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Abstract
The exact distributed controllability of the semilinear heat equation dyy — Ay + g(y) = flw
posed over multi-dimensional and bounded domains, assuming that g € C*(R) satisfies the growth
condition limsup, ,__ g(r)/(|r|In®?|r]) = 0 has been obtained by Fernindez-Cara and Zuazua in
2000. The proof based on a non constructive fixed point arguments makes use of precise estimates of
the observability constant for a linearized heat equation. In the one dimensional setting, assuming

3/2

that g’ does not grow faster than 1n°/? |r| at infinity for 8 > 0 small enough and that ¢’ is uniformly

Holder continuous on R with exponent p € [0, 1], we design a constructive proof yielding an explicit
sequence converging to a controlled solution for the semilinear equation, at least with order 1 + p
after a finite number of iterations.

AMS Classifications: 35K58, 93B05, 93E24, 49M15.
Keywords: Semilinear heat equation, Exact controllability, Least-squares approach.

1 Introduction

Let Q = (0,1), w CC Q be any non-empty open set and let ' > 0. We set Qr = Q% (0,T), gr = wx(0,T)
and X = 90 x (0,T). We are concerned with the null controllability problem for the following semilinear
heat equation

{aty_axa:y+g(y) = flw in QT7 (1)

Yy = 0 on ETv y(ﬂo) = Ug in Qa

where vy € H} () is the initial state of y and f € L?(qr) is a control function. We assume moreover
that the nonlinear function g : R — R is, at least, locally Lipschitz-continuous and, following [I7], that g
satisfies

lg'(r)| <CA+|r]’) VreR. (2)

Under this condition, possesses exactly one local in time solution. Moreover, we recall in accordance
with the results in [7, Section 5] that under the growth condition

lg(r)| < C(L+ |r[In(1+|r[)) VreR, (3)
the solutions to are globally defined in [0,7] and one has
y € C°([0,T; Hy () N L*(0, T; H*(2)). (4)

Without a growth condition of the kind , the solutions to can blow up before ¢ = T'; in general,
the blow-up time depends on g and the size of |lug||r2(q) (see [20]).
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System is said to be ezactly controllable to trajectories at time T if, for any ug € L?*(2) and
any globally defined bounded trajectory y* € C°([0,T]; L?(Q2)) (corresponding to data u} € L*(2) and
f* € L?(qr)), there exist controls f € L?(qr) and associated states y that are again globally defined in
[0,T] and satisfy (4] and

yl,T) =y*(x,T), =€ (5)

The uniform controllability strongly depends on the nonlinearity g. Assuming a growth condition on the
nonlinearity g at infinity, this problem has been solved by Fernédndez-Cara and Zuazua in [I7, Theorem
1.2] (which also covers the multi-dimensional case for which @ C R? is a bounded connected open set
with Lipschitz boundary).

Theorem 1. [17] Let T > 0 be given. Assume that admits at least one solution y*, globally defined
in [0, T] and bounded in Qr. Assume that g : R — R is C' and satisfies and

(Hl) limsupw_mo % =0

then is controllable in time T'.

Therefore, if |g(r)| does not grow at infinity faster than |r|In”(1 + |r|) for any p < 3/2, then is
controllable. We also mention [2] which gives the same result assuming additional sign condition on g,
namely g(r)r > —C(1 + r?) for all r € R and some C' > 0. On the contrary, if g is too “super-linear”
at infinity, precisely, if p > 2, then for some initial data, the control cannot compensate the blow-up
phenomenon occurring in Q\w (see [I7, Theorem 1.1]). The problem remains open when g behaves at
infinity like |r|In? (14 |r|) with 3/2 < p < 2. We mention however the recent work of Le Balc’h [2I] where
uniform controllability results in large time are obtained for p < 2 assuming additional sign conditions on
g, notably that g(r) > 0 for 7 > 0 or g(r) < 0 for r < 0, a condition not satisfied for g(r) = —r In”(14|r|).
Eventually, in the case p > 2 for which the blow-up phenomenon can not be compensated by means of
control, we also mention [J] in the one dimensional case where a positive boundary controllability result
is proved for steady-state initial and final data and for 7" large enough.

In the sequel, for simplicity, we shall assume that g(0) = 0 and that f* = 0,u§ = 0 so that y* is the
null trajectory. The proof given in [I7] is based on a fixed point method, initially introduced in [31] for a
one dimensional wave equation. Precisely, it is shown that the operator A : L®(Qr) — L>*(Qr), where
y := A(z) is a null controlled solution of the linear boundary value problem

{@y — 0wy +y§(2) = flo in Qr i) = {g(r)/r r#0 o

y=0onYr, y(,0)=uy in Q° g0 r=0

maps a closed ball B(0, M) C L>®(Qr) into itself, for some M > 0. The Kakutani’s theorem then provides
the existence of at least one fixed point for the operator A, which is also a controlled solution for . The
control of minimal L*(gr) norm is considered in [I7]. This allows, including in the multi-dimensional
case, to obtain controlled solutions in L (Qr).

The main goal of this work is to determine an approximation of the controllability problem associated
with , that is to construct an explicit sequence (fx)ren converging strongly toward a null control
for . A natural strategy is to take advantage of the method used in [I'7, 21] and consider, for any
element yo € L>°(Qr), the Picard iterations defined by yxr+1 = A(yx), k > 0 associated with the operator
A. The resulting sequence of controls (fx)ken is so that fr41 € L?(gr) is a null control for yx41 solution
of

{5tyk+1 — OvaWht1 + Y+1 9(Wk) = frt1le in Qr, 1)

Yer1 =0 on Tp,  yr41(+,0) =up in Q.

Numerical experiments reported in [I3] exhibit the non convergence of the sequences (yi)ren and (fx)ken
for some initial conditions large enough. This phenomenon is related to the fact that the operator A is



in general not contracting, including the cases for which g is globally Lipschitz. We also refer to [4] 5]
where this strategy is implemented.

In the one-dimensional case, a least-squares type approach, based on the minimization over Z :=
L2((T — t)~%Qr) of the functional R : Z — R* defined by R(2) := ||z — A(z)||% has been introduced
and analyzed in [I3]. Assuming that g € C*(R) and g’ € L*°(R), it is proved that R € C1(Z;R*) and
satisfies, for some constant C' > 0, the following inequality

(1= ClIg | lluoll Lo (2)) V2R(2) < IR (2)l2@r) V2 € L*(Qr).

This implies that if ||¢"|| L (r)||tol| Lo (o) is small enough, then any critical point for R is a fixed point
for A (see [13, Proposition 3.2]). Under such smallness assumption, numerical experiments reported
in [I3] display the convergence of gradient based minimizing sequences for R and a better behavior
than the Picard iterates. The analysis of convergence is however not performed. As is usual for nonlinear
problems and also considered in [13], we may employ a Newton type method to find a zero of the mapping
F:Y — W defined by

ﬁ(y’f) = (&sy - amy‘Fg(y) - flway("o) - UO) V(y, f) ey (8)

where the Hilbert space Y and W are defined as follows

Y 12{ (y, f) 2 py € L*(Q1), po(0ry — Ouwy) € L*(Qr),y =0 0on S, pof € L*(qr) }

and W := L?(po; Q1) x L?(Q2) for some appropriates weights p and pg (defined in the next section). Here
L?(po; Qr) stands for {z : poz € L*(Qr)}. It is shown (see [I3, Section 3.3]) that, if g € C*(R) and
g € L=®(R), then F € C'(Y; W) allowing to derive the Newton iterative sequence: given (yo, fo) in Y,
define (yx, fr)ren in YN as follows (yrr1, frr1) = Uk, fr) — (Ya, F)) where F}, is a control for Y} solution
of

{8tYk _61$Yk+g/(yk)yk = Fk 1w +8tyk _8Iwyk+g(yk) _fklw in QT7 (9)

Yk =0 on ET» Yk(70) =Up — yk(ao) in Q

such that Y (-, T) = —yx(-,T) in Q. Numerical experiments in [I3] exhibit the lack of convergence of the
Newton method for large enough initial condition, for which the solution y is not close enough to the
zero trajectory.

The controllability of nonlinear partial differential equations has attracted a large number of works
in the last decades (see the monography [8] and references therein). However, as far as we know, few are
concerned with the approximation of exact controls for nonlinear partial differential equations, and the
construction of convergent control approximations for nonlinear equations remains a challenge.

In this article, given any initial data ug € Hg(0,1), we design an algorithm providing a sequence
(yk)ken converging to a controlled solution for , under assumptions on g that are slightly stronger
than Our main result can be formulated as follows.

Theorem 2. Let T > 0 be given. Assume that g € C1(R) satisfies g(0) = 0 and the growth condition
(H)) Ja>0, st. |[¢(r)| <a+pW*1A+]|r]), VreR

for some B* = *(Q,T) > 0 small enough and
(Hp) 3p € [0,1] such that SUP abex % < +o0.

Then, for any ug € H (), one can construct a sequence (yx, fr)ren converging strongly to a controlled
pair for . Moreover, after a finite number of iterations, the convergence is of order at least 1 + p.




This result is achieved (in the spirit of [27] devoted to a linear case) by minimizing the non convex
functional

Eu(w.1) = 3llo0ls)0w — sy + 00) — £ 1) ey (10)

over a convex space A(s) which incorporates the initial and controllability requirement and where pg
denotes a Carleman type weight parametrized by s > 1 and which blows as ¢t — T~. The least-squares
functional E, measures how much a pair (y, f) in A(s) is close to a controlled solution for ([IJ). The
controllability for is reflected by the fact that the global minimum of the nonnegative functional E, is
zero, over all pairs (y, f) solutions of and satisfying the controllability requirement at the final time.

