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In this study, we prove the well-posedness of both the variable-viscosity Stokes/Darcy-Brinkman and Stokes/Darcy coupled problems governing the viscous flow in fluid-porous systems. The coupling is made by a recent optimal stress jump interface condition associated to velocity continuity at the bottom surface of a transition layer inside the porous region. Indeed, this original condition has been shown to be physically relevant for multi-directional flows and optimal by minimizing the loss of flow rate in the viscous boundary layer. Besides, its inherent tensorial form ensures to handle arbitrary flow directions with anisotropic effects of the microstructure. The analysis of the transmission problem is carried out by introducing a unified mixed variational framework with no Lagrange multiplier at the interface. Moreover, the analysis of variableviscosity fluid-porous flows seems new in the literature.

Introduction

The P.D.E.'s governing the incompressible viscous creeping flow in fluid-porous systems Ω (see Figure 1), i.e. the Stokes and Darcy equations, are not of the same order. In order to solve the coupling in the transmission problem, a pioneering approach dates back from Brinkman [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF][START_REF] Brinkman | On the permeability of media consisting of closely packed porous particles[END_REF] who early introduces the Darcy-Brinkman equation and the notion of effective viscosity of a porous medium. Some authors have then followed and extended such a single-domain continuum modelling, i.e. assuming the continuity of velocity and stress vectors between the fluid domain Ω f and the porous one Ω p , e.g. [START_REF] Neale | Practical significance of Brinkman's extension of Darcy's law: coupled parallel flows within a channel and a bounding porous medium[END_REF][START_REF] Ross | Theoretical model of the boundary condition at a fluid-porous interface[END_REF][START_REF] Ochoa-Tapia | Momentum transfer at the boundary between a porous medium and a homogeneous fluid I: theoretical development[END_REF][START_REF] Payne | Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions[END_REF][START_REF] Whitaker | The Method of Volume Averaging[END_REF][START_REF] Angot | Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows[END_REF][START_REF] Angot | A penalization method to take into account obstacles in incompressible viscous flows[END_REF][START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF][START_REF] Iliev | On numerical simulation of flow through oil filters[END_REF][START_REF] Parasyris | Mathematical and numerical modelling of a circular cross-flow filtration module[END_REF].

Following the pioneering work of Beavers and Joseph [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF] introducing the two-domain approach, many authors use velocity slip interface conditions associated with continuity of the normal velocity and stress vector to couple the Stokes/Darcy or Navier-Stokes/Darcy problems. These conditions are extended ad-hoc for the multi-dimensional case from the 1-D flow inherited from the heuristic conditions of Beavers-Joseph-Jones [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF][START_REF] Jones | Low Reynolds number flow past a porous spherical shell[END_REF]; see also the comments in [START_REF] Nield | The Beavers-Joseph boundary condition and related matters: a historical and critical review[END_REF][START_REF] Auriault | About the Beavers and Joseph boundary condition[END_REF][START_REF] Eggenweiler | Unsuitability of the Beavers-Joseph interface condition for filtration problems[END_REF]. With usual notations precised in the next section 2, the set of multi-dimensional extended Beavers-Joseph-Jones conditions applied at the fluid-porous interface Σ = Σ t (originally chosen at the top surface Σ t of the transition layer and tangent to the upper solid inclusions) reads:

Ω := Ω f ∪ Σ ∪ Ω p Γ := ∂Ω = Γ f ∪ Γ p Γ p := ∂Ω p \ Σ = Γ p d ∪ Γ p n Γ f := ∂Ω f \ Σ = Γ f d ∪ Γ f
         [[v • n]] Σ = 0 τ j • ∇v + ∇v T Σ • n = α bj K p [[v • τ j ]] Σ , for j = 1, 2 n • [[σ(v, p) • n]] Σ = 0 on Σ = Σ t , (1) 
where the Cauchy stress vector σ(v, p) • n is defined as: σ f (v, p) • n := µ (∇v + ∇v T ) f • np f n in the free-fluid region Ω f and σ p (v, p) • n := -p p n in the porous bulk Ω p . Besides, the scalar parameter α bj > 0 denotes the dimensionless velocity-slip coefficient that should be estimated by experimental data or averaged pore-scale simulations. The jump quantity [[.]] Σ on Σ is oriented by the unit normal vector n on Σ (directed arbitrarily outwards of the porous region Ω p ). The couple of vectors (τ 1 , τ 2 ) denotes a local orthonormal basis of tangential vectors on the surface Σ. However for the mathematical and numerical analysis, many authors then consider the following simplified Beavers-Joseph-Saffman form [START_REF] Saffman | On the boundary condition at the surface of a porous medium[END_REF]. In this approximate condition, the velocity jump is no more explicitly included by neglecting the porous slip velocity with respect to the fluid slip velocity, as derived later by [START_REF] Jäger | On the interface boundary condition of Beavers & Joseph and Saffman[END_REF][START_REF] Jäger | Modelling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF] for the one-dimensional flow:

         [[v • n]] Σ = 0 τ j • ∇v + ∇v T Σ • n = α bj K p v f Σ • τ j , for j = 1, 2 n • [[σ(v, p) • n]] Σ = 0 on Σ = Σ t , (2) 
We refer to [START_REF] Mardal | A robust finite element method for Darcy-Stokes flow[END_REF][START_REF] Layton | Coupling fluid flow with porous media flow[END_REF][START_REF] Discacciati | Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations[END_REF][START_REF] Rivière | Locally conservative coupling of Stokes and Darcy flows[END_REF][START_REF] Galvis | Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations[END_REF][START_REF] Discacciati | Robin-Robin domain decomposition methods for the Stokes-Darcy coupling[END_REF][START_REF] Bernardi | Mortar finite element discretization of a model coupling Darcy and Stokes equations[END_REF][START_REF] Discacciati | Navier-Stokes/Darcy coupling: modeling, analysis and numerical approximation[END_REF][START_REF] Girault | DG approximation of coupled Navier-Stokes and Darcy equations by Beavers-Joseph-Saffman Figure B.4: Comparison of streamwise velocity solutions for the Stokes/Darcy and Stokes/Darcy-Brinkman models of the Poiseuille channel flow with H = 100 , δ B = 5 /H, φp = 0.75, Da = 2.29 10 -6 : free-fluid layer with maximum Um = 0.509 at Zm = 0[END_REF][START_REF] Cai | Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach[END_REF][START_REF] Ervin | Coupled generalized nonlinear Stokes flow with flow through a porous medium[END_REF][START_REF] Karper | Unified finite element discretizations of coupled Darcy-Stokes flow[END_REF][START_REF] Babuška | A residual-based a posteriori error estimator for the Stokes-Darcy coupled problem[END_REF][START_REF] Badea | Numerical analysis of the Navier-Stokes/Darcy coupling[END_REF][START_REF] Gatica | Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem[END_REF][START_REF] Çeşmelioǧlu | Time-dependent coupling of Navier-Stokes and Darcy flows[END_REF][START_REF] Girault | Mortar multiscale finite element methods for Stokes-Darcy flows[END_REF][START_REF] Lipnikov | Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids[END_REF][START_REF] Hadji | A posteriori error analysis for Navier-Stokes equations coupled with Darcy problem[END_REF] and many others for the numerous related numerical methods and analyses using the set [START_REF] Brinkman | On the permeability of media consisting of closely packed porous particles[END_REF]. Only a few authors, e.g. [START_REF] Cao | Coupled Stokes-Darcy model with Beavers-Joseph interface condition[END_REF][START_REF] Cao | Finite element approximations for Stokes-Darcy flow with Beavers-Joseph interface conditions[END_REF][START_REF] Li | A least squares augmented immersed interface method for solving Navier-Stokes and Darcy coupling equations[END_REF][START_REF] Yu | Nitsche's type stabilized finite element method for the fully mixed Stokes-Darcy problem with Beavers-Joseph conditions[END_REF], consider the full Beavers-Joseph-Jones conditions (1) and the solvability is proved in [START_REF] Angot | On the well-posed coupling between free fluid and porous viscous flows[END_REF][START_REF] Angot | Well-posed Stokes/Brinkman and Stokes/Darcy coupling revisited with new jump interface conditions[END_REF] with no restriction on the size of the slip coefficient α bj ≥ 0. Moreover, the generalization below of (1) that also includes a jump of the stress vector is derived by asymptotic analysis in [START_REF] Angot | Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions[END_REF]:

           [[v • n]] Σ = 0, τ j • σ f v (v) • n Σ = µ K p α Σ [[v • τ j ]] Σ , for j = 1, 2 [[σ(v, p) • n]] Σ = µ K p β Σ • v f Σ on Σ = Σ t , (3) 
where β Σ denotes the symmetric and positive semi-definite friction tensor on Σ. Using such interface conditions (3), the boundary layer is theoretically calculated by WKB expansions of which the convergence is proved in [START_REF] Angot | Asymptotic study for Stokes-Brinkman model with jump embedded transmission conditions[END_REF]. Moreover, the resulting Stokes/Darcy-Brinkman and Stokes/Darcy coupled problems are proved to be well-posed with no restriction on the size of the data in [START_REF] Angot | On the well-posed coupling between free fluid and porous viscous flows[END_REF][START_REF] Angot | Well-posed Stokes/Brinkman and Stokes/Darcy coupling revisited with new jump interface conditions[END_REF]. The present analysis is carried out for a different original set of interface conditions [START_REF] Jäger | Modelling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF], i.e. velocity continuity and stress vector jump at the bottom surface Σ b of a suitable transition layer inside the porous layer, as recently derived in [START_REF] Angot | Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions[END_REF] by asymptotic modeling. This condition is shown to be optimal to minimize the loss of flow rate in [START_REF] Angot | An optimal stress jump interface condition for the fluid-porous multidimensional flow[END_REF]; see an example in Appendix B. Moreover, the further analysis considers the variable-viscosity (and density) flow in view of a potential coupling with a convective heat transfer. Up to our knowledge, this seems new in the literature in the context of fluid-porous flows.

The paper is organized as follows. The next Section 2 describes the flow models and the set of boundary and interface conditions. In Section 3, the solvability of the variable-viscosity Stokes/Darcy-Brinkman coupled flow is proved in Theorem 1. In Section 4, the main result of well-posedness of the variable-viscosity Stokes/Darcy coupled flow is finally proved in Theorem 2 for the existence of solution and its Corollary 2 for the uniqueness.

