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Abstract. Changes like failure or loss of QoS are key aspects of hybrid 
systems that must be handled during their design. Preserving the system
state is a common requirement that can be ensured by reconfiguration 
relying on system substitution. The specification and design of these sys-
tems usually rely on continuous functions whereas their implementation
is discrete. Moreover, the associated safety properties are characterized
by a safety envelope defining safe system states. This paper presents
a novel approach for formalizing the system substitution mechanism for 
hybrid systems, in which the system substitution maintains a safety enve-
lope of the given hybrid system during system failure or switching from
one supporting system to another. Proving the correctness of the discrete 
implementation of the defined reconfiguration mechanism for hybrid sys-
tems is a challenging problem. In this purpose, we propose to combine 
system substitution and incremental system modeling to ensure correct 
discretization. We rely on the Event-B method and the Rodin Platform
with the Theory plug-in to develop the system models and carry out the 
proofs on dense real numbers.

Keywords: System reconfiguration and substitution · Continuous and 
discrete behaviors · Formal methods · Refinement and proof · Event-B

1 Introduction

Context. Cyber Physical Systems refer to the tight integration and coordination 
between computational and physical resources [18]. In these systems, a software 
component, the controller, manages the physical parts of the system. The early 
models for such systems usually rely on continuous functions. The controller is 
then implemented in a discrete manner thus combining continuous environment 
models with discrete controller models, building an hybrid system.

Proving the correctness of discrete implementations of continuous controllers 
is a challenging problem. Formal methods allow checking the correctness of such 
system functional requirements, including the required safety properties. Due 
to these core benefits, they have been adopted for designing and developing
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the new age of discrete controllers that must satisfy their original continuous
specification [19] for building safe and reliable hybrid systems.

To prevent a system failure, controllers must react according to environment
changes to keep a desired state or to meet minimum requirements that maintain
a safety envelope for the system. A safety envelope is a safe over-approximation
of system states. It can be modeled as invariants that define a set containing all
possible system states under its nominal conditions. One key property studied
in system engineering is the ability to take actions according to an evolving
behavior. It may occur in different situations (e.g. failures, quality of service
change, context evolution, maintenance, etc.). Most safety critical systems, such
as avionics, nuclear, automotive and medical devices, whose failure could result
in loss of life, including reputation and economical damage, use reconfiguration or
substitution mechanisms to prevent losing the quality of system services required
for system stability when a random failure occurs.

In our earlier work, we proposed both a correct by construction system sub-
stitution mechanism [8,9] and a strategy to derive discrete controllers from con-
tinuous specifications [6]. In [8,9], we defined the reconfiguration mechanism
to maintain a safety property for a system (defined as a state-transitions sys-
tem) during failure or to switch from one supporting system to another. The
defined approach has been successfully applied, for the discrete case, on web
services [7]. But it is not applicable straightforwardly for hybrid systems which
need to handle continuous features. In [6], we presented the formal development
of a continuous controller that is refined by a discrete one preserving the contin-
uous functional behavior and the required safety properties. This work helped us
formulating more general strategies, that we aim to develop in this paper, for the
development of system substitution for hybrid systems using formal techniques.

Objective of this Paper. We target modeling hybrid systems, and providing
modeling patterns for reconfiguration, using a correct by construction approach.
We provide a generic system substitution mechanism for hybrid systems that
allows maintaining a safety envelope during the system failure or switching from
one supporting system to another using stepwise refinement in Event-B [3]. More-
over, we show how the defined substitution or reconfiguration mechanism applies
to handle hybrid systems characterized by continuous functions using discrete
functions. More precisely, we investigate the modeling of continuous systems in
discrete form by preserving the continuous behavior. For hybrid systems, the
system substitution is usually not instantaneous as it takes time to restore the
state of the substituted system. We propose a special treatment to handle it.
The primary use of the models is to assist in the construction, clarification, and
validation of the continuous controller requirements to build a digital controller
in case of system reconfiguration or system substitution. In this development, we
use the Rodin Platform [4,16] to manage model development, refinement, proofs
checking, verification and validation.



