2(Ω),
fΣ ∈ L2(Σ)d, h ∈ H̃−1/2(Γf

n)d, any bounded, symmetric and uniformly positive definite tensor
Kp ∈ L∞(Ωp)d×d and any bounded uniformly positive semi-definite tensor βΣ ∈ L∞(Σ)d×d.

Then, there exists at least one solution (v, p) ∈ V × Q to the mixed Petrov-Galerkin weak
problem below:

find a pair (v, p) ∈ V ×Q such that:
asd(v,w) + b(w, p) = `(w), for all w ∈W ,

b(v, q) = g(q), for all q ∈ Q = L2(Ω),

(90)

with the definitions (88,29,89,31).
Moreover, this solution (v, p) ∈ V × Q also solves the Stokes/Darcy fluid-porous flow

(22,11,13,19) coupled with the modified stress jump interface conditions (21) on Σ. Therefore,
the regularity of the data in the Darcy equation (10) implies that ∇pp ∈ L2(Ωp)d and thus
pp ∈ H1(Ωp) and since g = 0 on Γp

n, we have finally with (11): pp ∈ H1
0,Γp

n
(Ωp).

Proof. Using the results of Lemma 5, it suffices to pass to the limit when ε → 0 in the two
linear equations of the weak problem (72), where only the weak limit of (vε, pε) is required, by
noticing that:

lim
ε→0

aε(vε,w) = asd(v,w) for all w ∈W , (91)

since
√
εvpε remains bounded independently of ε and thus

√
ε∇vpε ⇀ χp and ε∇vpε ⇀ 0weakly

in L2(Ωp)d×d. Hence, it turns out that the limit (v, p) ∈ V × Q of (vε, pε) solves the mixed
weak problem (90).

Then, by adapting the proof of Lemma 1 made for v ∈W to the present case with v ∈ V ,
it results the equivalence between the mixed weak problem (90) and the Stokes/Darcy flow
(22,11,13,19) coupled with the modified stress jump interface conditions (21) on Σ, assuming
existence of solutions (v, p) ∈ V ×Q. Therefore, that ends the proof. 2

Remark 2 (On the continuity of the tangential velocity in (20) on Σ). It stems from Theorem
2 that any solution (v, p) ∈ V × Q of the Stokes/Darcy problem (90) satisfies the modified
stress jump interface conditions (21), thus with continuity of the normal velocity on Σ. Indeed,
without any more regularity for the velocity field vp in Ωp, it is not allowed to argue that
v∧nΣ := vf∧nΣ ∈ H̃1/2(Σ)d is the trace of the tangential component of vp on Σ. However,
as soon as the regularity of the Darcy problem 10 is sufficient to define the latter tangential
trace vp∧nΣ on Σ (in addition to the normal trace vp ·nΣ), at least in a weak sense, e.g. with
vp∧nΣ ∈ H̃−1/2(Σ)d if vp ∈ Hq

rot(Ωp) := {u ∈ L2(Ωp)d; ∇ × u ∈ Lq(Ωp)d, 1 ≤ q ≤ 2}
by density of the continuous imbedding H1(Ωp)d ↪→ Hq

rot(Ωp), then the results of Lemma 5
ensure the velocity continuity vpΣ = vΣ = vfΣ ∈ H̃1/2(Σ)d (by uniqueness of the limit) and the
original interface conditions (20) are satisfied on Σ.

Corollary 2 (Equivalent problem to (90) and uniqueness of the solution). Under the assump-
tions of Theorem 2, any solution (v, p) ∈ V ×Q of (90) also solves the following mixed problem
and obviously vice versa sinceW ↪→ V :

find a pair (v, p) ∈ V ×Q such that:
asd(v,w) + b(w, p) = `(w), for all w ∈ V ,

b(v, q) = g(q), for all q ∈ Q = L2(Ω),

(92)
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with the definitions (88,29,89,31).
Then, the problem (92) has a unique solution (v, p) ∈ V × Q that is thus the solution of the
Stokes/Darcy flow (22,11,13,19) supplemented with the modified stress jump interface conditions
(21). In addition, this solution satisfies the following energy estimate:

‖v‖V + ‖p‖Q ≤ C(αa, βb, ‖a‖, ‖b‖) (‖`‖V ′ + ‖qm‖0,Ω) . (93)