Coupled fluid-porous flow models

Notations and definitions

Let Ω ⊂ R d (for d ≤ 3) be an open bounded and connected set with Lipschitz-continuous boundary Γ := ∂Ω and ν be the outward unit normal vector on Γ; see Figure 1. The domain Ω is composed of two disjoint connected subdomains, the fluid domain Ω f and the porous domain Ω p , each one with a Lipschitz-continuous boundary ∂Ω f and ∂Ω p , respectively. They are separated by a Lipschitz-continuous surface Σ ⊂ R d-1 such that:

Ω = Ω f ∪ Σ ∪ Ω p with Σ = ∂Ω f ∩ ∂Ω p (meas(Σ) > 0), Γ f := ∂Ω f ∩ ∂Ω and Γ p := ∂Ω p ∩ ∂Ω.
Let n be the unit normal vector on the interface Σ arbitrarily directed from Ω p to Ω f , and let the set {τ j } for 1 ≤ j ≤ d -1, be a local orthonormal basis of vectors on the tangent plane to Σ, the unit vector τ being any of these tangential vectors. We use the standard definitions and properties of the Lebesgue and Sobolev spaces, e.g. [START_REF] Nečas | Les Méthodes Directes en Théorie des Équations Elliptiques[END_REF][START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]. In particular, . s,Ω denotes the usual norm or semi-norm |.| s,Ω of the Sobolev spaces H s (Ω) := W s,2 (Ω) for Ω = Ω f or Ω p and ., . -1,Ω denotes the duality pairing between H -1 (Ω) and H 1 0 (Ω). We also define the (real) Hilbert spaces below endowed with their respective usual inner products and associated norms [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF][START_REF] Boyer | Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models[END_REF]:

H div (Ω) := u ∈ L 2 (Ω) d ; ∇ • u ∈ L 2 (Ω) , L 2 0 (Ω) := q ∈ L 2 (Ω); Ω q dx = 0 . ( 4 
)
The space L 2 0 (Ω) is equipped with the L 2 (Ω) norm . 0,Ω and H div (Ω) is equipped with the graph norm defined by:

u 2 H div (Ω) := u 2 0,Ω + ∇ • u 2 0,Ω for all u ∈ H div (Ω). (5) 
Since the Lipschitz surface Σ (with meas(Σ) > 0) is not closed, ., . -1/2,Σ denotes the duality pairing between H 1/2 (Σ) := H 1/2 00 (Σ) and its topological dual space H -1/2 (Σ) that is a distribution space on Σ. We refer to [START_REF] Lions | Non-homogeneous Boundary Value Problems and Applications[END_REF][START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] for more background information on the space H 1/2 00 (Σ) and its dual, and to [START_REF] Layton | Coupling fluid flow with porous media flow[END_REF][START_REF] Girault | Mortar multiscale finite element methods for Stokes-Darcy flows[END_REF] for the context of fluid-porous flows; see also an illustrative related counterexample provided in [55, Exercise 2.24]. Following [START_REF] Girault | Mortar multiscale finite element methods for Stokes-Darcy flows[END_REF],

H 1/2 (Σ) = H 1/2 00 (Σ)
is the space of traces of all functions of H 1 0,∂Ω f \Σ (i.e. vanishing on ∂Ω f \ Σ) or of H 1 0,∂Ωp\Σ . The spaces H 1/2 (Σ) → L 2 (Σ) and H 1/2 (Σ) → L 2 (Σ) are respectively equipped with the semi-norms and norms defined as follows:

|u| 2 H 1/2 (Σ) := Σ Σ |u(x) -u(y)| 2 |x -y| d dxdy, u 2 H 1/2 (Σ) := u 2 0,Σ + |u| 2 H 1/2 (Σ) , (6) 
|u| 2

H 1/2 (Σ) := |u| 2 H 1/2 (Σ) + Σ |u(x)| 2 d(x, ∂Σ) dx, u 2 H 1/2 (Σ) := u 2 0,Σ + |u| 2 H 1/2 (Σ) , (7) 
where d(x, ∂Σ) := inf y∈∂Σ |x -y| denotes the distance from any point x ∈ Σ to the border ∂Σ. Since Σ is a bounded Lipschitz surface, the latter distance function belongs to W 1,∞ (Σ). Thus, the continuous imbedding H 1/2 (Σ) → H 1/2 (Σ) holds. However, the norms defined in ( 6) and ( 7) are not equivalent except when Σ is a closed surface (or curve for d = 2). Besides, for any function u ∈ H 1/2 (Σ), its extension by zero to the whole boundary ∂Ω f and denoted by u satisfies u ∈ H 1/2 (∂Ω f ) and for some c(Σ, ∂Ω f ) > 0 1 :

u 1/2,∂Ω f ≤ c(Σ, ∂Ω f ) u H 1/2 (Σ) , for all u ∈ H 1/2 (Σ). (8) 
Moreover, the normal trace u • n on the border ∂Ω f of any function u ∈ H div (Ω f ) belongs to H -1/2 (∂Ω f ) and the normal trace linear operator: holds on a part of ∂Ω f if this part is a closed surface. But on the surface Σ that is not closed, then we have u

H div (Ω f ) → H -1/2
• n ∈ H -1/2 (Σ) := H 1/2 (Σ) .
For any quantity ψ defined all over Ω f ∪ Ω p , the restrictions on Ω f or Ω p are respectively denoted by ψ f := ψ |Ω f and ψ p := ψ |Ωp . For a function ψ having a jump on Σ, let ψ -:= ψ p Σ and ψ + := ψ f Σ2 be the traces of ψ p and ψ f on each side of Σ (at least defined in a weak sense), respectively. Following the general framework introduced in [START_REF] Angot | A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions[END_REF], let us choose as reduced variables at the interface Σ, the jump of traces of ψ on Σ oriented by n and the arithmetic mean of traces of ψ defined by:

[[ψ]] Σ := ψ + -ψ -= ψ f -ψ p Σ , ψ Σ := 1 2 ψ + + ψ -= 1 2 ψ f + ψ p Σ . (9) 

Creeping flow in the porous medium: variable-viscosity Darcy's model

The single-phase incompressible creeping flow in the saturated porous bulk Ω p is described by the Darcy law (see e.g. [START_REF] Dullien | Porous Media: Fluid Transport and Pore Structure, 2nd Edition[END_REF]), here considered with variable viscosity and density:

∇ • v = q m in Ω p , µ K -1 p v + ∇p = ρ f in Ω p , (10) 
where µ > 0 is the dynamic viscosity of the fluid with µ ∈ L ∞ (Ω), ρ > 0 its mass density with ρ ∈ L ∞ (Ω). With the porosity φ p (volume fraction of fluid pores, 0 < φ p < 1), the intrinsic permeability tensor K p (φ p ) of the porous region Ω p (a symmetric and uniformly positive definite bounded matrix in L ∞ (Ω p ) d×d ) can be given by a porosity-permeability correlation or experimental data. For example, we can use the porosity-permeability correlation K p (φ p ) of Kozeny-Carman that has been calibrated for many random packed beds of spherical grains of variable sizes [START_REF] Macdonald | Flow through porous media: The Ergun equation revisited[END_REF][START_REF] Dullien | Porous Media: Fluid Transport and Pore Structure, 2nd Edition[END_REF][START_REF] Macdonald | A generalized Blake-Kozeny equation for multi-sized spherical particles[END_REF]. Besides in [START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF], v denotes the filtration velocity defined as the superficial average over a representative unit volume and p is the pressure defined as the intrinsic average. The external force per mass unit f ∈ L 2 (Ω) d (e.g. gravitational acceleration), is included in the right-hand side, whereas q m ∈ L 2 (Ω) denotes a given mass source or sink term. With [START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF], the Cauchy stress tensor in Ω p reduces to the pressure term with no viscous stress, I being the unit tensor:

σ p (v, p) := -p p I in Ω p . (11) 
The Darcy number Da is classically introduced as a dimensionless parameter to characterize the flow in the porous medium:

Da := K p L 2 , (12) 
where K p := K p ∞ and L is the macroscopic length scale.

On the external boundary of the porous medium, i.e. Γ p = ∂Ω p \Σ, mixed Dirichlet/Neumann boundary conditions are assigned with zero normal flux on the part Γ p d and a null traction on Γ p n which can be interpreted with [START_REF] Iliev | On numerical simulation of flow through oil filters[END_REF] as an homogeneous Dirichlet condition for the pressure p = 0 on Γ p n :

v p • ν = 0 on Γ p d , σ p (v, p) • ν = 0 on Γ p n , (13) 
where

Γ p := Γ p d ∪ Γ p n with Γ p d ∩ Γ p n = ∅ and meas(Γ p d ) > 0.

Creeping flow in the porous medium: variable-viscosity Darcy-Brinkman's model

The incompressible creeping flow in the saturated porous medium Ω p can be also governed by the Darcy-Brinkman equations [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF][START_REF] Brinkman | On the permeability of media consisting of closely packed porous particles[END_REF][START_REF] Whitaker | The Method of Volume Averaging[END_REF], here considered with variable viscosity and density:

     ∇ • v = q m in Ω p , -∇ • µ φ p ∇v + ∇v T + µ K -1 p v + ∇p = ρ f in Ω p , (14) 
where µ > 0 is the dynamic viscosity of the fluid with µ ∈ L ∞ (Ω), ρ > 0 its mass density with ρ ∈ L ∞ (Ω). With the porosity φ p (volume fraction of fluid pores, 0 < φ p < 1), the intrinsic permeability tensor K p (φ p ) of the porous region Ω p (a symmetric and uniformly positive definite bounded matrix in L ∞ (Ω p ) d×d ) can be given by a porosity-permeability correlation or experimental data. For example, we can use the porosity-permeability correlation K p (φ p ) of Kozeny-Carman that has been calibrated for many random packed beds of spherical grains of variable sizes [START_REF] Macdonald | Flow through porous media: The Ergun equation revisited[END_REF][START_REF] Dullien | Porous Media: Fluid Transport and Pore Structure, 2nd Edition[END_REF][START_REF] Macdonald | A generalized Blake-Kozeny equation for multi-sized spherical particles[END_REF]. Besides in [START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF], v denotes the filtration velocity defined as the superficial average over a representative unit volume and p is the pressure defined as the intrinsic average. The external force per mass unit f ∈ L 2 (Ω) d (e.g. gravitational acceleration), is included in the right-hand side. With [START_REF] Jones | Low Reynolds number flow past a porous spherical shell[END_REF], the Cauchy stress tensor in Ω p reads:

       σ p (v, p) := σ p v (v) -p I where σ p v (v) := 2 µ p φ p D(v) with D(v) := 1 2 ∇v + ∇v T , in Ω p , (15) 
where σ p v (v) is the viscous stress tensor and D(v) is the strain rate tensor (symmetric part of ∇v).

On the external boundary of the porous medium, i.e. Γ p = ∂Ω p \Σ, mixed Dirichlet/Neumann boundary conditions are assigned with a null velocity on the part Γ p d and a given traction g ∈

H -1/2 (Γ p n ) d on Γ p n : v p = 0 on Γ p d , σ p (v, p) • ν = g on Γ p n , (16) 
where

Γ p := Γ p d ∪ Γ p n with Γ p d ∩ Γ p n = ∅ and meas(Γ p d ) > 0.

Flow in the free-fluid region: variable-viscosity Stokes model

The incompressible viscous flow in the pure fluid domain Ω f is here governed by the Stokes model with a variable viscosity and density:

∇ • v = q m in Ω f , -∇ • µ ∇v + ∇v T + ∇p = ρ f in Ω f , (17) 
For writing Eqs. ( 17) and [START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF] with the stress formulation, the Cauchy stress tensor σ(v, p) for a Newtonian fluid in Ω f associated with the stress vector σ(v, p) • n on the surface Σ:

   σ f (v, p) := σ f v (v) -p I where σ f v (v) := 2 µ f D(v) with D(v) := 1 2 ∇v + ∇v T , in Ω f , (18) 
where σ f v (v) is the viscous stress tensor and D(v) is the strain rate tensor (symmetric part of ∇v).

On the external boundary of the fluid region, i.e. Γ f = ∂Ω f \ Σ, mixed Dirichlet/Neumann boundary conditions are applied with null velocity on the part Γ f d and a given stress vector

h ∈ H -1/2 (Γ f n ) d on Γ f n : v f = 0 on Γ f d , σ f (v, p) • ν = h on Γ f n . (19) 
where

Γ f := Γ f d ∪ Γ f n with Γ f d ∩ Γ f n = ∅ and meas(Γ f d ) > 0, meas(Γ f n ) > 0.

