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LARGE-SCALE BIOLOGY ARTICLE
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A large number of genes involved in lateral root (LR) organogenesis have been identified over the last decade using forward and
reverse genetic approaches in Arabidopsis thaliana. Nevertheless, how these genes interact to form a LR regulatory network
largely remains to be elucidated. In this study, we developed a time-delay correlation algorithm (TDCor) to infer the gene
regulatory network (GRN) controlling LR primordium initiation and patterning in Arabidopsis from a time-series transcriptomic
data set. The predicted network topology links the very early-activated genes involved in LR initiation to later expressed cell
identity markers through a multistep genetic cascade exhibiting both positive and negative feedback loops. The predictions
were tested for the key transcriptional regulator AUXIN RESPONSE FACTOR7 node, and over 70% of its targets were validated
experimentally. Intriguingly, the predicted GRN revealed a mutual inhibition between the ARF7 and ARF5 modules that would
control an early bifurcation between two cell fates. Analyses of the expression pattern of ARF7 and ARF5 targets suggest that
this patterning mechanism controls flanking and central zone specification in Arabidopsis LR primordia.

INTRODUCTION

The root system of land plants is essential for anchorage plus
water and nutrient acquisition. The ability of the root system to
fulfill these functions is highly dependent on its architecture (Den
Herder et al., 2010). Root system architecture is defined by three
parameters: root growth rate, root branching rate, and root
tropisms. Root system architecture plasticity determines the
ability of plants to adapt to soil heterogeneity and various abiotic
stresses, such as nutrient limitation or drought (Malamy, 2005).
Lateral root formation in particular is a highly plastic and envi-
ronmentally responsive trait that plays a central role in plant
adaptation to different soils (Desnos, 2008; Lavenus et al., 2013).

In Arabidopsis thaliana, lateral roots form from pairs of peri-
cycle cells called lateral root founder cells located in front of the

xylem poles (Malamy and Benfey, 1997). Lateral root founder
cells acquire their identity near the root tip in a region called
the basal meristem or oscillation zone (De Smet et al., 2007;
Moreno-Risueno et al., 2010; Van Norman et al., 2013). Priming
is followed by the coordinated migration of founder cell nuclei
toward the common cell walls and asymmetric anticlinal division
(De Smet et al., 2007; De Rybel et al., 2010; Goh et al., 2012)
leading to a stage I lateral root primordium (LRP). A two-layered
LRP is then formed by a switch in the orientation of division
planes from anticlinal to periclinal (Stage II). Additional divisions
generate a multilayered dome-shaped primordium (Stage III to
VII) that protrudes into the external tissues (endodermis, cortex,
and epidermis) and shows a recognizable root meristem orga-
nization from stage VI onwards (Malamy and Benfey, 1997;
Lucas et al., 2013). After emergence, the meristem is activated
and the lateral root (LR) starts elongating. Many aspects of lat-
eral root formation from priming to emergence are under the
control of the phytohormone auxin (Lavenus et al., 2013). Two
auxin-signaling pathways have been described. The ABP1
pathway has been proposed to mediate nontranscriptional auxin
response through Rho of Plant GTPase signaling and trans-
membrane receptor-like kinases of the TMK family (Robert et al.,
2010; Chen et al., 2012; Lin et al., 2012; Xu et al., 2014), while
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the nuclear TIR1/AFB pathway alters gene transcription by
regulating the degradation of the Aux/IAA transcriptional re-
pressors (Dharmasiri et al., 2005; Kepinski and Leyser, 2005).
Auxin signaling modules have been defined as groups of
coexpressed and strongly interacting Aux/IAA and ARF proteins
that regulate subsets of auxin responsive genes (De Rybel et al.,
2010). Priming was shown to be under the control of an IAA28-
dependent auxin signaling module, the only known target of
which is GATA23, a transcription factor encoding gene trigger-
ing lateral root founder cell identity acquisition (De Rybel et al.,
2010). The polarization of the founder cells prior to the first
asymmetric division is regulated by another auxin signaling
module featuring IAA14/SLR, ARF7, and ARF19 (Fukaki et al.,
2005; Okushima et al., 2005a, 2007; Wilmoth et al., 2005; Lee
et al., 2009; Goh et al., 2012). The known targets of this module
encode LBD transcription factors (LBD16, 18, 29, and 33) as well
as ARF19 itself (Okushima et al., 2005a, 2007). Besides its role in
LR founder cell polarization, the IAA14/SLR module is also in-
volved in LR initiation and LRP patterning together with a third
module composed of IAA12/BDL and ARF5/MP (Vanneste et al.,
2005; De Smet, 2010). One of the downstream targets of the
IAA14/SLR module involved in LRP patterning is the PUCHI
transcription factor (Okushima et al., 2005a; Vanneste et al.,
2005; Hirota et al., 2007). So far, no target has been reported for
the IAA12/BDL module.

While several regulators of lateral root formation and some of
their targets have been identified in Arabidopsis, our knowledge
of how these and other genes interact within a complex gene
regulatory network (GRN) to control root branching is very lim-
ited. A powerful way to generate such knowledge is to make use
of GRN inference techniques that reconstruct network topolo-
gies from transcriptomic data sets (De Smet and Marchal, 2010;
Marbach et al., 2010). These techniques are based on a fairly
simple principle: If two (or more) genes interact with each other
(i.e., one is regulating the other), their expression levels should
be linked to each other statistically. Therefore, it is theoretically
possible to identify pairs or groups of interacting genes by an-
alyzing statistical dependencies of their respective expression
levels. Arguably, time-series expression data sets represent the
best type of data for GRN inference modeling, as they permit
the detection of delays between gene profiles, thereby revealing
the directionality of the interactions. In the case of positive
regulatory interaction, if gene X directly regulates gene Y, the
expression profile of Y should be highly similar to the expression
profile of X but shifted forward in time by m time units (Figure
1C). This interval reflects the time needed to synthesize protein
X and for protein X to bind to the promoter of gene Y. In the case
of a negative regulatory interaction, the expression profile of Y is
expected to be highly similar to the inverted expression profile of
X shifted forward in time by m time units (Figure 1C). Hence, by
analyzing statistical linkage between gene expression profiles, it
should be possible in principle to infer regulatory relationships,
and it has already been successfully done in diverse biological
systems (De Smet and Marchal, 2010; Wang and Huang, 2014).

Many GRN inference algorithms have been developed over
the last decade, based on different formalisms and having dif-
ferent specificities and abilities (De Smet and Marchal, 2010;
Marbach et al., 2010; Wang and Huang, 2014). In their comparative

study as part of the DREAM3 challenge, Marbach et al. (2010)
pointed out important limitations of the GRN inference ap-
proach. The authors reported that all algorithms, including the
best performers, made systematic errors to various extents.
These were classified into three categories: cascade errors, re-
sulting in the introduction of shortcuts in genetic cascades; fan-
out errors, leading to the misinterpretation of coregulation as
regulation; and fan-in errors, resulting from a failure to predict
combinatorial interactions. Cascade errors and fan-out errors
create false positives, whereas the fan-in errors generate false
negatives (Marbach et al., 2010).
In this study, we created an algorithm called TDCor (for time-

delay correlation) to infer the GRN that controls lateral root for-
mation in Arabidopsis. We developed an approach based on GRN
motif modeling to limit the number of the systematic errors made
by the algorithm. TDCor was run on a subset of ;100 genes
known to be involved in auxin biosynthesis, transport, or signaling
pathways, plus lateral root initiation, patterning, or root apical
meristem (RAM) maintenance. The predicted network topology
links the very early activated genes involved in LR initiation down
to the late activated cell identity markers through a multistep
genetic cascade exhibiting both positive and negative feedback
loops. We experimentally validated TDCor predictions for the key
regulator ARF7 using an ARF7-GR transcriptomic data set and
chromatin immunoprecipitation-PCR. Interestingly, TDCor pre-
dicts that the selected genes cluster in two major groups. The first
group is predicted to be positively regulated by ARF7 and ARF19
and to repress the second group. The second group is predicted
to be positively regulated by MP, ARF6, and ARF8 and to repress
the first group. Using various reporter lines, we observed a spatial
separation of two nonoverlapping spatial expression domains
matching the two groups of genes, supporting the existence of
two mutually exclusive sets of genes generating two zones with
different identities in the LRP.

