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Abstract—The integration of early formal validation and
verification (V&V) tools (model checking, static analysis, etc.)
in the V&V activities for domain-specific modeling languages
(DSMLs) is a key asset to improve safety and reduce development
and maintenance costs. However, system designers (DSMLs end-
users) expect a seamless approach embedding transparently these
tools in automated toolchains while enjoying their benefits. Thus,
a mandatory task for DSML designer is to feedback at the
DSML level the verification results generated by these tools.
This contribution highlights a domain-specific language (DSL)
to describe this feedback and the associated tools that helps the
DSML designer in integrating the V&V tools. A translational
semantics is given — as a higher-order transformation — for this
DSL in order to automatically generate a model transformation
which builds verification results at the DSML level from the ones
produced at the formal level.

I. INTRODUCTION

Domain Specific Modeling Languages (DSMLs) are in-
creasingly used at the early phases of the development of
complex systems, in particular, for safety critical systems. The
goal is to be able to conduct early verification and validation
(V&V) activities to fulfill the associated safety objectives and
to reduce the development costs. A widely used technique is
model checking that conduct the exhaustive model behavior
exploration. It relies on translational semantics to build formal
models from DSML ones in order to reuse powerful tools
available in the formal domain.

We contributed to MoDELS 2013 [23] a model-based
method to integrate formal verification for a DSML composed
of three parts: 1) a language to express behavioral properties
for DSML models, 2) a translational semantics to map con-
structs of the DSML to a formal language, 3) an automated
translation of the behavioral properties to the formal language
properties. The model checkers defined for the formal models
can then be used to assess the expected DSML properties
and synthesize counter-examples. The proposal was illustrated
with the verification of software processes modelled using the
SPEM (Software & Systems Process Engineering Metamodel)
modeling language [19] with model-checkers for the FIACRE
formal language [2]. Its generality has been validated using
other DSMLs like Ladder Diagram (LD) and AADL and other
formal languages like Timed Petri Net [21].

Its main drawback is that verification results are obtained at
the formal language level. For V&V to be more broadly used
by system designers, these formal results have to be leveraged

to the DSML level. The challenge is to provide a seamless
and transparent integration in an automated tool chain so that
system designers can benefits from their power.

Several works have tried to ease the feedback of verification
results at the design level but usually these ones are mostly
ad-hoc as they rely on the implementation of the translational
semantics [14], [15] or are specific to a couple of languages
(DSML-formal language) [1]. In previous work [23], we
used traceability data and an ad-hoc model transformation to
feedback the verification results to the DSML level. However,
this was too complex and low level task for the usual DSML
designer. These ones should be able to rely on a method and
associated tools mostly independent from the DSMLs, formal
languages and implementation technologies.

Our contribution provides a domain-specific language
(DSL), named FEVEREL (Feedback Verification Results Lan-
guage) to model the feedback of the formal level verification
results to the DSML one. It relies on the Executable DSML
pattern [6] which reifies the concerns involved in the defini-
tion of DSML semantics. Verification results are traces that
combines executed events and intermediate model dynamic
states that must both be translated from the formal world to
the DSML one.

This paper is organized as follows. Section II gives an
overview of our method to integrate the formal verification
activity for a DSML. Section III details our proposal to
leverage verification results and the associated DSL and tools.
Section V gives some related work in the domain of user level
verification results. Finally, we conclude and present future
works in Section VI.

II. OVERVIEW OF THE APPROACH

Feedback of verification results is done in the context
of the definition of a formal verifier for a DSML. In this
section, we summarize our method for integrating model-
checking for a new DSML (Figure 1) [23]. It relies on a
translational semantics from the DSML to a formal language
that provides appropriate model checking tools. The main
objective is to provide the DSML designers with tools that
ease this integration.

The starting point is the abstract syntax (or metamodel) of
the DSML and its concrete syntaxes. The main requirements
to perform formal verification activities are to:
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Figure 1. Architecture of a SPEM verifier using FIACRE as a formal language

1) empower the DSML end-users with a language to
express the behavioral properties they want to assess
on their models. At the language level, we rely on the
temporal extension of OCL called TOCL [24].

2) automatically translate the models and properties to the
formal verification domain. The translational semantics
must be provided by the DSML designer as well as
insights on the properties translation.

3) feedback the verification results from the formal domain
to the DSML domain. This aspect, the focus of this
paper, will be presented in the next section.

In order to fulfill these requirements, we explicitly state
concerns that are usually not present in the DSML metamodel.
These ones include runtime data and the ability to represent
execution scenarios. If formal verification fails, a counter
example is usually provided that must be presented to the
DSML designer as a scenario composed of the steps that lead
to the unwanted state in the model.

A. The SPEM case study

To illustrate the application of this method, we take as
running example the XSPEM [19]: an executable extension
of the SPEM process modeling language. As shown at the
bottom of Figure 3, a SPEM Process is composed of activi-
ties (WorkDefinition) performed during the process, resources
(Resource) required to run activities (Parameter) and tem-
poral dependencies (causality constraints) between activities
(WorkSequence). The linkType attribute from WorkSequence
specifies the kind of dependency between the source and
target activities. It follows the stateToAction pattern: the source
activity must have reached the state (started or finished)
to allow the action (start or finish) on the target activity:
startToFinish means that the target activity can only finish
when the source activity has been started. Figure 2 gives
an example composed of four activities drawn with ellipses:
Programming, Designing, Test case writing and Documenting.

