Faiez Zalila
email: faiez.zalila@irt-saintexupery.com

Xavier Crégut
email: xavier.cregut@enseeiht.fr

Marc Pantel
email: marc.pantel@enseeiht.fr

A DSL to feedback formal verification results

The integration of early formal validation and verification (V&V) tools (model checking, static analysis, etc.) in the V&V activities for domain-specific modeling languages (DSMLs) is a key asset to improve safety and reduce development and maintenance costs. However, system designers (DSMLs endusers) expect a seamless approach embedding transparently these tools in automated toolchains while enjoying their benefits. Thus, a mandatory task for DSML designer is to feedback at the DSML level the verification results generated by these tools. This contribution highlights a domain-specific language (DSL) to describe this feedback and the associated tools that helps the DSML designer in integrating the V&V tools. A translational semantics is given -as a higher-order transformation -for this DSL in order to automatically generate a model transformation which builds verification results at the DSML level from the ones produced at the formal level.

I. INTRODUCTION

Domain Specific Modeling Languages (DSMLs) are increasingly used at the early phases of the development of complex systems, in particular, for safety critical systems. The goal is to be able to conduct early verification and validation (V&V) activities to fulfill the associated safety objectives and to reduce the development costs. A widely used technique is model checking that conduct the exhaustive model behavior exploration. It relies on translational semantics to build formal models from DSML ones in order to reuse powerful tools available in the formal domain.

We contributed to MoDELS 2013 [START_REF] Zalila | Formal verification integration approach for dsml[END_REF] a model-based method to integrate formal verification for a DSML composed of three parts: 1) a language to express behavioral properties for DSML models, 2) a translational semantics to map constructs of the DSML to a formal language, 3) an automated translation of the behavioral properties to the formal language properties. The model checkers defined for the formal models can then be used to assess the expected DSML properties and synthesize counter-examples. The proposal was illustrated with the verification of software processes modelled using the SPEM (Software & Systems Process Engineering Metamodel) modeling language [19] with model-checkers for the FIACRE formal language [START_REF] Berthomieu | FIACRE: an Intermediate Language for Model Verification in the TOPCASED Environment[END_REF]. Its generality has been validated using other DSMLs like Ladder Diagram (LD) and AADL and other formal languages like Timed Petri Net [START_REF] Zalila | Methods and Tools for the Integration of Formal Verification in Domain-Specific Languages[END_REF].

Its main drawback is that verification results are obtained at the formal language level. For V&V to be more broadly used by system designers, these formal results have to be leveraged to the DSML level. The challenge is to provide a seamless and transparent integration in an automated tool chain so that system designers can benefits from their power.

Several works have tried to ease the feedback of verification results at the design level but usually these ones are mostly ad-hoc as they rely on the implementation of the translational semantics [START_REF] Guerra | Supporting user-oriented analysis for multi-view domain-specific visual languages[END_REF], [START_REF] Heged Üs | Backannotation of Simulation Traces with Change-Driven Model Transformations[END_REF] or are specific to a couple of languages (DSML-formal language) [START_REF] Aboussoror | Seeing Errors: Model Driven Simulation Trace Visualization[END_REF]. In previous work [START_REF] Zalila | Formal verification integration approach for dsml[END_REF], we used traceability data and an ad-hoc model transformation to feedback the verification results to the DSML level. However, this was too complex and low level task for the usual DSML designer. These ones should be able to rely on a method and associated tools mostly independent from the DSMLs, formal languages and implementation technologies.

Our contribution provides a domain-specific language (DSL), named FEVEREL (Feedback Verification Results Language) to model the feedback of the formal level verification results to the DSML one. It relies on the Executable DSML pattern [START_REF] Combemale | A Design Pattern to Build Executable DSMLs and Associated V&V Tools[END_REF] which reifies the concerns involved in the definition of DSML semantics. Verification results are traces that combines executed events and intermediate model dynamic states that must both be translated from the formal world to the DSML one.

This paper is organized as follows. Section II gives an overview of our method to integrate the formal verification activity for a DSML. Section III details our proposal to leverage verification results and the associated DSL and tools. Section V gives some related work in the domain of user level verification results. Finally, we conclude and present future works in Section VI.