Paper Organization. The remainder of this paper is organized as follows.
Section 2 presents preliminary details for system substitution mechanisms and
the required modeling framework. Section 3 summarizes the studied systems and
associated problems, including the informal requirements of the selected system.
Section 4 explores an incremental proof-based formal development of system
substitution for hybrid systems. Section 5 discusses our approach, and Sect. 6
presents related work and compares the results of this work with existing work.
Finally, Sect. 7 concludes the paper with some future research directions.

2 Preliminaries

This section provides a comprehensive overview on system substitution mecha-
nisms, for both continuous and discrete functions, that illustrates our proposal,
and a basic overview on the Event-B modeling framework.

2.1 System Substitution Mechanism

System substitution allows to replace a system by another system that provides
the same service. It can be used to ensure high availability in case of failure
as required for safety critical systems such as avionics, nuclear, automotive and
medical devices, where failure could result in loss of life, including reputation
and economical damage. In general, system substitution can occur in any state of
the system. We focus on warm start tagged as Dynamic substitution, where the
substitute system will recover as much data and state variable values as possible
from the halting state of the original system. Dynamic substitution allows replac-
ing a failed system SysS with a new one SysT starting from the last running
state of SysS . Thus, SysT must be initialized according to the last running state
of SysS . In order to ensure that both systems provide the same services, they
must implement the same specification Spec according to the recovery states.

2.2 The Modeling Framework

Event-B [3] is a formal modeling notation, in which the event-driven approach
extends the B-method [2]. The Event-B language has two main components,
context and machine, to characterize the systems. A context describes the static
structure of a system using carrier sets, constants, axioms and theorems, and a
machine describes the dynamic structure of a system using variables, invariants,

theorems, variants and events. Table 1 shows a formal organization of a model,
in which various clauses (i.e. VARIABLES, EVENTS) are used to introduce the
required modeling components for specifying the given system requirements. For
instance, the clause VARIABLES represents the state and the clause EVENTS
represents the transitions (defined by a Before-After predicate (BA)) of a sys-
tem. A list of events can be used to model possible system behaviors that modify
the state variables by providing appropriate guards in a machine. A model also



Table 1. Model structure Table 2. Proof obligations

contains INVARIANTS and THEOREMS clauses to represent its relevant prop-
erties to check the correctness of the formalized behavior. A VARIANT clause
can be used to introduce convergence properties in a machine. Moreover, the
terms like refines, extends, and sees are mainly used to describe the relation
between components of Event-B models.

The Event-B modeling language supports a correct by construction approach
to design an abstract model and a series of refined models for developing any
large and complex system. The refinement, introduced by the REFINES clause,
decomposes a model (thus a transition system) into another transition system
containing more design decisions when moving from an abstract level to a less
abstract one. Refinement supports modeling a system gradually by introducing
safety properties at various refinement levels. New variables and new events may
be introduced in a new refinement level. These refinements preserve the relation
between the abstract model and its corresponding refined concrete model, while
introducing new events and variables to specify more concrete behaviors of the
system. The defined abstract and concrete state variables are linked by intro-
ducing gluing invariants.

The Rodin Platform provides rich tool support for model development using
the Event-B language. It includes project management, model development,
proof assistance, model checking, animation and automatic code generation.
Once an Event-B model is modeled and syntactically checked in the Rodin Plat-
form, then a set of proof obligations is generated with the help of the Rodin tools.
Theses generated proof obligations are further passed to the inbuilt Rodin prover.
The main proof obligations associated to an Event-B model are listed in Table 2,
in which the prime notation is used to denote the value of a variable after an
event is triggered. More details on proof obligations can be found in [3].



The Theory Plug-In. A recent extension of the Event-B language allows
extending it with theories [5] similar to algebraic specifications. In the Rodin
Platform, this is provided by the Theory plug-in [13]. We formalize and analyze
a system substitution mechanism applied to hybrid systems, that use the REAL

datatype for state variables. Thus, we rely on the Real theory, written by Abrial
and Butler1 that provides a dense mathematical REAL datatype with arithmetic
operators, an axiomatic semantics and proof rules.