The paper is organized as follows. In Section [2] we derive a controllability result for a linearized
heat equation with potential in L>°(Q7) and source term in L?(Q7). Then, in Section [3| we define the
least-squares functional E¢ and the corresponding non convex optimization problem over the Hilbert
space A(s). We show that E is Gateaux-differentiable over A(s) and that any critical point (y, f) for Ej
for which ¢'(y) belongs to L>(Qr) is also a zero of E4 (see Proposition . This is done by introducing
a pair (Y1, F1) for E,(y, f) for which E’(y, f) - (Y', F!) is proportional to E,(y, f). Then, in Section
assuming that the nonlinear function g is such that ¢’ is uniformly Holder continuous with exponent p,
for some p € [0, 1], we determine a minimizing sequence based on (Y'!, F!) which converges strongly for s
large enough to a controlled pair for the semilinear heat equation (L)) (see Theorem [4]). Section [5] gathers
several remarks on the approach: we notably emphasize that this least-squares approach coincides with
the damped Newton method one may use to find a zero of the mapping F mentioned above; this explains
the super-linear convergence stated in Theorem[2} We also discuss some other linearizations of the system
and show that the analysis extends to the exact controllability to trajectories. We conclude in Section
[6] with some perspectives, notably the extension of our analysis to the multi-dimensional case.

As far as we know, the method introduced and analyzed in this work is the first one providing
an explicit, algorithmic construction of exact controls for semilinear heat equations with non Lipschitz
nonlinearity. It extends the study [22] where it is assumed that ¢’ € L>®°(R) (i.e. f* =0 in which
allows to obtain directly a uniform bound of the observability constant. The stronger case g* > 0 small
considered here requires a refined analysis similar to the one recently developed by the authors in [3], 29]
for the wave equation. The parabolic case is however much more intricate (than the hyperbolic one)
as it makes appear Carleman type weights depending on the controlled solution. These works devoted
to controllability problems take their roots in the works [23] [24] concerned with the approximation of
solution of Navier-Stokes type problem, through least-squares methods: they refine the analysis performed
in [25] 26] inspired from the seminal contribution [6].

Notations. Throughout, we denote by || - |l the usual norm in L*(R), by (-,-)x the scalar product
of X (if X is a Hilbert space) and by (-, -) x,y the duality product between X and Y.

Given any p € [0, 1], we introduce for any g € C*(R) the following hypothesis :

. ’ _ ’ b

(Hp) ¢, = SUD aber lg'ta) =g (b)] (|((11)7b£|]1’( I <« 400
meaning, for p € (0, 1], that ¢’ is uniformly Holder continuous with exponent p. For p = 0, by extension,
we set [¢']o = 2||¢’||oo. In particular, g satisfies (Hp) if and only if g € C}(R) and ¢’ € L*(R), and g
satisfies (Hy) if and only if ¢’ is Lipschitz continuous (in this case, g’ is almost everywhere differentiable
and ¢’ € L*(R)), and we have [¢']1 < [|g” |-

We also denote by C' a positive constant depending only on €2, w and T that may vary from lines to
lines.



2 A controllability result for a linearized heat equation with
potential and right hand side
This section is devoted to a controllability result for a linear heat equation with potential in L™ (Qr)

and right hand side in L?(po(s); Qr) for a precise weight po(s) parametrized by s € R% defined in the
sequel. More precisely we are interested in the existence of a control v such that the solution z of

atZ — 8$IZ + Az = Ulw +B in QTa (11)
z=0on X7, 2z(-,0)=2z in Q
satisfies
z2(+,T) =01n Q. (12)

We follow the usual strategy of [I§] to construct a solution of the null controllability problem, using
Carleman type estimates. Instead of using the classical estimates of [I8], we use the one in [I] for which
it is easier to deal with non zero initial data as the weight function does not blow up as t — 0.

2.1 Carleman estimate

For any s > 1, we consider the weight functions p(s) = p(x,t, s), po(s) = po(x,t, s) and p1(s) = p1(z,t,s)
which are continuous, strictly positives and in L>°(Qr_s) for any § > 0. Precisely, we use the weights
introduced in [I]: po(s) = €3/2p(s), p1(s) = € p(s), pa(s) = € '/%p(s) where p(s) and & are defined,
for all s > 1 and A > 1, as follows

pla.t.s) = exp(se(, 1), E(x.1) = 6(1) exp(M(x)) (13)
where 6 € C%([0,7)) is defined such that, noting p = sA%e** and 0 < Ty < min(3, 2),
4\ "
1+ (1 - ) Vt € [0,7/4]
T
o(t) = 1 Vtel[T/4,T —2TY] (14)
6 is increasing on [T — 27y, T — T1],
1
—_— T-1T,T
T — ¢t vt € [ 1, )
and ¢ € C1([0,T)) is defined by
¢, ) = 0(t) (Aexp(12)) — exp(A(x))) (15)

with ¢ = ¢ + 6, where ¢ € C1(Q) satisfies ¢ € (0,1) in Q, ¢ = 0 on JQ and \&ﬂZ(m)\ >0 in Q\w. We
emphasize that the weights blow up at ¢ — 7"~ but not as t — 0.

Remark 1. We shall use in the sequel that 1 < po < p1 < p in Q. Indeed, since € > 1, pog < p1 < p.
Moreover, for all (z,t) € Qr and A > 1, we check that p(z,t) > %f(w,t) and thus, since s > 1 and
&(x,t) > 1, we get

po(x,t,8) = £/ (2, t)p(a,t,8) = €% (2, t) exp (285(1’,1?)) > e¥* V(x,t) € Qr.

The controllability property for the linear system is based on the following Carleman estimate.




Lemma 1. Let Py :={q € C*(Qr) : ¢=0 on Xr}. There exist \g > 1 and so > 1 such for all A > \g
and for all s > max(||A||2L/°§(QT), s0), the following Carleman estimate holds

/ p2(0,)[0:p(0)2 + 2X3e1 / p2(0, ) [p(O)? + sX2 / p72(5)|0apl? + $5A1 / RO
Q Q Qr Qr (16)

<C p_2(s)| — O4p — Opap + Ap|2 4k 033)\4/ p52(5)|p|2, Vp € Py.
QT qr

Proof. This estimate is deduced from the one obtained in [I, Theorem 2.5] devoted to the case A = 0:
there exist Ay > 1 and so > 1 such that for every smooth function z on Qr satisfying z = 0 on X7 and
for all s > sg and A > A\

o000+ 23 [ 020 ) + o3 [ @l £ N [ ol

T Qr

<C [ 000w+ duapl 405N / P52(s)lp
T qT

Writing

/ p=2()|0up + Daapl? < 2 / ()] — Oup — Daap + Apl’ +2 / ()] Ap|?

T T T

<2 [ 50N =0 = e+ A0l + 2 Al oy [ 7P
T

T

we infer, since py < p, that

/Q p2(0,8)[0,p(0) 2 + 2X3eM2 / P20, 8)[p(O)? + sX? / p72(5)|0apl? + 221 / P2 (s)lpf?

Q Qr Qr

<0 [ 50 0 e A0+ Ol oy /Q P (s)pl? + CsPAt / P2 (sl
T T qT

Taking A > \g = max(\, (20)1/4) and s > max(||A||i/£(QT), s0) leads to . O

In the sequel we assume that A = ¢ and denote by C' any constant depending only on €2, w, Ay and
T.
We then define and check that the bilinear form

e = [ o6 LawLia+ N [ i (elpa
T qar

where L% q 1= —0;q — Opzq + Aq for all ¢ € Py is a scalar product on Py (see [I4]). The completion P of
P, for the norm || - || p associated with this scalar product is a Hilbert space. By density arguments,
remains true for all p € P, that is, for A = g,

| 0.0 P38 [ 520,900 w58 [ gl [ o5l < Clalfy
Q Q Qr Qr
(17)
2/3
for all s > max(|| 4|72 ., 50).

Remark 2. We denote by P (instead of Py ) the completion of Py for the norm || - ||p since P does not
depend on A (see [13, Lemma 3.1]).




Lemma 2. Let s > max(||A||i/£(QT), S0). There exists a unique solution p € P of

(p,g)p = / 209(0) + [ Bg, Vg€ P. (18)
Q2 Qr
This solution satisfies the following estimate (with ¢ := |l¢(+,0)|| L))

Ipllr < Cs~*2(llpo(s) Bllz2@r) + € llz0llz2(e)- (19)

Proof. The linear map Ly : P - R, g — fQ Bgq is continuous. Indeed, for all ¢ € P

[ mal = () mome) ([ etoar)”

1/2
and since from the Carleman estimate we have (/ |p§1(s)q|2) < Cs7*?||q||p, therefore
Qr

L@l = | | Ba] < O o) Bllisian lal
T

Thus L; is continuous.
From we deduce that the linear map Lo : P - R, ¢ — fQ 209(0) is continuous. Indeed, noting
¢ :=|¢(+,0)]| and using s > 1, we obtain for all ¢ € P that:
|La(@)] = 572 [z0ll 12 (5> 2™ |a(0) ] 2o
< 5792620 p2 0™ la(0)e V| 2y = 572 || 20]| 2 () 5™ 2107 (0, 5)a(0) | 12
< Os™%%e%||20]| 2o llall -

Using Riesz’s theorem, we conclude that there exists exactly one solution p € P of and this
solution satisfies (19). O

2.2 Application to controllability

We now show how Lemma [I] and Lemma [2] imply a controllability result for the linear system This
part is mainly classical and follows closely [I8] but we present it with some details as it is an essential
part of our arguments developed in Section [3] The main result giving a precise bound of a control pair
in term of the potential and right hand side is as follows.

Theorem 3. Assume A € L*=(Qr), s > max(||AHi/£(QT), s0), B € L?(po(s), Q1) and 2o € L*(Q). Then
there exists a control v € L*(po(s); qr) such that the weak solution z of satisfies .
Moreover, the unique control v which minimizes together with the correspondmg solutwn z the func-

tional J : I(p(s); Qr) X L2 (po(s); ar) — R* defined by J(2,0) i= 3 1p(5) 212 )+ s 90 (5) 01125 1)
satisfies the following estimates

l(s) 2ll (@) + 57723 o) vl 2(ary < O3~ (pole) Bl + e zolliz)  (20)
with ¢ := ||¢(-,0)|| L= (o) and

ll01(s)zll Lo 0,322 (2)) + 1191(8) 22l L2 (@) < Ci(s, A) (llpo()BllL2(qr) + €7 llz0ll L2 () (21)

where
_ 1/2
Ca(s,4) = Cs (1 + A2 o.y)-
Moreover, if 2o € H} () then z € L*®(Qr) and
_ 35 cs
2]l (@r) < Ce™2* (L + | Allz(@r)) (100 (8) BllL2(@r) + € llz0ll a1y ) - (22)




We refer to [16] [18] for estimates of the null control of minimal L?(gr)-norm (corresponding to pg = 1
and p = 0) in the case B = 0, refined later on in [12, [I7]. For simplicity, we divide the proof of Theorem
[Blin several technical lemma.