II. OVERVIEW OF THE APPROACH

Feedback of verification results is done in the context of the definition of a formal verifier for a DSML. In this section, we summarize our method for integrating modelchecking for a new DSML (Figure 1) [START_REF] Zalila | Formal verification integration approach for dsml[END_REF]. It relies on a translational semantics from the DSML to a formal language that provides appropriate model checking tools. The main objective is to provide the DSML designers with tools that ease this integration.

The starting point is the abstract syntax (or metamodel) of the DSML and its concrete syntaxes. The main requirements to perform formal verification activities are to:

SPEM verifier

SPEM behavioral properties

Figure 1. Architecture of a SPEM verifier using FIACRE as a formal language 1) empower the DSML end-users with a language to express the behavioral properties they want to assess on their models. At the language level, we rely on the temporal extension of OCL called TOCL [START_REF] Ziemann | An Extension of OCL with Temporal Logic[END_REF]. 2) automatically translate the models and properties to the formal verification domain. The translational semantics must be provided by the DSML designer as well as insights on the properties translation. 3) feedback the verification results from the formal domain to the DSML domain. This aspect, the focus of this paper, will be presented in the next section. In order to fulfill these requirements, we explicitly state concerns that are usually not present in the DSML metamodel. These ones include runtime data and the ability to represent execution scenarios. If formal verification fails, a counter example is usually provided that must be presented to the DSML designer as a scenario composed of the steps that lead to the unwanted state in the model.

A. The SPEM case study

To illustrate the application of this method, we take as running example the XSPEM [19]: an executable extension of the SPEM process modeling language. As shown at the bottom of Figure 3, a SPEM Process is composed of activities (WorkDefinition) performed during the process, resources (Resource) required to run activities (Parameter) and temporal dependencies (causality constraints) between activities (WorkSequence). The linkType attribute from WorkSequence specifies the kind of dependency between the source and target activities. It follows the stateToAction pattern: the source activity must have reached the state (started or finished) to allow the action (start or finish) on the target activity: startToFinish means that the target activity can only finish when the source activity has been started. Figure 2 gives an example composed of four activities drawn with ellipses: Programming, Designing, Test case writing and Documenting.

The "finishToStart" dependency between Designing and Programming means that this one can only be started when Designing has been finished.

B. Expliciting verification concerns for a DSML

Model executability is a key feature to introduce behavioral V&V for DSMLs. It specifies how the model evolves over time. Defining the DSML execution semantics requires extending its metamodel with concepts that capture the additional dynamic data that represent the execution. In this purpose, we use the Executable DSML pattern proposed in [START_REF] Combemale | A Design Pattern to Build Executable DSMLs and Associated V&V Tools[END_REF] that defines and structures the concerns required to make a DSML executable. Figure 3 applies this pattern on the SPEM example.

The original metamodel is called the DDMM (Domain Definition MetaModel), bottom of Figure 3. It is extended with three other metamodels. The first one specifies stimuli modeled as events that triggers the model evolutions. Start a WorkDefinition, Finish a WorkDefinition or Fire a WorkSequence are examples of XSPEM events. This first extension is called the EDMM (Event Definition MetaModel), top left of Figure 3. The second one models a scenario (either an input scenario or the trace of a particular execution) as a sequence of event occurrences. It is called TM3 (Trace Management MetaModel), top middle of Figure 3. TM3 is generic as it only relies on the abstract Event concept common to all DSML. These two extensions allow to build a DSML scenario as a sequence of DSML events. The third one specifies the runtime data that model the state of the model at runtime and that are not part of the DDMM. This extension is called SDMM (State Definition MetaModel), middle of Figure 3. On the XSPEM example, the SDMM includes the work definition progress state which can be not started, running or finished.

The Executable DSML pattern provides the different concerns for graphical model animation since SDMM and EDMM introduce the data that represents the execution semantics [START_REF] Cr Égut | Generative Technologies for Model Animation in the TOPCASED Platform[END_REF]. But it lacks a more abstract definition for a model state needed to write behavioral requirements. We proposed in [START_REF] Zalila | Formal verification integration approach for dsml[END_REF] another metamodel extension to ease behavioral properties writing and favor a Property-Driven Approach as defined in [START_REF] Combemale | A property-driven approach to formal verification of process models[END_REF] and experimented in [START_REF] Ge | Property Driven Verification Framework: Application to Real-Time Property for UML-MARTE Software Designs[END_REF]. This approach defines an abstract dynamic semantics as properties expressed at the metamodel level. This last extension allows to capture different queries that can be asked on DSML conforming models during their execution. It is called the Query Definition MetaModel (QDMM). On Figure 3, two queries are defined on WorkDefinition. They are used to check if an activity has started or finished. The QDMM is a kind of abstract view of the SDMM. SDMM may be seen as a way to implement the QDMM by choosing a set of attributes (like a Java class implements a Java interface). As an example, the queries isFinished() and isStarted() of WorkDefinition can be implemented thanks to the attribute state defined in SDMM: isFinished() is equivalent to (state = #finished) and isStarted() to (state = #running) or (state = #finished).