3 Studied Systems

Fig. 1. Behavior of studied systems Fig. 2. System substitution

In this section, we describe the studied family of simple systems as patterns
including the mechanism for system substitution. These ones are depicted in
Fig. 1 for the system and Fig. 2 for the substitution mechanism. They are for-
malized as state-transition systems. Their behaviors are characterized by three
states: boot (1), progress (2) and stopped (3). The boot state is the initial state,
and the progress state is the nominal running state. According to Fig. 1, after
initialization, a system enters the booting state, denoted as state 1, which may
take a certain amount of time. If a system does not require the booting phase,
then the system initialization is followed by a start transition without any delay.
After this one, the system moves into the progress state, denoted as state 2. If
the system stops, it switches into the stopped state, denoted as state 3.

3.1 Problem Statement

The substitution mechanism allows maintaining the running state of a given
system in case of failure or decreasing QoS by replacing it with another one that
provides the required behavior. A basic substitution pattern is defined by the
state-transitions system of Fig. 2. When a failure occurs, the running system is
halted (fail transition), then repaired in state 3 where the state of the substitute
system is restored from the halted system. Finally, the control is given to the
substitute system (transition repaired from state 3 to state 2 ). The substitution
correctness has been studied in different cases (equivalent, degraded or upgraded
cases). This mechanism (Fig. 2) shall satisfy the following requirements: (1) Pre-
serving the required system behavior of the original system; (2) Restoring the
halted system correctly.

1 http://wiki.event-b.org/index.php/Theory Plug-in#Standard Library.



Refinement is used to fulfill the first requirement. Several refinements may
implement the same specification thus providing a class of systems that are
candidate for substitution. The second requirement is expressed as a relation
restoring the state variables of the substituted and substitute systems that must
preserve the invariant and properties of the original specification. Details can be
found in [8,9]. Substitutions can be instantaneous when it consists in restoring
state variables that fulfill the specification invariant as shown in the case of web
services compensation from [7]. But, for hybrid systems, it may require some
time. The repair transition on state 3 of Fig. 2 must handle the repair process
duration. This case is adressed in this contribution and the system behavior
must be preserved during that duration.

3.2 Informal System Requirements

The hybrid systems behaviors models usually rely on continuous functions over
time. Figure 3a depicts such a function f whose nominal value (after initializa-
tion) must stay in the safety enveloppe [m,M ]. The time intervals [A,B], ]B,C]
and ]C,D] correspond respectively to state 1, 2 and 3 of Fig. 1. Any system con-
troller, including a reconfiguration one, must observe the behavior of the system
(here the function f) and act (preserve or change the system mode) to keep the
observation in the safety enveloppe. Such observations and actions are usually
implemented by a software that requires the discretization of the continuous
functions. Figure 3b depicts such a discrete form for f . The time intervals [E,F ]
]F,H] and ]H, I] correspond respectively to state 1, 2 and 3 of Fig. 1. In the
software that implements such controllers, time is observed according to specific
clocks and periods. Therefore, it is mandatory to define a correct discretization
of time that preserves the observed continuous behavior introduced previously.
This preservation entails the introduction of other requirements on the defined
continuous function. With respect to a time interval δt, the margin z is defined
as respecting: z ≥ maxt,δt∈R+ |f(t) − f(t + δt)| (the evolution of f is assumed to
be bounded) and m + z < M − z (for consistency). Note that, in practice, these

Fig. 3. Examples of the evolution of the function f



requirements are usually satisfied by the physical plant (f is usually a smooth
continuous function).

Two continuous functions f and g characterize the behavior of two hybrid
systems Sysf and Sysg. We assume that these systems maintain their observed
output within the safety envelope [m,M ]. Thus, they can substitute each other
since they fulfill the same safety requirement. In this paper, we study the substi-
tution of Sysf by Sysg after a failure occurrence (see requirements of Table 3).