RESULTS

Statistical Analyses Can Predict Linear Interactions
between Two Genes from Time-Series Transcriptome Data
in a Complex Tissue

A GRN inference approach using time-series transcriptome data
might be used to infer the GRN regulating LR development in the
model plant Arabidopsis. However, the models underlying the
currently available GRN inference algorithm make the implicit
assumption that the data on which they are based were gen-
erated from homogenous cell populations. Because roots are
made of heterogeneous cell types, we first analyzed whether
this heterogeneity could pose a problem for GRN inference.
Using an analytical approach (Supplemental Methods 1), we
showed that only linear interactions can be inferred from time-
series data set generated from heterogeneous cell populations.
We established that in a single cell or in a homogeneous cell
population, under the conditions listed in Supplemental Table 1,
if gene X regulates gene Y, the amount of gene Y transcript
present at time t [which we call YðtÞ], would be linked to the
amount of gene X transcript present at time t2 d with d> 0 [which
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we call X(t 2 d]) by the differential equation (E). In this equation,
the function f models the effect of protein X on the transcription
rate of gene Y.

∃f :ℝþ↦ℝ and a; g; d>0; ∀t∈ℝ;

dYðtÞ
dt

¼ aþ fðXðt2 dÞÞ2 g:YðtÞ
ðEÞ

The different terms of the equation are explained in detail in
Supplemental Table 2. When the g parameter is high, meaning
that the degradation rate of the Y transcript is high enough, the
system reaches quasi-steady state. Hence,

∀t∈ ℝ; 0 � aþ fðXðt2 dÞÞ2 g:YðtÞ⇒YðtÞ
� 1

g
:ðaþ fðXðt2 dÞÞÞ

Therefore, a strong relationship exists between the amount of
transcript of a regulator gene X at time t minus a delay and the
amount of transcript of the target gene Y. This implies that in this
case, one can infer the existence of the interaction between X
and Y by looking for a strong statistical dependency (linear or
nonlinear depending on f ) between the two variables Xðt2 dÞ
and YðtÞ. More rigorously, one can say that in the absence of

Figure 1. Gene Regulatory Network Inference from the LR Data Set.

(A) Changing the gravity vector (turning the Petri dish by 90° = applying the gravistimulus) causes the root to reorient downwards and creates a bend
where a lateral root systematically initiates.
(B) The initiation and development of the lateral root in the bend follows a tightly reproducible timing. Each line on the plot shows the distribution of
lateral root primordia stages (Malamy and Benfey, 1997) at a given time after the gravistimulus was applied. At 12 hag, >90% of LRPs have not initiated
yet (preinitiation [PI] stage). Initiation occurs between 15 and 18 hag (stage 1), and then the LRP passes from one stage to the next one, approximately
every 3 h. The E0, E1,., E4 stages correspond to successive stages after emergence. At E0, the LRP tip has reached the surface of the parental root; at
E1, it is approximately one epidermal cell width from the surface of the parental root; while at E2, it is two epidermal cell widths, etc. The FE stage
corresponds to a fully emerged and elongating lateral root.
(C) Gene regulatory network inference algorithm often make the assumption that if a gene X regulates a target Y positively, Y expression profile is
similar to X expression profile but shifted forward in time. Conversely, if X regulates Z negatively, the profile of Z is expected to resemble the inverted
profile of X. Here, we show that this principle stands in the case of heterogeneous cell populations when the interaction is linear (Supplemental
Methods 1).
(D) Two expression profiles from the LR data set (of the SHR transcription factor and its direct target SCR), which follows the rule illustrated in (C).
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Figure 2. Nonlinear Interactions Cannot Be Predicted from the Transcriptomic Data Set Obtained from Heterogeneous Cell Populations.
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statistical dependency between Xðt2 dÞ and YðtÞ, the null
hypothesis that X regulates Y following the assumptions shown
in Supplemental Table 1 can be rejected.

We next considered a heterogeneous cell population made of
two homogeneous groups of cells in constant proportions, which
could be for instance a very simple nongrowing and nondeveloping
organ made of only two cell types. We showed that in this case, an
ordinary differential equation (ODE) identical to (E) links the ex-
pression level of genes X and Y at the organ level when f is linear
but not when f is nonlinear. No differential equation exists that can
link X and Y transcript levels when f is nonlinear. This means that
when X regulates Y in a linear manner, the possible existence of the
interaction can be inferred (H0 not rejected) from transcriptomic
data obtained from the whole organ. In contrast, when the in-
teraction is not linear, the expression level of the target is not linked
to the expression level of the regulator at the organ scale. Hence, it
is not possible to infer the existence of nonlinear interactions by
using transcriptomic data generated from a complex organ.

To illustrate this point, we simulated an interaction between two
genes in an organ made of two homogeneous groups of cells
(Figures 2A and 2B) and chose two different forms for f (one linear
and one nonlinear). As predicted, we observed a strong relation-
ship in the individual groups of cells in both cases (Figures 2C and
2D, blue curves), although this relationship was linear in the first
case while non-linear in the second case. However, at the whole-
organ scale, a relationship existed between transcripts level only
when f was linear (Figures 2C and 2D, blue curves). These results
were then generalized to the case where the organ is composed
of n homogeneous groups of cells in changing proportions
(Supplemental Methods 1). In brief, GRN inference from time-
series transcriptomic data obtained from heterogeneous cell
populations like roots is possible, but limited to linear interactions,
or more realistically nearly linear interactions.

TDCor, an Algorithm Based on Time-Delay Correlation to
Infer Linear Regulatory Interactions from Time-Series
Transcriptomic Data

Taking advantage of our ability to synchronize Arabidopsis LR
development following a root gravitropic stimulus (Ditengou

et al., 2008; Laskowski et al., 2008; Lucas et al., 2008; Péret
et al., 2012), a time-series transcriptomic data set (herein after
referred to as the LR data set) was generated encompassing
every LR developmental stage from preinitiation to post-
emergence (Voß et al., 2015; Figures 1A and 1B). In our exper-
imental conditions, stage I LR primordia are detected in
Columbia-0 (Col-0) ;15 h after gravistimulation (hag) and LRs
emerged around 42 hag. Root bends were microdissected every
3 h from 6 to 54 hag and RNA extracted to cover the entire
process of LR development. At time point 0, a mature root
segment located between the bend and the shoot was har-
vested at 9 h after an inductive gravitropic stimulation.
An initial study of well-characterized regulators and their tar-

gets within the LR data set revealed that, as expected, the ex-
pression profile of the target is often highly similar to the
expression profile of its regulator and shifted in time. For ex-
ample, the target of the SHORT-ROOT (SHR) transcriptional
regulator termed SCARECROW (SCR) (Di Laurenzio et al., 1996;
Helariutta et al., 2000; Sozzani et al., 2010) closely followed the
dynamic changes in SHR mRNA abundance within the LR data
set with a time delay estimated around 2 h (Figure 1D). Similar
relationships were identified for other well-known regulators and
their direct targets, such as ARF19 and LBD16 (Okushima et al.,
2005a, 2007). Hence, we concluded that a GRN inference ap-
proach based on the LR data set could potentially be employed
to reconstruct the GRN controlling LR formation.
We developed the TDCor algorithm specifically to identify linear

interactions, as only linear (as opposed to nonlinear) interactions
may be inferred from the LR data set (as described above).
A detailed description of TDCor can be found in Supplemental
Methods 2.
TDCor reconstructs the network topology from a subset of

expression profiles (typically around 120 genes) in four main steps
(Figure 3). First, TDCor requires data preprocessing from the LR
data set to obtain expression profiles of the genes selected. For
each gene, an exact interpolating cubic spline function of the
normalized expression profile is generated. Second, TDCor builds
a list of plausible interactions. This is achieved by performing an
extensive pairwise and bidirectional testing of whether a sufficient
linear model with time delay exists between the expression

Figure 2. (continued).

