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A B S T R A C T   

Vegetation optical depth (VOD) is a remotely sensed indicator characterizing the attenuation of the Earth’s 
thermal emission at microwave wavelengths by the vegetation layer. At L-band, VOD is used to estimate the 
global biomass, a key component of the Earth’s surface and of the carbon cycle. This study focuses on the 
behaviour of L-band VOD (L-VOD) retrieval algorithm over seasonally inundated areas, as some previous ob
servations have shown an unexpected decline in VOD during flooding events. To analyse such variations, a 
passive microwave model was used to simulate the signal emitted by a mixed scene composed of soil and 
standing water. The retrieval over this inundated scene led to an overestimation of soil moisture (SM) and an 
underestimation of L-VOD. The phenomenon is more pronounced over grasslands than over forests, since low 
vegetation is mostly submerged under water and becomes invisible to the sensor; and since more standing water 
is visible to the sensor. The estimated L-VOD is typically reduced by ~10% over flooded forests and up to 100% 
over flooded grasslands. Such effects can distort the analysis of aboveground biomass (AGB) and aboveground 
carbon (AGC) dynamics based on L-VOD estimates. We evaluated that AGB can be underestimated by 15/20 Mg 
ha− 1 in the largest seasonal wetlands, which can represent more than 50% of the actual AGB of these fields, and 
up to higher values during exceptional meteorological years. Consequently, to better estimate the global biomass, 
surface water seasonality has to be taken into account in passive microwave retrieval algorithms.   

1. Introduction 

Large-scale monitoring of vegetation cover is crucial for under
standing its behaviour and its links with climate evolution, extreme 
events, and land cover changes (Piao et al., 2019; Qin et al., 2019). 
Visible frequencies have predominantly been used for these applica
tions, thanks to the high spatial resolution of optical instruments. They 
are however impaired by their inability to penetrate clouds and dense 
vegetation. Passive microwaves have recently been arousing greater 
interest to infer biomass (Ferrazzoli et al., 2002; Rahmoune et al., 2014; 
Fan et al., 2019). The lower frequencies of the microwave domain are 
insensitive to atmosphere, cloud, and solar insolation, which allow 
biomass monitoring at coarse spatial resolution but at high temporal 
frequency. A strong synergy was found between K-band (18.7 GHz) 
vegetation optical depth (K-VOD) from AMSR-E satellite and traditional 

vegetation indices (NDVI, EVI, LAI) time series (Jones et al., 2011). C- 
band (6.9 GHz) and X-band (10.7 GHz) VOD (C-VOD and X-VOD) from 
AMSR-E satellite have been used to monitor the evolution of above
ground biomass carbon (Liu et al., 2015). Teubner et al. (2018) showed 
that VOD at various frequencies was highly correlated to gross primary 
production (GPP) all over the world. The low frequency L-band (1.4 
GHz) VOD (L-VOD) measured with SMOS satellite was also proven to be 
highly sensitive to aboveground biomass (AGB) in Africa, with less 
saturation over dense forests than optical indices and than C- or X-VOD 
(Rodríguez-Fernández et al., 2018). A strong correlation was found be
tween L-VOD and four AGB datasets (R = 0.85–0.94). These results were 
extended to the tropical range in Vittucci et al. (2019) and to the global 
scale in Mialon et al. (2020). A strong correlation was found at the global 
scale between L-VOD and two AGB datasets (R = 0.91–0.94), but was 
shown to be highly dependent on the vegetation type. 
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VOD at microwave wavelengths is related to vegetation structure 
and to vegetation water content (VWC, kg m− 2) (Jackson and Schmugge, 
1991). Therefore, VOD seasonality is predominantly linked to water 
availability in soil, following the pulse-reserve paradigm (Noy-Meir, 
1973) in which rainfall triggers pulses of plant growth and reserves of 
carbon and energy. Hence, the seasonal cycles of L-VOD and soil mois
ture (SM) are synchronous over large regions of the globe (Tian et al., 
2018; Vittucci et al., 2018). 

Nevertheless, in some regions, VOD time series show a phase oppo
sition with water in soil (SM, terrestrial water storage TWS) and with 
optical vegetation indices (LAI, EVI). Phenological explanations were 
provided for the specific case of the Miombo woodlands, which could 
show high VWC and VOD during the dry season due to their deep roots 
(Tian et al., 2018). In the Amazon rainforest, Jones et al. (2014) showed 
that the vegetation was more light-adapted than water-adapted, mean
ing that its seasonal cycle was more controlled by solar insolation than 
by water availability. Over seasonally inundated regions, a phase op
position was also reported between VOD, water fraction, EVI and GPP 
(Jones et al., 2011; Teubner et al., 2018), with no plausible phenological 
explanation. Jones et al. (2011) suggested that the strong decline in 
AMSR-E K-VOD during flooding could be an artefact due to the presence 
of vertically-oriented vegetation over a highly reflective water surface. 
Flooded areas clearly impact passive microwave observations (Ye et al., 
2015), allowing Du et al. (2017) to derive a water fraction from AMSR-E 
and AMSR-2 brightness temperatures. Floods can also impact the 
retrieval of SM. At L-band, a 1% underestimation of standing water 
fraction could induce approximately 0.01 m3 m− 3 SM retrieval error, for 
initial conditions (SM = 0.4 m3 m− 3, L-VOD = 0.6) (Kerr et al., 2020). 
Since then, several authors filtered out swamps and seasonal wetlands 
for VOD surveys (Tian et al., 2018). Temporary flooding affects 4% of 
the Earth’s land surface and are spread all over the globe (Prigent et al., 
2019). Their impact on passive microwave estimates may be substantial. 

The aim of this study is then to investigate the retrieval of L-VOD 
over flooded areas. To assess the possible causes of the significant var
iations in VOD, we examined the seasonal evolution of SMOS L-VOD, 
AMSR-2C- and X-VOD, with respect to several variables driving the 
vegetation cycle (LAI, SM, TWS, and water fraction). Then, we modelled 

the passive microwave retrieval of SM and L-VOD over an inundated 
landscape, in order to observe whether the retrieved L-VOD could be 
impacted by dynamic surface water extent. The purpose is to explain the 
apparent cycle of VOD in seasonally inundated areas, in order to 
improve passive microwave biomass estimates. 

2. Data 

2.1. Study area 

The study was conducted at the global scale with the exception of 
areas covered with snow or ice in winter, which can interfere with L- 
band observations. A particular focus was drawn on an herbaceous 
wetland, the Pantanal; on a flooded forest, the Rio Pastaza floodplain; 
and on a temperate flooded cropland, the lower Mississippi River 
floodplain (Fig. 1). 