We introduce the convex set

C(20,T) := {(z,v) :p(s)z € L*(Qr), po(s)v € L*(qr), (2,v) solves (II)-(12) in the transposition sense}.
Let us remark that (z,v) solves (1I)-(12) in the transposition sense if (z,v) is solution of

/ zLZq:/ vq+/zoq(0)+/ Bq, VqeP. (23)
Qr qr Q Qr

Therefore if (z,v) € C(z0,T), then since v € L?(qr) and B € L*(Qr), z coincides with the unique weak
solution of associated with v. We can now claim that C(zo,T) is non empty.

Lemma 3. Let s > max(||A||i/o§(QT), S0), p € P the unique solution of @ and (z,v) be defined by
2= )Ihp and  v=—s*\pr2(5)Pler- (24)

Then (z,v) € C(20,T) and satisfies the estimate (20).

Proof. From the definition of P, p(s)z € L?*(Qr) and po(s)v € L?(qr) and therefore, since p > py > 1,
2z € L*(Qr) and v € L?(g7). In view of , (z,v) is solution of and satisfies that is, z is the
solution of (1I)-(I2) associated with v in the transposition sense. Thus (z,v) € C(zo,T). O

Let us now consider the following extremal problem, introduced by Fursikov and Imanuvilov in [I§]

2 2
Subject to (z,v) € C(zo,T).

e 1 2 2 573/\64 2 2
Minimize Js(z,v) = = p-(s)|z|* + p5(8)|v]
T ar (25)

Then (z,v) — Js(z,v) is strictly convex and continuous on L?(p(s); Qr) x L?(po(s); qr). Therefore ([25)
possesses at most a solution in C(zg,T"). More precisely we have :

Lemma 4. Let s > max(||A||2L/j(QT),SO). Then (z,v) € C(z0,T) defined in LemmaH is the unique

solution of .

Proof. Let (y,w) € C(z,T). Since J is convex and differentiable on L?(p(s); Q) x L*(po(s);qr) we
have:
Js(y, w) = Jo(2,v) + / PA(8)2(y = 2) + 572" [ pi(s)u(w —v)

—Js(z,v)+/:L2p(yZ)/qu(w;)T— Js(z,v)

y being the solution of associated with w in the transposition sense. O

Proof of Theorem[3. Lemma W] gives the existence of a control v € L%(po(s);gr) such that the corre-
sponding solution z of satisfies . Moreover, this control is the unique control which minimizes
together with the corresponding solution z the functional J; and satisfies . To finish the proof of
Theorem it suffices to prove that (z,v) satisfies the estimate (21)) and if 2o € HZ (), then 2z € L*°(Qr)
and satisfies the estimate .

Multiplying by p2(s)z and integrating by part we obtain

%/ﬂ(atlzlz)pf(s)+/Qp§(s)|awz|2+2/Qp1(s)zaxpl(s).axz+/np§(s)j42z:/

w

op2(s)z + / Be(s)x.
(26)




But [, (0:]2]2)p2(s) = 0; [, |22p3(5) =2 [, |212p1(5)Dep1(s) and 9ypi(s) = — %2 p1(s) + 522 ppy (s). More-
over, from the deﬁmtlon of 6 and ¢ we have:

Cs Vtel0,T/4]
(t)‘ <{0 Vte[r/aT-2m]

0 Vie|T -T,T)

0.0
0

9 ]
%(t)‘ <C Vte[T—2Ty,T — T since %(T— 2T1) = 0, %(T Ty) = - and 6 is C2. Since

T
f<fand s>1,o0nl0,T):

‘ ‘ < Os€.
From the definition of ¢, ¢ < C# < C¢ and thus on [0,7) :
‘ ‘ < Cs€2.

Thus, since s > 1, £ > 1 and p(s) = &p1(s), on [0,T) :

8,5 ato
- [1o0mn(s) = [ Flio: =5 [ Felm(s)zP < 02 [ Rl

On the other hand

Dep1(s) = (€ pls)) = 0o (&7 )pls) +€ 7 0upls) = =0 (M€ p(s) +5hop(s)) = —0etbAop(s) (6" +5)

and thus, since £ > 1 and s > 1, we write (7! + 5) < 25 and

| [ 106120019 - 0u2] < 200, =e0 [ slot)=| o1 (0,

1
< Cs? / p(s)2 + 3 / 191 ()9, 22
Q Q

o Pi(s) Az
Finally, since p?(s) = £ /2po(s)p(s) and £~1/2 < 1, we infer that

| [t < | [ ontsrne 2002 < ([ mtoel) ool

and | [, Bpi(s)z] < ||po(s)Bllr2()llp(s)zl L2(q)- Thus implies that

We also have, since p(s) = £pi(s) and £ > 1 the estimate,

< CllAllz=(@nlp(s)zl172(0)-

o [ AR+ [ p010,E <C(2 + Al ) o2l
) 1/2
([ 1mloeP) " + () Bl ) Io(s)ell oo
and therefore for all ¢t € [0,T), since ||p1(s, O)zQHQLz(Q) < ecs||zo||%2(m7 we get
(L AGEE) O+ [ ai@ue < OO+ 1Al o) e

+ ([lpo(s)vl L2 (gr) + 0(8) Bl 2(@r)) 10(5) 2] L2(@r) + € [l20]1 720

Using , we obtain since s > 1 that for all t € [0,T) :

(L AGEE)O+ [ ai@)ocel < 057 (14 1A~ (o) Bllcay + e olfiaa) (21



which gives .

If now zg € H}(Q), then since z is a weak solution of associated with v, maximal regularity in
L? and Sobolev embeddings give that z € L%(0,T; H?(2)), 8;z € L*(Qr) and therefore z € L>(Qr).
Moreover, multiplying by 0.,z and integrating by part we obtain

1
58,5/ |8;,;Z|2 +/ |8$IZ|2 < || — Az + ’Ulw + B||L2(Q)H8mz||,;2(ﬂ)
Q Q

and thus, since p(s) > po(s) > e3°:

/|a 22 < /\fAervl + B2 < 3( /\Az|2 /|vl 2+ /\B\

< 3675 (A1 m (@ 10(9)2 1320 + I0()0 1 By + 10() B2 )

which gives, a.e in ¢ € (0,7
/Q 10,22 (t) < 36_3S(HAH%O"(QT)Hp(S)ZH%Z(QT) +llpo(s)vll72(gr) + 1P0(8)BlIZ2(r)) + 120l 77 )

Since z(-,t) € H}(Q), a.eint € (0,T), z(z,t) = [ 0z(r,t)dr < [|052|2(t) and thus, using (20), since
s>1:

lzllzoe(@r) < 022l L 0,152 (02))
_34
<V3e: (HA||L°°(QT)||P(5)Z||L2(QT) +llpo(8)vll 2 (gr) + [1P0(8) BllL2(@1)) + 201l 13 )
_35 cs
< Ce2*(1+ [|All L= @) (1o (5) Bl L2 (@r) + €ll20ll 12 2))

that is (22]). O

Remark 3. Remark that ¢ = ||¢(-,0)||z~(q) > 3/2 so that the bound of ||zll (@) is not uniform
with respect to the parameter s > 1.

3 The least-squares method

In this section, we assume that the nonlinear function g satisfies the hypothesis for some p € [0, 1]
and that

(Hz) There exists @ > 0 and 8 > 0 such that |¢/(r)] < a+ 8In*?(1 + |r|) for every r in R.

We introduce the notation
Y(r) = a+ W21 +|r]), VreR. (28)

We also assume that g(0) = 0 leading in particular to the estimate |g(r)| < |r|(a 4+ S1In*?(1 + |r|)) for
every r € R. The case p = 0 in corresponds to § = 0 and a = ||¢'|| and thus ¥(r) < ||¢'||c for
every r € R. Remark that |(Hz)| implies and

3.1 The least-squares method

We introduce, for all s > sg, the vector space Ag(s)

Ao(s) = {(y,f) : p(8)y € L2(Qr), pols)f € L2(ar),

p0()(O0y — Dany) € L2(Qr), y(-,0) = 0in ©, 5 =0 on ET}
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where p(s), p1(s) and po(s) are defined in (I3)). Note that Ay(s) endowed with the scalar product

((y, f): @, 7)>AO(S) = (p(S)y, p(s)y>L2(QT) + (pO(S)f7 pO(S)?) L2(q7)
+ (po(S) (Ory — Ozzy); po(s) (Y — 89””?))L2(QT)

is a Hilbert space. The corresponding norm is ||(y, f)ll.4o(s) == /((W: F), (W, ) 49(s)- We also consider
the affine space

Als) = {<y,f>  p(8)y € L2(Qr), po(s)f € L(ar),
(20)
00(8)(0py — Oray) € L*(Qr), y(-,0) =upin Q, y =0 on ET}

so that we can write A(s) = (7, f) + Ag(s) for any element (7, f) € A(s). We endow A(s) with the
metric d 4(s) induced by the norm of Ag(s), that is dac) ((y1, f1); (v2, f2)) = (1 = ya, fr = f2)lla0(s)»
for all (y1, f1) € A(s) and (ya, f2) € A(s). Clearly, if (y, f) € A(s), then y € C([0,T]; L*(Q)) and since
p(s)y € L*(Qr), then y(-,T) = 0. The null controllability requirement is therefore incorporated in the
spaces Ap(s) and A(s).

Remark 4. For any (y, f) € A(s), since po(s) > 1 (see Remark , we get that Oy — Opey € L*(Qr);
since ug € HE(Q), standard arguments imply that y € L°°(Qr) with

||yHL°°(QT) < C(HUOHH(}(Q) + [|0ry — 3my||L2(QT))-

3

In particular, for any (y, f) € Ao(8), lyllz=@r) < Ce™2°||(y, f)llag(s) for some C > 0 independent of s.