(A) Schematic representation of the system that was modeled. We considered a simple noncombinatorial interaction between a regulator X and its positive
target Y occurring in an organ made of two homogeneous groups of cells in equal proportion. The interaction was modeled using the ODE in equation (E).
(B) Two profiles were taken from the LR data set to be used as template for gene X expression in the two groups of cells. The transcript accumulation
profile of gene X in the whole organ was obtained by averaging the transcript accumulation profiles in the two groups of cells.
(C) The X-Y interaction was first modeled using a linear model (linear regulation function shown on the left of the panel). The profile of gene Y in each of
the two homogeneous tissues was obtained from the corresponding profiles of gene X in these two tissues (shown in [B]) by solving equation (E) while
taking the linear regulation function as function f. The profile of gene Y in the whole organ was obtained by averaging the computed profiles of gene Y in
the two groups of cells. The three plots at the bottom show the relationship between the expression level of Y at time t and the expression level of its
regulator X at time t2m, with m the time shift between the expression profiles of X and Y. m is the sum of the d parameter of the ODE and the relaxation
time of the system (0.87 h), which depends on the g parameter.
(D) The X-Y interaction was next modeled using a nonlinear model (nonlinear regulation function of Mikaelis and Menten type shown on the left). The
profile of gene Y in the two homogeneous tissues was obtained from the profiles of gene X in these two tissues (B) by solving equation (E) and taking the
nonlinear regulation function as function f shown on the left of the panel. The profile of gene Y in the whole organ was obtained by averaging the
computed profiles of gene Y in the two groups of cells. The three plots at the bottom show the relationship between the expression level of Y at time t
and the expression level of its regulator X at time t2m, with m the time shift between the expression profiles of X and Y. m is the sum of the d parameter
of the ODE and the relaxation time of the system (0.87 h), which depends on the g parameter.
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profiles of the selected genes. Because it is critical to calculate
precisely the delay between the expression profiles for each pair,
four different methods were combined (Supplemental Methods 2).
Furthermore, to reach high precision in the calculations (i.e., below
the sampling interval), TDCor uses exact interpolating cubic spline
functions. To build the list of plausible interactions, TDCor makes
use of prior knowledge concerning the nature of the genes used to
reconstruct the network. Genes are classified into four categories:
transcriptional activators, transcriptional repressors, transcrip-
tional regulators (including activators or repressors or proteins
with unknown effect on transcription), and nonregulators (e.g., cell
wall remodeling enzyme). Using this minimal prior knowledge,
some interactions can be ruled out. For instance, a nonregulator
cannot directly regulate target gene expression. Hence, any in-
teractions involving this type of gene as a regulator can be elim-
inated. Similarly, a transcriptional activator cannot negatively
regulate its primary target. Hence, any negative regulatory in-
teraction with a short delay involving a transcriptional activator is
regarded as unlikely and subsequently removed.

In its third step, TDCor tests whether the linear statistical
dependencies detected at step 1 between pairs of expression
profiles are more likely to be due to true direct regulation or
rather to be a consequence of coregulation or of indirect regu-
lation. The preliminary network topology established at step 1 is
pruned at step 2 using several filters. All the decisions made by
the algorithm for whether to retain or not retain an interaction
involve the comparison of a numerical predictor with one or two
user-defined threshold parameters. Because the choice of the
threshold values influences the final result and because the re-
sult of the pruning can depend on the order of node analysis,
TDCor uses a double bootstrap protocol in order to estimate the
sensitivity of the various edges in the network to changes in the
parameter values and in the order of node analysis. The two
steps described above are repeated N times (typically N>1000)
with different parameters set independently and randomly cho-
sen at the beginning of each iteration within a user-defined
parameter space, and each pruning procedure is repeated n
times (typically n 5 10) with the same parameters. This produces
N:n network topologies that are then merged. The bootstrap value
for each edge is obtained by counting the number of predicted
network topologies in which it occurs. At step four, the nR best
regulators (typically nR = 4) showing the highest bootstrap scores
are selected for each node.

Comparison of TDCor Performance versus Other GRN
Inference Algorithms

We inferred a LR GRN from the LR transcriptomic data set using
TDCor and two existing GRN inference algorithms capable
of reconstructing network topologies from time-series tran-
scriptomic data, namely, VBSSM and TDARACNE (Beal et al.,
2005; Zoppoli et al., 2010). A set of 120 genes was selected on
their known or suspected function in LR development. This in-
cludes genes from the auxin pathway (metabolism, transport, or
signaling pathways), genes involved in root apical meristem
patterning and maintenance, or genes that play a role in lateral
root initiation, patterning, or emergence (Supplemental Table 3).
The broad span of functions for these genes enables one to
cover major aspects of lateral root formation and therefore ob-
tain a network that is representative of the entire LR GRN.
GRNs predicted by VBSSM with default parameters and with

three different cutoff levels of significance (Z = 1.65, Z = 2.33, and
Z = 3) are shown in Supplemental Table 4. The network obtained
using the highest significant threshold (Z = 3) features 56 nodes
and 82 edges, whereas the one obtained with the lowest strin-
gency has 120 nodes and 651 edges. The GRNs predicted by
TDARACNE with low and high stringency parameter sets are
shown in Supplemental Table 5. The two TDARACNE networks
feature 291 (89) and 582 (88) edges (nodes), respectively. The TDCor
algorithm was run with low stringency parameters (Supplemental
Table 6), and only interactions with a bootstrap value greater than
10% were kept in the network. The network topology predicted
by TDCor with these parameters features 122 nodes and 358
edges corresponding to 206 positive interactions and 152 nega-
tive interactions (Supplemental Figure 1).
To assess the relative performance of the three algorithms on

the lateral root data set, we determined how many of 23 already

Figure 3. Structure of the TDCor Algorithm.

TDCor uses a double bootstrap protocol. The parameter values are
randomly chosen within a user-defined parameter space at the beginning
of each big iterative loop. Node order analysis is randomized before each
pruning filter and the last part of the pruning procedure is itself repeated
several times with the same parameter values (but different order of
nodes analysis). MRST, master regulator and signal transducer, i.e.,
a gene that could be posttranslationally activated in response to the
stimulus and could start the whole genetic cascade. TPI, triangle pruning
index; DPI, diamond pruning index. These two indices are numerical
topology predictors for respectively some specific three- and four-gene
motifs (Supplemental Methods 2).
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Figure 4. Validation of the Predictions by TDCor Using the ARF7-GR Data Set.
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experimentally validated regulatory interactions were predicted
(Supplemental Table 7). A surprising low number of interactions
was predicted by VBSSM and TDARACNE. VBSSM was able
to correctly predict only one interaction (BBM self-regulation)
out of 23. In most cases, these direct interactions were mis-
interpreted by VBSSM as coregulation of low significance.
TDARACNE consistently predicted five interactions out of 23
(22%), while seven others were misinterpreted as coregulation
in the topology obtained with low stringency parameters
(Supplemental Table 7). This suggests that the LR data set was
not suited for these algorithms. On the other hand, TDCor was
able to correctly predict 14 out of the 23 interactions (60%)
described in the literature, flagged another one as coregulation,
and failed to predict the remaining eight (Supplemental Table 7).
We concluded that TDCor is suitable for analyzing the LR
transcriptomic data set to predict new regulatory interactions
with a high level of confidence.

Experimental Validation of TDCor Predictions for
ARF7 Targets

In order to further evaluate the performance of TDCor, we ex-
perimentally tested its predictions for ARF7 targets. ARF7
encodes a key transcriptional activator required to trigger
lateral root initiation (Okushima et al., 2005a, 2007; Moreno-
Risueno et al., 2010). To determine ARF7 primary and sec-
ondary targets in roots, the arf7 arf19 double mutant was
complemented by expressing a dexamethasone (DEX) inducible
ARF7-GLUTICORTICOID RECEPTOR (GR) fusion protein under
the native ARF7 promoter. The PROARF7:ARF7-GR arf7 arf19
line was treated for 4 h either with DMSO (mock control), the
synthetic auxin naphthalene acetic acid (NAA), cycloheximide
(CHX), DEX, or with one of the four possible combined treat-
ments. The whole seedling root was then harvested for tran-
scriptomic analyses. The global response of the plant to the
various treatments was formally decomposed into five indepen-
dent response components that may or may not be activated
depending on the treatments (Supplemental Table 8). These
components include the ARF7-dependent primary and sec-
ondary auxin responses and the ARF7-independent primary and
secondary auxin responses. Because CHX can have a strong
impact by itself on transcript accumulation (not directly related