The Brazilian Pantanal is the world’s largest wetland (Gonçalves 
et al., 2011), located between 16 and 20◦S and 56–58◦W. The average 
annual temperature varies between 22.5 ◦C and 26.5 ◦C. The average 
precipitation in the basin is 1396 mm y− 1. Heavy rainfall occur during 
the rainy season, from October to April. Flooding occurs later, between 
March and July, due to an overflow of the Upper Paraguay River. The 
Pantanal acts as a reservoir, retaining the waters originated from the 
surrounding plateau, and regularising the flow of Paraguay River during 
up to five months (Gonçalves et al., 2011). The area is dominated by 
waterlogged grasslands, sparse aquatic vegetation, and a thin riparian 
forest along channels (Ivory et al., 2019). 

In contrast, the lower part of the Rio Pastaza floodplain is covered 
with dense forest regularly flooded. The area is located in the Peruvian 
Amazon rainforest (3.5–5◦S, 76.4–76.6◦W). The average rainfall is 2579 
mm y− 1 and is distributed evenly throughout the year. The average 
annual water discharge at the middle part of the Rio Pastaza is 910 m3 

s− 1, with the highest discharge in May (1222 m3 s− 1) and the lowest in 
September (674 m3 s− 1). At high water stage, the entire floodplain is 
covered by water (Bernal et al., 2013). 

Finally, the temperate lower Mississippi River floodplain (USA) 
contains the third largest drainage basin in the world and gathers the 

Fig. 1. Maximum seasonal water fraction max(fw) for a representative year of GIEMS-2 database (1992–2015), resampled to 25 km SMOS grid. The black boxes 
indicate the location of the three study areas. 
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flow of many tributaries (Piazza et al., 2015). The studied part spreads 
from Greenville, Mississippi, to Memphis, Tennessee (33.3–35.2◦N, 
90.1–91.4◦W), and is mostly covered with agricultural parcels. 

2.2. SMOS data 

The SMOS (Soil Moisture and Ocean Salinity) satellite (Kerr et al., 
2001) was launched by ESA in 2009. It performs passive measurements 
of the thermal emission of the Earth at 1.4 GHz in full-polarization, for 
incidence angles ranging from 0 to ~60 deg. The footprint size varies 
from ~25 km to ~50 km depending on the position within the field of 
view and is ~43 km in average (Kerr et al., 2010). The equator overpass 
times are 6:00 and 18:00 for ascending and descending orbits respec
tively. L-band vegetation optical depth (L-VOD) and soil moisture (SM) 
are derived from SMOS brightness temperatures (TB) using the L-MEB 
(L-band Microwave Emission of the Biosphere) radiative transfer model 
(Wigneron et al., 2007; Kerr et al., 2012), based on the τ − ω parame
terization (Mo et al., 1982). The vegetation attenuation is taken into 
account in the τ parameter of the model, also known as L-VOD. It is 
related to the vegetation water content (VWC) of woody elements, such 
as trunks, stems, and branches. The single scattering albedo ω is used to 
parametrize the scattering effects within the canopy layer. L-band SM is 
the volume of water per volume (m3 m− 3) of the top surface soil layer (~ 
5 cm). The effects of SM and L-VOD can be disentangled using the multi- 
angular and dual-polarization TB measurements. SM and L-VOD are 
retrieved simultaneously by minimizing the differences between the 
measured and simulated brightness temperatures for different incidence 
angles (Kerr et al., 2012). The accuracy of the measured brightness 
temperatures is 3 K at 300 K in average (McMullan et al., 2008). SM and 
L-VOD used here were derived from SMOS-INRA-CESBIO (SMOS-IC) 
retrieval algorithm (Fernandez-Moran et al., 2017) version 105. SMOS- 
IC also uses the L-MEB as radiative transfer model, but is a simplified 
version of SMOS Level 2 and Level 3 products, as it considers the foot
print homogeneous in terms of land cover. Footprints permanently 
covered with more than 20% of open water according to MODIS land 
cover (Broxton et al., 2014) are excluded, but smaller water bodies and 
surface water dynamics are currently not taken into account by SMOS-IC 
algorithm. SMOS-IC dataset is computed on the global cylindrical Equal- 
Area Scalable Earth (EASE) Grid version 2 (Brodzik et al., 2012) with a 
grid resolution of 625 km2 (25 km × 25 km at 30 deg. of latitude). Data 
from June 2010 to December 2019 were used. The commissioning phase 
of the satellite (before June 2010) was not considered here. Monthly 
averages were computed with both ascending and descending over
passes, and radio frequency interferences (RFI) areas were excluded, 
based on the RMSE between modelled TB and SMOS TB (RMSE <6 K, 
Fernandez-Moran et al., 2017). 

2.3. AMSR-2 data 

In order to compare SMOS L-band data to passive microwave data at 
other frequencies, we also considered AMSR-2 VOD dataset (Imaoka 
et al., 2010). As part of JAXA Global Change Observation Mission 
(GCOM), AMSR-2 radiometer succeeded in 2012 to AMSR-E NASA’s 
Aqua satellite (Kawanishi et al., 2003). Two frequencies were consid
ered: 6.9 GHz and 10.7 GHz, corresponding to C1- and X-bands 
respectively. C2-band (7.3 GHz) was not discussed in this paper as the 
data were mostly redundant with C1-band. We used the daily L3 V001 
VOD products, processed with LPRM algorithm (Owe et al., 2008) and 
distributed by NASA in a regular grid at 25 km × 25 km resolution. We 
computed monthly averages of merged ascending and descending 
overpasses (LPRM_AMSR2_A_SOILM3 and LPRM_AMSR2_D_SOILM3), 
from July 2012 to December 2019. VOD measured at these higher fre
quencies is sensitive to stems and leaves of the top canopy surface. 

2.4. GIEMS-2 dataset 

Seasonally inundated areas were located with GIEMS-2 dataset 
(Prigent et al., 2019), a new version of the Global Inundation Estimate 
from Multiple Satellites (GIEMS, Prigent et al., 2001). It provides a long- 
term global map of surface water extent by merging passive, active, 
visible and near-infrared data (SSM/I, ERS, AVHRR). The water fraction 
fw is delivered at a monthly time-scale from 1992 to 2015, on an equal 
area grid of 0.25 deg. × 0.25 deg. at the equator (~ 25 km). The 
maximum water fraction max(fw) over a representative year for the 
period 1992–2015 is shown in Fig. 1. In this updated product, the esti
mation of microwave emissivity is less dependent on ancillary data, and 
the final water surface estimation was corrected of a known over
estimation over low vegetation areas. GIEMS-2 inundated extension 
showed good agreement with precipitation estimates and altimeter river 
height (Prigent et al., 2019). fw errors were estimated to represent ~10% 
of the pixel surface (Prigent et al., 2007). Though current GIEMS-2 es
timates were only available until 2015, we considered the seasonal 
evolution of water fractions to be representative of the studied period 
(2010–2019) at the 25 km scale. 