Fluid-porous stress jump interface conditions

The coupling of the fluid-porous flow [START_REF] Eggenweiler | Unsuitability of the Beavers-Joseph interface condition for filtration problems[END_REF][START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF] requires additional interface conditions on Σ. Here, we deal with a new setting issued from recent advances on fluid-porous flows carried out in [START_REF] Angot | Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions[END_REF][START_REF] Angot | An optimal stress jump interface condition for the fluid-porous multidimensional flow[END_REF] with an asymptotic modeling and analysis to couple the Stokes problem with either the Darcy-Brinkman or Darcy models. Hence, the following set of stress jump interface conditions associated to velocity continuity is derived in [46, Section III] (when Σ is non-centered inside the inter-region; see also the summary supplied in [60, Eqs. ( 18) with (30) and Remark 3]) to couple the Stokes and Darcy models at the bottom surface Σ = Σ b of a thin transition layer between the fluid and porous regions:

     [[v]] Σ = 0, i.e. v f Σ = v p Σ := v Σ [[σ(v, p) • n]] Σ = µ p Σ K p β Σ v Σ -f Σ on Σ = Σ b , (20) 
where K p := K p ∞ (or any permeability reference) and

f Σ ∈ L 2 (Σ) d is a given external surfacic force on Σ (f Σ ∈ H -1/2 (Σ) d is also admissible).
The stress jump friction tensor β Σ denotes a uniformly positive semi-definite bounded matrix (possibly symmetric) with thus

β Σ ∈ L ∞ (Σ) d×d .
Compared to the usual velocity slip conditions with no normal stress jump, extended ad-hoc from the 1-D Beavers-Joseph [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF] or simplified Beavers-Joseph-Saffman [START_REF] Saffman | On the boundary condition at the surface of a porous medium[END_REF][START_REF] Jäger | On the interface boundary condition of Beavers & Joseph and Saffman[END_REF] conditions used by almost all authors, e.g. [START_REF] Layton | Coupling fluid flow with porous media flow[END_REF][START_REF] Discacciati | Navier-Stokes/Darcy coupling: modeling, analysis and numerical approximation[END_REF][START_REF] Girault | DG approximation of coupled Navier-Stokes and Darcy equations by Beavers-Joseph-Saffman Figure B.4: Comparison of streamwise velocity solutions for the Stokes/Darcy and Stokes/Darcy-Brinkman models of the Poiseuille channel flow with H = 100 , δ B = 5 /H, φp = 0.75, Da = 2.29 10 -6 : free-fluid layer with maximum Um = 0.509 at Zm = 0[END_REF][START_REF] Girault | Mortar multiscale finite element methods for Stokes-Darcy flows[END_REF], the jump interface set [START_REF] Jäger | Modelling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF] is shown in [START_REF] Angot | An optimal stress jump interface condition for the fluid-porous multidimensional flow[END_REF] to be optimal to reduce the loss of flow rate in the viscous boundary layer of the porous medium. Moreover, a calibration procedure is proposed in [START_REF] Angot | An optimal stress jump interface condition for the fluid-porous multidimensional flow[END_REF] to determine the optimal location of Σ b , i.e. the thickness d from the top surface Σ t of the transition layer (where Beavers-Joseph's conditions of velocity slip are applied), together with the friction tensor β Σ . A typical example for the benchmark of Poiseuille's channel flow through fluid-porous layers is provided in Appendix B.

However with the regularity of the data in Ω p chosen here, we have v p ∈ H div (Ω p ) and thus the normal trace v p • n on Σ can be defined in a weak sense, but there is no guarantee to define the tangential trace v p ∧ n on Σ since the curl ∇ × v p does not a priori belong to L 2 (Ω p ) d (unless the tensor K p and the viscosity µ are constant). Therefore with less smooth data as it is the case in practical applications, we shall also consider the following admissible modified version of [START_REF] Jäger | Modelling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF] to couple the Stokes and Darcy flows:

     [[v • n]] Σ = 0, v Σ := v f Σ [[σ(v, p) • n]] Σ = µ p Σ K p β Σ v Σ -f Σ on Σ = Σ b . (21) 
Under the above form, the stress jump interface conditions (20) can be viewed from a variational point of view as a dual version of the extended Beavers-Joseph-Saffman velocity jump conditions [START_REF] Brinkman | On the permeability of media consisting of closely packed porous particles[END_REF]. Unlike the latter conditions ( 2) or (1) where the velocity slip coefficient α Σ is a scalar parameter only (see the derivation of this equation in [START_REF] Angot | Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions[END_REF]), the intrinsic vector form of the stress jump conditions [START_REF] Jäger | Modelling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF] or [START_REF] Mardal | A robust finite element method for Darcy-Stokes flow[END_REF], where β Σ is a symmetric and positive semi-definite tensor, is likely to actually handle multi-dimensional cases with arbitrary flow directions and anisotropic effects of the microstructure.

Solvability of the coupled Stokes/Darcy-Brinkman fluid-porous flow

The set of interface conditions [START_REF] Jäger | Modelling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF] being formulated in terms of velocity and stress vectors, it is more suitable to write the fluid-porous model [START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF][START_REF] Eggenweiler | Unsuitability of the Beavers-Joseph interface condition for filtration problems[END_REF] in the following divergential form with the Cauchy stress formulation using [START_REF] Nield | The Beavers-Joseph boundary condition and related matters: a historical and critical review[END_REF][START_REF] Saffman | On the boundary condition at the surface of a porous medium[END_REF] 

for f ∈ L 2 (Ω) d and q m ∈ L 2 (Ω):      ∇ • v = q m in Ω, -∇ • σ p (v, p) + µ p K -1 p v p = ρ f in Ω p , -∇ • σ f (v, p) = ρ f in Ω f . ( 22 
)
The interest of the stress formulation ( 22) is also to deal with the case of variable viscosity µ ∈ L ∞ (Ω) when for example, the flow has to be coupled with a convective heat transfer governed by an advection-diffusion equation for the temperature, thus with a temperature-dependent density ρ ∈ L ∞ (Ω) too. Then to give a sense to [START_REF] Jäger | Modelling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF], we assume that µ ∈ M defined by:

M := µ ∈ L ∞ (Ω); µ p := µ |Ωp ∈ H 1 (Ω p ), µ f := µ |Ω f ∈ H 1 (Ω f ) , (23) 
Hence, the Sobolev continuous imbedding yields:

µ p Σ ∈ H 1/2 (Σ) → L 4 (Σ) (for d ≤ 3), although µ p Σ ∈ L 2 (Σ)
is sufficient here. We have also the natural assumptions of boundedness issued from physical properties and there exists constants

φ m > 0, µ M ≥ µ m > 0 and k M ≥ k m > 0 such that:                      φ p ∈]0, 1[; 0 < φ m ≤ φ p (x) < 1 a.e. x ∈ Ω, µ ∈ M ; 0 < µ m ≤ µ(x) ≤ µ M a.e. x ∈ Ω, β Σ ∈ L ∞ (Σ) d×d ; β ∞ := β Σ L ∞ (Σ) d×d , K -1 p ∈ L ∞ (Ω p ) d×d ; k ∞ := K -1 p L ∞ (Ωp) d×d , k m |y| 2 ≤ K -1 p (x) y • y ≤ k M |y| 2 , ∀y ∈ R d a.e. x ∈ Ω p , ρ ∈ L ∞ (Ω); ρ ∞ := ρ L ∞ (Ω) , (24) 
where |.| denotes the Euclidean vector norm in R d .

Then for the velocity and pressure solutions spaces and test function spaces, we define the following (real) Hilbert spaces endowed with their natural respective inner products and associated norms:

H 1 0,Γ f d (Ω f ) d := u ∈ H 1 (Ω f ) d ; u = 0 on Γ f d , W := H 1 0,Γ f d ∪Γ p d (Ω) d = w ∈ H 1 (Ω) d ; w = 0 on Γ f d ∪ Γ p d , Q := L 2 (Ω), (25) 
with the Hilbertian norms (and naturally associated inner products) in W (inherited from H 1 (Ω) d ) and Q defined by:

w 2 W := w 2 0,Ω + ∇w 2 0,Ω = w 2 1,Ω , for all w ∈ W , q Q := q 0,Ω , for all q ∈ Q. ( 26 
)
Hence, W is a Hilbert space as a closed subspace of H 1 (Ω) d , and we have thus the continuous imbedding W → H 1 (Ω) d . Then for all v ∈ W , we have continuity of the traces on Σ:

[[v]] Σ = 0 and thus v Σ := v p Σ = v f Σ ∈ H 1/2 (Σ) d → H 1/2 (Σ) d . Moreover, we have by Sobolev imbedding for all v ∈ W : v Σ ∈ H 1/2 (Σ) d → L 4 (Σ) d (for d ≤ 3
) with the related continuity inequality of the imbedding.

Let us now introduce two bilinear forms a(., .), b(., .) and two linear functionals (.), g(.): a(., .) :

W × W → R, b(., .) : W × Q → R, (.) : W → R, g(.) : Q → R, (27) 
respectively defined for all v, w ∈ W and p ∈ Q by:

a(v, w) := 2 Ω f µ f D(v) : D(w) dx + 2 Ωp µ p φ p D(v) : D(w) dx (28) 
+ Ωp µ p K -1 p v • w dx + Σ µ p Σ K p (β Σ v Σ ) • w Σ ds, b(w, p) := - Ω f p ∇ • w dx - Ωp p ∇ • w dx = - Ω p ∇ • w dx, (29) 
(w) := Ω ρ f • w dx + Σ f Σ • w Σ ds + g, w -1/2,Γ p n + h, w -1/2,Γ f n , (30) 
g(p) := -

Ω f q m p dx - Ωp q m p dx = - Ω q m p dx, (31) 
where ., . -1/2,Γ p n denotes the duality pairing between the spaces H -1/2 (Γ p n ) and H 1/2 (Γ p n ) and similarly on Γ f n . Let us first prove some preliminary results.

Lemma 1 (Equivalent forms of the Stokes/Darcy-Brinkman transmission problem).

For all data as mentioned above, the boundary-value problem [START_REF] Layton | Coupling fluid flow with porous media flow[END_REF][START_REF] Auriault | About the Beavers and Joseph boundary condition[END_REF][START_REF] Jäger | On the interface boundary condition of Beavers & Joseph and Saffman[END_REF][START_REF] Jäger | Modelling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF] with [START_REF] Nield | The Beavers-Joseph boundary condition and related matters: a historical and critical review[END_REF][START_REF] Saffman | On the boundary condition at the surface of a porous medium[END_REF] assuming solutions (v, p) ∈ W × Q is equivalent to the following mixed weak problem:

     find a pair (v, p) ∈ W × Q such that: a(v, w) + b(w, p) = (w), for all w ∈ W , b(v, q) = g(q), for all q ∈ Q = L 2 (Ω), (32) 
with the definitions [START_REF] Discacciati | Navier-Stokes/Darcy coupling: modeling, analysis and numerical approximation[END_REF][START_REF] Girault | DG approximation of coupled Navier-Stokes and Darcy equations by Beavers-Joseph-Saffman Figure B.4: Comparison of streamwise velocity solutions for the Stokes/Darcy and Stokes/Darcy-Brinkman models of the Poiseuille channel flow with H = 100 , δ B = 5 /H, φp = 0.75, Da = 2.29 10 -6 : free-fluid layer with maximum Um = 0.509 at Zm = 0[END_REF][START_REF] Cai | Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach[END_REF][START_REF] Ervin | Coupled generalized nonlinear Stokes flow with flow through a porous medium[END_REF].