to it blocking translation), a CHX response control was taken
into account.
In order to quantitatively estimate the ARF7-dependent pri-

mary and secondary responses from the data, a model in the
form of a system of seven equations with seven unknowns was
solved for all genes (Supplemental Table 9 and Supplemental
Methods 3). In these equations, the two components of interest
were represented respectively by the a and b unknowns, which
are interpreted as fold changes. Primary (respectively second-
ary) positive targets of ARF7 should show a > 1 ( b > 1), while
primary (respectively secondary) negative targets of ARF7
should show 0 < a < 1 ( 0 < b < 1). Conversely, genes that are
not primarily regulated by ARF7 are expected to show an a

parameter close to 1. For our analysis, we regarded a gene as
regulated through a given pathway if the parameter corre-
sponding to this response component was either greater than
1.5 (upregulation) or lower than 1/1.5 (downregulation).
TDCor uses an index of directness in order to predict whether

edges in the network are likely to correspond to direct or indirect
interactions. In the network topology, 10 genes were located
one edge downstream of ARF7, five of which are predicted to
correspond to direct interactions (Figures 4A; Supplemental
Figure 2). All five were validated as ARF7 primary targets using
the ARF7-GR data set, although ARF4 is potentially both a pri-
mary and secondary target of ARF7 (Figure 4B). Consistently
these genes display between one and four canonical ARF motifs
termed AuxRE in their promoters (Supplemental Table 10). Fur-
thermore, binding of ARF7 to the target promoters was confirmed
by chromatin immunoprecipitation-quantitative PCR (ChIP-
qPCR) for ARF19, LBD16, LBD29, and IAA19 (Supplemental
Table 10; Figure 4C). TDCor also correctly predicted the pre-
viously documented double regulation of LBD16 by ARF7 and
ARF19 (feed-forward loop). GATA23, LBD17, PIN7, IAA11, and
AFB3 are located one edge downstream of ARF7, but their index
of directness predicts they are likely to be indirect targets of
ARF7 (Figure 4A). GATA23, LBD17, PIN7, and IAA11 are vali-
dated by the ARF7-GR data as positive secondary targets of
ARF7 (Figure 4B). AFB3 was not validated as negative sec-
ondary target of ARF7 (Figure 4B). The estimated delay between
ARF7 and AFB3 is 6 h, which would be too long to test using the
ARF7-GR data (which was harvested 4 h after treatments). In
total, eight out of the 10 genes located one edge downstream of

Figure 4. (continued).

(A) Topology of the network predicted by TDCor corresponding to genes located up to two edges downstream of ARF7 (bootstrap > 10%). The TMO5
gene is predicted to be a negative target of ARF4 and to downregulate several of ARF7 targets. For clarity, this node was removed from the network.
TDCor also predicted that the activity of the ARF7 protein could be regulated posttranslationally upon gravistimulus application to start a transcriptional
cascade (denoted by the blue “Stimulus” node).
(B) ARF7-GR transcriptomic data analysis for the genes located one edge downstream of ARF7 in the predicted network topology. The a parameter
corresponds to the ARF7-dependent primary auxin response. The b parameter corresponds to the ARF7-dependent secondary auxin response. a:b is
the total ARF7-dependent auxin response. These parameters are equivalent to fold changes. The bar plots show the log2 values of the parameters
estimated from the ARF7-GR transcriptomic data for the various genes located one edge downstream of ARF7 in the network topology (information
about the estimation method is provided in Supplemental Methods 3).
(C) Validation of the predictions of ARF7 primary targets by ChIP-qPCR. The schematic on the left indicates the position of the putative ARF binding
sites termed auxin response element in the promoters of the predicted ARF7 primary target genes and the location of the analyzed amplicons (see
Supplemental Table 10 for more details).
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ARF7 have already been reported as being ARF7-dependent
auxin-inducible genes and nine were validated in the ARF7-GR
data (Okushima et al., 2005a, 2007; Lee et al., 2009; De Rybel
et al., 2010).

Eighteen genes are found two edges downstream of ARF7 in
the network topology predicted by TDCor, 14 of which are
predicted as positive targets of ARF7, while the remaining four
are predicted as negative targets of ARF7 (Figure 4A). The
ARF7-GR data validated as positive secondary ARF7 targets
nine of the 14 predicted positive targets, including two LBDs

(LBD18/33), two auxin conjugating enzymes (GH3.1 /3.5), three
Aux/IAAs (IAA29, SLR, and SHY2), and two auxin carriers (PIN3
and AUX1). The AP2 transcription factor PUCHI and the auxin
conjugating enzyme GH3.3 are predicted as a positive target of
LBD16 and/or LBD29 and consequently an indirect target of
ARF7. However, the ARF7-GR suggests that these two genes
are primary targets of ARF7. The four predicted positive targets
that were not validated were AFB2, SHP1, KRP2, and ARF1.
None of the four predicted negative secondary targets of ARF7
could be validated by the ARF7-GR data. ARF9 is an indirect

Figure 5. The GRN Predicted by TDCor Is Organized into Two Groups of Genes.

(A) Whole-network topology predicted by TDCor. The layout shows two groups of genes featuring different sets of positive ARFs (yellow nodes) and
negative ARFs (green nodes). Within each group, genes regulate each other positively (red edges), while each group regulates the other negatively (blue
edges). SHP1 is the only exception to the rule as it is predicted to be positively regulated by members of the two groups.
(B) Expression profile of PLT5 (black) and PHV (red) in the LR data set. PLT5 is predicted to be part of the group featuring ARF7-ARF19, while PHV is
predicted to be part of the other group, which features ARF6-ARF8-MP. The high similarity that can be observed between the two profiles during the
first 30 h suggests that PLT5 might be indirectly positively regulating PHV.
(C) Expression profiles of MYB52 (black) and MYB56 (red) in the LR data set. These profiles could be compatible with these two genes acting as
intermediary links between PLT5 and PHV.
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target of ARF7 but is predicted three edges downstream of
ARF7. Eleven other genes are positive indirect targets of ARF7
according to the ARF7-GR data (CRF2, CRF3, PIN1, LBD4,
IAA2, EXPA20, LAX3, MEL1, MAB4, GH3.6, and CLE44) but
were not predicted as such by TDCor.

Hence, comparison of the ARF7-GR data with TDCor pre-
dictions from the LR data set validated most of the predicted
ARF7 targets. The genes that are the more strongly and spe-
cifically regulated by ARF7 in the ARF7-GR data set were cor-
rectly predicted as ARF7 targets. TDCor was also able to
successfully differentiate between primary and secondary tar-
gets. Ninety percent (9/10) of the genes located one edge
downstream of ARF7 could be validated as such, and for all of
them but one, the predicted directness was correct. The vali-
dation rates of the genes located up to two edges downstream,
which would correspond to two regulatory steps downstream or
more, is very good though lower (20/28; 71%). It needs to
should be stressed that the ARF7-GR data set was designed to
detect targets regulated only 4 h after treatment, which may be
sufficient for two regulatory steps. Overall, TDCor recovered
>65% (21/31) of ARF7 targets.

Besides the ARF7 node, a number of predictions from TDCor
were consistent with published data. For instance, most ARF7
targets are predicted as repressed by the chromatin-remodeling
factor PICKLE (PKL) (Fukaki et al., 2006). Furthermore, most of
the genes encoding cell cycle regulators (CYCA2;4, DPA,
CYCB1;1, CDKB2.1, E2FA, CYCD6;1, and CYCD3;1) included in
the analysis were predicted by TDCor as direct or indirect tar-
gets of transcription factors of the PLETHORA (PLT) family,
namely, PLT1, PLT2, PLT3, PLT4/BABYBOOM (BBM), and
AINTEGUMENT (ANT), as well as of the LONESOME HIGHWAY
(LHW) regulator. This is fully consistent with the reported func-
tion of the PLT genes in the control of mitotic activity in the
RAM, with the role of LHW in the regulation of the size of the

vascular stem cells pool in the RAM, and also with the ascribed
function of ANT in the control of shoot lateral organ size
(Mizukami and Fischer, 2000; Aida et al., 2004; Nole-Wilson
et al., 2005; Galinha et al., 2007; Ohashi-Ito and Bergmann,
2007; Krizek, 2009; Horstman et al., 2014; Ohashi-Ito et al.,
2013). The negative ARF, ARF2, is predicted to repress indirectly
cell cycle genes through indirect repression of PLT genes and
other regulators. Consistently ARF2 is known as a repressor of
cell division and organ growth (Okushima et al., 2005b; Schruff
et al., 2006). Altogether, the LR development GRN predicted by
TDCor could be validated by our analysis of ARF7 targets and
is consistent with our current knowledge of the function of the
genes involved.