2.5. GRACE terrestrial water storage 

SMOS top surface layer soil moisture (SM) was compared with 
terrestrial water storage (TWS) anomalies from GRACE satellite. We 
used monthly GRACE/GRACE-FO Level-3 product provided by GFZ web 
portal GravIS at 1 deg. latitude-longitude grids (Boergens et al., 2019). 
TWS anomalies represent the temporal changes in the Earth’s gravity 
field over the continents, interpreted in terms of changes in the terres
trially stored water masses including snow, surface water, soil moisture, 
and deep groundwater. 35 months were occasionally missing in the ten- 
year period. One-month gaps were filled by linear interpolation, and 
consecutive missing months were not considered. As SMOS only ac
counts for the water of the top soil layer (~ 5 cm, Escorihuela et al., 
2007), a time lag is expected between SMOS SM and GRACE TWS time 
series, depending on the type of soil. 

2.6. PROBA-V leaf area index 

Leaf area index (LAI) data were also considered in order to monitor 
the vegetation emergence cycle. We used ESA PROBA-V satellite dataset 
in version 2 (Verger et al., 2014), distributed at 1 km resolution each 10 
days by Copernicus Global Land Service. LAI is defined as half the total 
area of green elements of the canopy per unit horizontal ground area, 
and is expressed in m2 m− 2. The satellite-derived value is obtained from 
the red and near infrared channels. Contrary to L-VOD, LAI is sensitive to 
the leave chlorophyll content but is independent of woody elements. 
Satellite LAI is widely used to monitor vegetation, but suffers from a fast 
saturation over dense vegetation, as only the canopy surface is observed; 
and cannot be obtained under cloudy conditions, which occurs 
frequently. Moreover, LAI can be artificially increased during flooding 
due to a strong water absorption misinterpreted as a denser canopy 
(Fuster et al., 2020). Nevertheless, this overestimation remains limited 
(+0.4–0.7 m2 m− 2 found by Campos-Taberner et al., 2018) and disap
pears when canopy closure increases, since optical measurements 
cannot penetrate the surface layer. 

2.7. MODIS Land cover 

A land surface climatology map based on 10 years (2001− 2010) of 
the MODIS MCD12Q1 product at 500 m resolution (Broxton et al., 2014) 
is used in SMOS-IC algorithm to exclude large water bodies (see Sect. 
SMOS data), and was also used in this study to filter the data (see Section 
3). This land cover identifies 17 ecosystems based on IGBP (Interna
tional Geosphere-Biosphere Programme) class labels (Table 4). 
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2.8. Snow and ice database 

The Interactive Multisensor Snow and Ice Mapping System (IMS) 
database was used to mask areas covered with snow or ice for at least 
one month per year (see Section 3). We used the IMS Daily Northern 
Hemisphere Snow and Ice Analysis at 4 km resolution, version 1 (Hel
frich et al., 2007), provided by the National Snow and Ice Data Center 
(NSIDC). 

3. Methods 

3.1. Satellite data processing 

The study was conducted from June 2010 to December 2019, even 
though AMSR-2 dataset starts in July 2012, and GIEMS-2 dataset ends in 
December 2015. Monthly averages were computed in order to remove 
daily variability and to focus on seasonal patterns. All datasets were 
resampled to SMOS EASE-Grid 2 with gdal (GDAL/OGR contributors, 
2020). The high-resolution LAI product (1 km) was averaged to the 
SMOS grid. The 500 m resolution land cover map and the 4 km reso
lution IMS database were resampled by allocating the dominant class for 
each pixel. A nearest neighbour resampling method was applied to the 
coarse resolution datasets (AMSR-2C- and X-VOD, GIEMS-2 fw, GRACE 
TWS). 

The Pearson correlation coefficient map between SMOS-IC L-VOD 
and SM anomalies was computed in order to highlight areas where a 
significant increase (resp. decrease) in SM is linked to a decrease (resp. 
increase) in L-VOD, such that R ~ − 1. The anomalies of L-VOD (resp. 
SM) were computed with the difference between L-VOD (resp. SM) time 
series and a so called “representative year”, computed with an average 
month per month over the 2010–2019 period. Regions affected by RFI 
were excluded (see Section 2), as well as barren, urban, snow and ice 
land cover (IGBP classes 13, 15, and 16), and areas covered with snow or 
ice for at least one month per year, based on the IMS product. 

The L-VOD seasonal amplitude was computed in flooded and non- 
flooded areas, in order to observe the magnitude of the impact of 
flooding on L-VOD values. The L-VOD seasonal amplitude is the differ
ence between maximum and minimum L-VOD values of the afore 
mentioned representative year. Flooded areas were defined as max(fw)– 
min(fw) ≥ 0.1; and non-flooded areas as max(fw)–min(fw) = 0, fw being 
GIEMS-2 water fraction seasonality over the 2010–2015 period. 

A particular attention was then dedicated to the Pantanal, the Rio 
Pastaza and the Mississipi River floodplains as cases of study, where 
monthly time series of all data were observed over the ten-year period 
and over a representative year. 

3.2. Modelling experiment 

3.2.1. Rationale 
SMOS-IC algorithm considers the scene homogeneous in terms of 

land cover and proceeds the retrieval without removing the contribution 
of open water. Note that pixels covered with more than 20% of open 
water are excluded from the retrieval (see Sect. SMOS data). The aim of 
this section is to evaluate the uncertainties introduced in the derived SM 
and L-VOD by assuming the soil to be homogeneous whereas in reality, a 
fraction of open water may exist and vary temporally. For that purpose, 
a three-step modelling experiment was conducted as follows (Fig. 2):  

1) Simulation of a brightness temperature (TBmix) for a scene under 
heterogeneous land cover conditions, i.e. with an open water fraction 
(fw). The soil moisture value on the soil fraction (fs) is called SMs. A 
vegetation layer is considered above soil (τs), and possibly above 
water (τw).  

2) Retrieval of SM (SMr) and L-VOD (τr) using TBmix computed in step 1 
and SMOS-IC algorithm, which assumes the scene to be 
homogeneous.  

3) Evaluation of the differences between the retrieved couple (SMr, τr) 
and the initial couple (SMs, τs). 

3.2.2. Description of the model and of the parameters 
We considered a mixed pixel consisting of dynamic fractions of soil 

(fs) and of water (fw), such as fw + fs = 1. A vegetation layer can be added 
to both surfaces, with the τ parameter of the model and possibly 
different values above soil (τs) and above water (τw) (Fig. 3). The radi
ative model used to simulate TBmix (step 1) and to perform the retrieval 
(step 2) is the L-MEB model (Wigneron et al., 2007), as in SMOS-IC al
gorithm. Several simulation parameters are reported here and in Ta
bles 1 and 2. A review of the equations and their associated parameters is 
fully described in Fernandez-Moran et al. (2017).  