Figure 4a and b show the substitution scenario in both continuous and dis-
crete cases. The X axis describes time change and the vertical dashed lines model
state transitions according to the behavior depicted in Fig. 2. Observe that dur-
ing the repairing process (state 3 of Fig. 2) function f (associated with Sysf )
decreases due to its failure while function g (associated with Sysg) is booting.
The invariant states that f + g belongs to the safety envelope [m,M ] during the
repair (between C and D in the continuous case of Fig. 4a or G and H in the
discrete case on Fig. 4b). Finally, the progress state 2 is reached a second time
with Sysg as the running system.

Table 3. Requirements in the abstract specification.

At any time, the feedback information value of the controlled system shall be
less or equal to M in any mode

Req. 1

At any time, the feedback information value of the controlled system shall
belong to the safety envelope [m, M ] in progress mode

Req. 2

The system feedback information value can be produced either by f , g or
f + g (f and g being associated to Sysf and Sysg)

Req. 3

The system Sysf may have feedback information values outside [m, M ] Req. 4

At any time, in the progress mode, when using Sysf , if the feedback
information value of the controlled system equals to m or to M , Sysf must
is stopped

Req. 5

Fig. 4. Examples of the evolution of the function f



4 Formal Development

This section describes the stepwise formal development of studied systems in an
abstract model and a sequence of refined models. The abstract model formalizes
only the system initial behavior, while the refined models are used to define the
concrete and more complex behaviors in a progressive manner that preserves the
required safety properties at every refinement level.

Due to the limitation of the paper length, we only include a brief description
of the model development and refinements. We invite readers to rely on the
complete formal model available at [1] to understand the basic steps of the
formal development, refinements and associated safety properties.

4.1 The Required Contexts

Contexts define the relevant concepts needed for our developments. The context
C reals (see Listing 1.1) defines the positive real numbers and theorems helpful
for discharging the proofs. This context uses the REAL type for real numbers
defined in the Theory Real by Abrial and Butler. Listing 1.2 introduces the con-
stants MODE X defining the different system modes (F,G and R for Sysf , Sysg

and Repair modes) belonging to the MODES set.

CONTEXT C reals −− Continuous functions
CONSTANTS

REAL POS, REAL STR POS
AXIOMS −− Axioms and theorems

−− for continuous functions
def01: REAL POS = {x | x ∈ REAL ∧ 0≤ x)}

....

END

Listing 1.1. Context C reals

CONTEXT C modes
SETS

MODES
CONSTANTS

MODE F, MODE R, MODE G
AXIOMS

axm1: partition(MODES, {MODE F},
{MODE R}, {MODE G})

END

Listing 1.2. Modes definition

The previous two contexts (C envelope and C margin) deal with the defini-
tion of a safety envelope. As mentioned in the requirements defined in Table 3,
we define the interval of safe values as [m,M ] in the continuous case and
[m + z,M − z] with margin z in the discrete case.

CONTEXT C envelope −− Safety envelope
EXTENDS C reals
CONSTANTS

m, M
AXIOMS

axm01: m ∈ REAL STR POS
axm02: M ∈ REAL STR POS
axm03: smr(m,M)

THEOREMS

thm01: m ≤ M
thm02: 0 ≤ m
thm06: 0 ≤ M
thm03: ∀x · m ≤ x ⇒ x ∈ REAL POS
thm05: ∀a · m ≤ a ⇒ 0 ≤ a

END

Listing 1.3. Context C envelope

CONTEXT C margin −− Safety envelope margin
EXTENDS C envelope
CONSTANTS

z
AXIOMS

axm01: z ∈ REAL POS −− z ∈ R+
axm02: M−m > 2∗z

THEOREMS

thm03: 0 ≤ M−z
thm06: z ≤ M−m
thm07: m ≤ M−z
thm08: m+z ≤ M
thm10: m+z ≤ M−z

...
END

Listing 1.4. Context C margin



4.2 Abstract Model: Definition of a Mode Controller

As shown in Fig. 2, we use three states to define a simple abstract controller (a
mode automata) that models the system substitution through mode changes.
Machine M0 (see Listing 1.5) describes the abstract specification of the recon-
figuration state-transitions system depicted in Fig. 2. The modes are used in
the events guards to switch from one state to another. At initialization, Sysf

is started (MODE F ), it becomes active when the active variable is true (Sysf

ended the booting phase). When a failure occurs, progress of Sysf is stopped.
The controller enters in the repairing mode MODE R. Once the system is
repaired, the mode is switched to MODE G and Sysg enters the progress state.