C. Translational semantics and related elements

In our example, the translational semantics defines a mapping from the SPEM DSML to FIACRE. FIACRE is a formal specification language to represent both the behavioral and timing aspects of real-time systems [START_REF] Berthomieu | FIACRE: an Intermediate Language for Model Verification in the TOPCASED Environment[END_REF]. The FIACRE language is composed of two syntactical constructs, processes and components. A process describes the behavior of sequential components. It is defined by a set of control states, each associated with an expression that specifies state transitions. A component describes the composition of processes, possibly in a hierarchical manner. It is defined as a parallel composition of components and processes communicating through ports and shared variables. Here is some rationale behind the SPEM to FIACRE mapping illustrated with elements from the FIACRE model corresponding to the SPEM example from Figure 2.

Each work definition is translated to one FIACRE process with the same name. This process is composed of three states (notStarted, running and finished) and two transitions (from notStarted to running and from running to finished). Transition between the states are derived from the work sequences and thus depends on the state of the predecessor work definition. Thus, it is necessary to store the current states of different work definitions.

Based on the XSPEM QDMM, a FIACRE type called WDQueries is defined that represents the two queries on WorkDefinition of interest for the XSPEM end-user and to express causality constraints. It is a record type composed of the two boolean fields isStarted and isFinished.

WDsQueries defines an array of WDQueries storing the state of all work definitions of an XSPEM process. It is a parameter for every work definition process used to implement dependencies as a FIACRE process cannot inspect the current state of other processes. Named constants are defined to ease the reading of the FIACRE model by avoiding the use of meaningless integers to encode a work definition.

const DesigningWD : int is 0 const ProgrammingWD : int is 1 const DocumentingWD : int is 2 const TestCaseWritingWD : int is 3
The WDsQueries variable is updated when a transition from a work definition process is fired. For example, on the transition from the notStarted state to the running state, the isStarted variable is set to true.

Furthermore, one work definition can only be started when the required resources are available. As for work definitions, we have modeled resources queries as an array. Array elements are integers as there is only one query on Resource meta-class.

RessourceTab defines an array of integer storing the available count of each resource.

type RessourceTab is array 3 of int As for work definitions, named constants are defined to ease resource identification. This translational semantics is defined as a model-to-model (M2M) transformation expressed in ATL [START_REF] Jouault | Transforming Models with ATL[END_REF]. Once it is defined, the DSML designer implements the primitive queries based on the formal elements created by the translational semantics. These queries guide the automated generation of behavioral properties in the formal domain with a higher order transformation. The following list first gives two properties expressed in TOCL and the result of the translation of the first one in FIACRE.

D. Formal verification process

Formal verification can be performed once the full FIACRE model has been generated by the translational semantics including the properties generation. The model-checker of the TINA toolbox [START_REF] Berthomieu | The tool TINA -Construction of Abstract State Spaces for Petri Nets and Time Petri Nets[END_REF] (SELT) performs the formal verification relying on a translation to Time Petri Nets and produces verification results in this low-level formal language. In [START_REF] Zalila | Verification results feedback for FIACRE intermediate language[END_REF], we have proceeded to feedback verification results from the formal low-level, to the formal intermediate language, FIACRE, using the traceability data generated during the translation to Time Petri Nets and the use of the Executable DSML pattern on the FIACRE metamodel.

As shown in Figure 4, in FIACRE, we can capture events [9] related to a state (StateEvent): an instance of a process entering (EnterEvent) or leaving a state (ExitEvent), a variable changing value (V ariableEvent), a communication through a port (P ortEvent). The FIACRE SDMM captures the current This step must provide the verification results for the DSML end-user in an appropriate format that corresponds to his knowledge.

