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3A7, Canada
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The numerical prediction of in-flight ice accretion generally involves geometry updates and
re-meshing as the ice builds up. However, the generation of body-fitted meshes around complex
ice shapes is not trivial and can be repeated several times to obtain the final ice shape. The use of
an immersed boundarymethod can simplify the mesh generation and help in the automation of
the ice accretion process. This paper studies the application of an immersed boundary method
to Eulerian droplet impingement simulations. A penalization method is suggested requiring
only the addition of source terms in the continuous form of the equations. The wall boundary
condition must be treated with care to avoid droplets re-injection in the computational domain
from a solid boundary. This is solved by the introduction of a droplet mask function in addition
to the usual solid mask, providing an automatic detection of the wall boundary condition and
therefore avoiding droplet re-injection. The approach is tested on canonical cylinder cases and
on more realistic NACA0012 airfoil and ice horn cases. The results show that the solution from
a body-fitted simulation can be reproduced using the penalization method.

I. Introduction
Numerical tools for the prediction of in-flight ice accretion have been developed and used for many years (e.g. [1]).

Ice accretion is an unsteady multi-physics process where supercooled water droplets impinge on a cold surface [2] (e.g.
aircraft wings, tail, etc.) and might freeze upon impact or run back and freeze farther downstream. Typical tools for the
prediction of ice accretion segregate the simulation of the physics in different modules (e.g. LEWICE [3]) that are
called sequentially in a quasi-steady approach:

1) mesh generation;
2) computation of the aerodynamics;
3) computation of the droplet trajectories and impingement rates;
4) evaluation of the convective heat transfer at the wall;
5) computation of the ice accretion (mass and heat balance);
6) geometry update (the ice shape is generated).

This process (modules 1 to 6) is usually repeated several times to increase the accuracy of the ice accretion prediction
using a multi-step approach [4], requiring mesh generation for each step.

When using body-fitted (BF) meshes, the effort is spent on generating a good quality mesh that matches the geometry.
This process can be difficult to automate on complex ice geometries, especially in 3D. On the other hand, when using an
Immersed Boundary Method (IBM), the mesh generation can be much simpler (e.g. Cartesian grid) as the geometry is
allowed to arbitrarily cut through the mesh. In this case the effort is spent on the correct imposition of the boundary
condition on the immerse boundary. It is thus envisioned to replace the classical body-fitted meshes by the use of an
immersed boundary method which could ease the automation of the ice accretion process.

Although there is a higher benefit in using Immersed Boundary Methods for 3D ice accretion, the developments
are first performed in 2D using ONERA’s IGLOO2D ice accretion suite [5]. For the aerodynamics, IGLOO2D uses a
Euler flow solver combined with an integral boundary layer code. For the evaluation of the droplet trajectories, both
Lagrangian and Eulerian solvers are available. An immersed boundary method (penalization) was previously developed
for the Euler equations and presented in [6]. As a continuation, the objective of this paper is to apply the penalization
method to the Eulerian solver for the droplet trajectories.
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A variety of Immersed Boundary Methods are available from the literature, ranging from the geometric Cut-Cell
approach [7–9] to discrete [10–12] and continuous methods [13, 14]. Continuous immersed boundary methods have the
advantage of being independent of the discretization and numerical method. Furthermore, continuous approaches such
as the penalization method of [14] are appealing for their simplicity of implementation. The penalization method was
applied to incompressible Navier-Stokes equations [14, 15] and extended to compressible flows [16–18]. A variant
of the penalization method, the Characteristic-Based Volume Penalization, was developed by [19] and applied to the
Navier-Stokes and Euler equations [6, 20].

Applications of an immersed boundary method for the Eulerian droplet trajectory solver are few. A discrete method
(a type of ghost-cell approach) is used by [21] to perform both 2D and 3D simulations on Cartesian grids. A similar
approach is followed by [22] where a discrete approach is used in combination with a level-set. According to the authors’
knowledge, there is no application of a penalization method for Eulerian trajectory solvers in the literature.

The application of the penalization method to the Eulerian droplet trajectory equations is not straightforward because
of the nature of the wall boundary condition that changes along the wall according to the droplet trajectories. It is quite
simple to deal with this situation when using ghost-cells, but it must be treated with care with the penalization method
as droplets could otherwise enter the solid body and be re-injected in the field downstream. This paper suggests a way
to apply the penalization method to the droplet equations which avoids droplet re-injection by using a double mask
function.

The paper is structured in three main sections. First the Eulerian droplet equations and their application for
Body-Fitted simulations are reviewed. Second, a penalization approach is suggested for droplet impingement and the
double mask function is explained. Third, the verification of the method is made on canonical cylinder cases, on a
NACA0012 clean airfoil in icing conditions and on an ice accreted GLC305 airfoil exhibiting an ice horn.

II. Eulerian Droplets Impingement
For ice accretion prediction, the fundamental information to be retrieved is the droplet impingement rate (ṁimp)

on the body (e.g. an airfoil). This is generally computed in terms of collection efficiency (β) which can be seen as a
non-dimensional impingement rate. The Eulerian approach for the evaluation of the droplet impingement consists in
retrieving the volume fraction of water (α) and the droplet velocity (vd) in the field surrounding the body of interest (e.g.
an airfoil). A system of PDE is then solved for the droplets assuming a one-way coupling with the aerodynamic field.