- the soil moisture value on the soil fraction (SMs, m3 m− 3);  
- the vegetation optical depth value on the soil fraction (τs) and on the 

water fraction (τw);  
- the vegetation single scattering albedo (ω) for the τ − ω model (Mo 

et al., 1982);  
- the clay and sand fractions (fclay and fsand, such that fclay + fsand = 1) 

for the Mironov dielectric constant of the soil; 
- the soil roughness parameters HR, QR, NRH, NRV (Wang and Choud

hury, 1981; Wigneron et al., 2001);  
- the soil, air and water temperatures Ts, Tair and Tw. 

The influence of soil texture, surface roughness, and temperature was 
analysed and did not show significantly different results from the ones 
presented here. We considered the same values for all tests (Table 2). 

Fig. 2. Flowchart of the modelling experiment. TBmix is computed using Eq. (1).  
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3.2.3. Step 1: Computation of the brightness temperatures 
The brightness temperatures of the mixed pixel TBmix (K) were 

simulated for incidence angles ranging from 0 to 55 deg. with 5 deg. 
step, following Eq. (1) (step 1 in Fig. 2): 

TBmix = fw ×TBw(τw)+ (1 − fw)×TBs(SMs, τs) (1) 

where TBs and TBw stand for the brightness temperatures of soil and 
water respectively. TBs was computed using the model described in 
Section 3.2.2. TBw was computed using the emissivity determined by the 
dielectric constant of water (Ulaby et al., 1981; Klein and Swift, 1977) 
multiplied by its temperature Tw, set to 20 ◦C (Table 1). 

3.2.4. Step 2: SM/τ retrieval 
In step 2, SMr/τr retrieval was performed assuming that the pixel was 

homogeneous and only composed of soil, with a brightness temperature 
TBs’ (Fig. 2): 

TBmix = TBs′ (SMr , τr) (2) 

The retrieval was computed with SMOS-IC algorithm, which performs 
a minimization of the cost function computed from the quadratic differ
ences between modelled brightness temperatures TBmix and TBs’ for 
various incidence angles (θ), in order to retrieve simultaneously the soil 
moisture (SMr) and the vegetation optical thickness (τr). The cost function 
CF was computed as in SMOS (Wigneron et al., 2001; Kerr et al., 2012): 

CF =

∑
(TBmix(θ) − TBs′ (θ) )

2

σ(TB)2
+
∑

i

∑(
Pini

i − Pr
i

)
2

σ(Pi)2
(3) 

In which both polarizations and all available angles were used. σ(TB) 
is the radiometric accuracy associated with the brightness temperature 
measurements, set to 3 K at 300 K (McMullan et al., 2008); Pi

r (i Є [1;2]) 
is the value of the retrieved parameters (SMr, τr); Pi

ini (i Є [1;2]) is the 

initial value of the free parameters; and σ(Pi) is the uncertainty associ
ated with these free parameters, fixed to 0.3 on SM and τ. SM impacts 
mostly the level of the brightness temperatures, i.e. TB decrease with 
increasing soil moisture; whereas τ impacts the difference between the 
two polarizations TBh and TBv. The difference TBh - TBv decreases when τ 
increases, because the vegetation cover induces a depolarization of the 
signal. 

3.2.4.1. Case A. Comprehensive study with theoretical values. A large 
range of (SMs, τs) values was first tested (Table 1), and the water fraction 
fw varied between 0 and 1 by increments of 0.01. Three cases were 
considered for τw: no vegetation above water (τw = 0), sparse vegetation 
above water (τw = τs/2), and same amount of vegetation above water as 
above soil (τw = τs). These cases are illustrated in Fig. 3. 

3.2.4.2. Case B. Region based study over a representative year. To illus
trate more realistic situations, we also modelled the retrieval over a 
representative year in the three study areas. For that purpose, we 
considered fw from GIEMS-2 seasonality, SMs from SMOS-IC SM sea
sonality, and τs from the maximum value of SMOS-IC L-VOD seasonality 
(Table 1), which is its value during the minimum flooding. Though not 
entirely accurate, the hypothesis of a constant τs value throughout the 
year enables to observe only the impact of water, and is justified by a low 
L-VOD seasonal amplitude is over grasslands and evergreen broadleaf 
forests (Table 4). τw value is difficult to estimate as it depends on the 
vegetation height and on the water depth. During flooding, the Pantanal 
wetland is mostly covered with herbaceous swamps and sparse aquatic 
vegetation (Ivory et al., 2019). The vegetation amount above water was 
estimated to 30% of the vegetation amount above soil (τw = 0.3 × τs). 
The same value was considered for the lower Mississippi River flood
plain, predominantly covered with croplands. In contrast, the Rio 

Fig. 3. Examples of real landscapes to illustrate τw value (vegetation optical depth above standing water). Left: most wetlands are totally submerged during flooding, 
without emerging vegetation (τw = 0). Centre: aquatic vegetation forms and some shrubs remain above water (intermediate τw). Right: in flooded forests, the major 
part of the vegetation remains above water (τw ~ τs). Copyrights Carl de Souza, AFP, Brazil Selection, Mongabay. 

Table 1 
Values of the main parameters used in the model.   

fw SMs τs τw 

Case A - Theoretical study 0:0.01:1 0.1:0.1:0.6 0.2:0.2:1.2 0, τs/2, τs 

Case B - Regional study • Pantanal GIEMS-2 fw SMOS SM max(SMOS L-VOD) 0.3 × τs 

• Rio Pastaza “ “ “ 0.9 × τs 

• Mississippi River “ “ “ 0.3 × τs 

Case C - Global study GIEMS-2 fw 

+ MODIS fw 

SMOS SM max(SMOS L-VOD) 0 for low veg. 
0.4 × τs for inter. veg. 
0.8 × τs for high veg.  

Table 2 
Values of the secondary parameters used in the model (same for Cases A, B, C).  

ω fclay fsand HR QR NRH NRV Ts = Tair = Tcanopy Ts prof Tw 

0.08 0.35 0.65 0.1 0 -1 -1 25 ◦C 18 ◦C 20 ◦C  
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Pastaza floodplain is densely forested (Bernal et al., 2013) and only the 
understorey is submerged under water (Kalliola et al., 1991). We 
considered that 90% of the vegetation amount above soil remained 
above water during flooding (τw = 0.9 × τs). The initial parameters and 
the retrieval were computed pixel by pixel in each area (180 pixels for 
the Pantanal, 18 pixels for the Rio Pastaza, 54 pixels for the Mississippi 
River floodplain, black boxes in Fig. 1), and the results were eventually 
averaged. 