The “finishToStart” dependency between Designing and
Programming means that this one can only be started when
Designing has been finished. Documenting and TestCaseWrit-
ing can start once Designing is started (startToStart) and
Documenting cannot finish if Designing is not finished (fin-
ishToFinish). The dependencies between Programming and
TestCaseWriting enforce a test driven development: Program-
ming can only start when TestCaseWriting has started and,
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Figure 2. A SPEM development process

obviously, TestCaseWriting can only be finished when Pro-
gramming is finished.

Rounded rectangles represent resources with their amounts
(2 Designers, 3 Developers and 3 Computers). Dashed arrows
indicate how many occurrences of a resource an activity
requires. On Figure 2, Programming needs two developers and
two computers. Resources are allocated when an activity starts
and freed when it finishes.

B. Expliciting verification concerns for a DSML

Model executability is a key feature to introduce behavioral
V&V for DSMLs. It specifies how the model evolves over
time. Defining the DSML execution semantics requires ex-
tending its metamodel with concepts that capture the additional
dynamic data that represent the execution. In this purpose, we
use the Executable DSML pattern proposed in [6] that defines
and structures the concerns required to make a DSML exe-
cutable. Figure 3 applies this pattern on the SPEM example.

The original metamodel is called the DDMM (Domain
Definition MetaModel), bottom of Figure 3. It is extended
with three other metamodels. The first one specifies stimuli
modeled as events that triggers the model evolutions. Start
a WorkDefinition, Finish a WorkDefinition or Fire a WorkSe-
quence are examples of XSPEM events. This first extension is
called the EDMM (Event Definition MetaModel), top left of
Figure 3. The second one models a scenario (either an input
scenario or the trace of a particular execution) as a sequence
of event occurrences. It is called TM3 (Trace Management
MetaModel), top middle of Figure 3. TM3 is generic as it only
relies on the abstract Event concept common to all DSML.
These two extensions allow to build a DSML scenario as a
sequence of DSML events. The third one specifies the runtime
data that model the state of the model at runtime and that are
not part of the DDMM. This extension is called SDMM (State
Definition MetaModel), middle of Figure 3. On the XSPEM
example, the SDMM includes the work definition progress
state which can be not started, running or finished.

The Executable DSML pattern provides the different con-
cerns for graphical model animation since SDMM and
EDMM introduce the data that represents the execution
semantics [8]. But it lacks a more abstract definition for
a model state needed to write behavioral requirements. We
proposed in [23] another metamodel extension to ease behav-
ioral properties writing and favor a Property-Driven Approach



QDMM

<<import>>

DDMM

EDMM

SPEMEvent

WorkDefinitionEvent

StartWD FinishWD

TM3

Scenario

Trace
name : String
date : Int
Internal : Boolean

RuntimeEvent

startToStart
startToFinish
finishToStart
finishToFinish

<<enumeration>>
WSType

name: String
minTime : Int
maxTime : Int

Process

name : String
minTime : Int
maxTime : Int

WorkDefinition
linkType : WSType

WorkSequence

 
 

Parameter

 

name : String
count : Int

Resource

0 .. * workDefinitions

1 successor

0 .. *  workSequences

1 predecessor linkToSuccessor 0 .. *
linkToPredecessor 0 .. *

0..* parameters

1 workDefinition

1  ressource 0..*  ressources

0 .. * 
traces

0..*
   runtimeEvents

1   workDefinition

SDMM

state: ExecutionState
WorkDefinition

notStarted
running
finished

<<enumeration>>
ExecutionState

0..*   
dynamic_wds

<<merge>>

<<merge>>

WorkSequenceEvent

FireWS

1   workSequence

<<merge>>

isFinished()
 

Process

isStarted()
isFinished()

 
WorkDefinition

<<implement>>
<<merge>>

Figure 3. The Executable DSML pattern applied into the SPEM metamodel

as defined in [5] and experimented in [12]. This approach
defines an abstract dynamic semantics as properties expressed
at the metamodel level. This last extension allows to capture
different queries that can be asked on DSML conforming
models during their execution. It is called the Query Definition
MetaModel (QDMM). On Figure 3, two queries are defined
on WorkDefinition. They are used to check if an activity
has started or finished. The QDMM is a kind of abstract
view of the SDMM. SDMM may be seen as a way to
implement the QDMM by choosing a set of attributes (like a
Java class implements a Java interface). As an example, the
queries isFinished() and isStarted() of WorkDefinition can be
implemented thanks to the attribute state defined in SDMM:
isFinished() is equivalent to (state = #finished) and isStarted()
to (state = #running) or (state = #finished).