For any fixed (yo, fo) € A(s) and s > 0, we can now consider the following non convex extremal problem:

inf  Es(yo+vy,fo+ 30
(. 1) E Ao (5) (yo Y, fo f) ( )

where the least-squares functional Fy : A(s) — R is defined as follows

2

B )= 5| (31)

po(s) <8ty —Oueyy+9(y) — f 1w>

L*(Qr)

We check that po(s)g(y) € L*(Qr) for any (y, f) € A(s) so that Ey is well-defined. Precisely, using that
lg(r)| < |r|(a+ BIn*2(1+ ) = |r[e(r) for every r and that py < p, we write

lpo(8)9(W)l 2@y < lpo(S)YlV (W)l L2(Qr)

32
< 0 (Il =0m) ()l 2r) < ¥l 1w Fllace (32)

Any pair (y, f) € A for which E,(y, f) vanishes is a controlled pair of (1], and conversely. In this
sense, the functional F is a so-called error functional which measures the deviation of (y, f) from being a
solution of the underlying nonlinear equation. Moreover, although the hypothesis is stronger than
Theorem [1| proved in [I7] does not imply the existence of zero of E; in A(s), since controls of
minimal L*(gr) norm are considered in [I7]. Nevertheless, our constructive approach will show that, for
s large enough, the extremal problem admits solutions (y, f) € A(s) for which E, vanishes.

We also emphasize that the L?(Q7) norm in E, indicates that we are looking for regular weak solutions
of the parabolic equation (I)). We refer to [22] devoted to the case ¢’ € L°(R) and the multidimensional
case where the L2(0,7; H~!(Q)) norm is considered leading to weaker solutions.

A practical way of taking a functional to its minimum is through some use of its derivative. In doing
s0, the presence of local minima is always something that may dramatically spoil the whole scheme. The
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unique structural property that discards this possibility is the convexity of the functional F;. However, for
nonlinear equation like , one cannot expect this property to hold for the functional E. Nevertheless,
we are going to construct a minimizing sequence which always converge to a zero of F;. To do so, we
introduce the following definition.

Definition 1. For any s large enough and (y, f) € A(s), we define the unique pair (Y1, F') € Agy(s)
solution of

{6tY1 — 0 Y+ g ()Y = FYy + 0y — Opay +9(y) — fl, in Qr, (33)

Y'=0o0nYr, Y'(,0)=0inQ
and which minimizes the functional Js defined in Theorem [3 In the sequel, it is called the minimal
controlled pair.

The next proposition shows that there do exists some (Y, F!) in Ag(s). We emphasize that F! is a null
control for the solution Y'!. Preliminary, we prove the following result.

‘Lemma 5. There exists (y, f) € L*>(Qr) x L?(qr) such that (y, f) € A(s) for all s > 0.

Proof. Let y* be the solution of

8ty* - awzy* =0 in QT7
*=0onYr, y*(-,0)=ug€ Hy(Q) in Q,
so that y* € L?(0,T; H*(Q)) and d,y* € L?(0,T; L?(Q2)). Let now any function ¢ € C°°([0,77]),0 < ¢ < 1

such that ¢(0) =1 and ¢ = 0in [T/2,T]. Then, we easily check that the pair (y,0) with y := ¢ y* belongs
to A(s) for any s > 0. O

Proposition 1. Let (y, f) € A(s) with s > max (||g'(y)||2L/o§(QT)7 s0). There exists a minimal controlled

pair (Y1, F') € Ao(s) solution of . It satisfies the estimate:

1YY, D) ao(s) < OV Es(y, f) (34)

for some C > 0.

Proof. For all (y, f) € A(s), po(s)(0ry — Ouzy + g(y) — flu) € L*(Qr). The existence of a null control
F! is therefore given by Proposition Choosing the control F! which minimizes together with the
corresponding solution Y'! the functional J, defined in Theorem [3| we get from — the following
estimate (recall that Y1(-,0) =0) :

() Yl 20r) + 57220 100 (8) M |2 (ar) < C5™21lp0(8) Oy = Baayy + 9(y) = fLo)ll 222

(35)
< Cs™3/2 Es(y, f).
Eventually, from the equation solved by Y1,

100(s)(0:Y " = 002 Y )| L2(q0)
< lpo()F z2(qr) + llpo(8)9" ()Y Ml z2(Qr) + 100(5) B2y — Bzay + 9(y) — f L)l z2(@r)
< llpo(8)F |z2(qr) + l00(s)g' )Y | 22(@r) + V2Es(y, f)-
But, since po(s) < p(s), using (35)), we have
lpo(s)g' W)Y l72(@r) < 19" WIE @ IP()Y M IE2(@r) < C5 7219 W17 (@) Es (v, f) (36)
thus

1po(8)(B:Y" = 0uaY )l 12(@r) < C(1+ 57 2lg W)l (@r)) VEs (4, f) (37)
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which proves that (Y!, F!) belongs to Ag(s). Eventually,

1Y, F )2 )

()Y 320 + 008 F Lz g + 00(8) (0 = DY DlF2 )

()Y 2(@ry + 40 () F 132 gy + 3lIo0()9 )Y 2 ) + 3(v/2Eu(y, 1))?
C(*Euly. 1)+ 579 W) [F < (r) B 0. £) + Euly. 5)

CE,(y, )1+ 57 + 579 W)~ o)

IN A

IN

Using that s > maX(Hg’(y)HzL{j(QT),so) > 1, we get s72 < 1 and S_3||g/(y)”L°°(Q ) < 1 leading to the
result. O

Remark 5. From , we observe that z := y—Y* € L%(p(s); Qr) is a null controlled solution satisfying

{&z — Oz + g (W)z=(f —FY1u+ ¢ @)y —gly) in Qr, (38)

z=0onXy, z(-,0)=mwug inQ

by the control (f — F') € L*(po(s); qr)-

Remark 6. We emphasize that the presence of a right hand side term in , namely 0y — Ozzy +
9(y) — f 1w, forces us to introduce the non trivial weights po(s), p1(s) and p(s) in the space A(s). This
can be seen in the equality : since pal(s)q belongs to L*(Qr) for all ¢ € P, we need to impose
that po(s)B € L*(Qr) with here B = 0y — Opay + 9(y) — f1o,. Working with the linearized equation
@ (introduced in [17]) which does not make appear any right hand side, we may avoid the introduction
of Carleman type weights. Actually, [17] considers controls of minimal L (qr) norm. Introduction of
wetghts allows however the characterization , which is very convenient at the practical level. We refer
to [14)] where this is discussed at length.

We also emphasize that we have considered bounded weights at the initial time t = 0 because of the
constraints “p(s)y € L*(Qr)” and “y(-,0) = ug in Q7 appearing in the set A(s).

3.2 Main properties of the functional E,

The interest of the minimal controlled pair (Y1, F1) € Ag(s) lies in the following result.

Proposition 2. For any (y, f) € A(s) and s > max (||g’(y)|\2L/£(QT), s0), let (Y1, F') € Ao(s) defined in

Definition . Then the derivative of Es at the point (y, f) € A(s) along the direction (Y1, F') given by
1 1
El(y, f) - (Y1, F1) :=lim, 0520 ES((y’f)+n(Yn’F N=L:@w.f) gqtisfies

By, f)- (V' F') = 2E,(y, ). (39)

Proof. We preliminary check that F is for all (Y, F) € Ay(s), Es is Gateaux-differentiable at the point
(y, f) € A(s) along the direction (Y, F) € Ay(s). For all A € R, simple computations lead to the equality

Es(y+\Y, f + AF) = Es(y, f) + AEL(y, f) - (Y, F) + (s, (y, ), (Y, F))

with

Eg(y7 f) : (Y7 F) = (pO(S)(aty - axzy + g(y) - f 1w)7p0(8)(6ty - a:rxy + g/(y)y - F 1w)> @) (40)
L2(Qr
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and

h(s, (y, ), MY, F)) == <p0(5)(aty — 00aY +¢'(y)Y — F14,), po(s)(y, AY)) on

)\2
+ S po()(@Y = OuaY +9' W)Y = FLo)l[22(q0)

. (p()(s)(aty ey + 9) — £ 1), o8y, m)
L2(Qr)

+ 5 lo0()i5 A2 0
where [ is defined by
Wy, Y) =gy +Y)—g(y) —g 1Y (41)
The application (Y, F) — E.(y, f) - (Y, F) is linear and continuous from Ay(s) to R as it satisfies
[E(y, f) - (V. F)]
< llpo(s)(Ory — Owayy + 9(y) — f L)l L2(@r) [P0 ()(0Y — OuaY + ¢'(¥)Y — F 1u) | L2(@r)

< V2E(y, f) (Ilpo(S)(@Y = 02 )llL2(@r) + [1P0(8) Fll L2 (gr) + ”pO(S)g/(y)Y”LZ(QT)>

< V2E(y, f) (Ilpo(S)(atY = OaaY)l22(Qr) + [P0() FllL2(9r) + 19" (W) |2 (@) Ip(S)Y||L2<QT)>

< C(L+ 19 W)= @) VEs W, HIY: F)llag(s) - »
42

Similarly, for all A € R*

$06 D)) | < (W90 = 00sY + 4GV = F L0y + V2B )

1 1
+ 30 i@ ) 5 I A 2201
A
+ ()@Y - 0.7 + 9 W)Y ~ P10,
Since ¢’ € C(R) we have, a.e in Qr : Hl(y,/\Y)‘ = ‘w - g’(y)Y‘ — 0 as A — 0 and, since
Y € L*°(Qr) and y € L (Q7), a.e in Qr

)‘ _ ‘g(y+AY) —9()
)

1
‘Xl(y,AY —g’(y)Y‘ < (Gs%p” 19" (y + Y ) L (@r) + 19" W)l L= (@r)) Y]
€0,

and therefore (recalling that py < p)
1
Wllpo(S)l(% AY)llz2@r) < (azl[zpu 19"y + 0Y) | = (@ry + 9" W)l L= (@r)) lP0Y Il 2201

< (esl[tpl] 19 (v + 0Y)| L (r) + 19 W)l L)) 1PY I 22(0r)-
€,

It then follows from the Lebesgue dominated convergence theorem that §||po(s)l(y, AY )| 12(g) — O as
A — 0 and therefore that h(s, (y, f),\(Y, F)) = o(A). Thus the functional F, is Gateaux-differentiable
at the point (y, f) € A(s) along the direction (Y, F') € Ao(s). Eventually, the equality follows from
the relation satisfied by the pair (Y1, F'!). O

Remark that from the equality (40]), the derivative E’(y, f) is independent of (Y, F'). We can then
E/(y,f)-(Y,F .
define the norm [|E{(y, f)|l.ay(s) = SUP(y, pyedo(s),(v,F)£(0,0) H(}(,%)“io()) associated to Aj(s), the set of

the linear and continuous applications from 4y (s) to R.