III. FEEDBACK VERIFICATION RESULTS LANGUAGE

This section introduces our proposal to ease for the DSML designer the implementation of the verification result feedback from the formal level to the DSML level. It relies on a DSL: the Feedback Verification Results Language (FEVEREL) and associated tools. We first motivate the use of a DSL and then illustrate its use on the XSPEM example. Finally, we discuss adopted patterns to implement this DSL and detail parts of its implementation.

A. Motivations

A key task for ensuring efficient V&V experience for DSMLs end-users is to provide easy to understand verification results extracted from low level formal model checking tools. The DSML designer must provide the service that generates a model execution trace at the DSML level.

Currently, the DSML designer can implement a M2M transformation which imports the formal verification results and produces the DSML ones. But, this can be costly and difficult to maintain as the mapping between runtime concerns (events and states) of both domains can be complex. We propose to provide the DSML designer with a DSL to model the feedback of verification results, and tools to automatically generate these transformations.

Figure 5 shows our vision to transparently empower a DSML with formal verification activity. We target a separation of concerns for the DSML designer (the translational semantics, the properties generation and the feedback of verification results). The implementation of each element in the DSML integrated verification toolchain is assisted by a specific tool. The initial step consists in defining concerns for the executable DSML (left side). It includes the abstract syntax (DDMM), the concerns from the Executable DSML pattern (TM3 and SDMM), and the queries (QDMM) used to express behavioral properties. The Executable DSML pattern is also applied on the formal domain (right side). The DSML designer is then able to define both the translational semantics and the primitive queries (the green box) for the domain model and properties to be automatically translated to the formal level. The last point is to get back verification results generated in the formal domain (the second blue box), the DSML designer has to define mappings between DSML runtime concerns modeled at the DSML level (EDMM and SDMM) and the corresponding elements in the formal domain.

B. FEVEREL applied on the XSPEM case-study FEVEREL is a DSL for a DSML designer to ease the implementation of verification results feedback tools. It allows to define how the DSML runtime information (events and Based on the DSML metamodel, the formal language metamodel and their behavioral extension metamodels, the DSML designer defines the mappings between DSML runtime information defined in the EDMM and the SDMM of the DSML and their corresponding elements in the formal domain (FEVEREL model in Figure 6).

We illustrate the syntax and semantics of FEVEREL with the XSPEM case-study. We rely on the application of the Executable DSML pattern on XSPEM (Figure 3) and on FIACRE metamodels (Figure 4) and on the translational semantics proposed in the subsection II-C.

Listing 1 shows a FEVEREL model defined for the XSPEM running example. It first imports the concerned DSML metamodels (lines 1-2). DSMLMM represents this metamodel. DSMLBEMM extends the first metamodel with the application of the Executable DSML pattern. Then, we import formal language metamodels. FormalMM is the abstract syntax of the formal language metamodel, and FormalBEMM is the behavioral extension applied on the FormalMM (lines 3-4).

The FEVEREL model contains mappings (Mapping). Two kinds of mappings can be defined: events mappings (EMapping) and states mappings (SMapping). A Mapping, characterized by an identifier, describes a relation between observable elements in the DSML domain (DSMLStream) and in the formal domain (FormalStream). A DSMLStream contains a sequence of elements (DSMLStreamElement) which allow to structure an observation in the DSML. Currently, a DSML-StreamElement is only one runtime observation (DSMLRO). Extensions to more sophisticated runtime observations are part of future work. A DSMLRO is characterized by an identifier. It refers to a meta-class in the DSML metamodel or its behavioral extension. In addition, it defines a set of bindings (Binding) which specify the initialization of a feature (an attribute or a reference) of a DSML runtime information using an expression (body). In the formal domain, as in the DSML one, a FormalStream contains only one runtime observation (FormalRO). A FormalRO has an identifier, refers to a meta-class in the formal language metamodel or its behavioral extension and contains an OCL expression (body). The following listing contains three events mappings: swd2ee (lines 6-21), f wd2ee (lines 23-38) and f ws2ee (lines 40-56).

f wd2ee (lines 23-38) is an events mapping (an instance of EM apping) that captured the F inishW D. It can be observed when the corresponding FIACRE instance enters (EnterEvent in line 28) in the f inished state (line 29). The concerned instance is identified according to its index in the FIACRE component that must corresponds to the index of the work definition in the SPEM process. F inishW D features are initialized according to the information observed in the corresponding EnterEvent (line 25).