3.2.4.3. Case C. Global study. The previous experiment was extended to 
the global scale, except for barren, urban, snow and ice land covers and 
snow-covered areas in winter (IMS database) in order to avoid 
misleading conclusions linked to the presence of snow or melting snow. 
For Case C, the water fraction fw was the sum of GIEMS-2 seasonality and 
permanent water bodies from MODIS land cover (percentage of IGBP 
class 0). Indeed, permanent water bodies smaller than 20% of the pixel 
surface (lakes, rivers or coastal areas) are conserved in SMOS-IC 
retrieval and can impact SM and L-VOD retrieval throughout the year. 
As in Case B, SMs was from SMOS-IC SM seasonality and τs from the 
maximum value of SMOS-IC L-VOD seasonality. At the global scale, this 
consideration is less reliable as L-VOD can vary significantly in some 
areas, due to the vegetation seasonal cycle (Table 4). The vegetation 
amount above water τw was adapted to the land cover. We considered 
high values of 0.8 × τs for forest classes (IGBP classes 1, 2, 3, 4, 5); 0.4 ×
τs for intermediate vegetation (IGBP classes 6, 7, 8, 9, 12, 14); and 0 for 
low vegetation and permanent water bodies (IGBP classes 0, 10, 11). All 
of these considerations are highly simplified and only aim to provide an 
order of magnitude of the global impact of surface water on L-VOD 
observations for a representative year. L-VOD error was computed with 
the difference between τr and τs. 

3.3. Impact on the aboveground biomass (AGB) estimation 

L-VOD was recently found to be very sensitive to aboveground 
biomass (AGB) (Rodríguez-Fernández et al., 2018; Vittucci et al., 2019) 
and has been used as a proxy for monitoring AGB and aboveground 
carbon (AGC) evolution (Brandt et al., 2018; Fan et al., 2019; Wigneron 
et al., 2020). L-VOD measurement errors due to standing water could 
impact the derived AGB values. In order to quantify this impact, the 
global ten-year average SMOS-IC L-VOD and its corrected value L- 
VODcorr estimated with the yearly average error in L-VOD (Case C) were 
converted into AGBini and AGBcorr using the fitting function from 
Rodríguez-Fernández et al. (2018): 

AGB =
a

1 + e− b(LVOD− c) + d (4) 

The parameters a, b, c, d were determined for SMOS-IC L-VOD by 
Rodríguez-Fernández et al. (2018) with respect to four different AGB 
datasets. We considered the parameter values provided in Table 3 
computed with Baccini AGB dataset (Baccini et al., 2012) as the Pearson 
correlation coefficient was the highest found (R = 0.94, ρ = 0.90). The 
error on AGB was computed with the difference between AGBini and 
AGBcorr. 

4. Results 

4.1. Satellite observations 

4.1.1. Correlation map between L-VOD and SM anomalies 
The Pearson correlation coefficient between SMOS-IC L-VOD and SM 

anomalies is shown at the global scale in Fig. 4. Several areas were 
filtered out as described in Section 3. A strong anti-correlation between 
L-VOD and SM anomalies (R close to − 1, red areas) appears over most 
seasonally inundated areas: the Mississippi River alluvial plain, the 
Orinoco’s drainage basin (Colombia and Venezuela), Rio Branco and 
Bolivian floodplains (Amazon), the Pantanal, the Rio de la Plata basin 
(Argentina), Liuwa plains (Zambia), Western India and South-East Asia. 
The Pearson correlation coefficient is − 0.77 in the Pantanal wetland, 
− 0.67 in the Rio Pastaza flooded forest, and − 0.84 in the Mississippi 
River floodplain. L-VOD and SM anomalies are well correlated over most 
dry regions (R close to 1, blue areas), following the pulse-reserve 
paradigm (Noy-Meir, 1973). 

4.1.2. L-VOD seasonal amplitude 
The L-VOD seasonal amplitude was computed for each land cover 

class, in flooded and non-flooded areas (Table 4). Without floods, the 
most stable vegetation classes are evergreen forests, shrublands, and 
grasslands (3.9 10− 2–7.7 10− 2). On the contrary, high seasonal varia
tions of L-VOD occur in croplands, deciduous broadleaf and mixed for
ests (9.0 10− 2–11.1 10− 2), due to an intense flourishing and an increase 
of the biomass amount in spring (Rahmoune et al., 2014). For all classes 
except mixed forests, L-VOD seasonal amplitude increases with floods. 
The differences vary from +8% in woody savannas to +56% in ever
green broadleaf forests and in open shrublands. 

4.1.3. Regional time series 
In order to investigate the links between floods and vegetation cycle, 

we focused on the three regions described in Section 2. Fig. 5 displays 
the average seasonality of L-, C-, and X-VOD as well as LAI, fw, SM, and 
TWS over the areas. The water fraction varies seasonally from 0.07 to 
0.38 in the Pantanal (Fig. 5a), from 0.04 to 0.21 in the Rio Pastaza forest 
(Fig. 5b), and from 0.04 to 0.41 in the lower Mississippi River floodplain 
(Fig. 5c). In the Pantanal (Fig. 5a), the L-VOD seasonal cycle is in good 
agreement with VOD at higher frequencies (Pearson correlation co
efficients of RL-VOD,C-VOD = 0.99 and RL-VOD,X-VOD = 1), but shows a 
lower mean value (0.29) and a lower amplitude (0.08) than C- and X- 
VOD (0.55 in average, 0.14 in amplitude). All VOD cycles are asyn
chronous with LAI, fw, SM, and TWS cycles (RL-VOD,LAI = − 0.67, RL-VOD, 

fw = − 0.99, and RL-VOD,SM = − 0.97). No phenological explanation can 
justify why the L-, C- and X-VOD cycles are totally opposite to water 
availability nor leaf emergence. In the Rio Pastaza tropical dense forest 
(Fig. 5b), the seasonal cycles of LAI and of X-VOD are low, but L- and C- 
VOD cycles are more marked and opposite to fw, SM, and TWS (RL-VOD,fw 
= − 0.91, RL-VOD,SM = − 0.93). In the Mississippi River floodplain 
(Fig. 5c), the LAI is in phase with all VOD (RL-VOD,LAI = 0.73), which are 
also opposite to fw, SM, and TWS (RL-VOD,fw = − 0.97, RL-VOD,SM =

− 0.99). On Fig. 6, we plotted the time series of L-VOD, LAI, SM and fw 
from June 2010 to December 2019 (2015 for fw) over the Pantanal in 
order to observe the inter-annual variability. The same time series for 
the two other study areas are provided in Fig. S1. As mentioned above, 
SM and fw are highly correlated (RSM,fw = 0.93). The LAI follows the 
same seasonality with less inter-annual variability (RSM,LAI = 0.50). On 
the contrary, L-VOD variations are negatively correlated to SM and fw 
variations (RL-VOD,SM = − 0.92 and RL-VOD,fw = − 0.95, Fig. S2). They are 
particularly marked in 2011, and barely visible in 2012. 