Combining and , we deduce the following estimates of F;(y, f) in term of the norm of E’(y, f).

14



Proposition 3. For any (y, f) € A(s) and s > max (||g’(y)||2L/o§(QT), 50), the inequalities hold true

1
C(1+ 19" W) L= (@r)

for some C > 0.

) 1ES(y, Hllags) < VEs(y, f) < ClEs(y, Fllags)

Proof. rewrites Ey(y, f) = LEL(y,f) - (Y, F') where (Y',F') € Ay(s) is solution of (33) and
therefore, with

1
Es(y, f) < 51 E:(y, g 1Y FD ] ag(s)

< CIELWY, Hllags) vV Es(y, f)-
On the other hand, using ([42)), for all (Y, F) € Ay(s):

1By, f) - (¥, F) < CL+ 19 Wl @r) VEs (s DI ) o s)
leading to the left inequality. O

In particular, any critical point (y, f) € A(s) for E; (i.e. for which E/(y, f) vanishes) is a zero for Ej,
a pair solution of the controllability problem. In other words, any sequence (yg, fx)ren of A(s) satisfying
125 (ks fi)llag(s) — 0 as k — oo and for which (||¢’(y)|lec)ken is bounded is such that Fs(yk, fr) — 0
as k — oco. We insist that this property does not imply the convexity of the functional E(s) (nor a
fortiori the strict convexity of Eg, which actually does not hold here in view of the multiple zeros for
E,) but show that a minimizing sequence for F; can not be stuck in a local minimum. Our least-squares
algorithm, designed in the next section, is based on that property.

Eventually, the left inequality indicates that the functional Ey is flat around its zero set. As a
consequence, gradient based minimizing sequences for Ey are inefficient as they usually achieve a low
rate of convergence (we refer to [27] and also [25] devoted to the Navier-Stokes equation where this
phenomenon is observed).

We end this section with the following crucial estimate.

Lemma 6. Assume that g satisfies for some p € [0,1]. For any (y,f) € A(s) with s >
max (||g’(y)||i/o§(QT),so), let (Y, F') € Ao(s) be given in Deﬁnition associated with (y, f). For any
A € Ry the following estimate holds

VBN =N FY) < VEG (1= A+ ¥ VBT ) (43)

with "
+p
——C 5732 32?5[

ci(s) = 1o

gl]p' (44)

Proof. The expansion of E,((y, f) — A(Y'!, F!)) together with Definition [1|of (Y'!, F!) leads to
2B, ((y, £) =AY, F))

2
= (1p0(8)(8ey — Oz + 9(y) — F 1) — Apo(8) (Y — 0uaY' + ¢’ ()Y = F 1) + po(s)l(y, —AY") o
L2(Qr
2
_ ] po()(1 = N) (O — Dy + 9(y) — £ 1) + po(s)1(y, —AYY)
L2(Qr)
< (o)1 = N @1y = By + 9W) = F1) | 2 0y + [P0 (U =AY 2 0, )
2
<2 (11 AVEG T+ () -3 120, )
(45)
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where [ is defined in .
For any (x,y) € R?, y # 0, and X € R, we write g(z + \y) — g(z) = fo’\ yg' (z + &y)d¢€ leading to

A
9 + M) — 9(z) — A (@)y] < / llg (& + &) — o' (@)|de

A ! !
S/O |y‘1+p|£|p‘g ($+£y) g (x)|df

Ey|P
AP
<ld 1+p|7.
< [9'Tplyl 1o
It follows that -
Uy WY = Joy + A1) = 9(0) = X W)Y < [T

and thus, since Y € L>®(Qr) (see Remark and po(s) < p(s) :

|/\|P+1
loo()i(y, =AY Dl 2(0r) < 91575 7 o ()Y 2 ()
AP 1 1o
< Yy T IV e oy 151 22
Eventually, Remarkand estimates and in term of \/Es(y, f) imply
_ _3pg ptl
IV 2 o 10()Y 20y < O3/ F2CPE, (y, )5
Combining this estimate with and 7 we get . O

4 Convergence of the least-squares method

We now examine, for s large enough, the convergence of a minimizing sequence (yx, fx) € A(s) for E,. In
this respect, we observe from the equality that, for any (y, f) € A(s), —(Y'!, F!) given in Definition
is a descent direction for the functional Ey at the point (y, f), as soon as s > max(Hg/(y)Hi{j(QT), 50)-
Therefore, we can define at least formally, for any fixed m > 1, a minimizing sequence (yx, fx)ren € A(S)
as follows:

(yOa fO) € A(S)7

(Wr+1s fer1) = (e f) = (Vi Fi), k>0, (47)

AL = argminAe[O’m]Es((yk, fr) — )\(Ykl,Fkl))

where (Y}, Fl) € Ao(s) is the minimal controlled pair solution of

(48)

QY = 0uaYyl + 9 (yn) Yy = Fily + Oy — Ovat + 9(yi) — frlo in Qr,
Yi=0on Xr, Y!(-,0)=0in Q

associated with (yg, fx) € A(s). In particular, the pair (Y}, F}!) vanishes when Ej(yy, fi) vanishes. The
real number m > 1 is arbitrarily fixed and is introduced in order to keep the sequence (A;)ren bounded.

We highlight that, in order to give a meaning to (47)), we need to prove that we can choose the
parameter s independent of k, that is s > max (||g’(yk)||L/j(QT),so) for all k € N. In this respect, it
suffices to prove that there exists M > 0 such that ||y ||z~ (@.) < M for every k € N. Under this
implies that ||g’(yx)||lL>(Qr) < ¥ (M) for every k € N, where 1 is defined in .

In the next section, assuming the parameter s large enough, we prove the existence of such M by
induction making use of the properties of the functional Fs proven in Section [3.2
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4.1 Boundedness of the sequence (yi)ren in L>®(Qr)

The boundedness is obtained after several technical results. We first prove an estimate of ||y,41|L~(0r)
assuming a bound of ||y ||z~ (q,) for 0 <k <n and s large enough.

Proposition 4. Assume that g satisﬁesl@' andfor some p € [0,1]. Let M > 0 large enough
and s > max (C(p)y(M)?/3,s0) with C(p) = 1 if p € (0,1], and C(0) = (2C)*/2. Let (yo, fo) € A(s)
such that M > |lyo|l g (@) Assume that, for some n > 0, (yx, frx)o<k<n defined from satisfies
Ykl oo (@) < M for every 0 < k <n. Then

1
+1 1+p)rtt
stz e <lollz=(ar) + cmmax(” VEwor o), (+)c}/p<s>Es<yo,fo>) (49)
if p € (0,1] and
Es(y07f0)

1—ci(s) (50)

[Yn+1llz(@r) < ol (@) + Cm

if p=0. Recall that c1(s) is defined in .

We point out that the existence of (yo, fo) € A(s) follows from Lemma

Proof. The inequality ||y |1 (qg,) < M implies that ||g’(yn)||i/£ o) = (M)?/? and then
s > max ((M)?/3,s9) > max (||g’(yn)\|i/j(QT), 50)- Propositionallows to construct the pair (Y,}, F!) €

Ag(s) solution of (33)). Then, allows to define (yn+1, fnt+1). Estimate implies that

\/Es((ykvfk) - AYLED) < v Es(ykvfk)<|1 — A+ e (s)y Es(ykafk)p>

and then

VEs(Wrs1, fes1) < VEs(yr, fr) /\g[lgn ]Pk(sa A) (51)

with

Pr(s,A) = |1 = A 4+ XN Hey (8)Es(yi, fo)?/2, VA €R, Vs > 0. (52)
Since (Es(yk, fk))0<k<n decreases, (pk(s, )\))0<k<n decreases for all A (px do not depend on k if p = 0)
decreases as well. then implies,

and thus, defining py (s, Ax) := minxeo,m pi(s, A), (Pr(s, Ax))
forall 0 < k <n—1, that

0<k<n

VEsWi1s frr1) < VEs (e, f)pi(s: M) < VEs Wi fo)po(s, o) (53)

First case : p € (0,1]. We prove that

»+1
Es(yr, fr) < Hlax(p 1 V' Es(yo, fo), %Cz(S)ES(yov fo)> (54)

p b

D

k=0

n

where co(s) = ci/p(s) . Since dxpo(s,0) = —1, po(&%) < po(s,0) = 1 we deduce from 1) that :

_PO(S,B\\(;)HJA < Es(y07f0)
L—po(s,ho) 1 —po(s, o)

S VE e ) < v/Ex(yor fo)~ (55)
k=0

If co(8)\/Es(yo, fo) < m, we check that po(s,S\;) < po(s,1) = e1(8)\V/Es (yo, fo) < ﬁ and thus

Es(yo, fo) < ptl VEs(yo, fo)-

1 _pO(sa:\\g) p
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If c2(s)\/Es(yo, fo) = m, then for all A € [0,1], Oapo(s,\) = =1+ (p+ 1))\Pc1(s)ES(y07f0)p/2 and

_N; . o 1 .
thus dxpo(s,A) = 0 if and only if A = ST ey leading to

p 1
(1 +p) 7t c2(8)/Es (o, fo)

pO(S,X(;) = 1 -

and

-
W < (1+§) CQ(S)Es(y07f0)'
— po(s, Ao

then leads to . Then implies that y,+1 = yo — ZZ:O AkYkl and thus, using

yn+1llz=(@r) < lWollL=(@ry +m D 1Y l=(@r) < Wollze(@r) + Cm Y IV Bl (s
k=0 k=0

< lyoll (@) + sz VEs(yk, fr)
k=0

which gives , using .
Second case : p = 0. Recall that for p = 0, ¥(r) = ||¢'||cc for every r € R. Then simply py(s,\) =
|1 — Al + Acq(s) for all k and

o) = mi A) = mi A) = 1) =
Po(s, Ao) Agﬂé%ﬂpo(& ) Aren[(l){ll]po(s, ) =po(s, 1) =ci(s)

with ¢1(s) = Cs™3/2[¢']o = 205 3/2||¢/||ec = 2Cs~3/24(M). Taking s large enough, precisely s >
max((20)Y/34(M)?/3, 50), we obtain that ¢;(s) < 1. We then have for all 0 < k < n — 1 that

\/Es(yk+1, frg1) < \/Es(yky Jr)c(s)

and thus
n 1-— 01(8)n+1 Es(y0> fO)
B (ur Fo) < VEx(vo, < . 56
kz:% VE;s (i, fr) < VEs(yo, fo) 1= er(s) 1= ca(s) (56)
Proceeding as before, we get (50). O

We now intend to choose s such that ||y, 11|z (@,) < M. In view of estimates and , we need
to this end an estimate of E(yo, fo) = %Hpo(s)(atyo — Ouz¥o + 9(yo) — fo 1‘*’)”%2(QT) in terms of s. Since
the weight p(s) does not belong to L?(Q7), such estimate is not straightforward for any (yo, fo) € A(s).
We select the pair (yo, fo) € A(s) solution of the linear problem, i.e. g =0 in (T).