In the following listing, three states mappings (instances of SM apping) are defined: wdnotStarted2vd (lines 58-69), wdrunning2vd (lines 71-85) and wdf inished2vd (lines 87-98). This last one captures whether a work definition is finished or not. The DSML designer may refer to the FIACRE array defined by the translational semantics. He must identify the shared FIACRE variable that stores the work definitions states (line 93) and verify whether the corresponding isF inished field in the array is T rue (lines 95-96).

1 import " http :// spemDDMM/1.0" as DSMLMM 2 import " http :// spemSemantics/1.0" as DSMLBEMM 3 import " http :// www.topcased.org/ fiacre / xtext / Fiacre " as FormalMM 4 import " http :// fiacreSemantics /1.0 " as FormalBEMM 5 6 events mapping swd2ee: The use of FEVEREL bestows the DSML designer with a structured specification of how verification results should be brought back to the DSML level. Based on the translational semantics and both extensions, he models a mapping using OCL to identify which formal events corresponds to DSML ones. Then, the M2M transformation (FormalVR2DSMLVR from Figure 6) is automatically generated. This transformation translates verification results (FormalVR in Figure 6) generated by model checking tools into DSML verification results easier to understand by the DSML end-user.

For the XSPEM example, once the formal verification process is performed, the toolchain generates verification results at the XSPEM level as shown below. This process shows that the second behavioral property willEventuallyF inish does not hold as a deadlock prevents the XSPEM process to finish. After analyzing these results, the XSPEM end-user should understand that the XSPEM process cannot finish because a Computer is missing.

With an additional Computer, the first property fails and the second property holds. For the first one, the XSPEM verification toolchain produces a terminating scenario where the process and all the activities finishes.

Thanks to this architecture, the DSML designer obtains a suitable tool to define mapping between runtime information. He does not have to deal with technical aspects of the model transformation. The DSML designer focuses on the modeling of how a DSML behavioral element can be observed in the formal domain relying on the behavioral extensions of both domains and the defined translational semantics which maps the abstract syntax of the DSML into the formal ones.

C. Implementation of FEVEREL

A DSL design should be suitable for its end user, that is corresponds to his knowledge and abilities. Designing a new DSL is one of the main challenges of modern software engineering as it is an error-prone and time consuming task [START_REF] Karsai | Design Guidelines for Domain Specific Languages[END_REF]. Thus, it is mandatory to adopt DSL design strategies to ease that process. [START_REF] Spinellis | Notable design patterns for domain specific languages[END_REF] introduces eight DSL design patterns in that purpose. The design of FEVEREL relies on two patterns: piggyback and source to source transformation. The first one uses an existing language as a host for the new DSL. This one can be a general-purpose language which offers standardization and expressiveness and makes it more user-friendly. The DSL then share common syntactical elements such as expression handling, operations, arithmetic and logic operators, etc. The second one allows an efficient implementation of the DSL by leveraging the facilities provided by existing tools for other languages. The DSL source code is translated to the source code of existing languages and then existing tools are used to host the generated code. For the DSML designer, new tool must be user-friendly, close in syntax and semantics to his skills and capabilities like metamodeling with ECORE, expressing constraints with OCL.

Figure 7 shows the implementation of the FEVEREL language. It implements the piggyback pattern with OCL as base language (the blue dashed arrow). The second part of the implementation of FEVEREL language concerns the translation part (the red dashed arrows). The source to source transformation pattern has been used to ease the burden of implementation. We have chosen the ATL transformation language as a host language (ATL.ecore) because we aim to automatically generate an ATL model transformation from a FEVEREL model. The pattern intersects with an useful MDE technique: higher-order transformations. The FEVEREL translation is thus implemented as a higher-order model transformation FeVeReL2ATL using ATL.

Each Mapping is translated in:

1) an ATL helper without parameters whose context is the super type of all kind of events in the formal metamodel extensions (EDMM and SDMM). Its return type corresponds to a set of elements in the DDMM on which the DSMLRO is instantiated. Its body selects a subset of all instances of these elements from the DDMM where the body of FormalRO evaluates to true. 2) a lazy rule whose source pattern is the element in the DDMM on which the DSMLRO is instantiated and its different features (features). The target pattern creates an instance of the DSMLRO (an event or a state) with different features declared in the source pattern.