Proof. Let (v, p) ∈ V ×Q be any solution of (90). Since the continuous injectionW ↪→ V is
dense, for all w ∈ V there exists a sequence (wk)k∈N ⊂W such that ‖w −wk‖V → 0 when
k → +∞. Then using w = wk + (w −wk), we have since (v, p) ∈ V × Q solves (90) and
using the continuity properties:

|asd(v,w) + b(w, p)− `(w)| ≤ |asd(v,wk) + b(wk, p)− `(wk)|
+ |asd(v,w −wk)|+ |b(w −wk, p)|+ |`(w −wk)|
≤ (‖asd‖ ‖v‖V + ‖b‖ ‖p‖Q + ‖`‖V ′) ‖w −wk‖V

→k→∞ 0.

(94)

With (90), the second equation in (92) obviously holds too, and thus (v, p) ∈ V ×Q also solves
(92). The reciprocal holds true immediately becauseW ↪→ V . Therefore, the weak problems
(90) and (92) are equivalent.

Let us now observe that the bilinear and linear forms involved in (92) are continuous. More-
over, it easily results from the proof of Lemma 3 that the bilinear form asd(., .) is coercive on
the Hilbert space V 0 defined in (66) that is the kernel or null space of the form b(., .). Then it
results from the theory of abstract mixed weak problem [51, Theorem 4.1 & Corollary 4.1] that
the weak problem (92) is well-posed if and only if the bilinear form b(., .) satisfies the inf-sup
condition below:

sup
w∈V ;w 6=0

b(w, q)

‖w‖V
≥ βb ‖q‖Q, for all q ∈ Q. (95)

Now, it suffices to notice that the construction made in the proof of Theorem 1 to show the inf-sup
condition of b(., .) between the spacesW and Q also works here between V and Q because the
injectionW ↪→ V is continuous. Hence, the inf-sup condition (95) also holds and the mixed
weak problem (92) has a unique solution that is also the solution (v, p) ∈ V ×Q of (90). This
concludes the proof. 2

Remark 3 (Concluding observation). It turns out finally that Theorem 2 and its Corollary 2
provide an independent proof of a generalized version of the stationary counterpart of Theorem5.1
in [45]. Indeed, the present analysis is carried out for more suitable fluid-porous configurations
where the interface Σ is not a closed surface in view of practical applications and for a different
context including more general boundary conditions, a non-zero mass source term and the case of
variable-viscosity flow. Moreover, the technique of proof is different: in [45], the analysis is made
via Leray’s weak formulations with divergence-free test functions and recovering the pressure
with De Rham’s Theorem. Here, the analysis is performed with mixed weak formulations that are
thus ready for many numerical discretization methods.

5. Conclusion

In this study, the well-posed coupling of the Stokes/Darcy fluid-porous flows with variable
viscosity is solved using original interface conditions from [46, 48] where the normal velocity
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field is continuous at a suitable interface Σ = Σb inside the porous medium on which an optimal
stress jump condition is applied. Moreover, the variable-viscosity Stokes/Darcy-Brinkman flow
coupled with velocity continuity and stress jump interface conditions is also proved to be well-
posed. The present approach is unusual and not found in the literature because the Stokes
and Darcy partial differential equations are not of the same order and thus, almost all authors
use ad-hoc extended velocity slip conditions inherited from [13, 18]. However, the proposed
mixed variational framework, and then also the further numerical discretization, is simpler than
with Beavers-Joseph’s or Beavers-Joseph-Saffman’s conditions because no Lagrange multiplier
is required at the interface.
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Appendix A. Auxiliary results

Lemma 6 (Equivalence of normal velocity continuity on Σ). Letv ∈ L2(Ω)d such that∇ ·vf ∈
L2(Ωf ) in Ωf and∇ ·vp ∈ L2(Ωp) in Ωp. Then∇ ·v ∈ L2(Ω) over the whole domain Ω if and
only if [[v ·n]]Σ := (vf ·n− vp ·n)|Σ = 0 on Σ.