P

. Firstly, let (v, p) ∈ W × Q be a solution to the transmission problem [START_REF] Layton | Coupling fluid flow with porous media flow[END_REF][START_REF] Auriault | About the Beavers and Joseph boundary condition[END_REF][START_REF] Jäger | On the interface boundary condition of Beavers & Joseph and Saffman[END_REF][START_REF] Jäger | Modelling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF]. Since f ∈ L 2 (Ω) d , we have with [START_REF] Nield | The Beavers-Joseph boundary condition and related matters: a historical and critical review[END_REF][START_REF] Saffman | On the boundary condition at the surface of a porous medium[END_REF] and [START_REF] Layton | Coupling fluid flow with porous media flow[END_REF]:

σ f (v, p) ∈ H div (Ω f ) d and σ p (v, p) ∈ H div (Ω p ) d . With the normal trace operator H div (Ω) → H -1/2 (∂Ω) (cf.
[51, Theorem 2.5]) applied in the domains Ω f and Ω p , we have thus:

σ f (v, p) • ν ∈ H -1/2 (∂Ω f ) d and σ p (v, p) • ν ∈ H -1/2 (∂Ω p ) d .
Using now Green's formulas, the L 2 (Ω f ) scalar product by any test function w ∈ W of the momentum equation in Ω f yields from ( 22) with ( 18):

2 Ω f µ f D(v) : D(w) dx - Ω f p ∇ • w dx -σ f (v, p) • ν, w -1/2,∂Ω f = Ω f ρ f • w dx, (33) 
where the first term is obtained using the equality: 2 D(v) : ∇w = D(v) : (∇w + ∇w T ) that holds because of the symmetry of the tensor D(v). Since w f = 0 on Γ f d , the duality pairing on

∂Ω f \ Γ f d = Γ f n ∪ Σ in (33) holds between H 1/2 (Γ f n ∪ Σ) d := H 1/2 00 (Γ f n ∪ Σ) d and its dual space H -1/2 (Γ f n ∪ Σ) d := ( H 1/2 (Γ f n ∪ Σ) d )
; see [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]. Then using w f = 0 on Γ f d and incorporating in [START_REF] Babuška | A residual-based a posteriori error estimator for the Stokes-Darcy coupled problem[END_REF] the stress boundary condition from [START_REF] Jäger | On the interface boundary condition of Beavers & Joseph and Saffman[END_REF], we get since

h ∈ H -1/2 (Γ f n ) d :
2

Ω f µ f D(v) : D(w) dx - Ω f p ∇ • w dx + σ f (v, p) • n, w Σ -1/2,Σ = Ω f ρ f • w dx + h, w -1/2,Γ f n . (34) 
By doing similarly in Ω p from [START_REF] Layton | Coupling fluid flow with porous media flow[END_REF][START_REF] Nield | The Beavers-Joseph boundary condition and related matters: a historical and critical review[END_REF][START_REF] Auriault | About the Beavers and Joseph boundary condition[END_REF], it yields with w p = 0 on Γ p d :

2 Ωp µ p φ p D(v) : D(w) dx - Ωp p ∇ • w dx + Ωp µ p K -1 p v • w dx -σ p (v, p) • n, w Σ -1/2,Σ = Ωp ρ f • w dx. + g, w -1/2,Γ p n . (35) 
Now by summing [START_REF] Badea | Numerical analysis of the Navier-Stokes/Darcy coupling[END_REF] and [START_REF] Gatica | Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem[END_REF], it turns out that for all w ∈ W :

2

Ω f µ f D(v) : D(w) dx + 2 Ωp µ p φ p D(v) : D(w) dx + Ωp µ p K -1 p v • w dx - Ω p ∇ • w dx + [[σ(v, p) • n]] Σ , w Σ -1/2,Σ = Ω ρ f • w dx + g, w -1/2,Γ p n + h, w -1/2,Γ f n . (36) 
For all µ ∈ M , the Sobolev continuous imbedding yields:

µ p Σ ∈ H 1/2 (Σ) → L 4 (Σ) (for d ≤ 3). Then from (20), the Hölder inequality implies that [[σ(v, p) • n]] Σ ∈ L 2 (Σ) d
. Moreover, we have also the functional setting below with continuous imbeddings by identifying L 2 (Σ) d with its dual space:

H 1/2 (Σ) d → L 2 (Σ) d → H -1/2 (Σ) d . ( 37 
)
Hence, by including in [START_REF] Çeşmelioǧlu | Time-dependent coupling of Navier-Stokes and Darcy flows[END_REF] the stress jump condition [START_REF] Jäger | Modelling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF] with

[[σ(v, p) • n]] Σ ∈ L 2 (Σ) d , we
finally get with the definitions (28-30):

a(v, w) + b(w, p) = (w), for all w ∈ W . (38) 
Then, taking the L 2 scalar product by any test function q ∈ Q = L 2 (Ω) of the mass conservation equation in [START_REF] Layton | Coupling fluid flow with porous media flow[END_REF] gives with (29, 31):

b(v, q) = g(q), for all q ∈ Q.

Therefore, [START_REF] Lipnikov | Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids[END_REF] and [START_REF] Hadji | A posteriori error analysis for Navier-Stokes equations coupled with Darcy problem[END_REF] yield that the pair (v, p) ∈ W × Q solves the weak problem [START_REF] Karper | Unified finite element discretizations of coupled Darcy-Stokes flow[END_REF]. Conversely, let (v, p) ∈ W × Q be a solution to the weak problem [START_REF] Karper | Unified finite element discretizations of coupled Darcy-Stokes flow[END_REF]. In particular from the definition of W , v satisfies ∇ • v ∈ L 2 (Ω) and the homogeneous boundary conditions of [START_REF] Auriault | About the Beavers and Joseph boundary condition[END_REF][START_REF] Jäger | On the interface boundary condition of Beavers & Joseph and Saffman[END_REF] on Γ p d and Γ f d , respectively. With the properties of Lebesgue's integral, it is clear by taking for example any smooth and compactly supported test function q ∈ C ∞ c (Ω) that ( 39) is equivalent to ∇ • v = q m in Ω, and thus v satisfies the mass conservation equation in [START_REF] Layton | Coupling fluid flow with porous media flow[END_REF]. By choosing in [START_REF] Lipnikov | Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids[END_REF] any smooth and compactly supported test function w ∈ C ∞ c (Ω f ) d , we get after integration by part:

∇ • -2 µ f D(v) + ∇p , w -1,Ω f = Ω f ρ f • w dx, for all w ∈ C ∞ c (Ω f ) d , (40) 
where ., . -1,Ω f is the duality pairing between

H -1 (Ω f ) d and H 1 0 (Ω f ) d . Since C ∞ c (Ω f ) d is dense in H 1 0 (Ω f ) d , ( 40 
) yields: -2 ∇ • µ f D(v) + ∇p = ρ f in Ω f . (41) 
Doing similarly in Ω p , we get:

-2 ∇ • µ p φ p D(v) µ p K -1 p v + ∇p = ρ f in Ω p . (42) 
Hence, it turns out with ( 41) and ( 42) that the pair (v, p) ∈ W × Q is a solution to the set of governing equations [START_REF] Layton | Coupling fluid flow with porous media flow[END_REF]. The velocity continuity v f = v p on Σ is obviously included in the definition of the space W . By taking now in [START_REF] Lipnikov | Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids[END_REF] any test function w ∈ H 1 0 (Ω) d and comparing with [START_REF] Çeşmelioǧlu | Time-dependent coupling of Navier-Stokes and Darcy flows[END_REF], it yields:

[[σ(v, p) • n]] Σ , w Σ -1/2,Σ = Σ µ p Σ K p (β Σ v Σ ) • w Σ ds - Σ f Σ • w Σ ds, ∀w ∈ H 1 0 (Ω) d . (43) 
Since the trace space of w on Σ is large enough, i.e. the linear trace operator H 1 0 (Ω) d → H 1/2 (Σ) d is surjective as shown at the end of the proof of Lemma 6, Eq. ( 43) implies that the stress jump transmission condition in [START_REF] Jäger | Modelling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF] is recovered on Σ. Similarly as above, by taking in [START_REF] Lipnikov | Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids[END_REF] 

any test function w ∈ H 1 0,Γ f d (Ω f ) d or w ∈ H 1 0,Γ p d (Ω p ) d ,
the traction boundary conditions in [START_REF] Jäger | On the interface boundary condition of Beavers & Joseph and Saffman[END_REF][START_REF] Auriault | About the Beavers and Joseph boundary condition[END_REF] are also recovered on Γ f n and Γ p n , respectively. Finally, we have shown that the pair (v, p) ∈ W × Q solves the boundary-value problem [START_REF] Layton | Coupling fluid flow with porous media flow[END_REF][START_REF] Auriault | About the Beavers and Joseph boundary condition[END_REF][START_REF] Jäger | On the interface boundary condition of Beavers & Joseph and Saffman[END_REF][START_REF] Jäger | Modelling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF].

2

Lemma 2 (Continuity of a(., .), b(., .), (.) and g(.)). For all data as mentioned above, there exists C a > 0, C b > 0, C > 0 and C g > 0 depending only of the data such that the following continuity inequalities hold:

|a(v, w)| ≤ C a v W w W , for all (v, w) ∈ W × W (44) |b(w, q)| ≤ C b w W q Q , for all (w, q) ∈ W × Q (45) | (w)| ≤ C w W , for all w ∈ W (46) |g(q)| ≤ C g q Q ,
for all q ∈ Q.

. For all µ ∈ M and (v, w) ∈ W × W , the Sobolev continuous imbedding: H 1/2 (Σ) → L 4 (Σ) (for d ≤ 3), the Hölder inequality with the trace inequalities in H 1 (Ω p ) and H 1 (Ω f ) d imply that the last term in [START_REF] Discacciati | Navier-Stokes/Darcy coupling: modeling, analysis and numerical approximation[END_REF] verifies the continuity bound:

Σ µ p Σ K p (β Σ v Σ ) • w Σ ds ≤ c(Ω f , Ω p , Σ, K p ) β Σ ∞ µ p 1,Ωp v 1,Ω f w 1,Ω f . ( 48 
)
With the Cauchy-Schwarz inequality in Ω f and Ω p for the other terms of a(v, w) in ( 28) and the bounds from [START_REF] Rivière | Locally conservative coupling of Stokes and Darcy flows[END_REF], we have for all v, w ∈ W :

2

Ω f µ f D(v) : D(w) dx ≤ 2 µ M D(v) 0,Ω f D(w) 0,Ω f ≤ 2 µ M ∇v 0,Ω f ∇w 0,Ω f 2 Ωp µ p φ p D(v) : D(w) dx ≤ 2 µ M φ -1 m ∇v 0,Ωp ∇w 0,Ωp Ωp µ p K -1 p v • w dx ≤ µ M K -1 p ∞ v 0,Ωp w 0,Ωp . (49) 
Thus, using ( 48) and ( 49), we get [START_REF] Angot | On the well-posed coupling between free fluid and porous viscous flows[END_REF] with C a > 0 depending only on the data. By applying the Cauchy-Schwarz inequality in [START_REF] Girault | DG approximation of coupled Navier-Stokes and Darcy equations by Beavers-Joseph-Saffman Figure B.4: Comparison of streamwise velocity solutions for the Stokes/Darcy and Stokes/Darcy-Brinkman models of the Poiseuille channel flow with H = 100 , δ B = 5 /H, φp = 0.75, Da = 2.29 10 -6 : free-fluid layer with maximum Um = 0.509 at Zm = 0[END_REF], it is straightforward to obtain [START_REF] Angot | Well-posed Stokes/Brinkman and Stokes/Darcy coupling revisited with new jump interface conditions[END_REF] with