The FEVEREL Model is translated to ATL rules whose source pattern is a formal scenario (an instance of the Scenario meta-class in the TM3 of the formal language). Its target pattern is a DSML scenario (an instance of the Scenario metaclass in the TM3 of the DSML). It aims to produce DSML verification results from the formal ones. A formal scenario is iterated using an iterate expression. The iterated variable which is the current instance that the FormalRO will check, by calling the helper generated previously, if there are elements in the DDMM which satisfy the body of the helper. According to this result, the lazy rule will be called for each element of the returned subset and with its corresponding features.

We follow the same method used for the translation of behavioral properties at the DSML level to the formal level in [START_REF] Zalila | Formal verification integration approach for dsml[END_REF] relying on DSLs and higher order transformations. The key point is that we help the DSML designer in the generation of a "DSML verification framework" for each DSML. This one is structured by the use of the Executable DSML pattern. Combining the piggyback and the source to source transformation patterns shows two advantages. First, a big part of the transformation is the identity. Indeed, we use OCL as a base language to implement our DSML and ATL as a host language to apply source to source transformation pattern where ATL also relies on OCL. The translation is thus restricted to a limited number of elements. Second, often DSMLs evolve and can be extended. So, an eventual extension of FEVEREL will be easily adopted by a DSML designer because he only needs to update the semantics with new domain-specific elements by extending the higher-order transformation while the OCL part is unchanged.

IV. EVALUATION

This section assesses our proposed DSL from three perspectives: design process, expressiveness and effectiveness.

a) Design process: FEVEREL was defined to meet the DSML designer needs for a dedicated tool that focuses on the required concepts while hiding most technical details. The process starts from ad-hoc solutions for distinct examples and then abstracts the required concepts for the new language. We first wrote manually the target ATL transformations and analyzed them to extract the needed concepts to allow their automatic generation. This analysis concluded that the DSML behavioral extensions could be used as pivot to handle the feedback process but that other elements were also needed to build the feedback. Thus, we defined a specific DSL to express the mapping between both behavioral extensions. Consequently, the DSML designer only needs to handle his DSML concepts without dealing with the implantation details.

b) Expressiveness: FEVEREL requires sophisticated model querying facilities to select and extract complex data from the formal analysis results. OCL provides this expressiveness commonly used in that purpose in model transformation languages. However, it will only create DSML verification results, that is sequences of events and model states. A full model transformation language would be too expressive on the creation side. Thus, it was defined as a DSL to limit this aspect. At last, the relations between source and target in future version of FEVEREL need to express how the selection of several elements in the source, observed in such chronological order, will allow to create a structured set of elements in the target (m to n mappings), which is not possible easily with all transformation languages. To adapt the FEVEREL language to this approach, it should be necessary to choose the appropriate pattern to capture events. Complex Event Processing (CEP) [START_REF] Buchmann | Complex event processing[END_REF] and the patterns specification language of Dwyer et al. [START_REF] Dwyer | Patterns in property specifications for finite-state verification[END_REF] should be interesting candidates to do that.

The following listing shows a subset of the generated ATL model transformation. The first element corresponds to the entry point rule (lines 1-29) and the two following elements, the helper and the lazy rule, correspond to the f wd2ee mapping (lines [START_REF] Zalila | Formal verification integration approach for dsml[END_REF][START_REF] Ziemann | An Extension of OCL with Temporal Logic[END_REF][25][26][27][28][29][30][31][32][33][34][35][36][37][38] shown in Listing 1. The helper (lines 31-40) consists in identifying, based on an observed formal runtime information, the DSML elements that verify OCL expression defined in the body of the mapping. Then, after calling this helper to verify whether a formal runtime information respects this expression (line 16), the entry-point ATL rule calls the corresponding lazy rule for each found element (line 20) to create a DSML runtime information (lines 42-50). So, the FEVEREL interface allows to hide all model transformation noises and gives for the DSML designer a more suitable tool to manage the feedback of verification results. c) Effectiveness: Ensuring the correctness of model transformations is a key in the definition of DSML verification toolchain. In [START_REF] Zalila | Formal verification integration approach for dsml[END_REF], we proposed to specify invariants on the DSML models using TOCL and then transform them into LTL properties that must hold on the generated formal model as translation validation. For FEVEREL, a possible alternative consists in defining OCL invariants that must hold on the generated DSML verification results. If they fail, an error is detected in the definition of FEVEREL mappings.