Proof. By the normal trace theorem [51, Theorem 2.5] in Hdiv(Ωf ) or Hdiv(Ωp), vf or
vp admits a normal trace vf ·ν ∈ H−1/2(∂Ωf ) on ∂Ωf or vp ·ν ∈ H−1/2(∂Ωp) on ∂Ωp,
respectively. Besides from Section 2.1, we have on Σ: vf ·n ∈ H̃−1/2(Σ) and vp ·n ∈
H̃−1/2(Σ). With v ∈ L2(Ω)d, we have a priori ∇ ·v ∈ H−1(Ω). Then for all φ ∈ H1

0 (Ω),
using successively Green’s formula in Ω, Ωf and Ωp, we get:

〈∇ ·v, φ〉−1,Ω = −
∫

Ω

v ·∇φdx = −
∫

Ωf

vf ·∇φ dx−
∫

Ωp

vp ·∇φ dx

=

∫
Ωf

∇ ·vf φdx+

∫
Ωp

∇ ·vp φdx

+
〈
vf ·n|Σ, φ|Σ

〉
−1/2,Σ

−
〈
vp ·n|Σ, φ|Σ

〉
−1/2,Σ

=

∫
Ω

∇ ·v φ dx+
〈
[[v ·n]]Σ, φ|Σ

〉
−1/2,Σ

,

for all φ ∈ H1
0 (Ω),

(A.1)

where 〈., .〉−1/2,Σ denotes the duality pairing between H̃−1/2(Σ) and H̃1/2(Σ). Now, let us
observe that any function ψ ∈ H̃1/2(Σ) := H

1/2
00 (Σ) ↪→ H1/2(Σ) can be extended in Ω by

a function φ ∈ H1
0 (Ω). Indeed, it suffices to take the solution φ ∈ H1

0 (Ω) to the Dirichlet
transmission problem below:

∆φ = 0 in Ωf ∪ Ωp,

φ = 0 on Γ := ∂Ω,

φ = ψ on Σ := ∂Ωf ∩ ∂Ωp,

(A.2)

which states that the linear trace operator H1
0 (Ω) 7→ H̃1/2(Σ) is surjective. Then, the previous

equality A.1 gives the desired equivalence result. 2

Proposition 1 (Hilbert spaceX in (66)). The vector spaceX endowed with the inner product
(., .)X naturally associated with the pre-Hilbertian norm ‖.‖X defined in (67) is a Hilbert space.

Proof. Let us consider any Cauchy sequence (uk)k∈N in X . With the definition of the norm
‖.‖X in (67), this implies that both ‖uk‖Hdiv(Ω) and ‖uf

k‖1,Ωf
(where (uf

k) := (uk)|Ωf
) satisfy

Cauchy’s property. Since then the spaces Hdiv(Ω) and H1(Ωf )d are complete, the sequence
(uk) has a limit u ∈ Hdiv(Ω) (of course also in L2(Ω)d) and (uf

k) has a limit ũf ∈ H1(Ωf )d

(also in L2(Ωf )d) when k → +∞. By uniqueness of the limit in L2(Ωf )d, we get ũf = uf .
Hence, we conclude that the Cauchy sequence (uk) converges to u ∈ X and the space X is
complete. 2

Proposition 2 (Hilbert space V in (66)). The vector space V endowed with the inner product
(., .)V naturally associated with the norm ‖.‖V (inherited from ‖.‖X ) defined in (67) is a Hilbert
space as a closed subspace ofX .
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Proof. Let us consider any sequence (vk)k∈N in V that converges to some v ∈ X , i.e. ‖vk −
v‖X → 0 when k → +∞. This implies that: ‖vk − v‖Hdiv(Ω) → 0 and ‖vfk − vf‖1,Ωf

→ 0.
Then, with the continuity of the linear operator of normal trace on Γp

d, we have:

‖vpk ·ν − vp ·ν‖H̃−1/2(Γp
d) ≤ c(Ωp,Γ

p
d) ‖vpk − vp‖Hdiv(Ωp) → 0 when k → +∞. (A.3)

Hence we get that v ∈X also satisfies vp ·ν = 0 on Γp
d because v

p
k ·ν = 0 on Γp

d with vk ∈ V
for all k ∈ N. Besides, from the inequality of trace’s continuity in H1(Ωf )d, we have since
H̃1/2(Σ)d ↪→ H1/2(Σ)d:

‖vfk − vf‖H̃1/2(Σ)d ≤ c(Ωf ,Σ) ‖vfk − vf‖1,Ωf
→ 0 when k → +∞, (A.4)

and thus vfk|Σ → vfΣ in H̃1/2(Σ)d. Since we have also vfk = 0 on Γf
d , we get similarly with the

trace inequality now applied on Γf
d that vf = 0 on Γf

d . Finally, we have shown that v ∈ V holds
and thus V is closed inX which ends the proof. 2
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Appendix B. Pressure-driven Poiseuille fluid-porous channel flow