C. Translational semantics and related elements

In our example, the translational semantics defines a map-
ping from the SPEM DSML to FIACRE. FIACRE is a formal
specification language to represent both the behavioral and
timing aspects of real-time systems [2]. The FIACRE language
is composed of two syntactical constructs, processes and
components. A process describes the behavior of sequential
components. It is defined by a set of control states, each
associated with an expression that specifies state transitions. A
component describes the composition of processes, possibly in
a hierarchical manner. It is defined as a parallel composition of
components and processes communicating through ports and
shared variables. Here is some rationale behind the SPEM to
FIACRE mapping illustrated with elements from the FIACRE
model corresponding to the SPEM example from Figure 2.

Each work definition is translated to one FIACRE process
with the same name. This process is composed of three states
(notStarted, running and finished) and two transitions (from
notStarted to running and from running to finished). Transition
between the states are derived from the work sequences and
thus depends on the state of the predecessor work definition.

Thus, it is necessary to store the current states of different
work definitions.

Based on the XSPEM QDMM, a FIACRE type called
WDQueries is defined that represents the two queries on
WorkDefinition of interest for the XSPEM end-user and to
express causality constraints. It is a record type composed of
the two boolean fields isStarted and isFinished.
WDsQueries defines an array of WDQueries storing the

state of all work definitions of an XSPEM process. It is a
parameter for every work definition process used to implement
dependencies as a FIACRE process cannot inspect the current
state of other processes.

type WDQueries is record // from QDMM
isStarted : bool ,
isFinished : bool

end

type WDsQueries is array 4 of WDQueries end

Named constants are defined to ease the reading of the
FIACRE model by avoiding the use of meaningless integers
to encode a work definition.

const DesigningWD : int is 0
const ProgrammingWD : int is 1
const DocumentingWD : int is 2
const TestCaseWritingWD : int is 3

The WDsQueries variable is updated when a transition
from a work definition process is fired. For example, on the
transition from the notStarted state to the running state, the
isStarted variable is set to true.

Furthermore, one work definition can only be started when
the required resources are available. As for work definitions,
we have modeled resources queries as an array. Array elements
are integers as there is only one query on Resource meta-class.
RessourceTab defines an array of integer storing the

available count of each resource.
type RessourceTab is array 3 of int

As for work definitions, named constants are defined to ease
resource identification.
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const DesignerR : int is 0
const DeveloperR : int is 1
const ComputerR : int is 2

XSPEM causality constraints are mapped as a FIACRE con-
ditional statement that checks whether the FIACRE processes
corresponding to the previous work definitions have reached
the expected states.

For example, the startToStart constraint between Designing
and Documenting, leads to a conditional statement that checks
whether work definition Designing is started. It also verifies
whether the required amount for each required resource is
available to run this work definition. If the condition evaluates
to false, nothing happens else the current state becomes
running, the state of this work definition is updated, and the
available resources are decreased. The following process is the
translation of the Programming work definition in FIACRE.

process Programming(&WorkDefinition: ProcessWDQueries,
&Ressource: RessourceTab) is

states notStarted , running , finished
from notStarted

if ( WorkDefinition[$(DesigningWD)].isFinished and
WorkDefinition[$(TestCaseWritingWD)]. isStarted and
Ressource[$(DeveloperR)]>=2 and
Ressource[$(ComputerR)]>=2 )
then
Ressource[$(DeveloperR)] := Ressource[$(DeveloperR)] − 2;
Ressource[$(ComputerR)] := Ressource[$(ComputerR)] −2;
WorkDefinition[$(ProgrammingWD)].isStarted:= true;

to running
else

loop
end if

from running
WorkDefinition[$(ProgrammingWD)].isFinished:= true;
Ressource[$(DeveloperR)] := Ressource[$(DeveloperR)] + 2;
Ressource[$(ComputerR)] := Ressource[$(ComputerR)] +2;
to finished

The FIACRE Main component instantiates one FIACRE
process for each work definition in the XSPEM process (here
four processes for Designing, Programming, Documenting and
TestCaseWriting) with the arrays that store work definitions’
states (initially all work definitions are not started and not
finished) and resources available amounts.

component Main is
var
WorkDefinition : ProcessWDQueries :=
[{ isStarted =false , isFinished =false},
{ isStarted =false , isFinished =false},
{ isStarted =false , isFinished =false},
{ isStarted =false , isFinished =false }],

Ressource : RessourceTab := [2,3,4]
par

Designing (&WorkDefinition,&Ressource)
|| Programming (&WorkDefinition,&Ressource)
|| Documenting (&WorkDefinition,&Ressource)
|| TestCaseWriting (&WorkDefinition,&Ressource)
end

This translational semantics is defined as a model-to-model
(M2M) transformation expressed in ATL [16]. Once it is
defined, the DSML designer implements the primitive queries
based on the formal elements created by the translational
semantics. These queries guide the automated generation of
behavioral properties in the formal domain with a higher order
transformation. The following list first gives two properties
expressed in TOCL and the result of the translation of the
first one in FIACRE.