V. RELATED WORKS

The problem of integrating formal verification into the design of DSMLs has been widely addressed by the MDE community. However, the analysis feedback at the DSML level problem is typically either ignored or resolved by defining ad-hoc or hard-coded solutions. For example, [START_REF] Aboussoror | Seeing Errors: Model Driven Simulation Trace Visualization[END_REF] proposes the Metaviz approach based on the real-time systems specification and validation toolset IFx-OMEGA. It is designed to ease the visualization of the simulation trace by assisting the user in the Interactive Simulation task. It refines this step with a diagnosis process built around visualization concepts. It relies on feedback from the verification results at the OMEGA level. Thus, it can be considered as an ad-hoc approach. The use of the Executable DSML pattern on both domains and FEVEREL could ease the implementation of their work.

Works handling the feedback with general solutions also exists in the literature. [START_REF] Combemale | A Generic Tool for Tracing Executions Back to a DSML's Operational Semantics[END_REF] introduces an algorithm that requires a formal definition of the DSML's semantics and of a relation between states of the DSML and states of the target language. The DSML designer must also provide as input a naturalnumber bound n, which estimates a difference of granularity between the semantics of the DSML and the semantics of the target language. We feel that the DSML designer who hardly knows formal methods will fail in providing these mandatory data required to feedback verification results.

Hegedüs et al. [START_REF] Heged Üs | Backannotation of Simulation Traces with Change-Driven Model Transformations[END_REF] propose a technique for the back propagation of the simulation traces based on change-driven model transformations from traces generated by the SAL model checker to a specific BPEL Animation Controller. The change-driven model transformation consumes changes in the Petri nets simulation run and produces a BPEL process execution using traceability information generated while running the translational semantics. In this case, after defining the runtime extension for both levels (BPEL and Petri nets) and the translational semantics, the DSML designer is invited to define 1) a change command metamodel for Petri nets and BPEL and 2) the backward change-driven transformation. In our approach, we try to provide the DSML designer with a high-level tool to define mapping between events. A variant of FEVEREL could ease their implementation.

Gerkin et al. [START_REF] Gerking | Domain-specific model checking for cyber-physical systems[END_REF] rely on a similar approach to feedback verification results from the UPPAAL model checker. It also uses an ad-hoc model to model transformation that could benefit from our proposal to focus on the DSML concepts instead of the low level technical details.

In [START_REF] Guerra | Supporting user-oriented analysis for multi-view domain-specific visual languages[END_REF], a domain-specific visual language called BaVeL is designed. It allows defining how a verification result should be reflected in terms of the original notation. It is based on triple graph patterns. This approach requires an additional information which is the mappings (named also traces) relating the source and target models and created during the execution of the translational semantics. This framework could be implemented using the QVT model transformation language as it creates traces between the source and target models. Usually, DSML designers choose to encode the translational semantics as a code generation process (model-to-text transformation) instead of a model-to-model transformation. So, this information is missing. In our approach this information is optional but not an essential one. The DSML designer decides if it is required to generate model transformation traces to ease the feedback with FEVEREL. He must then import the mappings metamodel in his FEVEREL specification. A variant of FEVEREL could ease their implementation.

Meyers et al. [START_REF] Meyers | Promobox: A framework for generating domain-specific property languages[END_REF] have designed the ProMoBox framework in the same purpose as our work: ease the integration of formal verification for DSML. Their feedback transformation relies on simple event name mappings produced during the DSML to formal model translation. FEVEREL uses OCL to express sophisticated data matching on the states and events attributes which enable the management of more sophisticated DSML to formal model transformations.

VI. CONCLUSION

This paper defined the FEVEREL DSL to ease the development of formal methode based verification tools that feedback their results at the DSML level. FEVEREL is thus a key element to ease the integration of verification tools on a DSML in order to assist system designers in the early model validation and verification activities.

FEVEREL relies on the Executable DSML pattern that favors the definition of generative tools and eases the integration of tools for new DSMLs. It provides the DSML designer with a better modeling interface (that avoids implementing complex model transformations) to describe how different DSML runtime information can be observed in the formal verification domain to be leveraged at the DSML level.