The benchmark problem of pressure-driven 1-D Poiseuille channel flow through a free-fluid
layer of height 2H superposed over a semi-infinite isotropic homogeneous porous one is studied
with: f = 0, qm = 0, fΣ = 0 and a no-slip velocity condition at the upper wall (at z = 2H).
The reference solution of the single-domain continuum model is governed by the generalized
Darcy-Brinkman equations with porosity smoothly varying in the viscous boundary layer (see
[5, 7, 8, 64, 47]) from φ = 1 (pure fluid) on Σt at z = 0 to φ = φp in the porous bulk. The
permeability profile is given by the porosity-permeability correlation K(φ) of Kozeny-Carman
that has been calibrated for many random packed beds of spherical grains of variable sizes [57].
So, the reference solution is computed by a second-order accurate (in the L2-norm) finite-volume
method. We refer to [48] for more details. Then, the Beavers-Joseph’s velocity slip condition (1)
at Σt (Z := z/H = 0) [13] and the optimal stress jump condition (20) at Σb (Z = −δ∗) [46] are
calibrated in a dimensionless setting (L = H being the macroscale length) using the reference
slip fluid velocity Us := us/V on Σt and the Darcy filtration velocity UD := uD/V = Da. The
analytical calibration with U(Z = 2) = 0 yields:

βΣ =
1− Us

2 + δ∗√
Da

≈ 1√
Da

on Σ = Σb at Z = −δ∗, (B.1)

where the thickness δ∗ = d/H satisfies: δ∗ . Us in the present dimensionless setting. Typical
streamwise velocity profiles are shown in Figures B.2 (over the free-fluid layer) and B.3 (zoom
in the viscous boundary layer inside the porous medium). The comparative performance to
reduce the loss of flow rate in the viscous boundary layer (here of thickness δB = 5`/H where
` is the size of the unit cell representative of the microstructure) inside the porous medium [47]
are supplied in Table B.1. This shows that the optimal stress condition (20) largely outperforms
Beavers-Joseph’s one (1). Moreover, it is remarkable that the reduced friction coefficient satisfies:
βΣ

√
Da ≈ 1 when H is large enough such that 2δ∗ − Us � 2, here H = 100 ` (often far more

in practice). In addition, the comparison with the Stokes/Darcy-Brinkman model coupled with
(1) at Σt (Z := z/H = 0) or with the optimal stress jump condition (20) at Σb (Z = −δ?) is
shown in Figure B.4 (zoom in the viscous boundary layer). For this porosity φp = 0.75, the
former gives a relative loss of flow rate erbl = 98.1 % whereas the latter yields erbl = 8.88 %
and is thus the best solution. The increase of performance between the Stokes/Darcy-Brinkman
and Stokes/Darcy models is clearly better for larger porosities φp ≥ 0.85; see [48].

φp & UD = Da (10−7) Us (10−2) δ∗ (10−2) SD at Σt(Z = 0) SD at Σb(Z = −δ∗)
0.25 & 0.196 1.2974 1.2974 100% 9.01%
0.50 & 2.693 1.4408 1.4408 100% 9.27%
0.75 & 22.90 1.7254 1.7251 99.9% 9.80%
0.95 & 397.0 2.6625 2.6586 99.5% 11.9%

Table B.1: Comparative performance of the relative loss of flow rate erbl (Relative error in L1-norm in the viscous
boundary layer) in the Poiseuille channel flow for the Stokes/Darcy (SD) model coupled with Beavers-Joseph’s velocity
slip condition (1) atΣt [13] or optimal stress jump condition (20) atΣb [46]: H = 100 ` and δB = 5 `/H –Um ' 0.51

at Zm ' 0.99 with erfm ≤ 2 10−7 and erf ≤ 4 10−12 (parabolic profiles superposed in the free-fluid layer).
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Figure B.2: Comparison of streamwise velocity solutions for the Stokes/Darcy model in the Poiseuille channel flow with
H = 100 `, δB = 5 `/H , φp = 0.75 and Da = 2.29 10−6: general view with Um = 0.509 at Zm = 0.992,
UD = Da and all solutions superposed in the free-fluid layer (same caption as in figure B.3).
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