Lemma 7. Assume that g satisfies For any s > so, let (yo, fo) € A(s) be the solution of the
extremal problem in the linear case for which g = 0. Then,

VEs(yo, fo) < (a +B(c*? + (1 + Clonlng(m))>6CS||UO||H3(Q)~ (57)

with ¢ = ||¢(-,0)|| Lo () -

Proof. Estimate of Proposition |3| with A =0, B = 0 and 2y = ug leads to

lo(s)yoll2(@r) + 57225 2llpo(s) foll L2 (ar) < O™ |fuo]| 12 () (58)

while leads, since s > 1 and py > 1, to

—§€ cSs cS
190l (@r) < Ce™2%e®|uoll sy () < Ce[luolluy(q)- (59)
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It follows that, using (32]), since pg < p and s > 1

1

1
V' Es(yo, fo) = *2HP0(8)9(?/0)||L2(QT) < ﬁiﬁ(HyOHLw(QT))||P(S)y0||L2(QT)

< OP(Ce|luoll ma(y)s %€ luoll 2 ()

< C(a+ B**(1 + Ce|lugl| 2 0))) s> 2 uo 12 )

< Ca+ BIn* (e (1 + Clluoll () s~ e ol a0

< C’(a +B((s¢)*% + m*2(1 + C||UO|H3(Q)))> 5732 |uo| g2 o
(o 81

C

IN

a+ B(c3? + (1 + CUOHH(}(Q))))QCSHUOH[}(Q)-

We are now in position to prove to following result.

Proposition 5. Assume that g satisfies I@I andl(ﬂL)l for some p € [0,1]. Assume moreover that
2¢C(p)B%3 < 1 and let (yo, fo) be the controlled pair given by Lemma E There exists My > 0 such
that, if we have constructed from the pairs (Yk, fr)o<k<n € A(s) with s = max(C(p)y(Mo)?/3, s0)
satisfying ||yk|lLe(Qr) < Mo for all 0 < k < n, then the pair (Yni1, fni1) constructed from also
belongs to A(s) and satisfies

lyn+1llzee(@r)y < Mo.

Proof. The inequality (a + b)?/3 < a?/3 + /3 for all a,b > 0 allows to write, for all M > 0 :
(M) = (a+ B2 (1 + M))*? < o3 + g2 In(1 + M).

Assume that for some M large enough, ||y ||z < M. Estimate (59) with s = max(C(p)y(M)?/3, sg
(Qr)
then leads to
cS c(s 2/3 CcS C! 2/3
lvollLe (@r) < Clluollmz e < Clluollmy e (50+CEWADT < e *[|uoll 2 (e Clp)w(M)
< et ||UOHH&(Q)@CC(”)(C‘Q/ng/3 In(1+1))

< O fug | g3 () 0P eeCwIB In(100) (60)
< Ce g gy P (1 4+ M) O
< e(a,ug)(1 + M)Cc(p)52/3.

Similarly, this estimate of e“® and lead to

cs a?/3 c 2/3
V Es(yo, fo) < (04 +B8(c3? + n®2(1 + C||U0||H01(Q)))>6 0eCP) (1 4 M)CWPB l[woll 2 ()

B2/3

(61)
< ela, Byug)(1+ M)Cc(p)

First case : p € (0,1]. Since s > 1, the constant c;(s) defined in satisfies ¢1(s) < Clrpp [¢']p-
Therefore, by combining , and , we get

c 2/3
yns1ll L (@ry <cla, uo)(1+ M)““®P

2/3

1
+Cm max(pc(oz7 B, ug) (1 + M)Cw@B

M[g’];/pC(Hp)/%Q(a,ﬁ,uo)(l + M)2c0(p)ﬁ2/3>

p

<C(p, o, uo, [g']p, B) (1 + M)2cc(p)32/3.
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Now, if 3 is small enough so that 2c¢C(p)3%/3 < 1, the real My defined as follows
Mo :=inf {M > 0| C(p,,u0,[g']y, B)(1 + M)*C@7" < ar} (62)

exists and is independent of n. Consequently, taking M = My and s = max(C(p)y(My)?/3, s9) lead to

Yyn+1ll Lo (@ry < Mo.
Second case : p = 0. In this case, ¢;(s) = Cs™3/2[¢']p = 2Cs7%/2|¢g/||c < 1 for s large enough. By

combining , and , we get
1]l (@r) < el ug) (1 + MYCOF 4 1—;01(3)0(01, B,u) (1 + M)eC@8*
< C(a, ug, [g'0, B)(1 + M)cC(O)ﬁ2/3
and we conclude as in the previous case with
My := inf {M > 0] C(a,uo, [¢']0, B)(1 + M)CC(0)52/3 < M} (63)
O

By induction, we can now conclude to the boundedness of the sequence (yx )ken for the norm L>®(Qr).

Proposition 6. Assume that g satisfies (Hz)| and |(Hp)| for some p € [0,1]. Assume moreover that
2¢C(p)f%/3 < 1. Let My be given by @ forp € (0,1], by forp =0 and s = max(C (p)(My)?/3, s0).
Let (yo, fo) € A(s) be the solution of the extremal problem in the linear situation for which g = 0.
Then the sequence (yx, fx)ken € A(s) defined by satisfies

lykllLe(@r) < Mo, Vk €N.

Proof. From the construction of Mo, ||yollz~(@;) < Mo. Therefore, the uniform boundedness of the
sequence (yi)xen follows by induction from Proposition O

4.2 Convergence of the sequence (yi, fi)ren and proof of Theorem

Once we know that we can choose the parameter s large enough but independent of k, we may prove the
decay to zero of the sequence (Fs(yk, fx))ken-

Proposition 7. Assume that g satisfies (Hz)| and for some p € [0,1]. Assume moreover that
2¢C(p)%/3 < 1. Let My be given by @ forp € (0,1], by (63) for p = 0 and s = max(C(p)1h(My)?/3, s0).
Let (yo, fo) € A(s) be the solution of the extremal problem in the linear situation for which g = 0.
Let (yk, fr)ren € A(s) be the sequence defined by . Then, the sequence (Es(yk, fr))ren — 0 tends to
0 as k — oco. The convergence is at least linear, and is at least of order 1 + p after a finite number of
iterations.

Proof. First case: p € (0, 1]. From the definition of py given in we have py, (Xk) = minye[o,m] Pr(A) <
pe(1) = c1(8)Eq(yg, fr)P/? and thus

(5] By Toe) < (o) oo ) eals) 1= el/7(s). (64)

Thus, if c2(s)\/ Fs(yo, fo) < m, then c3(8)\/Es(yk, f) = 0 as k — oo with a rate 1+p. On the other
hand, if e2(s)\/ Es(yo, fo) > W, then we check that I :={k € N, ca(8)\/Es(Yk, fr) > W} is a
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finite subset of N. Indeed, for all k € I and for all A € [0 1] Oapr(s,N) = =1+ (p+1)Nei(8) Es (i, fr)P/?
and thus O px(s,\) = 0 if and only if A = which gives

(p+1)1/Pey( s)\/E (k- )

pﬁ&&)z¢$1gdﬂ4wggg(MgﬂmQ1+mU%ﬂ@ EA%JM)
—1- b !
(1+p)»tt ca(s)v/ Es(yrs fr)
and thus » 1
E, , 1- T Es (Y,
2(&)VEelen, fin) < ( L+ p)r () s ) 2 OVE e ) -
p

= c2(8)V Es(Yk, fr) — Atp

This inequality implies that the sequence (c2(s)v/Es(yk, fx)) pe Strictly decreases and at at least linearly
writing that

c2(8)V Es (Yh+1, forr) | P
VB ) T (140 () Ealn i) (66)
<1- P <1 Vkel

(1 +p)7 ea(5)V/Es (Yo, fo)

It follows that there exists kg € N such that for all k¥ > ko, c2(s)\/Fs(yk, fr) < W, that is I is a
finite subset of N. Moreover, from k& = kg + 1, arguing as in the previous case, the convergence to zero of
co(8)\/ Es(yk, fr) is as least of order 1 + p. The index k¢ is defined in Remark |8 below.

Second case : p = 0. Then for all k € N, since ¢;(s) < 1, px(s, 5\\;) = ¢1(s) (since 5\; = 1) and therefore
V Es(yk+1a karl) S 61(8) V Es(yka fk) S cl(s)k+1 Es(y07 fO) (67)
Thus /Es(yx, fr) — 0 as k — oo. O

We can now prove the convergence of the sequence (yg, fx)ren announced in Theorem [2| Precisely,
we have the following main result.

Theorem 4. Assume that g satisfies |(Hz)| and |(Hp)| for some p € [0,1]. Assume moreover that 8 is
small enough so that
2cC(p)B*? < 1

with ¢ = ||o(-,0)||L=(). Let My be given by @) for p € (0,1], by @) for p = 0 and let
s = max(C(p)(Mo)?/3, 50). Let (yo, fo) € A(s) be the solution of the ewtremal problem (25]) in the linear
situation for which g =0 and let (yx, fi)ren be the sequence defined by ([47). Then, (yx, fk)keN = (y, f)
in A(s) where f is a null control for y solution of . The convergence is at least linear, and is at least
of order 1+ p after a finite number of iterations.