C b = 2 since for all w ∈ W , q ∈ Q: |b(w, q)| ≤ ∇ • w 0,Ω q 0,Ω ≤ 2 ∇w 0,Ω q 0,Ω , (50) 
because usual calculations show that: ∇ • w 2 0,Ω ≤ 3 ∇w 2 0,Ω , for all w ∈ H 1 (Ω) d . Using the Cauchy-Schwarz inequality from [START_REF] Cai | Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach[END_REF] and the duality inequalities combined with trace inequalities in H 1 (Ω p ) d and H 1 (Ω f ) d , we get for all w ∈ W :

| (w)| ≤ ρ ∞ f 0,Ω w 0,Ω + c(Ω f , Σ) f Σ 0,Σ w 1,Ω f + c(Ω p , Γ p n ) g H -1/2 (Γ p n ) d w 1,Ωp + c(Ω f , Γ f n ) h H -1/2 (Γ f n ) d w 1,Ω f , (51) 
from which ( 46) is obtained with some C > 0. The last continuity inequality (47) holds true immediately with C g = q m 0,Ω from (31). 2

Lemma 3 (Coercivity of a(., .) on W ). For all data as mentioned above, the bilinear form a(., .) is coercive on W , i.e. there exists

α a (Ω f , Ω p , Γ f d , Γ p d , µ m ) > 0 such that: a(w, w) ≥ α a w 2 W , for all w ∈ W . (52) 
P . The last term of a(w, w) from ( 28) being non-negative, we have using [START_REF] Rivière | Locally conservative coupling of Stokes and Darcy flows[END_REF]:

a(w, w) ≥ 2 µ m D(w) 2 0,Ω f + 2 µ m D(w) 2 0,Ωp + µ m k m w 2 0,Ωp , ∀w ∈ W . ( 53 
)
Then, we recall Poincaré-Friedrichs' inequality in H 

v 0,Ω f ≤ C f P (Ω f , Γ f d ) ∇v 0,Ω f , for all v ∈ H 1 0,Γ f d (Ω f ) d , (54) 
and the following Korn inequality in H 

D(v) 2 0,Ω f ≥ C f K (Ω f , Γ f d ) v 2 1,Ω f , for all v ∈ H 1 0,Γ f d (Ω f ) d . (55) 
Using [START_REF] Gallouët | Equations aux dérivées partielles, Master 2 Lectures[END_REF] and similar Korn's inequality in H 1 0,Γ p d (Ω p ) d on the domain Ω p in (53), we get:

a(w, w) ≥ 2 µ m min(C f K , C p K ) w 2 1,Ω f + w 2 1,Ωp ≥ 2 µ m min(C f K , C p K ) w 2 W , for all w ∈ W . (56) 
Hence with

α a (Ω f , Ω p , Γ f d , Γ p d , µ m ) := 2 µ m min(C f K , C p K ) > 0, the coercivity inequality (52) holds. 2 
Then, we prove the following result of well-posedness with no restriction on the natural size of the data.

Theorem 1 (Solvability of variable-viscosity Stokes/Darcy-Brinkman flow coupled with (20)). Under the assumptions (24), let us consider any data

ρ ∈ L ∞ (Ω), µ ∈ M , f ∈ L 2 (Ω) d , q m ∈ L 2 (Ω), f Σ ∈ L 2 (Σ) d , g ∈ H -1/2 (Γ p n ) d , h ∈ H -1/2 (Γ f n ) d ,
any bounded, symmetric and uniformly positive definite tensor K p ∈ L ∞ (Ω p ) d×d and any bounded uniformly positive semi-definite tensor β Σ ∈ L ∞ (Σ) d×d .

Then, there exists a unique solution (v, p) ∈ W × Q to the mixed weak problem [START_REF] Karper | Unified finite element discretizations of coupled Darcy-Stokes flow[END_REF], i.e. also to the Stokes/Darcy-Brinkman fluid-porous flow [START_REF] Layton | Coupling fluid flow with porous media flow[END_REF][START_REF] Auriault | About the Beavers and Joseph boundary condition[END_REF][START_REF] Jäger | On the interface boundary condition of Beavers & Joseph and Saffman[END_REF] coupled with the stress jump interface conditions [START_REF] Jäger | Modelling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF] on Σ. In addition, the solution satisfies the following energy estimate:

v W + p Q ≤ C(α a , β b , a , b ) ( W + q m 0,Ω ) . (57) 

P

. By using the above Lemmas 1, 2, 3 and applying [51, Theorem 4.1 & Corollary 4.1] resulting from the Banach-Nečas-Babuška theory [START_REF] Nečas | Sur une méthode pour résoudre les équations aux dérivées partielles de type elliptique, voisine de la variationnelle[END_REF][START_REF] Babuška | Error bound for finite element method[END_REF], it remains to prove that b(., .) satisfies the inf-sup condition, i.e. there exists β b > 0 depending only on the data such that:

sup w∈W ;w =0 b(w, q) w W ≥ β b q Q , for all q ∈ Q. ( 58 
)
This stems from Nečas' Theorem in [START_REF] Nečas | Équations aux Dérivées Partielles[END_REF], e.g. [52, Theorem IV.3.1], stating that for any q 0 ∈ L 2 0 (Ω), there exists a function u 0 ∈ H 1 0 (Ω) d such that with some C N (Ω) > 0:

∇ • u 0 = q 0 in Ω and u 0 1,Ω ≤ C N (Ω) q 0 0,Ω . (59) 
By considering now any function q ∈ Q = L 2 (Ω) and denoting by m(q) its mean all over the domain Ω:

m(q) := 1 |Ω| Ω q dx where |Ω| := meas(Ω), (60) 
then we have q 0 := qm(q) ∈ L 2 0 (Ω) and thus (59) holds true. Following [52, Section IV.7.1] to get a lifting of the mass source term q, let us now define the vector field u ∈ W by:

u := m(q) d x for all x := (x 1 , • • • , x d ) T ∈ Ω ⊂ R d , with u = 0 on Γ f d ∪ Γ p d , (61) 
that verifies:

∇ • u = m(q) and ∇ u = m(q) d I in Ω. (62) 
Thus, using the Cauchy-Schwarz inequality to bound m(q), there exists C(Ω, d) > 0 such that:

u 1,Ω ≤ C(Ω, d) q 0,Ω . (63) 
Therefore, we have constructed a function u := (u 0 + u) ∈ W such that, using ( 59) and ( 63), we have with some C(Ω, d) > 0:

∇ • u = q 0 + m(q) = q in Ω and u W = u 1,Ω ≤ C(Ω, d) q 0,Ω , (64) 
i.e. that the Divergence operator ∇

• : W ⊂ H 1 (Ω) d → Q = L 2
(Ω) admits a right-inverse. Now taking w = -u as a particular candidate for a lower bound in ( 58), we get with (64):

sup w∈W ;w =0 b(w, q) w W ≥ -b(u, q) u W = q 2 0,Ω u W ≥ 1 C(Ω, d) q Q , ( 65 
)
from which the inf-sup condition (58) holds with β b (Ω, d) = 1/C(Ω, d) since q was chosen arbitrary in L 2 (Ω) in the above construction. Then, the energy estimate (57) follows with usual arguments. 2

Remark 1 (Generalizations). Replacing the assumption of

f Σ given in L 2 (Σ) d by a data f Σ ∈ H -1/2 (Σ)
d is straightforward throughout the analysis, which can be required for the multiphysics coupling where complex phenomena occur at the interface Σ. Moreover, the case with non-homogeneous velocity boundary conditions on Γ f d or Γ p d is admissible too. These extensions are not considered here for the sake of brevity.

Solvability of the coupled Stokes/Darcy fluid-porous flow

As carried out in [START_REF] Angot | On the well-posed coupling between free fluid and porous viscous flows[END_REF][START_REF] Angot | Well-posed Stokes/Brinkman and Stokes/Darcy coupling revisited with new jump interface conditions[END_REF], the strategy to prove the well-posed coupling of Stokes/Darcy flows uses a regularization with a vanishing effective viscosity µ p = ε > 0 in the porous domain Ω p , and then passes to the limit when ε → 0.

Let us define the following (real) Hilbert spaces endowed with their natural respective inner products and associated norms:

X := u ∈ H div (Ω); u f ∈ H 1 (Ω f ) d , V := v ∈ X; v f ∈ H 1 0,Γ f d (Ω f ) d , v Σ := v f Σ , v p • ν = 0 on Γ p d , V 0 := {v ∈ V ; ∇ • v = 0 in Ω} , ( 66 
)
with the Hilbertian norms (and naturally associated inner products) in X, V (inherited from X) defined by:

u 2 X := u 2 0,Ω + ∇ • u 2 0,Ω + ∇u f 2 0,Ω f , for all u ∈ X, v 2 V := v 2 0,Ω + ∇ • v 2 0,Ω + ∇v f 2 0,Ω f , for all v ∈ V , v 2 V 0 := v 2 0,Ω + ∇v f 2 0,Ω f , for all v ∈ V 0 . (67) 
Hence, V is a Hilbert space as a closed subspace of the Hilbert space (X, . X ); see Propositions 1 and 2 in Appendix A. Besides, we have the following continuous imbeddings:

W → V → X and W is dense in V because H 1 (Ω p ) d is dense in H div (Ω p ).
Then for all v ∈ V , we have:

[[v • n]] Σ = 0 on Σ from Lemma 6 in Appendix A and thus v • n := v p • n = v f • n ∈ H 1/2 (Σ) → H 1/2 (Σ) since v f • n ∈ H 1/2 (Σ)
. Moreover, we have by Sobolev imbedding for all v ∈ V :

v Σ := v f Σ ∈ H 1/2 (Σ) d → L 4 (Σ) d (for d ≤ 3
) with the related continuity inequality of the imbedding.

Solvability of the regularized Stokes/Darcy problem

In the regularized procedure, we consider for all ε > 0 the Stokes/Darcy-Brinkman problem with no velocity jump on Σ as follows still with natural bounds of the data [START_REF] Rivière | Locally conservative coupling of Stokes and Darcy flows[END_REF] and for f ∈ L 2 (Ω) d and q m ∈ L 2 (Ω):

     ∇ • v ε = q m in Ω, -2 ε ∇ • D(v p ε ) + µ p K -1 p v p ε + ∇p p ε = ρ f in Ω p , -2 ∇ • µ f D(v f ε ) + ∇p f ε = ρ f in Ω f , (68) 
still supplemented with the boundary conditions ( 16) on Γ p and 19 on Γ f and coupled with the stress jump interface conditions below on Σ with the definitions ( 9) and

f Σ ∈ L 2 (Σ) d :      [[v ε ]] Σ = 0 i.e. v f εΣ = v p εΣ := v εΣ [[σ(v ε , p ε ) • n]] Σ = µ p Σ K p β Σ v εΣ -f Σ on Σ. (69) 
Let us now consider the bilinear form a ε (., .) below, the other forms in [START_REF] Bernardi | Mortar finite element discretization of a model coupling Darcy and Stokes equations[END_REF][START_REF] Girault | DG approximation of coupled Navier-Stokes and Darcy equations by Beavers-Joseph-Saffman Figure B.4: Comparison of streamwise velocity solutions for the Stokes/Darcy and Stokes/Darcy-Brinkman models of the Poiseuille channel flow with H = 100 , δ B = 5 /H, φp = 0.75, Da = 2.29 10 -6 : free-fluid layer with maximum Um = 0.509 at Zm = 0[END_REF][START_REF] Cai | Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach[END_REF][START_REF] Ervin | Coupled generalized nonlinear Stokes flow with flow through a porous medium[END_REF] remaining unchanged:

a ε (., .) : W × W → R, (70) 
defined for all v, w ∈ W by:

a ε (v, w) := 2 Ω f µ f D(v) : D(w) dx + 2 ε Ωp D(v) : D(w) dx (71) 
+ Ωp µ p K -1 p v • w dx + Σ µ p Σ K p (β Σ v Σ ) • w Σ ds.
Then we have the following solvability result as a consequence of Theorem 1.