TDCor Reveals That the LR Development GRN Is Organized
in Two Regulatory Modules

Strikingly, the network predicted by TDCor was organized into
two groups of genes (Figure 5A). Each of these groups features
different sets of positive and negative ARFs. On one hand,
around 50 genes are predicted by TDCor to be downstream of
ARF7 and ARF19 and form a first module, while the remaining
genes are associated with MP, ARF6, and ARF8 to form a sec-
ond module. The genes within the same module are predicted to
positively regulate one another (Figure 5A, red edges) to form
a genetic cascade, although the cascade organization is less
clear in the second group due to the presence of multiple pos-
itive feedback loops. In contrast, the two modules are predicted
to interact through negative interactions (Figure 5A, blue edges).
We noted that the genes predicted to be at the bottom of the

Table 1. Candidate Missing Links between PLT5/7 and ANT/PHV

AGI Annotation

1 AT1G16060 ADAP; ARIA-INTERACTING DOUBLE AP2
DOMAIN PROTEIN WRI3; WRINKLED3

2 AT1G17950 ATMYB52
3 AT1G47870 E2FC
4 AT1G64000 WRKY56
5 AT1G68880 BASIC LEUCINE-ZIPPER 8
6 AT2G42360 RING/U-box superfamily protein
7 AT2G46130 WRKY43
8 AT3G11280 Putative transcription factors interacting

with the gene product of VHA-B1
9 AT5G06960 OCS-ELEMENT BINDING FACTOR5 (OBF5),

TGACG MOTIF BINDING FACTOR5 (TGA5)
10 AT5G17800 MYB56
11 AT5G43170 ZINC-FINGER PROTEIN3 (AZF3)
12 AT5G65230 MYB53

Genes annotated as transcription factors displaying an expression profile
in the LR data set showing both high correlation (>0.8) with the profiles of
PLT5/PLT7 shifted forward in time by 3 h and a high correlation (>0.8)
with the expression profiles of ANT/PHV shifted backward in time by 3 h
(Supplemental Methods 5).

Table 2. Candidate Missing Links between ARF8 and PLT1

AGI Annotation

1 AT1G14510 ALFIN-LIKE7 (AL7)
2 AT1G32240 KANADI2 (KAN2)
3 AT1G71260 ATWHY2
4 AT2G30590 WRKY21
5 AT2G36930 C2H2 zinc-finger family
6 AT3G44750 HISTONE DEACETYLASE2A (HD2A, HDA3)
7 AT3G50870 GATA18, HANABA TANARU (HAN),

MONOPOLE (MNP)
8 AT4G04890 PROTODERMAL FACTOR2 (PDF2)
9 AT4G37780 ATMYB87

10 AT5G05610 ALFIN-LIKE1 (AL1)
11 AT1G15720 TRF-LIKE5 (TRFL5)
12 AT5G39550 ORTHRUS1 (ORTH1), VARIANT IN

METHYLATION3 (VIM3)
13 AT5G64610 HISTONE ACETYLTRANSFERASE OF THE

MYST FAMILY1 (HAM1)

Genes annotated as transcription factors displaying an expression profile
in the LR data set showing both high correlation (>0.8) with the profiles of
ARF8 shifted forward in time by 3 h and a high correlation (>0.8) with the
expression profiles of PLT1 shifted backward in time by 3 h. Some
additional criteria have been taken into account to narrow down the list of
missing link candidates, in particular, the value of the estimated time
shifts between the profiles of these genes and those of ARF8 and PLT1
(Supplemental Methods 5).

Lateral Root Gene Regulatory Network 1377

http://www.plantcell.org/cgi/content/full/tpc.114.132993/DC1
http://www.plantcell.org/cgi/content/full/tpc.114.132993/DC1


Figure 6. The GRN Regulating LR Formation: A Large Cascade Headed by ARF7.
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ARF7/ARF19-activated cascade (e.g., PLT5 and PLT7) have
relatively similar expression profiles to the genes predicted to be
at the top of the second cascade (e.g., PHV and ANT), partic-
ularly during the first 35 h of the LR time series. However, the
time shift between these genes (around 8 to 10 h) exceeds the
TDCor upper limit (Figure 5B). This suggested that the predicted
network topology could be artificially cleaved into two parts
simply because the genes establishing the link between the
two blocks could be missing from our list. For this reason, we
searched for genes that could potentially be acting as missing
links between PLT5-PLT7 and ANT-PHV. We searched in a list
of ;1060 transcription factors from the AtTFDB database
(Davuluri et al., 2003; Palaniswamy et al., 2006) for genes dis-
playing an expression pattern with high correlation (>0.8) and +3 h
time delay with PLT5/PLT7 and high correlation (>0.8) with 23 h
time delay with ANT/PHV in the LR data set (Table 1, Figure 5C).
We also noted that PLT1 has many predicted targets but no
regulators. However, TDCor delay measurements indicated that
PLT1 was ;7 h downstream of ARF8, MP, and BBM. Therefore,
we searched and identified 13 genes potentially acting as missing
link between ARF8 and PLT1 (Table 2). All of these genes were
added to our original list and TDCor was rerun. The new network
topology contained a single very long genetic cascade featuring
ARF7 at the top and meristematic and patterning genes at the
bottom (Figure 6A). The “full cascade” topology is supported by
the observations that (1) MP and PLT3 are now located several
steps downstream of ARF7 (De Smet, 2010; Hofhuis et al.,
2013), and (2) the MYB56 gene, one of the predicted links, has
recently been shown to control seed size by regulating cell di-
vision in the integument of the seed coat, exactly as ANT, its
predicted target (Mizukami and Fischer, 2000; Zhang et al.,
2013). Interestingly, at the very top of the cascade, the grav-
istimulus is predicted by TDCor to trigger a nontranscriptional
response leading to posttranslational activation of the ARF7
protein (Figures 4A and 6A). The most likely hypothesis is that
upon gravistimulation, auxin accumulates in the root bend,
triggering the degradation of Aux/IAAs and subsequently the
activation of the ARF7 protein.

The LR Development GRN Topology Creates Successive
Waves of Transcription

Topological features of the inferred LR network can explain
many aspects of the observed dynamics of the network. First,
TDCor predicts that the genes upregulated several regulatory
steps downstream of ARF7 would act as repressors of the
early ARF7-activated genes, creating late negative feedback
loops. This topology could explain why ARF7 targets and down-
stream target genes are transiently expressed, hence creating

successive transcriptional waves (Figure 6B). Two groups can
be distinguished among the ARF7 targets. Genes such as ARF4,
IAA11, GATA23, and LBD17 are very quickly repressed after
initiation, while others such as LBD16 and PUCHI remain ex-
pressed in the developing LR primordium and are repressed
more slowly (Supplemental Figure 2). The rapid repression of
early ARF7 targets is predicted to be mediated by two negative
ARFs (ARF16 and ARF18), PHV and MYB56, as soon as initia-
tion has taken place around 15 hag (Figure 7A). The group of
late-repressed ARF7 targets is predicted to be repressed by
genes that are activated a few hours later such as the HDIII-Zip
PHB (starting around 20 h), the KANADIs (starting around 30 h),
and PLT1, PLT2, PLT3, and PLT4/BBM (starting between 30 and
40 h). Most noticeably, the repression of ARF7 targets is pre-
dicted to involve epigenomic factors. In particular, TDCor pre-
dicts that the chromatin remodeler PKL/SUPPRESSOR OF
SLR2 and the Polycomb-group protein CURLY LEAF (CLF) are
upregulated by meristematic and patterning genes to repress
ARF7 targets (Figure 7C). Supporting this prediction, we found
that the Gene Ontology categories related to DNA methylation
(P values < 1e-67), histone methylation (and in particular H3K9
methylation; P values < 1e-90), and negative epigenetic regu-
lation of gene expression (P values < 1e-61) are very significantly
overrepresented among the ;3000 genes positively correlated
with PKL, CLF, and other meristematic genes in the lateral root
data set (Supplemental Figure 3). Many positive feedback loops
are also predicted between meristematic genes (Figure 7D). This
could explain how, once activated, the meristematic genes re-
main expressed even though their regulators get repressed
(Figure 6B). In the absence of positive feedback loops, the
negative feedbacks alone would generate oscillations of genes
expression.