Proof. For all k € N, let F), = —Zn oA Fl and Yy, = Zn oMYl Let us prove that (Y, Fi)ken
converges in Ag(s), i.e. that the series >\, (Fﬁ7 Y,!) converges in Ay (s). Using that [|(Y,}, Fy})||l4o(s) <
C(Mo)\/ Es(yg, fx) for all k € N (see (34), we write, using and :
s C(Mo)
0
> Al ED s < mZ (Y, F}) || ag(s) < C(Mo) Z VE(yn, fr) < V/Es(yo. fo) W
n=0 n=0 _pO 0

We deduce that the series Y, A, (Y,!, F}}) is normally convergent and so convergent. Consequently, there
exists (Y, F) € Ag(s) such that (Y%, Fi)ren converges to (Y, F) in Ag(s).
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Denoting y = yo +Y and f = fo+ F, we then have that (yk, fx)ren = (Yo + Yk, fo+ Fk)ren converges
o (y,f) in A(s).

It suffices now to verify that the limit (y, f) satisfies E4(y, f) = 0. Using that (Y;!, F}}) goes to zero in
Ao(s) as k — oo, we pass to the limit in and get that (y, f) € A(s) solves (I), that is E,(y, f) = 0.

Moreover, we have

1y £) = (ks fi)ll ao(s) < C(Mo)/ Es(yk, frr)s Yk >0 (68)
which implies, using Proposition [7} the announced order of convergence. Precisely,
1y, 1) = (Wrs fi) o) = || Z Y )| gy ) S Z 1Y, Fp)llao(s)
p=k+1 p=k+1
<mC(Mo) Z \/Es(yp’fp)
p=k+1
<mC(Mpy) Z po(}:o)p_Lc Eq(yx, fr)
p=k+1
A
< moa) R BT,
1 —po(Xo)
O

We emphasize, in view of the non uniqueness of the zeros of Ej, that an estimate (similar to ) of

the form ||(y, ) — (@, f)llao(s) < C(Mo)y/Es(y, f) does not hold for all (7, f) € A(s). We also mention
the fact that the sequence (yg, fx)ken and its limit (y, f) are uniquely determined from the initial guess
(y0, fo) and from our criterion of selection of the pair (Y;!, F}!) for every k. In other words, the solution
(y, f) is unique up to the element (yo, fo) and the functional J.

We also have the following convergence of the optimal sequence (A)ren-

Lemma 8. Under hypotheses of Theorem with p € (0,1], the sequence (A\p)ken defined in
converges to 1 as k — oo.

Proof. If p € (0,1], in view of we have, as long as F(yg, fr) > 0, since A\, € [0, m]

(1—A0)? = Es(Yut1, fes1) (1 M) (Po(9) (Peyk + Ayi + g(yr) — fie L) po () (Wi, =M Vi) 20
~ By fo) g By (yr, fr)
2
B HPO(S)l(ylm _)‘kYkI)HLZ(QT)
2B (yx, fr)
Es(y,ﬁq, fror1) 1) (Po () (Peyk + Ayi + g(yr) — fie L) po () (Wi, =M Yi)) 20
By (yr, fr) g By (yr, fr)
(yk+17fk+1 + \[ v ykvfk HPO yk‘ﬂ_)\kykl)HLZ(QT)
T Es(yks fr) E(s,yk, fr)
< Es (yk+1,fk+1) - am llpo(s)l (ykakYk)I\L%QTy
Es(yk, fr) Es(yk; fr)
But, from , and Remark (4| we infer that
/\:D-i-l
100 ()1 (yk, =M Yi)l L2(r) < [g] ||Y||Loo )Y lL2@r)
(Qr)
OS 3/2e—% p+1
p+1 N B e
<A p+1 [g 1pEs (yr, fr)

< O(s)mP* g/, Bs (i, fi)
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and thus
Es(Yrt1, fes1)

1—X)2 < + mP+20(s)[g'],(E.s 7 p/2.
A N O ()9l (Bl )
Consequently, since E,(yx, fx) — 0 and %9@7;?;;1) — 0, we deduce that (1— A)2 — 0 as k — oo, O

If p = 0 and if s is large enough, then ¢;(s) < 1 and M = 1 for every k € N leading to the decay of
(Es(yk fr))ken to 0 (see (67)). Moreover, estimate implies that the sequence (Ag)keny with A =1
for every k also leads to the decay (Es(yk, fr))ken with an order at least linear. Whether or not this
constant sequence if the optimal one (as defined in ) is an open question.

Remark 7. In Theorem the sequence (Y, fr)ken @S initialized with the solution of minimal norm
corresponding to g = 0. This natural choice in practice leads to a precise estimate of \/Es(yo, fo) with
respect to the parameter s. Many other pairs are available such as for instance the pair (yo, fo) = (y,0) =
(¢ y*,0) constructed in Lemmaﬁ since it leads to the following estimate in term of s:

1 1
VEs(¢y*,0) = —=llpo (9u(y™) — Al¢y™) +9(3y") l2(@r) = 5 lPo(s) (@b y™ + 9(dy)) L2(@r)
T
< Slpo(S)lz @z 190l Lo (@) 1" |22 (@) + 100 ()9 (DY 22 @)

<o) (npo(s)an(QT/znuonHl(m T w<||¢y*||Loo<QT/2)>||p<s>¢y*||Lm(QT/2>)
< OT)|p(3)ll =0 0l 2122 (1 ; wnuonmm))

< C(T) |uoll 1 (1 +oa+BIn2(1+ ||u0||H1(Q))> el @z,

Remark 8. As stated in Theorem [] the convergence is at least of order 1+ p after a number ko of
iterations. Using , ko is given by

fo = | 2 (14 9 ea(o)y Exla Jo) — 1) | 41, (69)

(where |-] is the integer part) if (14 p)'/Pca(s)\/Es(yo, fo) — 1 >0, and ko = 1 otherwise.

5 Comments

Several comments are in order.

Asymptotic condition. The asymptotic conditionon g’ is slightly stronger than the asymptotic
condition made in [I7]: this is due to our linearization of which involves r — ¢'(r) while the
linearization () in [17] involves r — g(r)/r. There exist cases covered by Theorem [I] in which exact
controllability for is true but that are not covered by Theorem Note however that the example
g(r) = a+br + crln®?(1 +|r|), for any a,b € R and for any ¢ > 0 small enough (which is somehow the
limit case in Theorem |1)) satisfies as well as for any p € [0, 1].

While Theorem (1| was established in [I7] by a nonconstructive fixed point argument, we obtain here,
in turn, a new proof of the exact controllability of semilinear one dimensional heat equations, which is
moreover constructive, with an algorithm that converges unconditionally, with order at least 1 + p.
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Minimization functional. The estimate is a key point in the convergence analysis and is indepen-
dent of the choice of the functional J; defined in Proposition in order to select a pair (Y1, F!) in Ag(s).
Thus, we may consider other weighted functionals, for instance the choice J;(y, f) = %Hpg(s)fH%Z(qT)
discussed in [28].

Link with Newton method. If we introduce F : A(s) — L*(Qr) by F(y, f) := py ()(0ry — Ouay +
9(y)—f 1), we get that E,(y, f) = 3| F(y, f)H%Q(QT) and check that, for A\, = 1 for every k, the algorithm
coincides with the Newton algorithm associated with the mapping F. This explains the super-linear
convergence in Theorem @] The optimization of the parameter \; is crucial here as it allows to get a
global convergence result. It leads to so-called damped Newton method (for F') (we refer to [10, Chapter
8]). As far as we know, the analysis of damped type Newton methods for partial differential equations
has deserved very few attention in the literature. We mention [23] [30] in the context of fluid mechanics.

A variant. To simplify, let us take A\, = 1 for every k, as in the standard Newton method. Then, for

each k € N, the optimal pair (V}!, F{}) € Ay is such that the element (yg1, fx+1) minimizes over A(s) the

functional (z,v) — Js(2z — yg, v — fx). Alternatively, we may select the pair (Y}}, F}l) so that the element

(Yk+1, fe+1) minimizes the functional (z,v) — J(z,v). This leads to the sequence (yx, fi)ren defined by

OYk+1 = Oaxlitr + 9 (k) Yrt1 = frt1lo + 9" (yr)ye — 9(yr)  in Qr, (70)
ye =0 on X7, yri1(-,0) =up in Q.

In this case, for every k € N, (yk, fx) is a controlled pair for a linearized heat equation, while, in the case
of the algorithm , (yk, fr) is a sum of controlled pairs (le, Fjl) for 0 < j < k. This analysis of this
variant used in [13] is apparently less straightforward.

Local controllability when removing the growth condition As in [3, 29] devoted to the
wave equation, we may expect to remove the growth condition on ¢’ if the initial value Es(yo, fo) is
small enough. For s fixed, in view of Lemma this is notably true if g(0) = 0 and if the norm ||uo|| 72 (q)
of the initial data to be controlled is small enough. This would allow to recover the local controllability of
the heat equation (usually obtained by an inverse mapping theorem, see [I8] chapter 1]) and would be in
agreement with the usual convergence of the standard Newton method. In the parabolic case considered
here, the proof is however open, since in order to prove the convergence of (Es(yk, yx))ken to zero, for
some s large enough independent of k, we need to prove that the sequence (||y ||z (Q))ren is bounded.
This is in contrast with [3, 29] where the control of minimal L?(Q7) independently of any parameter s.