1 context SPEM!Process inv willNeverFinish: always not self.isFinished()
2 context SPEM!Process inv willEventuallyFinish: eventually self.isFinished()

property willNeverFinish is ltl
([] ( not (Main/1/value WorkDefinition[$(DesigningWD)].isFinished
and Main/1/value WorkDefinition[$(ProgrammingWD)].isFinished
and Main/1/value WorkDefinition[$(DocumentingWD)].isFinished
and Main/1/value WorkDefinition[$(TestCaseWritingWD)].isFinished )))

D. Formal verification process

Formal verification can be performed once the full FIACRE
model has been generated by the translational semantics
including the properties generation. The model-checker of
the TINA toolbox[3] (SELT) performs the formal verification
relying on a translation to Time Petri Nets and produces ver-
ification results in this low-level formal language. In [22], we
have proceeded to feedback verification results from the formal
low-level, to the formal intermediate language, FIACRE, using
the traceability data generated during the translation to Time
Petri Nets and the use of the Executable DSML pattern on the
FIACRE metamodel.

As shown in Figure 4, in FIACRE, we can capture events [9]
related to a state (StateEvent): an instance of a process enter-
ing (EnterEvent) or leaving a state (ExitEvent), a variable
changing value (V ariableEvent), a communication through a
port (PortEvent). The FIACRE SDMM captures the current
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value of a FIACRE variable (V ariableDeclaration) and the
current state of a FIACRE instance (InstanceDeclaration).

The verification output is a trace given as a sequence of
FIACRE events (instances of EDMM elements) and states
(instances of SDMM elements) during its execution. The
following listing gives the first steps of such traces. It shows
how a FIACRE model evolves during time. At first, the
initial state (lines 1-6) corresponds to the current state of
the WorkDefinition variable. Then, an EnterEvent in the
running state of the model first instance is triggered (line
8). It triggers the model evolution and, consequently, the
corresponding isStarted field is updated (line 12) in the next
state (lines 10-15).

1 state 0:
2 WorkDefinition =
3 [{ isStarted =false , isFinished =false},
4 { isStarted =false , isFinished =false},
5 { isStarted =false , isFinished =false},
6 { isStarted =false , isFinished =false}]
7

8 event : EnterEvent {path: Main/1, state : running}
9

10 state 1:
11 WorkDefinition =
12 [{ isStarted =true, isFinished =false},
13 { isStarted =false , isFinished =false},
14 { isStarted =false , isFinished =false},
15 { isStarted =false , isFinished =false}]
16 ...

This step must provide the verification results for the DSML
end-user in an appropriate format that corresponds to his
knowledge.

III. FEEDBACK VERIFICATION RESULTS LANGUAGE

This section introduces our proposal to ease for the DSML
designer the implementation of the verification result feedback
from the formal level to the DSML level. It relies on a DSL:
the Feedback Verification Results Language (FEVEREL) and
associated tools. We first motivate the use of a DSL and then
illustrate its use on the XSPEM example. Finally, we discuss
adopted patterns to implement this DSL and detail parts of its
implementation.

A. Motivations

A key task for ensuring efficient V&V experience for
DSMLs end-users is to provide easy to understand verification
results extracted from low level formal model checking tools.
The DSML designer must provide the service that generates
a model execution trace at the DSML level.

Currently, the DSML designer can implement a M2M
transformation which imports the formal verification results
and produces the DSML ones. But, this can be costly and
difficult to maintain as the mapping between runtime concerns
(events and states) of both domains can be complex. We
propose to provide the DSML designer with a DSL to model
the feedback of verification results, and tools to automatically
generate these transformations.

Figure 5 shows our vision to transparently empower a
DSML with formal verification activity. We target a separation
of concerns for the DSML designer (the translational seman-
tics, the properties generation and the feedback of verification
results). The implementation of each element in the DSML
integrated verification toolchain is assisted by a specific tool.
The initial step consists in defining concerns for the executable
DSML (left side). It includes the abstract syntax (DDMM),
the concerns from the Executable DSML pattern (TM3 and
SDMM), and the queries (QDMM) used to express behavioral
properties. The Executable DSML pattern is also applied on
the formal domain (right side). The DSML designer is then
able to define both the translational semantics and the primitive
queries (the green box) for the domain model and properties
to be automatically translated to the formal level. The last
point is to get back verification results generated in the formal
domain (the second blue box), the DSML designer has to
define mappings between DSML runtime concerns modeled at
the DSML level (EDMM and SDMM) and the corresponding
elements in the formal domain.

B. FEVEREL applied on the XSPEM case-study

FEVEREL is a DSL for a DSML designer to ease the
implementation of verification results feedback tools. It allows
to define how the DSML runtime information (events and
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states) can be observed at the formal level. The architec-
ture of FEVEREL is shown in Figure 6. The entry-point
is a FEVEREL model defined by the DSML designer. A
FEVEREL Xtext editor serves as an interface to ease the
DSML designer task.

Based on the DSML metamodel, the formal language
metamodel and their behavioral extension metamodels, the
DSML designer defines the mappings between DSML run-
time information defined in the EDMM and the SDMM of
the DSML and their corresponding elements in the formal
domain (FEVEREL model in Figure 6).

We illustrate the syntax and semantics of FEVEREL with
the XSPEM case-study. We rely on the application of the Exe-
cutable DSML pattern on XSPEM (Figure 3) and on FIACRE
metamodels (Figure 4) and on the translational semantics
proposed in the subsection II-C.