Mutual Inhibition between ARF7 Targets and Meristematic
Genes Specifies LRP Central and Flanking Domains

One characteristic of the predicted network topology is the
presence of incoherent feed-forward loops (Mangan and Alon,
2003; Alon, 2007). On the one hand, ARF7 and its targets are
predicted to upregulate meristematic and patterning genes
through a long genetic cascade (Figure 6A). On the other hand,
ARF7 targets are also predicted to repress these very same
genes through a much shorter pathway (Figure 7B). In particular,
TDCor predicts that ARF7 quickly activates the expression of
three negative ARFs, ARF4, ARF2, and ARF9, which would re-
press meristematic genes, such as PLT3, SHR, MP, and ARF8,
and patterning genes, such as GLABRA2 (GL2), ENHANCER OF
GLABRA3, or KAN4 (Figure 7B). Hence, ARF7 targets and
meristematic/patterning genes are predicted to mutually inhibit

Figure 6. (continued).

(A) A few genes identified as potential missing links between the two groups of genes shown in Figure 5A were added to the list of genes used to build
the network and TDCor was rerun. As expected, TDCor predicted that these genes could be acting as intermediates between the two groups of genes,
producing a gigantic genetic cascade headed by ARF7. For clarity, the negative interactions are not represented. Refer to Figure 2A for the key.
(B) Normalized expression profiles of some of the genes in the cascade. The red lines indicate the position of a primary peak of expression, which is
noticeable mostly for the genes located upstream in the network. This peak moves as wave downstream along the network. The pink lines indicate the
position of a secondary peak of expression that is mostly present in the profiles of the genes located downstream in the network.
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Figure 7. Four Essential Topological Motives Found in the Predicted LR Network.
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each other (Figure 5A). The existence of the incoherent feed-
forward loop could explain why the genes downstream of PHV
(Figure 6A) are more slowly upregulated than the genes located
more upstream in the cascade (Figure 6B). Indeed, at the time
when they get upregulated around 20 to 30 h after grav-
istimulation, the ARF2/4/9 repressors are expressed at a relatively
high level. This mutual inhibition should lead to a bifurcation be-
tween two different fate decisions and the two groups of genes
should be expressed in different nonoverlapping spatial domains.
In order to validate this prediction, we analyzed the spatial ex-
pression pattern of several genes predicted to be part of one or
the other of the two groups. For the ARF7 targets, we analyzed
the expression pattern of LBD16, PUCHI, and PLT5 genes, while
MP and PLT1/2/3/4 genes were selected as meristematic genes.
Using transcriptional and translational fusions with fluorescent
proteins, we observed that the two groups of genes are expressed
in separate spatial domain. PLT5, LBD16, and PUCHI were ex-
pressed in the flanks and at the base of LR primordia and only
weakly expressed in the center of the primordium (Figure 8). After
emergence, PLT5 is upregulated in the prospective central
vasculature domain (Figure 8). In contrast,MP and the PLT1/2/3/4
genes were observed to be expressed in the center of the pri-
mordia and to be excluded from the flanks (Figure 9). Taken
together, this suggests that the mutual inhibition between ARF7
targets and meristematic genes lead to the specification of two
spatial domains in the LR primordium: the flank (where division
stops) and the center (which will produce the new meristem with
the new stem cell niche).

DISCUSSION

Over the last decade, rapid progress has been made in the
genetic analysis of LR development (reviewed in Lavenus et al.,
2013). Forward and reverse genetic screens have led to the
identification of a number of key regulators of LR formation.
Interestingly, LR development is not dependent on a stereotyp-
ical cell division pattern (Lucas et al., 2013) but is characterized
by conserved events of symmetry breaking that generate dif-
ferent cellular domains. Such complex coordinated cellular be-
haviors result from interactions between multiple genes within
a GRN. Hence, in order to understand how a pair of pericycle
cells generate a new root meristem showing a complex and yet
robustly reproducible organization, it is necessary to (1) identify
the topology of GRN that controls LR formation and (2) un-
derstand how the topology can generate the observed behavior.

Here, we performed GRN inference on a LR time-series
transcriptomic data set (Voß et al., 2015). The LR data set was

generated from tissues composed of multiple cell types rather
than a homogenous cell population. Our analysis revealed that
only linear interactions or more realistically close-to-linear in-
teractions could be inferred from such data. We developed an
algorithm called TDCor specifically designed to infer close-to-
linear interactions from a time-series transcriptomic data such
as the LR data set. While designing TDCor, we paid careful at-
tention to two points. First, in order to obtain accurate estimates
of the delay between expression profiles, which is crucial in-
formation for network reconstruction, we combined four methods
of delay estimation. Second, to limit the number of systematic
errors made by our algorithm, we developed novel filtering
methods based on modeling of small network motifs. These
filters use indices, the distributions of which depend on the to-
pology of the network. TDCor pruning methods depend on the
unknown distributions of biological/technical parameters, such
as transcript degradation rates or the time needed for protein
synthesis and maturation. However, the indices were made in
such way that their interesting and useful properties should not
depend on the shape of the parameter distribution but only on
the topology. Moreover, we assumed that the biological pa-
rameters were distributed uniformly in a large interval. In par-
ticular, the time shift between expression profiles that could be
obtained under our parameters distribution ranged from 40 min
to 4 h. Thus, we chose the most extreme case producing the
widest index distributions and, therefore, the softest pruning,
which limits the risk of data overinterpretation (i.e., excessive
pruning).
From the combined analysis of the TDCor predictions, the

transcript profiles in the LR data set, and our ARF7-GR data, the
following model can be proposed for the functioning of the LR
GRN. Before the gravistimulus (t = 0 h), according to our tran-
scriptomic data, very few genes related to LR organogenesis are
expressed at high level in the root. One of them is ARF7. TDCor
predicts that at t = 0, the ARF7 protein is in an inactive state and
subsequently is activated during the first 6 h after grav-
istimulation. The most likely hypothesis is that ARF7 is bound to
Aux/IAAs repressors. Upon gravistimulation (0 to 6 h), auxin
redistribution (Ditengou et al., 2008) triggers Aux/IAAs degra-
dation, enabling ARF7 to activate its targets. Among the latter
targets are the auxin transporters PIN7, PIN3, PIN1, and AUX1
(according to TDCor predictions, our ARF7-GR data, and pre-
vious studies; Laskowski et al., 2006; Péret et al., 2013) whose
induction would serve to reinforce auxin flux toward the future
initiation site (positive feedback). Subsequently (6 to 12 h), major
targets of ARF7 including LBD16, LBD29, or ARF19 reach their
highest expression level and trigger LR initiation (Okushima

Figure 7. (continued).

(A) A late negative feedback involving noticeably the two negative ARFs, ARF16 and ARF18, could be involved in the repression of some of ARF7
targets.
(B) ARF7 is predicted to upregulate a number of genes among which three negative ARFs (ARF2, ARF4, and ARF9) that in turn would repress the
“meristematic and patterning genes” located more downstream in the cascade (Figure 6A).
(C) ARF7 targets are predicted to be repressed through epigenomic mechanisms involving the chromatin remodeling factor PKL and the Polycomb-
group protein CLF.
(D) Patterning and meristematic genes are predicted to form many positive feedback loops.

Lateral Root Gene Regulatory Network 1381



Figure 8. Expression Patterns of LBD16 and PUCHI in the Developing LR.