4.2. Modelling experiment 

The results presented in Section 4.1. suggest that the VOD is linked to 
the dynamics of floods. Dynamic water extents are currently not taken 

Table 3 
Parameters of the fits of Baccini AGB vs SMOS-IC L-VOD used in Eq. (4), from 
Rodríguez-Fernández et al. (2018).  

curve a (Mg ha− 1) b c d (Mg ha− 1) 

5th percentile 455.774 2.785 0.964 − 40.357 
mean 422.744 3.400 0.729 − 29.252 
95th percentile 393.863 4.685 0.558 − 6.444  
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into account by state of the art SM and VOD retrievals from passive 
radiometers such as SMOS, SMAP and AMSR-2. The goal of the current 
section is to analyse how the SM and VOD retrievals are affected by a 
water fraction not accounted for in the retrieval process. 

4.2.1. Case A. Comprehensive study with theoretical values 
The brightness temperatures simulated over a mixed pixel TBmix are 

shown on Fig. S3 with increasing water fraction values (fw = 0, 0.5, 1). 
As it is well known, brightness temperature values notably decrease 
when the water fraction increases (Ulaby et al., 1981), leading to an 
overestimation of the retrieved SM values (Ye et al., 2015). The decrease 
in brightness temperatures is stronger without vegetation above water 

(Fig. S3, left panel). Moreover, the difference TBh - TBv increases with fw, 
certainly leading to τr values lower than τs values. When vegetation 
remains above water (Fig. S3, right panel), the brightness temperatures 
level is less impacted, and a specific angular signature appears. The 
evolution of the difference TBh - TBv is less clear. 

The retrieved (SMr, τr) for various initial conditions (SMs, τs, open 
circles in Fig. 7) and τw cases are presented in Fig. 7. When fw = 0, (SMr, 
τr) is equal to (SMs, τs) for all cases. As predicted above, SMr increases 
with the water fraction and tends toward 1 when the whole scene is 
covered with water. For few cases (τw = 0, high SMs and τs), the 
retrieved SMr decreases for low water fractions. In average over all test 
cases, SMr is overestimated by 0.24 m3 m− 3 with respect to SMs when fw 
= 0.5. The retrieved L-VOD (τr) slightly increases for low water fractions 
and low SMs (+10% in average), then decreases for increasing water 
fractions, proportionally to the initial τs value. It is particularly signifi
cant when the vegetation is submerged under water (τw = 0, left panel), 
especially since the total amount of visible vegetation decreases. τr de
creases by 74% in average when fw = 0.5, and drops to 0 when fw = 1 
(full inundation). For the intermediate case of submerged vegetation 
amount (central panel), τr decreases by 30% when fw = 0.5. When the 
vegetation is not submerged (τw = τs, right panel), τr values barely 
decrease, meaning a negligible impact of standing water, except for 
dense vegetation covers (τs ≥ 0.8, 8% decrease when fw = 1). In reality, 
the submerged vegetation is mostly low and sparse, whereas the 
emerging vegetation is mostly high and dense. Hence, the most repre
sentative cases are τw = 0 with low τs (bottom of the left panel), and τw 
= τs with high τs (top of the right panel). 

SMOS brightness temperature accuracy (3 K in average at 300 K, 
McMullan et al., 2008) leads to an uncertainty on the derived L-VOD of 
~8%. As a result, an anomalous drop in L-VOD during flooding should 
be well visible over submerged vegetation areas, such as grasslands, 
which present a drop of 74% in average for fw = 0.5 (Fig. 7). However, 
the drop should be barely visible over emerging flooded forest, which 
present a drop of 8% in average for fw = 1 (Fig. 7). 

4.2.2. Case B. Region based study over a representative year 
Here, the retrieval was computed over a representative year in the 

Fig. 4. Pearson correlation coefficient R between SMOS-IC L-VOD and SM anomalies, 2010–2019. RFI areas were filtered out, as well as regions covered with snow in 
winter, and barren, urban, snow and ice land cover classes. 

Table 4 
Seasonal amplitude of L-VOD for each land cover class, flooded and non-flooded 
areas separately. Land cover classes 0 (water bodies), 11 (permanent wetlands), 
13 (urban), 15 (snow and ice) and 16 (barren) were excluded. Land cover class 3 
(deciduous needleleaf forests) and flooded areas of classes 1 and 6 were masked 
due to the temporary presence of snow.  

IGBP 
label 

Class L-VOD 
amplitude, non- 
flooded areas 

L-VOD 
amplitude, 
flooded areas 

Difference 

1 evergreen 
needleleaf forests 

5.4 10− 2 – – 

2 evergreen 
broadleaf forests 

5.1 10− 2 8.0 10− 2 +56% 

4 deciduous 
broadleaf forests 

10.2 10− 2 11.9 10− 2 +17% 

5 mixed forests 11.1 10− 2 7.8 10− 2 − 30% 
6 closed 

shrublands 
6.6 10− 2 – – 

7 open shrublands 3.9 10− 2 6.0 10− 2 +56% 
8 woody savannas 8.9 10− 2 9.7 10− 2 +8% 
9 savannas 8.0 10− 2 12.0 10− 2 +49% 
10 grasslands 7.7 10− 2 8.8 10− 2 +15% 
12 croplands 9.0 10− 2 11.0 10− 2 +22% 
14 cropland/natural 

vegetation 
mosaics 

8.5 10− 2 10.4 10− 2 +22%  
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three study areas. For each pixel of each area, fw was from GIEMS-2 
seasonality, SMs from SMOS-IC SM seasonality, and τs from the 
maximum of SMOS-IC L-VOD seasonality. We considered static values of 
τw = 0.3 × τs in the herbaceous Pantanal wetland and in the lower 
Mississippi River floodplain, and τw = 0.9 × τs in the Rio Pastaza flooded 
forest (see Section 3.2.2). Monthly values of L-VOD, τs and τr were 
averaged over the area and are shown in Fig. 8. For the three cases, the 

retrieved τr cycle is opposite to SMs and fw seasonality (Fig. 5, right 
panels). In the Pantanal wetland (Fig. 8a), τr has a significant amplitude 
of 0.09 (26%), and τr values are in good agreement with SMOS-IC L-VOD 
(std = 5.3 10− 3). In the Rio Pastaza area (Fig. 8b), τr shows a lower 
amplitude of 0.02 (2.5%), because most of the vegetation remains above 
water (high τw value of 0.9 × τs). τr cycle is less similar to SMOS-IC L- 
VOD cycle (std = 1.5 10− 2), which has a higher seasonal amplitude 

Fig. 5. Mean seasonality of L-, X-, C-VOD, leaf area index, water fraction, soil moisture, and terrestrial water storage on (a) the Pantanal, (b) the Rio Pastaza 
floodplain, (c) the Mississippi River floodplain. SMOS-IC L-VOD, SM, PROBA-V LAI and GRACE TWS seasonality were computed over the period June 
2010–December 2019; AMSR-2 X- and C-VOD seasonality were computed over the period July 2012–December 2019; and GIEMS-2 fw seasonality was computed 
from June 2010 to December 2015. 

Fig. 6. Time series of remotely sensed leaf area index, L-VOD, soil moisture, and water fraction over the Pantanal, 2010–2019.  