Corollary 1 (Solvability of the regularized Stokes/Darcy flow (68) coupled with (69)).

Under the assumptions of Theorem 1 and for all ε > 0, there exists a unique solution (v ε , p ε ) ∈ W × Q to the coupled Stokes/Darcy-Brinkman fluid-porous flow (68, [START_REF] Auriault | About the Beavers and Joseph boundary condition[END_REF][START_REF] Jäger | On the interface boundary condition of Beavers & Joseph and Saffman[END_REF] supplemented with the stress jump interface conditions (69) that is also equivalent to the following mixed weak problem:

     find a pair (v ε , p ε ) ∈ W × Q such that: a ε (v ε , w) + b(w, p ε ) = (w), for all w ∈ W , b(v ε , q) = g(q), for all q ∈ Q = L 2 (Ω), ( 72 
)
with the definitions (71, [START_REF] Girault | DG approximation of coupled Navier-Stokes and Darcy equations by Beavers-Joseph-Saffman Figure B.4: Comparison of streamwise velocity solutions for the Stokes/Darcy and Stokes/Darcy-Brinkman models of the Poiseuille channel flow with H = 100 , δ B = 5 /H, φp = 0.75, Da = 2.29 10 -6 : free-fluid layer with maximum Um = 0.509 at Zm = 0[END_REF][START_REF] Cai | Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach[END_REF][START_REF] Ervin | Coupled generalized nonlinear Stokes flow with flow through a porous medium[END_REF].

P

. The result directly stems from Lemmas 1, 2, 3 and Theorem 1. 2

Solvability of the Stokes/Darcy problem

Now to recover the Stokes/Darcy problem from the study in the previous section 4.1, it is necessary to pass to the limit in the mixed weak formulation (72) when ε goes to zero. This requires uniform energy estimates proved further in Lemma 4. Henceforth to get [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF] with [START_REF] Iliev | On numerical simulation of flow through oil filters[END_REF], we consider an homogeneous Dirichlet boundary condition for the pressure p = 0 on Γ p n , i.e. g = 0. Besides in addition to [START_REF] Rivière | Locally conservative coupling of Stokes and Darcy flows[END_REF], we assume the following bounds on the data on Σ with µ m > 0 and β M ≥ β m > 0 to be compatible with the coupling of Stokes/Darcy flows:

     µ ∈ M ; µ p Σ (s) ≥ µ m > 0 a.e. s ∈ Σ, β Σ ∈ L ∞ (Σ) d×d ; β ∞ := β Σ L ∞ (Σ) d×d , β m |y| 2 ≤ (β Σ (s) y) • y ≤ β M |y| 2 , ∀y ∈ R d a.e. s ∈ Σ. (73) 
Lemma 4 (Uniform energy estimates for the weak problem (72) with vanishing viscosity). Under the assumptions of Corollary 1, with (73) and g = 0, the unique solution (v ε , p ε ) ∈ W × Q of the mixed weak problem (72) satisfies the following uniform energy estimate for all ε > 0 such that ε ≤ 1: [START_REF] Gallouët | Equations aux dérivées partielles, Master 2 Lectures[END_REF] and Ω p , respectively.

µ m 2 C f K v f ε 2 1,Ω f + ε C p K v p ε 2 1,Ωp + µ m 2 k m v p ε 2 0,Ωp + µ m 2 K p β m v εΣ 2 0,Σ + β 2 b 2 p ε 2 0,Ω ≤ C q m 2 0,Ω + ρ 2 ∞ f 2 0,Ω + f Σ 2 0,Σ + β 2 ∞ µ 2 1,Ωp + h 2 H -1/2 (Γ f n ) d , (74) 
with some C(Ω f , Ω p , Σ, Γ f d , Γ p d , Γ f n , K p , µ M , µ m , β m , k m , k ∞ , β b ) > 0 depending only on the data and C f K (Ω f , Γ f d ), C p K (Ω p , Γ p d ) > 0 coming from Korn's inequalities in Ω f

P

. By taking w = v ε and q = p ε in the weak problem (72) and substracting the two equations, we have:

a ε (v ε , v ε ) = (v ε ) -g(p ε ) ≤ | (v ε )| + |g(p ε )|. (75) 
More precisely with the definition (71), a ε (v ε , v ε ) reads:

a ε (v ε , v ε ) = 2 Ω f µ f |D(v ε )| 2 dx + 2 ε Ωp |D(v ε )| 2 dx + Ωp µ p K -1 p v ε • v ε dx + Σ µ p Σ K p (β Σ v εΣ ) • v εΣ ds, (76) 
that can be lower bounded as follows using Korn's inequalities [START_REF] Gallouët | Equations aux dérivées partielles, Master 2 Lectures[END_REF] on Ω f and Ω p and the bounds (24,73):

a ε (v ε , v ε ) ≥ 2 µ m C f K (Ω f , Γ f d ) v ε 2 1,Ω f + 2 ε C p K (Ω p , Γ p d ) v ε 2 1,Ωp + µ m k m v ε 2 0,Ωp + µ m K p β m v εΣ 2 0,Σ . (77) 
Then with the definitions [START_REF] Cai | Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach[END_REF][START_REF] Ervin | Coupled generalized nonlinear Stokes flow with flow through a porous medium[END_REF] and g = 0, the right-hand side terms in (75) are upper bounded as below using arguments already invoked above and the inequality a b ≤ (a 2 + b 2 )/2:

| (v ε )| ≤ ρ ∞ f 0,Ω v ε 0,Ω + f Σ 0,Σ v εΣ 0,Σ + h H -1/2 (Γ f n ) d v ε H 1/2 (Γ f n ) d ≤ ρ ∞ f 0,Ω v ε 0,Ωp + v ε 1,Ω f + f Σ 0,Σ v εΣ 0,Σ + c(Ω f , Γ f n ) h H -1/2 (Γ f n ) d v ε 1,Ω f ≤ µ m C f K v ε 2 1,Ω f + µ m 4 k m v ε 2 0,Ωp + 1 4 µ m K p β m v εΣ 2 0,Σ + C(Ω f , Γ f d , Γ f n , µ m , k m , K p , β m ) ρ 2 ∞ f 2 0,Ω + f Σ 2 0,Σ + h 2 H -1/2 (Γ f n ) d . ( 78 
)
|g(p ε )| ≤ q m 0,Ω p ε 0,Ω ≤ 1 2 β 2 b p ε 2 0,Ω + 1 2 β 2 b q m 2 0,Ω . (79) 
Besides, by estimating the pressure p ε with the inf-sup condition (58), we have using (72):

β b p ε 0,Ω ≤ sup w∈W ;w =0 b(w, p ε ) w W = sup w∈W ;w =0 | (w) -a ε (v ε , w)| w W , (80) 
and the bounds of the two terms in the right-hand side follow with the definitions (71,30) and g = 0:

| (w)| ≤ ρ ∞ f 0,Ω w 0,Ω + f Σ 0,Σ w Σ 0,Σ + h H -1/2 (Γ f n ) d w H 1/2 (Γ f n ) d ≤ ρ ∞ f 0,Ω + c(Ω f , Σ) f Σ 0,Σ + c(Ω f , Γ f n ) h H -1/2 (Γ f n ) d w W , (81) 
|a ε (v ε , w)| ≤ 2 µ M ∇v ε 0,Ω f ∇w 0,Ω f + 2 ε ∇v ε 0,Ωp ∇w 0,Ωp + µ M k ∞ v ε 0,Ωp w 0,Ωp + c(Ω f , Ω p , Σ, K p ) β ∞ µ 1,Ωp v εΣ 0,Σ w W ≤ 2 µ M ∇v ε 0,Ω f + 2 ε ∇v ε 0,Ωp + µ M k ∞ v ε 0,Ωp w W + c(Ω f , Ω p , Σ, K p ) β ∞ µ 1,Ωp v εΣ 0,Σ w W . (82) 
By gathering (81,82) in (80), it gives:

β b p ε 0,Ω ≤ 2 µ M ∇v ε 0,Ω f + 2 ε ∇v ε 0,Ωp + µ M k ∞ v ε 0,Ωp + c(Ω f , Ω p , Σ, K p ) β ∞ µ 1,Ωp v εΣ 0,Σ + ρ ∞ f 0,Ω + c(Ω f , Σ) f Σ 0,Σ + c(Ω f , Γ f n ) h H -1/2 (Γ f n ) d . (83) 
Now from (83) at the power 2 and Young's inequality, we get:

β 2 b p ε 2 0,Ω ≤ µ m 2 C f K v ε 2 1,Ω f + ε C p K v ε 2 1,Ωp + µ m 4 k m v ε 2 0,Ωp + 1 4 µ m K p β m v εΣ 2 0,Σ + C ρ 2 ∞ f 2 0,Ω + f Σ 2 0,Σ + β 2 ∞ µ 2 1,Ωp + h 2 H -1/2 (Γ f n ) d , (84) 
with some

C(Ω f , Ω p , Σ, Γ f d , Γ p d , Γ f n , K p , µ M , µ m , k m , k ∞ ) > 0.
Then, by summing the inequalities (75) and (84) taking account of (77) and the estimates (78,79), it yields after absorption of some terms in the left-hand side and for all 0 < ε ≤ 1:

µ m 2 C f K v f ε 2 1,Ω f + ε C p K v p ε 2 1,Ωp + µ m 2 k m v p ε 2 0,Ωp + µ m 2 K p β m v εΣ 2 0,Σ + β 2 b 2 p ε 2 0,Ω ≤ C q m 2 0,Ω + ρ 2 ∞ f 2 0,Ω + f Σ 2 0,Σ + β 2 ∞ µ 2 1,Ωp + h 2 H -1/2 (Γ f n ) d , (85) 
with some

C(Ω f , Ω p , Σ, Γ f d , Γ p d , Γ f n , K p , µ M , µ m , β m , k m , k ∞ , β b
) > 0 depending only on the data, which finally proves (74).
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Lemma 5 (Weak limits in the problem (72) with vanishing viscosity). Under the assumptions of Lemma 4, there exists v ∈ V , χ p ∈ L 2 (Ω p ) d×d and p ∈ Q such that, up to a subsequence, the solution sequence (v ε , p ε ) ε>0 ∈ W × Q of the mixed weak problem (72) satisfies the following weak limits when ε → 0:

i) v ε v weakly in V and v f ε → v f strongly in L 2 (Ω f ) d , ii) √ ε ∇v p ε χ p weakly in L 2 (Ω p ) d×d , iii) v p εΣ = v εΣ = v f εΣ v Σ := v f Σ weakly in H 1/2 (Σ) d and strongly in L 2 (Σ) d , iv) v p εΣ • n = v εΣ • n = v f εΣ • n v p Σ • n = v Σ • n = v f Σ • n weakly in H 1/2 (Σ) and strongly in L 2 (Σ), v) p ε
p weakly in L 2 (Ω).