MACHINE M0
SEES C modes
VARIABLES

active −− true when the system is started
md −− running mode of the system

INVARIANTS

type01: active ∈ BOOL
type03: md ∈ MODES
tech01: active = FALSE ⇒ md = MODE F

EVENTS

INITIALISATION=
THEN

act1: active := FALSE
act2: md := MODE F

END

boot = WHERE

grd1: active = FALSE
grd2: md = MODE F

END

start= WHERE

grd1: active = FALSE
grd2: md = MODE F

THEN

act1: active := TRUE
END

progress = WHERE

grd2: active = TRUE
grd1: md = MODE F ∨ md = MODE G

END

fail = WHERE

grd2: active = TRUE
grd1: md = MODE F

THEN

act1: md := MODE R
END

repair= WHERE

grd2: active = TRUE
grd1: md = MODE R

END

repaired = WHERE

grd2: active = TRUE
grd1: md = MODE R

THEN

act1: md := MODE G
END

END

Listing 1.5. The mode automata

4.3 First Refinement: Introduction of the Safety Envelope

The first refinement introduces the safety envelope [m,M ]: the main invari-
ant satisfied by all functions: f initially, f + g during substitution and g after
substitution. Machine M1, defined in Listing 1.6, refines M0. It preserves the
behavior defined in M0 and introduces two kinds of events: environment events
(event name prefixed with ENV ) and controller events (event name prefixed
with CTRL) [23]. The ENV events produce the system feedback observed by
the controller.

In this refinement, three new real variables f, g and p are introduced. f

and g record the feedback information of Sysf and Sysg individually, while
p records the feedback information of both systems before, during and after
substitution. The variable p corresponds to f of Sysf in MODE F, g of Sysg in
MODE G and f + g of combined Sysf and Sysg in MODE R corresponding to
the system reparation (invariants mode01 to mode05 ). In all cases, p shall belong
to the safety envelope (invariants envelope01 and envelope02 ). The CTRL events
correspond to refinements of the abstract events of M0. They modify the control
variable active and md. The ENV events observe real values corresponding to



the different situations where Sysf and Sysg are running or when Sysf fails and
Sysg boots. This last situation corresponds to the reparation case.

MACHINE M1 REFINES M0
SEES C envelope, C modes
VARIABLES

active , md, p, f , g
INVARIANTS

...
envelope01: p ≤ M
envelope02: active = TRUE ⇒ m ≤ p

mode01: md = MODE F ⇒ p = f
mode04: md = MODE F ⇒ g = 0
mode02: md = MODE R ⇒ p = f + g
mode03: md = MODE G ⇒ p = g
mode05: md = MODE G ⇒ f = 0

THEOREMS

....
EVENTS

INITIALISATION=
....
CTRL started REFINES start =
WHERE

grd3: m ≤ p ∧ p ≤ M
END

ENV evolution f REFINES progress =
ANY new f
WHERE

grd2: active = TRUE ∧ md = MODE F
grd5: f 	= m ∧ f 	= M
grd3: m ≤ new f
grd4: new f ≤ M

THEN

act1: f := new f
act2: p := new f

END

CTRL limit detected f REFINES fail =
WHERE

grd5: f = m ∨ f = M
END

ENV evolution fg REFINES repair =
ANY new f, new g
WHERE

grd3: m ≤ new f + new g
grd4: new f + new g ≤ M
grd5: 0 ≤ new f
grd6: new f ≤ f
grd7: g ≤ new g
grd8: new g ≤ M

THEN

act1: f := new f
act2: g := new g
act3: p := new f + new g

END

CTRL repaired g REFINES repaired =
WHERE

grd3: m ≤ g
grd4: g ≤ M
grd5: f = 0 −− f+g to g is continuous

END

ENV evolution g REFINES progress =
...