Listing 1 shows a FEVEREL model defined for the XSPEM
running example. It first imports the concerned DSML meta-
models (lines 1-2). DSMLMM represents this metamodel.
DSMLBEMM extends the first metamodel with the application
of the Executable DSML pattern. Then, we import formal
language metamodels. FormalMM is the abstract syntax of
the formal language metamodel, and FormalBEMM is the
behavioral extension applied on the FormalMM (lines 3-4).

The FEVEREL model contains mappings (Mapping). Two
kinds of mappings can be defined: events mappings (EMap-
ping) and states mappings (SMapping). A Mapping, character-
ized by an identifier, describes a relation between observable
elements in the DSML domain (DSMLStream) and in the
formal domain (FormalStream). A DSMLStream contains a
sequence of elements (DSMLStreamElement) which allow to
structure an observation in the DSML. Currently, a DSML-
StreamElement is only one runtime observation (DSMLRO).
Extensions to more sophisticated runtime observations are part
of future work. A DSMLRO is characterized by an identifier.
It refers to a meta-class in the DSML metamodel or its
behavioral extension. In addition, it defines a set of bindings
(Binding) which specify the initialization of a feature (an
attribute or a reference) of a DSML runtime information
using an expression (body). In the formal domain, as in
the DSML one, a FormalStream contains only one runtime

observation (FormalRO). A FormalRO has an identifier, refers
to a meta-class in the formal language metamodel or its
behavioral extension and contains an OCL expression (body).
The following listing contains three events mappings: swd2ee
(lines 6-21), fwd2ee (lines 23-38) and fws2ee (lines 40-56).
fwd2ee (lines 23-38) is an events mapping (an instance

of EMapping) that captured the FinishWD. It can be
observed when the corresponding FIACRE instance enters
(EnterEvent in line 28) in the finished state (line 29). The
concerned instance is identified according to its index in the
FIACRE component that must corresponds to the index of the
work definition in the SPEM process. FinishWD features
are initialized according to the information observed in the
corresponding EnterEvent (line 25).

In the following listing, three states mappings (instances
of SMapping) are defined: wdnotStarted2vd (lines 58-
69), wdrunning2vd (lines 71-85) and wdfinished2vd (lines
87-98). This last one captures whether a work definition
is finished or not. The DSML designer may refer to the
FIACRE array defined by the translational semantics. He must
identify the shared FIACRE variable that stores the work def-
initions states (line 93) and verify whether the corresponding
isF inished field in the array is True (lines 95-96).

1 import ”http :// spemDDMM/1.0” as DSMLMM
2 import ”http :// spemSemantics/1.0” as DSMLBEMM
3 import ”http :// www.topcased.org/ fiacre / xtext / Fiacre” as FormalMM
4 import ”http :// fiacreSemantics /1.0 ” as FormalBEMM
5

6 events mapping swd2ee:
7

8 DSMLEvent swd: DSMLBEMM.StartWD (
9 date <− ee.date

10 )
11 observed as
12 FormalEvent ee: FormalBEMM.EnterEvent (
13 ee . state .name = ’running’
14 and
15 FormaMMl!Modedatel.allInstances()−>first (). root .body.blocks
16 −>indexOf(ee.path.instances−>first ())
17 =
18 DSMLMM!Process.allInstances()−>first().processElements
19 −>select(e|e.oclIsTypeOf(DSMLMM!WorkDefinition))
20 −>indexOf(swd.workdefinition)
21 )
22 end events mapping
23



24 events mapping fwd2ee:
25

26 DSMLEvent fwd: DSMLBEMM.FinishWD (
27 date <− ee.date
28 )
29 observed as
30 FormalEvent ee: FormalBEMM.EnterEvent (
31 ee . state .name = ’ finished ’
32 and
33 FormalMM!Model.allInstances()−>first(). root .body.blocks
34 −>indexOf(ee.path.instances−>first ())
35 =
36 DSMLMM!Process.allInstances()−>first().processElements
37 −>select(e|e.oclIsTypeOf(DSMLMM!WorkDefinition))
38 −>indexOf(fwd.workdefinition)
39 )
40 end events mapping
41

42 events mapping fws2ee:
43

44 DSMLEvent fws:DSMLBEMM.FireWS (
45 date <− ee.date
46 )
47 observed as
48 FormalEvent ee: FormalBEMM.EnterEvent (
49 self . state .name =
50 if (fws.worksequence.linkType=# startToStart
51 or fws.worksequence.linkType =# startToFinish )
52 then
53 ’Running’
54 else
55 ’ finished ’
56 endif
57 and
58 self . instance . instance .component.name
59 =
60 fws.worksequence.predecessor .name
61 )
62 end events mapping
63

64 states mapping wdnotStarted2vd:
65

66 DSMLState wd:DSMLMM.WorkDefinition (
67 state <− #notStarted
68 )
69 observed as
70 FormalState vd: FormalMM.VariableDeclaration (
71 vd.name= ’WorkDefinition’
72 and
73 vd.value . values−>at(wd.getIndex()). fields
74 −>at(0).value.oclIsTypeOf(FormalMM!FalseLiteral)
75 )
76 end states mapping
77