(A) Expression profiles of LBD16 (blue), PUCHI (green), and PLT5 (yellow) in the LR data set.
(B) Expression pattern of LBD16 monitored with the transcriptional fusion PROLBD16:GUS (Laplaze et al., 2005) at initiation, preemergence stage, and
postemergence stage.
(C) Expression pattern of PUCHI monitored by genomic PROPUCHI:PUCHI-GFP (Hirota et al., 2007) at initiation, several preemergence stages, and
postemergence stage.
(D) Expression pattern of PLT5monitored by the translational fusion PROPLT5:PLT5-YFP (Hofhuis et al., 2013) at initiation, several preemergence stages,
and postemergence stage. Red (propidium iodide) and yellow channel (PLT5-YFP).
(E) Expression pattern of PLT5monitored by the translational fusion PROPLT5:PLT5-YFP (Hofhuis et al., 2013) at initiation, several preemergence stages,
and postemergence stage. Transmitted light and yellow channel (PLT5-YFP). The blue lines mark the primordia contours.
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et al., 2007; Goh et al., 2012). After several regulatory steps
predicted by TDCor transcription factors such as ARF16 (12 to
18 h), ARF18 (12 to 22 h), PHV (15 to 18 h), ANT (18 to 20 h), and
PHB (18 to 20 h) are upregulated and would contribute to the
repression of early ARF7 targets. At later stages (20 to 40 h),
ANT and PHB would activate genes such as MP (20 to 30 h),

ARF6 (20 to 30 h), and ARF8 (20 to 40 h), which themselves
regulate three PLETHORA genes (PLT2 [25 to 35 h], BBM [30 to
35 h], and PLT1 [35 to 40 h]). In the predicted GRN, these
meristematic genes are repressed by indirect downstream tar-
gets of ARF7 and in particular by three negative ARFs (ARF4,
ARF2, and ARF9). On other hand, meristematic genes are

Figure 9. Expression Patterns of MP, PLT1, PLT2, and PLT4/BBM in the Developing LR.

(A) and (B) Expression pattern of PLT1 monitored using the translational fusion PROPLT1:PLT1-YFP at stages 5 and 8.
(C) and (D) Expression pattern of PLT2 monitored using the translational fusion PROPLT2:PLT2-YFP at stages 5 and 8.
(E) and (F) Expression pattern of PLT3 monitored using the translational fusion PROPLT3:PLT3-YFP at stages 6 and 8.
(G) and (H) Expression pattern of BBM/PLT4 monitored using the translational fusion PROPLT4:PLT4-YFP at stages 6 and 8.
(I) to (L) Expression pattern of MP monitored using the translational fusion PROMP:MP-GFP at stages 1, 3, 5, and 8. The blue lines mark the primordia
contours. In each panel, the image on the left shows the red and yellow channels (i.e., propidium iodide and YFP) and the image on the right shows the
overlay of transmitted light image and yellow channel.
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predicted to repress their own repressors and our analysis
suggests chromatin silencing mechanisms may play a central
role in this process. The involvement of chromatin silencing as
well as the presence of numerous predicted and known positive
feedback loops between meristematic genes (Passarinho et al.,
2008; Lau et al., 2011) could explain why, once activated, the
meristematic genes would self-sustain and durably repress
ARF7 targets. At the very bottom of the cascade TDCor predicts
that PLT upregulates cell cycle genes as well as radial patterning
genes such as genes involved in epidermis stem cells activity
(FEZ and SMB) and in their daughter cell differentiation (KAN1,
ATML1, WER, and GL2), hence completing the building of the
new meristem. Mathematical models will certainly be most
helpful for understanding in more detail the importance of the
timing and the role of the successive transcriptional waves
and predicted feedbacks in the LR GRN, as done previously in
Escherichia coli, for instance (Zaslaver et al., 2004).

Another notable feature of the predicted network topology
(beside its bimodularity) is the presence of three positive ARFs at
the head of the meristematic genes: ARF6, ARF8, and MP. This
suggests the existence of an auxin-dependent developmental
checkpoint. It was previously demonstrated (1) that although
most of the Aux/IAAs and positive ARF interact with each other
in yeast (Vernoux et al., 2011), some Aux/IAA and ARFs are likely
to interact more strongly with each other, thus defining auxin
signaling modules (Weijers et al., 2005); and (2) that Aux/IAA
proteins do not show the same sensitivity to auxin (Calderón
Villalobos et al., 2012). In particular, IAA14/SLR, the Aux/IAA
protein that associates with ARF7, is more sensitive to auxin
than IAA12/BDL (Calderón Villalobos et al., 2012), the Aux/IAA
protein associated with MP. In the apical part of the primordium
where auxin concentration is higher, BDL would get degraded
and MP-ARF6-ARF8 would activate the genetic program leading
to meristematic identity acquisition and to ARF7 target re-
pression in this region. However, cells in the flanks would not
have enough auxin to activate the MP-ARF6-ARF8 module and
therefore would not express the meristematic genes. This auxin-
dependent switch could control the bifurcation between meri-
stematic cell and flank cells based on the positional information
provided by auxin concentration. This would explain why meri-
stematic genes are expressed only in the center of the primordium
where the concentration of auxin is the highest (Benková et al.,
2003) and not in the flanks. Overall, we report a GRN topology that
is able to (1) causally link the earliest molecular events to the latest
events of LR formation and (2) could explain how cells acquire
different identity (flanks versus meristematic) depending on their
position in the LR primordium. The proposed model provides
a novel conceptual framework for understanding lateral root pri-
mordium development and stem cell niche establishment.

METHODS

Plant Material and Growth Conditions

Arabidopsis thaliana seeds were surface-sterilized for 6 min in a solution
of 0.88% sodium dichloroisocyanurate (v/v) and 90% ethanol (v/v) and
then washed three times in 90% ethanol (v/v) and dried under sterile air
flow. Seeds were plated on 0.53 Murashige and Skoog solid medium

containing 0.7% (v/v) plant agar and supplemented with B5 vitamins.
Plates were cold treated at 4°C for 48 h to synchronize germination and
then incubated in continuous light (22°C) in a nearly vertical position. The
LR time-series transcriptomic data set was generated using wild type
plants of Col-0 ecotype (Voß et al., 2015). The ARF7-GR transcriptomic
data set was generated using PROARF7:ARF7:GR nph4-1 arf19-1 plants
(Okushima et al., 2007). The PROLBD16:GUS line was previously described
(Laplaze et al., 2005). The PROPUCHI:GFP-PUCHI line was published by
Hirota et al. (2007). The PROPLT:PLT-YFP lines were kindly provided by
BenScheres (Hofhuis et al., 2013). For theChIP-qPCRexperiment, Col-0 and
arf7-1 plants were used (Okushima et al., 2005a).

Root Culture Treatments and Fixation for
Chromatin Immunoprecipitation

Root tissue was generated by adding 10 to 20 surface sterilized Arabi-
dopsis seeds to flasks containing 100 mL root growth media (3.2 g/L
Gamborg’s B5 basal salt, 1 g/L MES hydrate, 20 g/L sucrose, and 1 mL/L
Gamborg’s B5 vitamin mix [10003], pH 5.8) and gently shaking in the dark
for several weeks. Flasks containing ;5 g of root culture tissue were
pretreated were with 1 mM NAA. Cross-linking of DNA and protein
complexes was performed by submersing the tissue in 40 mL of fixation
buffer (0.1 M sucrose, 50 mM NaCl, 10 mM KH2PO4, pH 7.0, 1%
formaldehyde, and 10 mMMG132) and placing under vacuum for 20 min.
Cross-linking was stopped by adding 1.25 M cold glycine to a final
concentration of 0.125 M. The tissue was rinsed with water and flash-
frozen in liquid nitrogen.

Lateral Root Data Set

To generate this data set, 3-d-old Col-0 plants were gravistimulated at
t = 0 as described (Lucas et al., 2008). The root bends subsequently
formed by gravity-induced downwards reorientation of the root apices
were cut every 3 h from 6 to 54 hag and used for microarray analysis with
the Affymetrix ATH1 array. For the first time point corresponding to t = 0,
young unbent mature root material from the 9-h time point seedlings was
used. For each time point, four independent biological replicates were
generated (Voß et al., 2015).

VBSSM

The VBSSM algorithm was run in Matlab with the parameters indicated in
Supplemental Table 11. Network predictions were visualized and ana-
lyzed using Cyctoscape software (Shannon et al., 2003; Cline et al., 2007;
Smoot et al., 2011).