END

Listing 1.6. Refinement with ENV and
CTRL events

4.4 Second Refinement: Continuous Behavior and Dense Time

The behaviors of continuous controllers defined on dense time are modelled by
continuous functions introduced by this refinement. This behavior is modelled
in Machine M2 (See Listing 1.7). It corresponds to Fig. 4a. Once the modes and
the observed values are correctly set, the next refinements are straightforward.
They correspond to a direct reuse of the development of a correct discretization
of a continuous function proposed in [6].

Continuous functions fc, gc, pc corresponding to variables f, g, p from M1 are
introduced. A real positive variable now represents the current time. The gluing
invariants (glue01 for example p = pc(now)) connect the variables of machine M1

with the continuous functions values at time now. In the same way, each event
of M1 is refined. Time steps dt are introduced and the continuous functions are
updated by the environment ENV events. The continuous functions are updated
on the interval [now, now + dt] and now is updated to now := now + dt. The
control CTRL events observe the value pc(now) to decide whether specific actions
on the mode mdc variable are performed or not. Listing 1.7 shows an extract of
this machine and a detailed description of this refinement is given in [1,6].



MACHINE M2 REFINES M1
SEES C corridor, C thms
VARIABLES

now, p c, f c , g c
...

INVARIANTS

type01: now ∈ REAL POS
glue01: p = p c(now)
glue02: f = f c(now)
glue03: g = g c(now)
corridor01: ∀t · t ∈ [0,now] ⇒ p c(t) ≤ M
...

EVENTS

...
ENV evolution f

REFINES ENV evolution f =
ANY dt, new f c
WHERE

...
grd5: f c (now) = new f c(now)
grd6: ∀ t · t ∈ [now,now+dt] ⇒

new f c(t) ∈ [m,M]
WITH

new f: new f = new f c(now + dt)
THEN

act1: now := now + dt
act2: p c := p c ⊳− new f c
act3: f c := f c ⊳− new f c
...

END

...
END

Listing 1.7. Machine M2

MACHINE M3 REFINES M2
SEES C discrete, ...
VARIABLES

p d, f d , g d
i −− the current instant number
et −− time elapsed from previous discrete

−− value sampling time
...

INVARIANTS

type01: f d ∈ 0..i → REAL POS
−− similar for p d and g d

type04: i ∈ N

glue01: ∀ n· n ∈ 0..i ⇒ f c(n∗tstep)=f d(n)
−− similar for p d and g d

glue02: now = i∗tstep + et
...
EVENTS

...
ENV evolution f on tick

REFINES ENV evolution f =
ANY dt, new f c
WHERE

new f c ∈ [now,now+dt] → REAL POS
...

THEN

act01: f := new f
act02: now := now + dt
act03: f c := f c ⊳− new f c
act04: i := i + 1
act05: f d(i+1) := new f c(now+dt)
act06: et := 0
...

END

...
END

Listing 1.8. Machine M3

4.5 Third Refinement: Discretization of the Continuous Behavior

This last refinement models a discrete controller. A discrete function is associated
to values of the continuous function at each discrete time steps. The discrete
behavior is given in Machine M3 (See Listing 1.8). It models the behavior from
Fig. 4b following the work in [6]. Again, we follow the same approach as for the
refinement of the continuous behavior. As mentioned in the context C margin,
the margin z is defined, such that 0 < z∧m+z < M −z ∧ M −m > 2×z. This
margin defines, at the discrete level, the new safety envelope [m + z,M − z] ⊂
[m,M ]. The new discrete variables fd, gd, pd of M3 are glued to fc, gc, pc of
M2. They correspond to discrete observations of fc, gc, pc. The discretization
step is defined as δt. Each environment event corresponding to a continuous
event is refined into three events: the first one corresponds to discrete time now,
the second one to discrete time now + δt and the third one to any time in
]now, now + δt[. In this discrete modeling, the last event ensures the correctness
of refinement. Moreover, it must be Zeno free, so we introduce a decreasing
variant in this refinement. The discrete controller observes only the events on
time jumps from now to now + δt. Note that due to the discretization and the
introduction of the z margin, a possible failure can be detected when pd(now) ∈
[m,m + z[ ∨ pd(now) ∈]M − z,M ]. The predicted behavior is enforced by the
discrete controller that detects a limit before the value of m or M is reached.
This situation is depicted in Fig. 4b at instant G.