P

. From the uniform bounds in (74) or (85) of Lemma 4, the Hilbert spaces being reflexive, it results the existence of the following weak limits by the Banach-Alaoglu theorem on compact subsets for weak topologies and the compact injections theorem of Rellich (i.e. here the continuous injection [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]Theorems III.15 & III.16] and [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]Theorem IX.16], respectively. More precisely, there exists

H 1 (Ω f ) d → L 2 (Ω f ) d is compact), e.g.
v f ∈ H 1 (Ω f ) d , v p ∈ L 2 (Ω p ) d , χ p ∈ L 2 (Ω p ) d×d , v Σ ∈ L 2 (Σ) d and p ∈ L 2
(Ω) such that the weak limits below hold up to subsequences when ε → 0:

• v f ε v f weakly in H 1 (Ω f ) d and v f ε → v f strongly in L 2 (Ω f ) d , • v p ε v p weakly in L 2 (Ω p ) d , • √ ε ∇v p ε χ p weakly in L 2 (Ω p ) d×d , • v εΣ v Σ weakly in L 2 (Σ) d , • p ε p weakly in L 2 (Ω).
So, the items ii) and v) hold true. This also allows us to define a vector field v ∈ L 2 (Ω) d by its restrictions per subdomain v f ∈ H 1 (Ω f ) d and v p ∈ L 2 (Ω p ) d . Besides with (68) or (72), we have ∇ • v ε = q m , so bounded in L 2 (Ω) independently of ε. Thus, ∇ • v ε has a weak limit in L 2 (Ω) which is nothing else than ∇ • v because the derivation operator is continuous in the sense of distributions and because the limit is unique. Then, it turns out that v belongs to

H div (Ω) with ∇ • v ε ∇ • v weakly in L 2 (Ω).
Moreover with the linear continuous normal trace operator H div (Ω) → H -1/2 (Σ), v ε ∈ W satisfies Green's formula below in Ω p (and similarly in Ω f ):

Ωp v p ε • ∇φ dx + Ωp φ ∇ • v p ε dx = v p εΣ • n, φ -1/2,Σ for all φ ∈ H 1 0,Γ p (Ω p ). ( 86 
)
Passing to the limit in (86) when ε → 0 with the weak limits gives:

Ωp v p • ∇φ dx + Ωp φ ∇ • v p dx = v p Σ • n, φ -1/2,Σ for all φ ∈ H 1 0,Γ p (Ω p ), (87) 
and similarly for v f in Ω f . So, we conclude that

v p εΣ • n v p Σ • n = v Σ
• n by uniqueness of the limit and using Lemma 6, we conclude that

v p Σ • n = v Σ • n = v f Σ • n since v ∈ H div (Ω)
. By proceeding similarly with Green's formula for the trace

v f εΣ ∈ H 1/2 (Σ) d of v f ε ∈ H 1 (Ω f ) d on Σ, we get that: v p εΣ = v εΣ = v f εΣ v Σ := v f Σ weakly in H 1/2 (Σ) d .
Hence from what preceeds, the items iii) and iv) both hold true.

Finally, by doing once again similarly as above with the normal trace v p ε • ν = 0 on Γ p d and the trace v f ε = 0 on Γ f d , we get that these homogeneous boundary conditions are preserved at the limit, i.e.

v p • ν = 0 on Γ p d and v f = 0 on Γ f d , because v p ∈ H div (Ω p ) and v f ∈ H 1 (Ω f ) d .
Therefore with all the previous considerations, it turns out that v belongs to V and that the first item i) finally holds true, which concludes the proof.
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Using the fact that ε ∇v p ε 0 weakly in L 2 (Ω p ) d×d with the item ii), it is an easy matter to show that the weak convergence stated in the above Lemma 5 is actually strong. However, the proof will be left to the reader for the sake of shortness since the strong convergence is not necessary further. Now, since the Hilbert space V defined in (66) satisfies W → V and that the definition of the bilinear form b(., .) given in [START_REF] Girault | DG approximation of coupled Navier-Stokes and Darcy equations by Beavers-Joseph-Saffman Figure B.4: Comparison of streamwise velocity solutions for the Stokes/Darcy and Stokes/Darcy-Brinkman models of the Poiseuille channel flow with H = 100 , δ B = 5 /H, φp = 0.75, Da = 2.29 10 -6 : free-fluid layer with maximum Um = 0.509 at Zm = 0[END_REF] still makes sense in V × Q, let us still denote by b(., .) its continuous extension to V × Q → R. In addition, we define the bilinear form a sd (., .) : V × V → R and extend the linear continuous form (.) to a linear continuous functional V → R with g = 0 (still denoted by (.)) by:

a sd (v, w) := 2 Ω f µ f D(v) : D(w) dx + Ωp µ p K -1 p v • w dx (88) 
+ Σ µ p Σ K p β Σ v f Σ • w f Σ ds, ∀v, w ∈ V , (w) := Ω ρ f • w dx + Σ f Σ • w f Σ ds + h, w -1/2,Γ f n , ∀w ∈ V , (89) 
the linear form g(.) in (31) being unchanged. The above extensions of b(., q) and (.) can be actually extended by continuity using the direct consequence [50, Corollary I.2] of the analytic version of Hahn-Banach's Theorem. Following Lemma 2, it is also an easy matter to show that the bilinear form a sd (., .) is continuous on V × V . Then, the main result of solvability of the variable-viscosity Stokes/Darcy problem can be proved below with no restriction on the size of the data.

Theorem 2 (Solvability of variable-viscosity Stokes/Darcy flow coupled with (21)). Under the assumptions [START_REF] Rivière | Locally conservative coupling of Stokes and Darcy flows[END_REF]73)

, let us consider any data ρ ∈ L ∞ (Ω), µ ∈ M , f ∈ L 2 (Ω) d , q m ∈ L 2 (Ω), f Σ ∈ L 2 (Σ) d , h ∈ H -1/2 (Γ f n ) d ,
any bounded, symmetric and uniformly positive definite tensor K p ∈ L ∞ (Ω p ) d×d and any bounded uniformly positive semi-definite tensor β Σ ∈ L ∞ (Σ) d×d .

Then, there exists at least one solution (v, p) ∈ V × Q to the mixed Petrov-Galerkin weak problem below:

     find a pair (v, p) ∈ V × Q such that: a sd (v, w) + b(w, p) = (w), for all w ∈ W , b(v, q) = g(q), for all q ∈ Q = L 2 (Ω), (90) 
with the definitions (88, [START_REF] Girault | DG approximation of coupled Navier-Stokes and Darcy equations by Beavers-Joseph-Saffman Figure B.4: Comparison of streamwise velocity solutions for the Stokes/Darcy and Stokes/Darcy-Brinkman models of the Poiseuille channel flow with H = 100 , δ B = 5 /H, φp = 0.75, Da = 2.29 10 -6 : free-fluid layer with maximum Um = 0.509 at Zm = 0[END_REF]89,[START_REF] Ervin | Coupled generalized nonlinear Stokes flow with flow through a porous medium[END_REF]. Moreover, this solution (v, p) ∈ V × Q also solves the Stokes/Darcy fluid-porous flow [START_REF] Layton | Coupling fluid flow with porous media flow[END_REF][START_REF] Iliev | On numerical simulation of flow through oil filters[END_REF][START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF][START_REF] Jäger | On the interface boundary condition of Beavers & Joseph and Saffman[END_REF] coupled with the modified stress jump interface conditions [START_REF] Mardal | A robust finite element method for Darcy-Stokes flow[END_REF] on Σ. Therefore, the regularity of the data in the Darcy equation [START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF] implies that ∇p p ∈ L 2 (Ω p ) d and thus p p ∈ H 1 (Ω p ) and since g = 0 on Γ p n , we have finally with [START_REF] Iliev | On numerical simulation of flow through oil filters[END_REF]:

p p ∈ H 1 0,Γ p n (Ω p ). P
. Using the results of Lemma 5, it suffices to pass to the limit when ε → 0 in the two linear equations of the weak problem (72), where only the weak limit of (v ε , p ε ) is required, by noticing that:

lim ε→0 a ε (v ε , w) = a sd (v, w) for all w ∈ W , (91) 
since √ ε v p ε remains bounded independently of ε and thus √ ε ∇v p ε χ p and ε ∇v p ε 0 weakly in L 2 (Ω p ) d×d . Hence, it turns out that the limit (v, p) ∈ V × Q of (v ε , p ε ) solves the mixed weak problem (90).

Then, by adapting the proof of Lemma 1 made for v ∈ W to the present case with v ∈ V , it results the equivalence between the mixed weak problem (90) and the Stokes/Darcy flow [START_REF] Layton | Coupling fluid flow with porous media flow[END_REF][START_REF] Iliev | On numerical simulation of flow through oil filters[END_REF][START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF][START_REF] Jäger | On the interface boundary condition of Beavers & Joseph and Saffman[END_REF] coupled with the modified stress jump interface conditions (21) on Σ, assuming existence of solutions (v, p) ∈ V × Q. Therefore, that ends the proof.
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Remark 2 (On the continuity of the tangential velocity in (20) on Σ). It stems from Theorem 2 that any solution (v, p) ∈ V × Q of the Stokes/Darcy problem (90) satisfies the modified stress jump interface conditions [START_REF] Mardal | A robust finite element method for Darcy-Stokes flow[END_REF], thus with continuity of the normal velocity on Σ. Indeed, without any more regularity for the velocity field v p in Ω p , it is not allowed to argue that v∧ n Σ := v f ∧ n Σ ∈ H 1/2 (Σ) d is the trace of the tangential component of v p on Σ. However, as soon as the regularity of the Darcy problem 10 is sufficient to define the latter tangential trace v p ∧ n Σ on Σ (in addition to the normal trace v p • n Σ ), at least in a weak sense, e.g. with

v p ∧ n Σ ∈ H -1/2 (Σ) d if v p ∈ H q rot (Ω p ) := {u ∈ L 2 (Ω p ) d ; ∇ × u ∈ L q (Ω p ) d , 1 ≤ q ≤ 2} by density of the continuous imbedding H 1 (Ω p ) d → H q rot (Ω p ), then the results of Lemma 5 ensure the velocity continuity v p Σ = v Σ = v f Σ ∈ H 1/2 ( 
Σ) d (by uniqueness of the limit) and the original interface conditions [START_REF] Jäger | Modelling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF] are satisfied on Σ.

Corollary 2 (Equivalent problem to (90) and uniqueness of the solution).