Fig. 7. Impact of increasing water fraction fw (colorbar) on the retrieved couple (SMr, τr). The red circles represent the initial conditions (SMs, τs) when fw = 0. Each 
curve represents the evolution of (SMr, τr) when fw increases from 0 to 1. Three cases were considered for τw: no vegetation above water (τw = 0, left, see left panel of 
Fig. 3), sparse vegetation above water (τw = τs/2, centre, see middle panel of Fig. 3), and same amount of vegetation above water as above soil (τw = τs, right, see 
right panel of Fig. 3). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

E. Bousquet et al.                                                                                                                                                                                                                               



Remote Sensing of Environment 257 (2021) 112345

9

(0.06, 7.5%). In the lower Mississippi River floodplain (Fig. 8c), τr 
amplitude is high (0.08, 35%), but SMOS-IC L-VOD amplitude is even 
higher (0.12, 50%). The deviation between SMOS-IC L-VOD and the 
retrieved τr (std = 1.8 10− 2) can be explained by the inherent seasonal 
cycle of the vegetation in this temperate cropland (Table 4), which was 
not modelled here since τs value is static. These results are further 
explained in Section 5. 

4.2.3. Case C. Global study 
The previous experiment was extended to the global scale, except for 

barren, urban, snow and ice land covers and areas covered with snow or 
ice in winter. For fw, permanent water bodies were considered here in 
addition to seasonally inundated areas (see Section 3.2.2). The L-VOD 
error was averaged over a representative year and is shown in Fig. 9. As 
expected, negative L-VOD errors prevail around the major flooded areas; 

Fig. 8. SMOS-IC L-VOD seasonality (green), τs values (grey stars) from the maximum of SMOS-IC L-VOD seasonality, and retrieved τr values (black stars) over (a) the 
Pantanal, (b) the Rio Pastaza area, and (c) the Mississippi floodplain. Above water, τw = 0.3 × τs in the Pantanal and in the Mississippi floodplain, and τw = 0.9 × τs 
in the Rio Pastaza area. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Yearly average error in L-VOD at the global scale due to seasonal water dynamics and to non-excluded permanent water bodies (< 20% of the pixel surface), 
computed with the difference τr – τs. Regions covered with snow in winter, barren, urban, snow and ice land cover classes were excluded. 
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while positive L-VOD errors appear in areas cover with minor water 
bodies. These overestimations for low water fractions were already 
found in Fig. 7. The yearly average L-VOD error is close to − 0.05 in 
largest wetlands, and can reach − 0.15 at the maximum flood stage 
(Fig. S4). Positive errors can reach +0.03 in North-West America and in 
Australia. 

4.3. Impact on the aboveground biomass (AGB) estimation 

The global yearly average error in L-VOD computed previously 
(Fig. 9) was used to derive the error in AGB estimates, using Eq. (4) with 
the parameter values fitted with Baccini AGB (Table 3). The global map 
of AGB error computed with the mean curve of Baccini AGB is shown in 
Fig. 10. The minimum, mean and maximum values are provided in 
Table S1 for the 5th and 95th percentiles and the mean curve of the AGB 
distribution. The three curves result in similar values. At the global 
scale, errors in L-VOD linked with surface water have little impact on 
AGB estimates (− 0.6 Mg ha− 1 in average) while the errors are concen
trated in areas subject to flooding. AGB errors are predominantly 
negative, and can reach − 15/− 20 Mg ha− 1 in the largest wetlands 
(Mississippi, South America, Africa and South-East Asia). Lower positive 
errors (+3 Mg ha− 1) are found in North-West America and Australia, 
linked with low water fractions. 

5. Discussion 

Over seasonal wetlands, SMOS-IC L-VOD variations are negatively 
correlated with water availability in soil (Fig. 4), and have a significant 
while unexpected amplitude (Table 4). The L-VOD amplitude can in
crease by 50% in flooded areas and can reach the order of magnitude of 
the most pronounced inherent seasonal cycle of specific vegetation 
types. These results support previous observations of a strong decline in 
K-VOD during flooding by Jones et al. (2011). 

Over the Pantanal wetland, the C-, X-, L-VOD cycles are completely 
opposite to fw, SM, TWS and LAI cycles (Fig. 5a), also confirming the 
observations of Jones et al. (2011) and Teubner et al. (2018). Ivory et al. 
(2019) showed that the Pantanal vegetation cycle follows closely the 
local flood stage, based on high resolution observations of MODIS EVI. 

The VOD signals observed here are opposite to greening and to water 
availability, and reinforce the assumption of an anomalous L-VOD 
retrieval during inundations supported by a strong correlation between 
the magnitude of L-VOD drops and SM peaks (Fig. 4, Fig. 6), and be
tween L-VOD drops and fw peaks (Fig. S2). In 2011, major rainfall linked 
with the La Niña event led to higher soil water content and extended 
inundated areas (Alho and Silva, 2012), and we observed the most sig
nificant drop in L-VOD of the period. Major floods also occurred in 2014 
and 2018 (Espinoza et al., 2014), leading to same observations (high SM, 
low L-VOD). In contrast, the flooded area was reduced by 75% in 2012 
compared to the 2000–2011 period, due to a decrease in rainfall during 
the rainy season (Moraes et al., 2013). L-VOD was particularly stable 
that year because the SMOS observation footprint was barely affected by 
the sparse inundations. This comment supports the assumption that the 
L-VOD in this area should be temporally stable, and should display a 
lower seasonal dynamic than what is currently derived. Same observa
tions were made in the two other study areas (Fig. 5b, Fig. 5c, Fig. S1), 
except for the LAI cycle which is almost constant in the Rio Pastaza 
tropical dense forest, and strongly in phase with VOD in the Mississippi 
River floodplain, likely due to the strong seasonal cycle of the vegetation 
in this temperate cropland. 

We provided here an explanation for the underestimation of L-VOD 
during flooding, linked with the fact that dynamic water fractions are 
not taken into account in SMOS (IC, Level2, and Level3), SMAP, nor in 
AMSR-2 retrievals. The decrease in brightness temperature values when 
the water fraction increases (Fig. S3) results in retrieved SMr values 
greater than real SMs values, meaning that SMOS-IC SM values are 
overestimated during inundations, as expected (Fig. 7). In a few cases 
(high SMs, high τs), SMr is underestimated during inundations, because 
the high τ hides the water-saturated soil underneath. To compensate for 
the presence of water, the system starts with significantly decreasing τ as 
it has more influence than SM for these particular conditions. It de
creases also SM to a more relevant level for the emissivity to fit the 
observed angular signature. Once τ is low enough for the soil to 
contribute significantly, the system increases the SM along with fw. 
Moreover, horizontal and vertical brightness temperatures generally 
diverge with increasing water fraction, leading to an underestimation of 
the retrieved L-VOD in most cases (Fig. 7). The underestimation is 

Fig. 10. AGB error at the global scale (Mg ha− 1) computed with the difference AGBini - AGBcorr, estimated with Eq. (4) and the parameter values fitted with the mean 
curve of Baccini AGB (Table 3). AGBini was estimated with the ten-year average SMOS-IC L-VOD; and AGBcorr was estimated with L-VODcorr, i.e. SMOS-IC L-VOD 
minus the yearly average error in L-VOD (Fig. 9). Regions covered with snow in winter, barren, urban, snow and ice land cover classes were excluded. 