78 states mapping wdrunning2vd:
79

80 DSMLState wd:DSMLMM.WorkDefinition (
81 state <− #running
82 )
83 observed as
84 FormalState vd: FormalMM.VariableDeclaration (
85 vd.name= ’WorkDefinition’
86 and
87 vd.value . values−>at(wd.getIndex()). fields
88 −>at(0).value.oclIsTypeOf(FormalMM!TrueLiteral)
89 and
90 vd.value . values−>at(wd.getIndex()). fields
91 −>at(1).currentValue .oclIsTypeOf(FormalMM!FalseLiteral)
92 )
93 end states mapping
94

95 states mapping wdfinished2vd:
96

97 DSMLState wd:DSMLMM.WorkDefinition (

98 state <− #finished
99 )

100 observed as
101 FormalState vd: FormalMM.VariableDeclaration (
102 vd.name= ’WorkDefinition’
103 and
104 vd.value . values−>at(wd.getIndex()). fields
105 −>at(1).currentValue .oclIsTypeOf(FormalMM!TrueLiteral)
106 )
107 end states mapping

Listing 1. SPEM/FIACRE FEVEREL mappings

The use of FEVEREL bestows the DSML designer with a
structured specification of how verification results should be
brought back to the DSML level. Based on the translational
semantics and both extensions, he models a mapping using
OCL to identify which formal events corresponds to DSML
ones. Then, the M2M transformation (FormalVR2DSMLVR
from Figure 6) is automatically generated. This transformation
translates verification results (FormalVR in Figure 6) generated
by model checking tools into DSML verification results easier
to understand by the DSML end-user.

For the XSPEM example, once the formal verification pro-
cess is performed, the toolchain generates verification results
at the XSPEM level as shown below.

1 state : Designing notStarted Documenting notStarted
2 Programming notStarted TestCaseWriting notStarted
3 event : StartWD Designing
4 state : Designing running Documenting notStarted
5 Programming notStarted TestCaseWriting notStarted
6 event : FinishWD Designing
7 state : Designing finished Documenting notStarted
8 Programming notStarted TestCaseWriting notStarted
9 event : StartWD Documenting

10 state : Designing finished Documenting running
11 Programming notStarted TestCaseWriting notStarted
12 event : FinishWD Documenting
13 state : Designing finished Documenting finished
14 Programming notStarted TestCaseWriting notStarted
15 event : StartWD TestCaseWriting
16 state : Designing finished Documenting finished
17 Programming notStarted TestCaseWriting running

This process shows that the second behavioral property
willEventuallyF inish does not hold as a deadlock prevents
the XSPEM process to finish. After analyzing these results, the
XSPEM end-user should understand that the XSPEM process
cannot finish because a Computer is missing.

With an additional Computer, the first property fails and
the second property holds. For the first one, the XSPEM
verification toolchain produces a terminating scenario where
the process and all the activities finishes.

Thanks to this architecture, the DSML designer obtains a
suitable tool to define mapping between runtime information.
He does not have to deal with technical aspects of the model
transformation. The DSML designer focuses on the modeling
of how a DSML behavioral element can be observed in the
formal domain relying on the behavioral extensions of both
domains and the defined translational semantics which maps
the abstract syntax of the DSML into the formal ones.

C. Implementation of FEVEREL

A DSL design should be suitable for its end user, that is cor-
responds to his knowledge and abilities. Designing a new DSL



is one of the main challenges of modern software engineering
as it is an error-prone and time consuming task [17]. Thus, it is
mandatory to adopt DSL design strategies to ease that process.
[20] introduces eight DSL design patterns in that purpose.
The design of FEVEREL relies on two patterns: piggyback
and source to source transformation. The first one uses an
existing language as a host for the new DSL. This one can
be a general-purpose language which offers standardization
and expressiveness and makes it more user-friendly. The DSL
then share common syntactical elements such as expression
handling, operations, arithmetic and logic operators, etc. The
second one allows an efficient implementation of the DSL by
leveraging the facilities provided by existing tools for other
languages. The DSL source code is translated to the source
code of existing languages and then existing tools are used
to host the generated code. For the DSML designer, the new
tool must be user-friendly, close in syntax and semantics to
his skills and capabilities like metamodeling with ECORE,
expressing constraints with OCL.

Figure 7 shows the implementation of the FEVEREL lan-
guage. It implements the piggyback pattern with OCL as
base language (the blue dashed arrow). The second part
of the implementation of FEVEREL language concerns the
translation part (the red dashed arrows). The source to source
transformation pattern has been used to ease the burden
of implementation. We have chosen the ATL transformation
language as a host language (ATL.ecore) because we aim to
automatically generate an ATL model transformation from
a FEVEREL model. The pattern intersects with an useful
MDE technique: higher-order transformations. The FEVEREL
translation is thus implemented as a higher-order model trans-
formation FeVeReL2ATL using ATL.

Each Mapping is translated in:

1) an ATL helper without parameters whose context is
the super type of all kind of events in the formal
metamodel extensions (EDMM and SDMM). Its return
type corresponds to a set of elements in the DDMM
on which the DSMLRO is instantiated. Its body selects
a subset of all instances of these elements from the
DDMM where the body of FormalRO evaluates to true.