Under the assumptions of Theorem 2, any solution (v, p) ∈ V × Q of (90) also solves the following mixed problem and obviously vice versa since W → V :

     find a pair (v, p) ∈ V × Q such that: a sd (v, w) + b(w, p) = (w), for all w ∈ V , b(v, q) = g(q), for all q ∈ Q = L 2 (Ω), (92) 
with the definitions (88, [START_REF] Girault | DG approximation of coupled Navier-Stokes and Darcy equations by Beavers-Joseph-Saffman Figure B.4: Comparison of streamwise velocity solutions for the Stokes/Darcy and Stokes/Darcy-Brinkman models of the Poiseuille channel flow with H = 100 , δ B = 5 /H, φp = 0.75, Da = 2.29 10 -6 : free-fluid layer with maximum Um = 0.509 at Zm = 0[END_REF]89,[START_REF] Ervin | Coupled generalized nonlinear Stokes flow with flow through a porous medium[END_REF]. Then, the problem (92) has a unique solution (v, p) ∈ V × Q that is thus the solution of the Stokes/Darcy flow [START_REF] Layton | Coupling fluid flow with porous media flow[END_REF][START_REF] Iliev | On numerical simulation of flow through oil filters[END_REF][START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF][START_REF] Jäger | On the interface boundary condition of Beavers & Joseph and Saffman[END_REF] supplemented with the modified stress jump interface conditions [START_REF] Mardal | A robust finite element method for Darcy-Stokes flow[END_REF]. In addition, this solution satisfies the following energy estimate:

v V + p Q ≤ C(α a , β b , a , b ) ( V + q m 0,Ω ) . (93) 
P . Let (v, p) ∈ V × Q be any solution of (90). Since the continuous injection W → V is dense, for all w ∈ V there exists a sequence (w k ) k∈N ⊂ W such that ww k V → 0 when k → +∞. Then using w = w k + (ww k ), we have since (v, p) ∈ V × Q solves (90) and using the continuity properties:

|a sd (v, w) + b(w, p) -(w)| ≤ |a sd (v, w k ) + b(w k , p) -(w k )| + |a sd (v, w -w k )| + |b(w -w k , p)| + | (w -w k )| ≤ ( a sd v V + b p Q + V ) w -w k V → k→∞ 0. (94) 
With (90), the second equation in (92) obviously holds too, and thus (v, p) ∈ V × Q also solves (92). The reciprocal holds true immediately because W → V . Therefore, the weak problems (90) and (92) are equivalent.

Let us now observe that the bilinear and linear forms involved in (92) are continuous. Moreover, it easily results from the proof of Lemma 3 that the bilinear form a sd (., .) is coercive on the Hilbert space V 0 defined in (66) that is the kernel or null space of the form b(., .). Then it results from the theory of abstract mixed weak problem [51, b(w, q) w V ≥ β b q Q , for all q ∈ Q.

Now, it suffices to notice that the construction made in the proof of Theorem 1 to show the inf-sup condition of b(., .) between the spaces W and Q also works here between V and Q because the injection W → V is continuous. Hence, the inf-sup condition (95) also holds and the mixed weak problem (92) has a unique solution that is also the solution (v, p) ∈ V × Q of (90). This concludes the proof. 2

Remark 3 (Concluding observation). It turns out finally that Theorem 2 and its Corollary 2 provide an independent proof of a generalized version of the stationary counterpart of Theorem 5.1 in [START_REF] Angot | Well-posed Stokes/Brinkman and Stokes/Darcy coupling revisited with new jump interface conditions[END_REF]. Indeed, the present analysis is carried out for more suitable fluid-porous configurations where the interface Σ is not a closed surface in view of practical applications and for a different context including more general boundary conditions, a non-zero mass source term and the case of variable-viscosity flow. Moreover, the technique of proof is different: in [START_REF] Angot | Well-posed Stokes/Brinkman and Stokes/Darcy coupling revisited with new jump interface conditions[END_REF], the analysis is made via Leray's weak formulations with divergence-free test functions and recovering the pressure with De Rham's Theorem. Here, the analysis is performed with mixed weak formulations that are thus ready for many numerical discretization methods.

Conclusion

In this study, the well-posed coupling of the Stokes/Darcy fluid-porous flows with variable viscosity is solved using original interface conditions from [START_REF] Angot | Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions[END_REF][START_REF] Angot | An optimal stress jump interface condition for the fluid-porous multidimensional flow[END_REF] where the normal velocity field is continuous at a suitable interface Σ = Σ b inside the porous medium on which an optimal stress jump condition is applied. Moreover, the variable-viscosity Stokes/Darcy-Brinkman flow coupled with velocity continuity and stress jump interface conditions is also proved to be wellposed. The present approach is unusual and not found in the literature because the Stokes and Darcy partial differential equations are not of the same order and thus, almost all authors use ad-hoc extended velocity slip conditions inherited from [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF][START_REF] Saffman | On the boundary condition at the surface of a porous medium[END_REF]. However, the proposed mixed variational framework, and then also the further numerical discretization, is simpler than with Beavers-Joseph's or Beavers-Joseph-Saffman's conditions because no Lagrange multiplier is required at the interface. P . Let us consider any sequence (v k ) k∈N in V that converges to some v ∈ X, i.e. v kv X → 0 when k → +∞. This implies that: v kv H div (Ω) → 0 and v f kv f 1,Ω f → 0. Then, with the continuity of the linear operator of normal trace on Γ p d , we have:

v p k • ν -v p • ν H -1/2 (Γ p d ) ≤ c(Ω p , Γ p d ) v p k -v p H div (Ωp) → 0 when k → +∞. (A.3)
Hence we get that v ∈ X also satisfies v p • ν = 0 on Γ p d because v p k • ν = 0 on Γ p d with v k ∈ V for all k ∈ N. Besides, from the inequality of trace's continuity in H 1 (Ω f ) d , we have since

H 1/2 (Σ) d → H 1/2 (Σ) d : v f k -v f H 1/2 (Σ) d ≤ c(Ω f , Σ) v f k -v f 1,Ω f → 0 when k → +∞, (A.4)
and thus v f k|Σ → v f Σ in H 1/2 (Σ) d . Since we have also v f k = 0 on Γ f d , we get similarly with the trace inequality now applied on Γ f d that v f = 0 on Γ f d . Finally, we have shown that v ∈ V holds and thus V is closed in X which ends the proof.
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Figure 1 :

 1 Figure 1: General configuration of the flow in a fluid-porous domain Ω at a macroscale length L.

  Theorem 4.1 & Corollary 4.1] that the weak problem (92) is well-posed if and only if the bilinear form b(., .) satisfies the inf-sup condition below: sup w∈V ;w =0

Figure B. 2 :

 2 Figure B.2: Comparison of streamwise velocity solutions for the Stokes/Darcy model in the Poiseuille channel flow with H = 100 , δ B = 5 /H, φp = 0.75 and Da = 2.29 10 -6 : general view with Um = 0.509 at Zm = 0.992, U D = Da and all solutions superposed in the free-fluid layer (same caption as in figure B.3).

Figure B. 3 :

 3 Figure B.3: Comparison of streamwise velocity solutions for the Stokes/Darcy model of the Poiseuille channel flow with H = 100 , δ B = 5 /H, φp = 0.75, Da = 2.29 10 -6 : free-fluid layer with maximum Um = 0.509 at Zm = 0.992 -interfacial viscous boundary layer with U D = Da = 2.29 10 -6 , Us = 1.7254 10 -2 and δ * = 1.7251 10 -2 .

  

  (∂Ω f ) is continuous and surjective with [51, Theorem 2.5 and Corollary 2.8] (and similarly on ∂Ω p ). The same result

1 

Without any more precision, c > 0 or C > 0 will denote a positive generic quantity depending only of the data.

The upper or lower index of ψ f Σ , ψ p Σ will be sometimes omitted when there is no possible confusion.

Proposition 2 (Hilbert space V in (66)). The vector space V endowed with the inner product (., .) V naturally associated with the norm . V (inherited from . X ) defined in (67) is a Hilbert space as a closed subspace of X.

Appendix A. Auxiliary results

Lemma 6 (Equivalence of normal velocity continuity on

P

. By the normal trace theorem [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF]Theorem 2.5] in H div (Ω f ) or H div (Ω p ), v f or v p admits a normal trace v f • ν ∈ H -1/2 (∂Ω f ) on ∂Ω f or v p • ν ∈ H -1/2 (∂Ω p ) on ∂Ω p , respectively. Besides from Section 2.1, we have on Σ:

Then for all φ ∈ H 1 0 (Ω), using successively Green's formula in Ω, Ω f and Ω p , we get:

where ., . -1/2,Σ denotes the duality pairing between H -1/2 (Σ) and H 1/2 (Σ). Now, let us observe that any function ψ ∈ H 1/2 (Σ) := H 1/2 00 (Σ) → H 1/2 (Σ) can be extended in Ω by a function φ ∈ H 1 0 (Ω). Indeed, it suffices to take the solution φ ∈ H 1 0 (Ω) to the Dirichlet transmission problem below:

which states that the linear trace operator H 1 0 (Ω) → H 1/2 (Σ) is surjective. Then, the previous equality A. [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF] gives the desired equivalence result.
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Proposition 1 (Hilbert space X in (66)). The vector space X endowed with the inner product (., .) X naturally associated with the pre-Hilbertian norm . X defined in ( 67) is a Hilbert space.

P . Let us consider any Cauchy sequence

Hence, we conclude that the Cauchy sequence (u k ) converges to u ∈ X and the space X is complete.

Appendix B. Pressure-driven Poiseuille fluid-porous channel flow

The benchmark problem of pressure-driven 1-D Poiseuille channel flow through a free-fluid layer of height 2H superposed over a semi-infinite isotropic homogeneous porous one is studied with: f = 0, q m = 0, f Σ = 0 and a no-slip velocity condition at the upper wall (at z = 2H). The reference solution of the single-domain continuum model is governed by the generalized Darcy-Brinkman equations with porosity smoothly varying in the viscous boundary layer (see [START_REF] Ochoa-Tapia | Momentum transfer at the boundary between a porous medium and a homogeneous fluid I: theoretical development[END_REF][START_REF] Whitaker | The Method of Volume Averaging[END_REF][START_REF] Angot | Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows[END_REF][START_REF] Hernandez-Rodriguez | Average velocity profile between a fluid layer and a porous medium: Brinkman boundary layer[END_REF][START_REF] Angot | Asymptotic study for Stokes-Brinkman model with jump embedded transmission conditions[END_REF]) from φ = 1 (pure fluid) on Σ t at z = 0 to φ = φ p in the porous bulk. The permeability profile is given by the porosity-permeability correlation K(φ) of Kozeny-Carman that has been calibrated for many random packed beds of spherical grains of variable sizes [START_REF] Dullien | Porous Media: Fluid Transport and Pore Structure, 2nd Edition[END_REF]. So, the reference solution is computed by a second-order accurate (in the L 2 -norm) finite-volume method. We refer to [START_REF] Angot | An optimal stress jump interface condition for the fluid-porous multidimensional flow[END_REF] for more details. Then, the Beavers-Joseph's velocity slip condition (1) at Σ t (Z := z/H = 0) [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF] and the optimal stress jump condition [START_REF] Jäger | Modelling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF] at Σ b (Z = -δ * ) [START_REF] Angot | Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions[END_REF] are calibrated in a dimensionless setting (L = H being the macroscale length) using the reference slip fluid velocity U s := u s /V on Σ t and the Darcy filtration velocity U D := u D /V = Da. The analytical calibration with U (Z = 2) = 0 yields: B. [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF]. This shows that the optimal stress condition (20) largely outperforms Beavers-Joseph's one [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF]. Moreover, it is remarkable that the reduced friction coefficient satisfies: β Σ √ Da ≈ 1 when H is large enough such that 2δ * -U s 2, here H = 100 (often far more in practice). In addition, the comparison with the Stokes/Darcy-Brinkman model coupled with (1) at Σ t (Z := z/H = 0) or with the optimal stress jump condition [START_REF] Jäger | Modelling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF] at Σ b (Z = -δ ) is shown in Figure B.4 (zoom in the viscous boundary layer). For this porosity φ p = 0.75, the former gives a relative loss of flow rate er bl = 98.1 % whereas the latter yields er bl = 8.88 % and is thus the best solution. The increase of performance between the Stokes/Darcy-Brinkman and Stokes/Darcy models is clearly better for larger porosities φ p ≥ 0.85; see [START_REF] Angot | An optimal stress jump interface condition for the fluid-porous multidimensional flow[END_REF].