TDARACNE

The TDARACNE was obtained from Bioconductor and was run in R with
the parameters indicated in Supplemental Table 12. Network predictions
were visualized and analyzed using Cyctoscape software (Shannon et al.,
2003; Cline et al., 2007; Smoot et al., 2011).

TDCor

The TDCor algorithm was run in R with the parameters indicated in
Supplemental Table 13. This set of parameters, which leads to a “soft”
pruning of the network, was determined by manual optimization. The
performance of the algorithm was estimated based on interactions re-
ported in the literature and plausibility of the predictions given the
available knowledge (Supplemental Table 7). Network predictions were
visualized and analyzed using Cyctoscape software (Shannon et al., 2003;
Cline et al., 2007; Smoot et al., 2011). The code has been made available
in the form of an R package called “TDCor” that can be downloaded from
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the CRAN repository (http://cran.r-project.org/) and directly installed in R
version$ 3.1.2. In complement to the package documentation a step-by-
step tutorial is provided in Supplemental Methods 4.

Missing Link Identification

The description of the method for identifying candidate genes potentially
acting as missing links between PLT5/7 and ANT/PHV, and between
ARF8 and PLT1, is provided in Supplemental Methods 5.

ARF7-GR Data Set

We used PROARF7:ARF7:GR nph4-1 arf19-1 for DNA microarray analysis
of downstream target of ARF7 (Okushima et al., 2007). The 5-d-old
seedlings were transferred to the medium with or without the indicated
chemicals (1 µM NAA, 2 µM DEX, and 10 µM CHX), and roots were
harvested after 4 h of treatment. Microarray analyses were independently
performed two times with the Arabidopsis ATH1 Genome Array (Affy-
metrix). Data analysis was performed by R software and Microsoft Excel
(Supplemental Methods 3). The processed transcriptomic data for all
genes on the chip is provided in Supplemental Data Set 1 in the tab
entitled “Whole data set.” The “TDCor validation” tab contains the pro-
cessed data for the genes that were included in the network re-
construction. The cells containing a or b parameters (e.g., direct or
indirect regulation by ARF7) above the validation threshold for positive
regulation by ARF7 (1.5) are highlighted in red, while the cells containing
values smaller than the validation threshold for negative regulation by
ARF7 (1/1.5) are highlighted in blue. The mathematical model used to
process the data is included as a reminder in the tab entitled “The model.”

Nuclei Preps and Chromatin Shearing

Nuclei preps were made from ;5 g of root tissue using the method
described by Bowler et al. (2004), with plant protease inhibitor cocktail
(Sigma-Aldrich) added fresh to all buffers to a final concentration of 13.
Nuclei were resuspended in 1 mL sonication buffer (10 mM potassium
phosphate, pH 7, 0.1 M NaCl, 0.3% sarkosyl, 10 mM EDTA, 0.1 mM
PMSF, and 13 Sigma-Aldrich plant protease inhibitor cocktail). To shear
DNA to fragments of 200 to 600 bp, samples were sonicated four times for
15-s bursts with a Soniprep 150 Exponential Microprobe set at 10 mm of
amplitude. The samples were kept on ice between sonications. Samples
were centrifuged at 16,000 rpm for 10min and the supernatant transferred
to a fresh Eppendorf tube. At this stage, a fraction of the sonicated
chromatin (50 mL) was reverse cross-linked by heating to 95°C in 0.5 M
NaCl for 20 min and incubating overnight with 4 mL of 20 mg/mL pro-
teinase K. DNA was extracted with phenol (buffered to pH 8):chloroform:
isoamyl alcohol, 25:24:1, and ran on a 1% agarose gel to verify DNA
shearing to an average of 400 bp in all samples.

Chromatin Immunoprecipitation

For the nonimmunoprecipitated “input” sample, 50 mL of chromatin was
put aside. For antibody precipitated samples, 200 mL of sonicated
chromatin was added to 1mL immunoprecipitation buffer (50mMHEPES,
pH 7.5, 150 mM KCl, 5 mMMgCl2, and 0.1% Triton X-100) and incubated
along with 3 mg of anti-ARF7 at 4°C on a slow-moving rotator for 4 h.
Storage buffer was removed from 50 mL of Protein A Dynabeads (In-
vitrogen), which were immediately resuspended using the chromatin and
antibody mix and further incubated at 4°C on a slow-moving rotator
overnight. The magnetic beads were washed four times for 1 h with
immunoprecipitation buffer and twice with water. Elution and reverse
cross-linking of the immunoprecipitated and input samples were per-
formed by heating to 95°C in 0.5 M NaCl solution for 20 min. Upon
cooling, 4 mL of 20 mg/mL Proteinase K was added and the samples

incubated at 55°C overnight, then at 65°C for 6 h. The magnetic beads
were removed and DNA extracted from the remaining solution using
phenol (buffered to pH 8):chloroform:isoamyl alcohol, 25:24:1. Pre-
cipitated DNA from the immunoprecipitated samples was resuspended in
30 mL and the input DNA in 300 mL water.

Quantitative PCR Analysis

ChIP input and immunoprecipitated samples were diluted 1 in 10 and 5 mL
of this used in a 12-mL volume reaction of SYBR green master mix and
1 mM each of forward and reverse oligonucleotides (Supplemental Table
14). All qPCR reactions were performed as quadruplicate technical
replicates using a Light Cycler 480 qPCR machine. ChIP-qPCR experi-
ments are representative of at least three biological replicates.

Antibody Generation

The anti-ARF7 antibody was generated in rabbits using an Escherichia
coli-expressed antigenic region from amino acids 795 to 1039 that was
also used to affinity purify the resulting antiserum.

Spatial Gene Expression Analyses

GUS expression was analyzed as described (Laplaze et al., 2005).
Confocal microscopy was performed as described (Guyomarc’h et al.,
2012).

Gene Ontology Analysis

The Gene Ontology analysis was performed using BiNGO! software
(Maere et al., 2005), which works as a Cytoscape plug-in (Shannon et al.,
2003; Cline et al., 2007; Smoot et al., 2011). The analysis was performed
using the latest Arabidopsis annotation (October 11, 2014).

Accession Numbers

All transcriptomic data have been submitted to ArrayExpress (www.ebi.
ac.uk/arrayexpress) under the accession numbers E-MTAB-2565 (LR
data set) and E-MTAB-3451 (ARF7-GR data set).

Supplemental Data

Supplemental Figure 1. The whole network topology predicted by
TDCor.

Supplemental Figure 2. Expression profiles in the lateral root tran-
scriptomic data set of the ARF7 regulator and its predicted targets by
TDCor.

Supplemental Figure 3. Gene Ontology analysis on genes correlated
with PKL in the LR data set.

Supplemental Table 1. Assumptions for the dynamics of the
regulation of gene X by gene Y in a single root cell.

Supplemental Table 2. Definition of terms for the equation describing
the regulation of gene Y by gene X in a single cell.

Supplemental Table 3. List of genes used to run the algorithms (for
TDCor).

Supplemental Table 4. List of interactions predicted by VBSSM.

Supplemental Table 5. List of interactions predicted by TDARACNE.

Supplemental Table 6. List of interactions predicted by TDCor.

Supplemental Table 7. Comparison of the performance of the
algorithm based on the interactions well established in the literature.
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Supplemental Table 8. Response components activated in different
treatment of the ARF7-GR line.

Supplemental Table 9. Parameters of the model for ARF7-GR data
analysis.

Supplemental Table 10. The position and sequences of auxin
response elements.

Supplemental Table 11. Parameters used to run VBSSM (Beal et al.,
2005).

Supplemental Table 12. Parameters used to run TDARACNE (Zoppoli
et al., 2010).

Supplemental Table 13. Parameters used to run TDCor.

Supplemental Table 14. Oligo used in the ChIP-qPCR experiment.

Supplemental Methods 1. Analysis and proofs showing that non-
linear interactions cannot be predicted from the LR data set.

Supplemental Methods 2. Detailed description of the TDCor algorithm.

Supplemental Methods 3. Analysis of the ARF7-GR data.

Supplemental Methods 4. A step-by-step tutorial on the use of the
TDCor algorithm to infer gene regulatory networks from time series
transcriptomic data.

Supplemental Methods 5. Identification of potential missing links in
the network.

Supplemental Data Set 1. ARF7-GR transcriptomic data set and
TDCor ARF7 predictions validation.
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