2) a lazy rule whose source pattern is the element in the
DDMM on which the DSMLRO is instantiated and its
different features (features). The target pattern creates
an instance of the DSMLRO (an event or a state) with
different features declared in the source pattern.

The FEVEREL Model is translated to ATL rules whose
source pattern is a formal scenario (an instance of the Scenario
meta-class in the TM3 of the formal language). Its target
pattern is a DSML scenario (an instance of the Scenario meta-
class in the TM3 of the DSML). It aims to produce DSML
verification results from the formal ones. A formal scenario is
iterated using an iterate expression. The iterated variable
which is the current instance that the FormalRO will check, by
calling the helper generated previously, if there are elements in
the DDMM which satisfy the body of the helper. According

to this result, the lazy rule will be called for each element of
the returned subset and with its corresponding features.

We follow the same method used for the translation of
behavioral properties at the DSML level to the formal level
in [23] relying on DSLs and higher order transformations.
The key point is that we help the DSML designer in the
generation of a ”DSML verification framework” for each
DSML. This one is structured by the use of the Executable
DSML pattern. Combining the piggyback and the source to
source transformation patterns shows two advantages. First,
a big part of the transformation is the identity. Indeed, we use
OCL as a base language to implement our DSML and ATL
as a host language to apply source to source transformation
pattern where ATL also relies on OCL. The translation is
thus restricted to a limited number of elements. Second,
often DSMLs evolve and can be extended. So, an eventual
extension of FEVEREL will be easily adopted by a DSML
designer because he only needs to update the semantics with
new domain-specific elements by extending the higher-order
transformation while the OCL part is unchanged.

IV. EVALUATION

This section assesses our proposed DSL from three per-
spectives: design process, expressiveness and effectiveness.

a) Design process: FEVEREL was defined to meet the
DSML designer needs for a dedicated tool that focuses on
the required concepts while hiding most technical details. The
process starts from ad-hoc solutions for distinct examples and
then abstracts the required concepts for the new language.
We first wrote manually the target ATL transformations and
analyzed them to extract the needed concepts to allow their
automatic generation. This analysis concluded that the DSML
behavioral extensions could be used as pivot to handle the
feedback process but that other elements were also needed
to build the feedback. Thus, we defined a specific DSL
to express the mapping between both behavioral extensions.
Consequently, the DSML designer only needs to handle his
DSML concepts without dealing with the implantation details.

b) Expressiveness: FEVEREL requires sophisticated
model querying facilities to select and extract complex data
from the formal analysis results. OCL provides this expres-
siveness commonly used in that purpose in model trans-
formation languages. However, it will only create DSML
verification results, that is sequences of events and model
states. A full model transformation language would be too
expressive on the creation side. Thus, it was defined as a DSL
to limit this aspect. At last, the relations between source and
target in future version of FEVEREL need to express how
the selection of several elements in the source, observed in
such chronological order, will allow to create a structured set
of elements in the target (m to n mappings), which is not
possible easily with all transformation languages. To adapt the
FEVEREL language to this approach, it should be necessary
to choose the appropriate pattern to capture events. Complex
Event Processing (CEP) [4] and the patterns specification



language of Dwyer et al. [10] should be interesting candidates
to do that.

The following listing shows a subset of the generated ATL
model transformation. The first element corresponds to the
entry point rule (lines 1-29) and the two following elements,
the helper and the lazy rule, correspond to the fwd2ee map-
ping (lines 23-38) shown in Listing 1. The helper (lines 31-40)
consists in identifying, based on an observed formal runtime
information, the DSML elements that verify OCL expression
defined in the body of the mapping. Then, after calling this
helper to verify whether a formal runtime information respects
this expression (line 16), the entry-point ATL rule calls the
corresponding lazy rule for each found element (line 20) to
create a DSML runtime information (lines 42-50). So, the
FEVEREL interface allows to hide all model transformation
noises and gives for the DSML designer a more suitable tool
to manage the feedback of verification results.
1 helper context FormalBEMM!Event def: getworkdefinitionFinishWD():
2 Sequence(DSMLMM!WorkDefinition) =
3 DSMLMM!WorkDefinition.allInstances()
4 −>select(fwd |self . state .name = ’ finished ’
5 and
6 FormalMM!Model.allInstances()
7 −>first (). root .body.blocks
8 −>indexOf(self.path. instances−>first())
9 =

10 DSMLMM!Process.allInstances()
11 −>first (). processElements
12 −>select(e |e.oclIsTypeOf(DSMLMM!WorkDefinition))
13 −>indexOf(fwd)
14 );
15

16 lazy rule createFinishWDEvent {
17 from fwd : DSMLMM!WorkDefinition, ee: FormalBEMM!Event
18 to DSML event : spemSemanticsMetaModel!FinishWD (
19 workdefinition <− fwd,
20 date <− ee.date
21 )
22 }

c) Effectiveness: Ensuring the correctness of model
transformations is a key in the definition of DSML verification
toolchain. In [23], we proposed to specify invariants on the
DSML models using TOCL and then transform them into
LTL properties that must hold on the generated formal model
as translation validation. For FEVEREL, a possible alternative
consists in defining OCL invariants that must hold on the
generated DSML verification results. If they fail, an error is
detected in the definition of FEVEREL mappings.