Weakening of the condition Given any p € [0, 1], we introduce for any g € C'*(R) the following
hypothesis :
/

(H,) There exist @, 3,7 € RT such that |¢'(a) — ¢'(b)] < |a — b’ (@ + B(|a]” + [b]")), Va,beR

which coincides with if v =0 for a+ 28 = [¢'],. If v € (0,1) is small enough and related to the

constant [ appearini in the growth condition Theorem |4 still holds if is replaced by the

weaker hypothesis [(H.,)

Influence of the parameter s and a simpler linearization. Taking s large enough in the case
p = 0 (corresponding to ¢’ € L*°(R)) allows to ensure that the coefficient c¢;(s) (see (44])) is strictly
less than one, and then to prove the strong convergence of the sequence (yx, fi)xen. This highlights the
influence of the parameter s appearing in the Carleman weights p, po and p;. Actually, in this case, a
similar convergence can be obtained by considering a simpler linearization of the system . For any
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s > sg and z € L?(p(s); Qr), we define the controlled pair (y, f) € A(s) solution of
aty - azmy = flw - g(Z) in QT7
y=0on X7, y(-,0)=1wug in Q,

and which minimizes the weighted cost J,. If g(0) = 0 and g is globally Lipschitz, then py(s)g(z) € L*(Qr)
and Theoremimplies 10() yllz2(@qr) < Cs™22(|1po(5)9(2) || L2(@r) +€° U0l 2()). This allows to define
the operator K : L?(p(s); Qr) — L%(p(s); Q) by y := K(z). From Lemma for any z; € L?(p(s); Qr),
i=1,2, y; := K(2;) is given by y; = p~2(s)L§p; where p; € Py solves

(piaQ)P:/QUOQ(O)_/ 9(zi)q, VqePR.

Taking q := p1 — p2, we then get

ot — pald < / l9(22) — g(22)llpr — 2l
Qr
< po()(g(z1) — 9(z2)) l22(om 105 ()01 — p2) 22(m)
< 116l 1P0(5) (21 — 22 z2(0m 195 (5) (01 — P2)22(0m)-

Using that py < p and Lemmal ] we obtain
lo(s) (K (z1) = K<Z2))HL2(QT) < N9 s CAGs ™2 l0(s) (21 — 22)| L2, V1,22 € L2 (p(s): Qr)

and conclude that, if s > max(sg, (CA3||lg']|c)?/?), then the operator K is contracting. This allows to
infer the convergence of the sequence (yi)ren defined by yr1 = K(yi), k > 0 for any yo € L2(p(s); Qr)
to a controlled solution of (I). In order to replace the assumption g’ € L>(R) by one needs to
show some compactness properties for K, which is an open question.

The linearization @ associated with the weighted cost J,. Similarly, one can wonder if a
parameter s large enough may lead to a contracting property for the operator A introduced in [17] and
leading to the linearization @ For any 8 > 0, we introduce the hypothesis

(Hy) limsupp, e % <g

similar to|(H1)l Then, as in [I7] (where controls of minimal L>(Q7) norm are considered), the lineariza-
tion @ also leads to a compactness property when associated with the cost Js.

Proposition 8. Assume that g satisfies |(H{l)| with ¢8%/3 < 1 with ¢ = ||¢(-,0)|| =(q)- Let 2 € L=(Qr)
and s = max(Hﬁ(z)Hig(QT), s0). Let (y, f) € A(s) the minimizer of the functional J5 and solution of

8ty - 8wzy + y§(2> = flw n QT)
y=0 on Xp, y(-,0)=ug in Q.

There exists M > 0 such that if ||z|| (g < M and s := max(¢p(M)*3, s) with (r) = « +BIn%2(1+
I7]), then ||y||Le(r) < M. We note Ay : L=(Q1) — L>®(Qr) such that y = A(2).

Proof. implies that [g(r)| < ¥(r) = a+ﬂln3/2(1+ r|) for all r € R. Consequently, [|g(2)||z~(q.) <
. ~r \112/3

U(|2]| Lo (@r)) = @ + B2 (1 + llzllL(0)) leading to c||g(z)||L/oo(QT) < ca®B+ 23 In(1+ 2| L (@r))

and then to eCS S ec(50+a2/3)(1 + HZHLOO(QT))Cﬁz/S. EStimate " then implies

c(so+a?/?) (

_c — c 2/3
lo(s) yllz2@r) + 57226210 (5) fllz2(ar) < € L [2lz=@e) " luollz2o)
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and in particular, since p(s) > po(s) > e3% > 1 and s3/2¢3% > 1 that
_ 2/3 .32/3
9l z2(@r) + A5 Il z2(ry < €T (14 ||zl Lo (@) luollz2o)- (71)
Moreover, if ug € H}(2), standard estimate for the heat equation reads as
Iol=(n) < € (18I e (@n Wl + 1 1itar) + ol

which combined with leads to
(s a2/3 c 2/3
[yl oo (r) < C((1+a+ﬁln3/2(1+ 2l oo (@))€ (Lt |2l oo () Iluoll () + ||uo||L2(Q)>~

It follows that if ¢3%/3 < 1, then there exists an M > 0 depending on [|uo||r2(0), @, S0, Ao, 2, T' such that
2|l (@) < M implies [|y||zo(q,) < M since

C((l +a+ BIn*2(1 4+ M))ectso+a® ) (1 4 M)C’BZ/SHUOHL?(Q) + ||U0L2(Q))
M

— 0", as M — oo.

O

Let now z; € L?(p(s); Qr) and y; :== A,(2;) for i = 1,2. Then, using the estimates of Theorem [3| and
the characterization of Lemma[2} we can proved, for all s > max(¢)(M)?/3, s9) that

2 pls) (21— ) laaan)
(72)

for some C' = C(Q,T) and ¢ = (T —t)~'/2. The existence of a parameter s large enough for which the

lp(s)(As(z1) = As(22)) [ z2(@r) < ClNT Il 0,00 10|z (@ 16 ™ ()l 2 (@1 5

operator A4 enjoys a contracting property remains however an open issue.

Controllability to trajectories The least-squares approach developed here extends to the case of the
exact controllability to trajectories, defined in the introduction and studied in [I7]. Let y* be a bounded
trajectory associated with the data ufy € H}(Q2) and f* € L?(gr) solution of

{aty*—amng(y*):f*lw in Qr,

73
y*=0on Xr, y*(-,0)=uj in Q. (@)

We aim to find a control f € L?(gr) such that y satisfies and . We write that z := y — y* and
v:= f — f* solve

012 — Ogez + G(x,t,2) = vl in Qr, (74)
z=0on Xr, z(-0)=wuy—uj in Q,

with for all r € R, G(z,t,7) := g(y*(x,t) + ) — g(y*(z,t)). The function satisfies G(-,-,0) = 0, is C*

with respect to the variable r if g is C'' and satisfies the growth condition if g satisfies as well.

Precisely, using that (a + b)%/2 < /2(a®/? + b3/2) for all a,b > 0, we infer that, for all (z,t) € Qr,
10.G' (,t,7)] = |g'(v* (2, 1) +7)| < @+ BI* 2 (1 + [y* (2, ) + 7))

/ * g
<a+pIn® 2((1+ ly* (1 + 1+|y*)>

1
< a+ V2821 + |yt]) + \/ﬁﬂln?’m(l :||r*||>
)

<o+ W21 +1r]), VreR

with o = a++v/28 1n3/2(1—|— ly*[| oo (@r)) and B" = v2f3. Consequently, Theoremapplied to system
allows to define a sequence (z, vk )ren Which converges toward a controlled pair for . This implies
the convergence of the sequence (zj + y*, v + f*)ren toward a solution of and .
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Extension to the multi-dimensional case The extension of our arguments to dimensions greater
than one (as considered in [I7]) remains to be done. We have used the fact that the controlled solution
of the linearized problem belongs to L>°(Qr). This allows to give a meaning to ||g'(y)||z~(0r)
and therefore to use the Carleman estimate of Lemma (1| with potential A in L*°(Qr). In the multi-
dimensional setting, due to the right hand side B in L?*(Qr), the controlled solution of is not in
general in L>®°(Qr), including for controls in L*°(gr) but only in L*°(0,T; LP(£2)) for some p < oo.
The extension to the multi-dimensional case therefore requires a refined Carleman estimate dealing with
potentials in L>°(0,T'; L9(2)) for some ¢ < oo related to p (so as to give a meaning to ||g’(y)|| L (0,7;L4(2))
for y € L*>°(0,T; LP(Q2))) and very likely a stronger condition than of the form

(H5) There exists a > 0 and S > 0 such that |¢'(r)| < o+ SIn™ (1 + |r|) for every r in R

for some m = m(q) < 3/2 so as to ensure the convergence of the minimizing sequence for F,. This
is notably the situation for the wave equation where a stronger growth condition is made on ¢’ in [3]
devoted to the multi-dimensional case than in [29] devoted to the one dimensional case.

6 Conclusions

Exact controllability of has been established in [I7], under a growth condition on g, by means of a
Kakutani fixed point argument which is not constructive. Under a slightly stronger growth condition
and under the additional assumption that ¢’ is uniformly Holder continuous with exponent p € [0, 1],
we have designed, in the one dimensional setting, an explicit algorithm and proved its convergence to a
controlled solution of . Moreover, the convergence is super-linear of order greater than or equal to
1+ p after a finite number of iterations. In turn, our approach gives a new and constructive proof of the
exact controllability of , which is, at least in the one-dimensional setting, simpler that in [I7] where
refined L' Carleman estimates are employed. In fact, in the one-dimensional setting, we can achieve
the power 3/2 appearing in the growth condition since the controlled sequence (yi)ren belongs to the
space L°(Q). This is in general no longer true in the multidimensional setting in view of the L?(Qr)
right hand side term in , even with L*°(gr) controls considered in [I7] leading to an interesting open
question.

We also emphasize that the method is general and may be applied to any other equations or systems for
which a precise observability estimate for the linearized problem is available. Such estimates are usually
obtained by the way of Carleman estimates as initially done in the monography of Imanuvilov-Fursikov
[18], extended later to a very large number of systems and situations. For instance, the method can be
extended to the case of boundary controls. This remains however to be done. Moreover, the introduction
of the Carleman type weights, which blow up at the final time and which depends on several parameters
(itself related to the controlled solution), makes the analysis quite intricate. From this point of view, the
case of hyperbolic equations (considered in [29] [3]) is simpler. Whether or not an appropriate choice of
these parameters may lead directly to some contracting properties for some fixed point operator is also
an open and interesting issue. Eventually, it would be also interesting to address other types of linearity
involving notably the gradient of the solution (see [I1]): we mention notably the Burgers equation and
the Navier-Stokes system, formally solved numerically from a controllability viewpoint in [I9, Part 1] and
in [I5] respectively.
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