FEVEREL was used in several case-studies to feedback verification results at the DSML level: for example, in the transformation chain from [START_REF] Farines | A Model-Driven Engineering Approach to Formal Verification of PLC programs[END_REF] that verifies PLC (Programmable Logic Controller) models written in Ladder Diagram (LD) using the FIACRE intermediate language.

Future works will focus on supporting other kinds of mappings and improving the visualisation of the verification results. Currently, FEVEREL support only 1-to-1 mappings between the domains (a DSML event corresponds to a formal event and a DSML state corresponds to a formal state). We plan to integrate 1-to-n and m-to-n mappings that occur when the translational semantics is more complex. A possible solution consists in adopting the Complex Event Processing (CEP) technologies [START_REF] Buchmann | Complex event processing[END_REF] that produce data streams by matching data streams. We also plan to connect the verification results from the DSML domain to animators like the one developed as part of the GEMOC 1 project.

Figure 2 .

 2 Figure 2. A SPEM development process

Figure 3 .

 3 Figure 3. The Executable DSML pattern applied into the SPEM metamodel

Figure 4 .

 4 Figure 4. The Executable DSML pattern applied on the FIACRE language

Figure 5 . 4 { 5 { 6 {

 5456 Figure 5. Towards the generation of a DSML verification framework

7 8 13 { 14 { 15 {

 7131415 event : EnterEvent {path: Main/1, state : =true, isFinished =false }, isStarted =false , isFinished =false }, isStarted =false , isFinished =false }, isStarted =false , isFinished =false }] 16 ...

Figure 7 .

 7 Figure 6. Architecture of FEVEREL

 .allInstances()->first (). root . body.blocks[START_REF] Jouault | Transforming Models with ATL[END_REF] ->indexOf(ee.path.instances->first ()) 17 = 18 DSMLMM!Process.allInstances()->first().processElements 19 ->select(e|e.oclIsTypeOf(DSMLMM!WorkDefinition)) 20 ->indexOf(swd.workdefinition) .allInstances()->first(). root . body.blocks 34 ->indexOf(ee.path.instances->first ()) 35 = 36 DSMLMM!Process.allInstances()->first().processElements 37 ->select(e|e.oclIsTypeOf(DSMLMM!WorkDefinition)) 38 ->indexOf(fwd.workdefinition) FormalBEMM.EnterEvent (49 self . state . name = 50 if (fws.worksequence.linkType=# startToStart 51 or fws.worksequence.linkType =# startToFinish) . values->at(wd.getIndex()). fields 74 ->at(0).value.oclIsTypeOf(FormalMM!FalseLiteral) . values->at(wd.getIndex()). fields 88 ->at(0).value.oclIsTypeOf(FormalMM!TrueLiteral) 89 and 90 vd. value . values->at(wd.getIndex()). fields 91 ->at(1).currentValue . oclIsTypeOf(FormalMM!FalseLiteral) . values->at(wd.getIndex()). fields 105 ->at(1).currentValue . oclIsTypeOf(FormalMM!TrueLiteral) 106) 107 end states mapping Listing 1. SPEM/FIACRE FEVEREL mappings

1

 state : Designing notStarted Documenting notStarted 2 Programming notStarted TestCaseWriting notStarted 3 event: StartWD Designing 4 state : Designing running Documenting notStarted 5 Programming notStarted TestCaseWriting notStarted 6 event: FinishWD Designing 7 state : Designing finished Documenting notStarted 8 Programming notStarted TestCaseWriting notStarted 9 event: StartWD Documenting 10 state : Designing finished Documenting running 11 Programming notStarted TestCaseWriting notStarted 12 event: FinishWD Documenting 13 state : Designing finished Documenting finished 14 Programming notStarted TestCaseWriting notStarted 15 event: StartWD TestCaseWriting 16 state : Designing finished Documenting finished 17 Programming notStarted TestCaseWriting running

1 6 FormalMM

 6 helper context FormalBEMM!Event def: getworkdefinitionFinishWD(): 2 Sequence(DSMLMM!WorkDefinition) = 3 DSMLMM!WorkDefinition.allInstances() 4 ->select(fwd |self . state . name = ' finished ' 5 and !Model.allInstances() 7 ->first (). root . body.blocks 8 ->indexOf(self.path. instances ->first())