E. Bousquet et al.                                                                                                                                                                                                                               



Remote Sensing of Environment 257 (2021) 112345

11

particularly strong for low τw values, especially since the total amount of 
emerging vegetation decreases. It is however not the only explanation as 
the L-VOD underestimation is higher than 50% when fw = 0.5. When the 
vegetation amount above water is the same as above soil (τw = τs), τr 
values barely decrease with respect to τs. For low fw values, the L-VOD is 
overestimated by 10% in average. Further tests (Fig. S5) showed that 
adding open water in a scene decreases the brightness temperatures 
without significantly changing the difference TBh - TBv. The induced 
increase in SM decreases the TB but also increases the difference TBh - 
TBv. The system has to increase slightly τ to compensate for this increase 
in TBh – TBv, leading to the slight L-VOD overestimations observed. In 
practice, the most common situations are 1) submerged sparse vegeta
tion areas (low τs and low τw), and 2) emerging high vegetation areas 
(high τs and high τw), in which cases L-VOD is underestimated during 
flooding. 

These more realistic situations were depicted in Fig. 8. By imposing 
constant L-VOD initial conditions all year (i.e. a stable vegetation can
opy), the retrievals over the Pantanal herbaceous swamp (Fig. 8a) and 
the Mississippi River floodplain (Fig. 8c) lead to a significant decrease in 
τr values during flooding (− 0.09 and − 0.08 respectively). In the Pan
tanal, τr reproduces well SMOS-IC in terms of value and of apparent 
seasonal cycle, strongly supporting that L-VOD is impacted by the dy
namics of open water. More differences were found between SMOS-IC L- 
VOD and τr over the Rio Pastaza flooded forest (Fig. 8b, std. = 1.5 10− 2). 
They may be due to an erroneous estimation of τw value (0.9 × τs), 
which was shown to have a major impact on the retrieved L-VOD 
(Fig. 7). τw value was arbitrarily fixed, and can be overestimated if the 
flooded part of the area is less densely forested than the non-flooded 
part; or if the part of trees under water is higher than estimated. Actu
ally, in Amazonian flooded forests, the water column can reach 10 to 15 
m (Parolin et al., 2004). The water fraction fw can also be under
estimated by GIEMS-2 dataset under flooded dense forest (Parrens et al., 
2019). Finally, the vegetation itself may have a seasonal cycle, whereas 
we considered a static τs value. This explanation also applies in the lower 
Mississippi River floodplain, mostly covered with croplands flourishing 
in spring and summer, where significant differences between SMOS-IC 
L-VOD and τr were found (std = 1.8 10− 2). As a conclusion, the 
modelling showed that floods impact more significantly τr values over 
low vegetation than over high vegetation, mostly due to the different 
amount of submerged vegetation. This remark explains why the impact 
of water on SMOS-IC L-VOD is mainly visible over waterlogged grass
lands and low vegetation areas more than over flooded forests (Fig. 4). 
Moreover, as the measurement accuracy of the L-VOD is proportional to 
L-VOD values, the impact of dynamic water is more visible over low 
vegetation than over dense vegetation areas. 

The extension of the modelling experiment to the global scale 
showed that L-VOD is predominantly underestimated in regions affected 
by seasonal flooding and by small water bodies (lakes, rivers or coastal 
areas). L-VOD can also be slightly overestimated in slightly inundated 
areas (North-West America, Australia). The yearly average error in L- 
VOD is limited (− 0.05 maximum), but can be significant at high 
flooding stages (− 0.15). The estimation of the global parameters is 
highly simplified and only aims to provide an order of magnitude of the 
global impact of surface water on L-VOD observations. 

Consequently, the seasonal variations of surface water extent, if not 
accounted for in the retrieval, induce artificial seasonal cycles of VOD – 
though eventually on top of the natural seasonal cycle of the vegetation. 
We also showed that even a small and static water fraction within a 
scene could alter L-VOD retrieved values. Taking into account the per
manent water fractions as done for SMOS Level2 and Level3 algorithms 
could be an improvement for SMOS-IC algorithm. 

L-VOD was employed to estimate and monitor aboveground biomass, 
using yearly averages of L-VOD to remove seasonal variations of VWC 
(Rodríguez-Fernández et al., 2018; Mialon et al., 2020; Fan et al., 2019). 
Our results show that AGB calculated using L-VOD can be under
estimated up to − 15/− 20 Mg ha− 1 over inundated regions (Fig. 10), 

possibly distorting the conclusions of regional studies. This impact is 
limited over forests, characterized by AGB values of 150–300 Mg ha− 1, 
but can be significant over herbaceous wetlands with a typical AGB of 
~30 Mg ha− 1. Larger AGB underestimations also occur under excep
tional meteorological conditions, during El Niño or La Niña events for 
example. Studying the evolution trend of AGB (Brandt et al., 2018; Fan 
et al., 2019), in particular at high temporal frequency (Wigneron et al., 
2020), should then consider the contribution of standing water if the 
study area presents large seasonally flooded areas. 

6. Conclusion 

In this study, we highlighted the anomalous decrease of VOD during 
flooding; and we showed with a modelling experiment that this phe
nomenon was linked to the influence of standing water temporal vari
ations. SMOS Level2, Level3, and SMAP operational algorithms take the 
major water bodies into account with a static map, but this study showed 
the importance of considering the temporal dynamics of water extent. 
Indeed, it induces a strong decrease in the brightness temperatures of the 
scene, which in turn leads to an overestimation of SM and an underes
timation of L-VOD, particularly significant over submerged vegetation 
areas (low vegetation). L-VOD tends toward 0 during total inundation, 
leading to an apparent asynchronous seasonal cycle with respect to 
other vegetation indices. Though less impacted, flooded forests are also 
affected. 

The underestimation of L-VOD in areas affected by inundations can 
lead to a noticeable underestimation of the biomass amount (− 15/− 20 
Mg ha− 1 in the largest wetlands). It is thus important to better account 
for the open water extent and dynamics in SM/τ retrieval algorithm. 
Submerged grasslands become open water areas, and should be filtered 
out during floods. Over higher vegetation, the retrieval algorithm could 
be revised to take the dynamic water fraction into account. The most 
important and most challenging aspect is to have access to reliable es
timates of water bodies temporal evolution. GIEMS-2 dataset could be 
used for that purpose, as it is produced at a monthly time scale (Prigent 
et al., 2019). 
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