V. RELATED WORKS

The problem of integrating formal verification into the de-
sign of DSMLs has been widely addressed by the MDE com-
munity. However, the analysis feedback at the DSML level
problem is typically either ignored or resolved by defining
ad-hoc or hard-coded solutions. For example, [1] proposes the
Metaviz approach based on the real-time systems specification
and validation toolset IFx-OMEGA. It is designed to ease
the visualization of the simulation trace by assisting the user
in the Interactive Simulation task. It refines this step with a
diagnosis process built around visualization concepts. It relies
on feedback from the verification results at the OMEGA level.
Thus, it can be considered as an ad-hoc approach. The use of

the Executable DSML pattern on both domains and FEVEREL
could ease the implementation of their work.

Works handling the feedback with general solutions also
exists in the literature. [7] introduces an algorithm that requires
a formal definition of the DSML’s semantics and of a relation
between states of the DSML and states of the target language.
The DSML designer must also provide as input a natural-
number bound n, which estimates a difference of granularity
between the semantics of the DSML and the semantics of the
target language. We feel that the DSML designer who hardly
knows formal methods will fail in providing these mandatory
data required to feedback verification results.

Hegedüs et al. [15] propose a technique for the back
propagation of the simulation traces based on change-driven
model transformations from traces generated by the SAL
model checker to a specific BPEL Animation Controller. The
change-driven model transformation consumes changes in the
Petri nets simulation run and produces a BPEL process exe-
cution using traceability information generated while running
the translational semantics. In this case, after defining the
runtime extension for both levels (BPEL and Petri nets) and
the translational semantics, the DSML designer is invited to
define 1) a change command metamodel for Petri nets and
BPEL and 2) the backward change-driven transformation. In
our approach, we try to provide the DSML designer with a
high-level tool to define mapping between events. A variant
of FEVEREL could ease their implementation.

Gerkin et al. [13] rely on a similar approach to feedback
verification results from the UPPAAL model checker. It also
uses an ad-hoc model to model transformation that could
benefit from our proposal to focus on the DSML concepts
instead of the low level technical details.

In [14], a domain-specific visual language called BaVeL is
designed. It allows defining how a verification result should
be reflected in terms of the original notation. It is based on
triple graph patterns. This approach requires an additional
information which is the mappings (named also traces) relating
the source and target models and created during the execu-
tion of the translational semantics. This framework could be
implemented using the QVT model transformation language
as it creates traces between the source and target models.
Usually, DSML designers choose to encode the translational
semantics as a code generation process (model-to-text trans-
formation) instead of a model-to-model transformation. So,
this information is missing. In our approach this information is
optional but not an essential one. The DSML designer decides
if it is required to generate model transformation traces to
ease the feedback with FEVEREL. He must then import the
mappings metamodel in his FEVEREL specification. A variant
of FEVEREL could ease their implementation.

Meyers et al. [18] have designed the ProMoBox framework
in the same purpose as our work: ease the integration of formal
verification for DSML. Their feedback transformation relies
on simple event name mappings produced during the DSML
to formal model translation. FEVEREL uses OCL to express
sophisticated data matching on the states and events attributes



which enable the management of more sophisticated DSML
to formal model transformations.

VI. CONCLUSION

This paper defined the FEVEREL DSL to ease the de-
velopment of formal methode based verification tools that
feedback their results at the DSML level. FEVEREL is thus
a key element to ease the integration of verification tools on a
DSML in order to assist system designers in the early model
validation and verification activities.

FEVEREL relies on the Executable DSML pattern that fa-
vors the definition of generative tools and eases the integration
of tools for new DSMLs. It provides the DSML designer
with a better modeling interface (that avoids implementing
complex model transformations) to describe how different
DSML runtime information can be observed in the formal
verification domain to be leveraged at the DSML level.

FEVEREL was used in several case-studies to feedback ver-
ification results at the DSML level: for example, in the trans-
formation chain from [11] that verifies PLC (Programmable
Logic Controller) models written in Ladder Diagram (LD)
using the FIACRE intermediate language.

Future works will focus on supporting other kinds of
mappings and improving the visualisation of the verification
results. Currently, FEVEREL support only 1-to-1 mappings
between the domains (a DSML event corresponds to a formal
event and a DSML state corresponds to a formal state).
We plan to integrate 1-to-n and m-to-n mappings that occur
when the translational semantics is more complex. A possible
solution consists in adopting the Complex Event Processing
(CEP) technologies [4] that produce data streams by matching
data streams. We also plan to connect the verification results
from the DSML domain to animators like the one developed
as part of the GEMOC1 project.
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A. M., VERNADAT, F., AND CRÉGUT, X. A Model-Driven Engineering
Approach to Formal Verification of PLC programs (regular paper).
In Emerging Technologies and Factory Automation (ETFA), Toulouse,
France (septembre 2011), IEEE, pp. 1–8.

[12] GE, N. Property Driven Verification Framework: Application to Real-
Time Property for UML-MARTE Software Designs. Thèse de doctorat,
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