4.6 Model Analysis

This section gives the proof statistics through detailed data about generated
proof obligations. Event-B supports consistency checking which shows that a list
of events preserves the given invariants, and refinement checking which ensures
that a concrete machine is a valid refinement of an abstract machine. The whole
formal development is presented through one abstract model and a sequence of
three refinement models to cover the possible operations of system substitution
of hybrid systems.

Table 4. Proof Statistics

Model Total number of POs Automatic proof Interactive proof

Abstract model (M0) 5 5 (100 %) 0 (0 %)

First refinement (M1) 93 48 (52 %) 45 (48 %)

Second refinement (M2) 209 71 (34 %) 138 (66 %)

Third refinement (M3) 425 78 (18 %) 347 (82 %)

Total 732 202 (28 %) 530 (72 %)

Table 4 gives the proof statistics for the development using the Rodin tool.
To guarantee the correctness, we established various invariants in the incre-
mental refinements. This development resulted in 732 (100 %) proof obligations,
of which 202 (28 %) were proved automatically, and the remaining 530 (72 %)
were proved interactively using the Rodin prover (see Table 4). These interactive
proof obligations are mainly related to the complex mathematical expressions
and the use of Theory plug-in for REAL datatype, which are simplified through
interaction, providing additional information to assist the Rodin prover.

5 Discussion

System substitution is a mechanism that allows to maintain the running state of
a given system in case of any failure by preserving the required behavior. Spe-
cially, for developing critical systems, it is highly required to mitigate any risk
of failure. On the other hand, stepwise refinement always plays an important
role in designing a complex and large system systematically through progressive
development. For developing the system substitution mechanism for hybrid sys-
tems, the stepwise refinement played an important role to preserve the required
behavior and safety properties. As mentioned earlier, refinement is a core con-
cept in Event-B development, and applying the refinement steps in a systematic
order is always useful for designers to know what decisions must be taken for
introducing system behaviors in each new refinement level. We identified the
following development steps to integrate our system substitution mechanism for
hybrid systems: (1) Define a set of modes for the controller; (2) Define a safety



envelope to preserve the desired behavior; (3) Handle the continuous behavior
and dense time; (4) Model the discretization of the continuous function.

The proposed work is an extension of our previous work [6,8]. In [8], we
have developed a generic formal model for system substitution and in [6], we
have proposed the stepwise formal development for modeling continuous func-
tion using concrete functions. In this paper, we have used our existing approaches
for addressing the challenges related to formal modeling and verification for the
system substitution for hybrid systems. As far as we know, there are no similar
published work. This work is a preliminary step for applying a system substi-
tution mechanism for hybrid systems. We use the Theory plug-in for describing
the hybrid systems and the required properties. In this experiment, we found
that proof are quite complex and the existing Rodin tool support is not powerful
enough to prove the generated proof obligation automatically. In fact, we need
to assist the Rodin provers to find the required assumptions and predicates to
discharge the generated proof obligations. On the other hand, we also found that
the Theory plug-in is not yet complete. We have defined several assumptions and
theorems in our model to help the proving process with the Real theory.

6 Related Work

Cyber-physical systems are strongly connected to their operating environment.
Thus, the systems can adapt to environment changes to ensure the functional
correctness. System reconfiguration is a key element to implement such kinds of
systems that is proposed by several researchers. In [11], π-calculus and process
algebra are used for system modeling, including reconfiguration, by exploiting
behavioral matching based on bi-simulation. An Event-B approach was also pro-
posed in [9]. The B-method is used for validating dynamic re-configuration of
the component-based distributed systems using proofs techniques for consis-
tency checking and temporal requirements [17]. Dynamic reconfiguration allows
to stay in a system in a stable state using self-configuration and self-healing tech-
niques. Rodrigues et al. [22] presented the dynamic membership mechanism as
a key element of a reliable distributed storage system. Event-B is demonstrated
in the specification of cooperative error recovery and dynamic reconfiguration
for enabling the design of a fault-tolerant multi-agent system, and to develop
dynamically reconfigurable systems to avoid redundancy [20]. Model checking
of timed automata has been used by [15] to model and study the robustness of
self-adaptive decentralized systems.

Cyber-physical systems belong to the class of hybrid systems, thus hybrid
automata can be used to model the system requirements. The developed model
can be verified through model checking tools, such as HyTech [14]. This approach
enables automatic verification by exploring state space and required properties.
Usually, model checking tools suffer from state explosion problem that impairs
the use of any large model during verification process. Alternatively, theorem
provers can be used to analyze and verify hybrid programs. The KeYmaera [21]
tool, including an interactive theorem prover, is dedicated to hybrid system



modeling and verification. In [12,23], the development of an hybrid system is
proposed using the correct by construction approach, where first, it specifies the
discrete model and then refines each event by introducing the continuous ele-
ments. It includes the use of a “now” variable, a “click” event that jumps in time
to the next instant where an event can be triggered and simulated real numbers.
In our work [6], we use this notion of “now” variable on dense time, and time
progression is defined by events. We use the Theory plug-in to model the con-
tinuous functions, and another layer of refinement that introduces discretization
of continuous elements. Banach et al. [10] proposed Hybrid Event-B that is an
extension of Event-B, which contains pliant events to model continuous behavior
by using differential equations during system modeling. However, there is cur-
rently no tool support for this extension, whereas our approach [6] enabled us to
develop and to prove the models using available tools. In our work, we use real
numbers defined by a minimal set of axioms without addressing floating-point
numbers, which is out of the scope of this paper.

7 Conclusion

Hybrid systems are dynamic systems that combine continuous and discrete
behaviors to model complex critical systems, such as avionics, medical, and auto-
motive, where an error or a failure can lead to grave consequences. For critical
systems, recovering from any software failure state and correcting the system
behavior at runtime is mandatory. The substitution mechanism is an approach
that can be used to recover from failure by replacing the failed system. Its use
for hybrid systems is a challenging problem as it requires to maintain a safety
envelope through discrete implementation of continuous functions. To address
this problem, we have presented a refinement based formal modeling and veri-
fication of system reconfiguration or substitution for hybrid systems by proving
the preservation of the required safety envelope during the process of system
substitution. In this paper, we have extended our work on system substitution
to handle systems characterized by continuous models. First, we formalized the
system substitution at continuous level, then we developed a discrete model
through refinement by preserving the original continuous behavior. The whole
approach is supported by proofs and refinements based on the Event-B method.
Refinements proved useful to build a stepwise development which allowed us
to gradually handle the requirements. Moreover, the availability of a theory of
real numbers allowed us to introduce continuous behaviors which usually raise
from the description of the physics of the controlled plants. All the models have
been encoded within the Rodin Platform [4]. These developments required many
interactive proofs in particular after the introduction of real numbers. The inter-
active proofs mainly relate to the use of the Theory plug-in for handling real
numbers. Up to our understanding, the lack of dedicated heuristics due to the
representation of real numbers as an axiomatically-defined abstract data type,
and not as a native Event-B type together with our limited experience in defining
tactics led to this number of interactive proofs.



This work opened several research directions. First, the models defined in
this work handled a single parameter for information feedback with a simple
safety envelope (interval that the value must belong to). We plan to investigate
the reformulation of this problem when several parameters will be considered.
In this case, the safety envelope becomes a more complex expression (a con-
straint solving problem). The second possible extension of this work is related
to parametrization of the safety envelope with time. In other words, instead
of having constant interval bounds, we may define bound functions m(t) and
M(t). Other properties like elasticity could be expressed. However, this exten-
sion requires a powerful prover on real numbers and constraint solving problems
techniques. Another possible extension of this work is the development of sim-
ulation. The integration of simulation or co-simulation to validate the formal
model hypotheses will undoubtedly strengthen the approach. Finally, studying
particular systems through realistic case studies is another objective of our work.
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