A. Governing Equations
The non-dimensional continuity and momentum equations for the droplets are respectively in non-conservative form

[23]:

∂α

∂t
+ ∇ · (αvd) = 0

∂vd
∂t

+ vd ·∇vd =
CDRed
24Stk

(va − vd) +

(
1− ρa

ρd

)
1

Fr2
g

(1)

In conservative form the equations become:

∂α

∂t
+ ∇ · (αvd) = 0

∂(αvd)

∂t
+ ∇ · (αvd ⊗ vd) =

CDRed
24Stk

α(va − vd) + α

(
1− ρa

ρd

)
1

Fr2
g

(2)

Where α is the non-dimensional volume fraction of water, vd is the non-dimensional droplets velocity, va is the
non-dimensional air velocity, ρd is the droplets density (density of water), ρa is the air density and CD is the droplets
drag coefficient. The droplets Reynolds number (Red), the Stokes number (Stk ) and the Froude number (Fr ) are
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respectively defined as:

Red =
ρa||va − vd||Dd

µ
(3)

Stk =
ρdD

2
dU∞

18Lµ
(4)

Fr =
U∞√
Lg

(5)

where Dd is the droplet diameter, µ the dynamic viscosity of air and L a characteristic dimension (e.g. the chord length
for an airfoil). The drag model of Schiller and Naumann [24] is used for the droplets which are assumed to remain
spherical:

CD =

{
24
Red

(1 + 0.15Re0.687d ) Red ≤ 1000

0.4 Red > 1000
(6)

The Eulerian formulation of the equations allows simple evaluation of the collection efficiency (β) at the wall as α
and vd are known everywhere in the field and nbc is known from the geometry.

β = αvd · nbc (7)

The impinging water flux is then retrieved by:

ṁimp = (LWC )U∞β (8)

where LWC is the Liquid Water Content and U∞ the magnitude of the freestream velocity.
The complete equations are presented here for generality. However for the remainder of this paper the gravity term

is neglected and thus only the drag force will act on the droplets.

B. Boundary Conditions
One important aspect of the Eulerian model for droplet impingement is the treatment of the boundary conditions.

The system of equations is hyperbolic and therefore boundary conditions are only required for incoming characteristics
[23, 25] (Fig. 1). Additional numerical boundary schemes compatible with the physics of the problem are applied
where boundary conditions are not imposed. For instance, a zero-order extrapolation is used for outgoing characteristics.
Assuming the boundary normals are pointing out of the computational domain (Fig. 1), the boundary condition for the
droplet equations can be formulated as follows.

Far-field :
α = α∞

vd = v∞

}
if vd · nbc ≤ 0 (9)

Wall :
α = 0

vd = 0

}
if vd · nbc ≤ 0 (10)

nbc

nbc

outgoing outgoing

incoming incoming

Fig. 1 Boundary Condition Diagram for Droplets Incoming and Outgoing Information
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In this paper, the focus is on the wall boundary condition as only this condition is treated with the penalization
method. When the droplets enter the computational domain from the solid (vd · nbc ≤ 0), a boundary condition
is applied on the primitive variables (Eq. (10)), enforcing a null flux. Otherwise when droplets impinge the body
(vd · nbc > 0), an extension of the primitive variable is performed. For body-fitted meshes, this is typically done by
setting nbc ·∇α = 0 and nbc ·∇vd = 0 at the boundary, but a slightly different approach is used for the penalization
method in the next section.

III. Penalization Method
This section discusses the definition of the immersed boundary and presents the penalization method applied to the

droplet equations.

A. Immersed Boundary Representation
For this paper, the immersed boundary is defined by a discrete list of nodes (2D) and its location in the mesh is

defined by the level-set φ = 0, where φ is the signed distance field from the immersed boundary. Values of φ are
computed using a geometric approach : evaluating the minimum projected distance to the edges forming the immersed
boundary [26].

The sign of φ is determined by a ray casting algorithm [26] where the immersed boundary is considered as a closed
body. Using a signed distance field leads to a simple evaluation of the normals (nφ) and curvature (κ) of the immersed
boundary using:

nφ = − ∇φ

||∇φ||
(11)

κ = ∇ · nφ. (12)

Note that the normal based on φ has a negative sign in order to point towards the solid zone (φ < 0). This is useful in
the definition of the penalization method presented next.

To extract the data at the immersed boundary (e.g. α, vd), a weighted least square interpolation at the discrete nodes
defining the immersed boundary is used. The interpolation stencil is determined firstly by identifying the cell containing
the immersed boundary node, and secondly by storing the extended neighborhood of this cell (neighbors sharing a
node with the IB cell). An inverse distance weighting Eq. (13) is used for the interpolation with a smoothing parameter
(ε = 0.5∆xJ ) to avoid dividing by a small value when cell centers are near the interpolation point. The weight for the
interpolation point P and a cell-center J (part of the interpolation stencil) is written as:

wJ =
1√

||rPJ ||2 + ε2
(13)

where ∆xJ is the characteristic size of cell J and ||rPJ || is the distance between P and J .
In this paper, the collection efficiency (β) is evaluated at the immersed boundary (IB) in two steps. First, the

primitive variables (α, vd) and the normals (nφ) are interpolated at the IB discrete nodes using the weighted least square
method. Second, the collection efficiency is evaluated with β = αvd · nφ. As the interpolation stencil includes solid
cells, the penalization method described in the following sections must be designed so the interpolation stencil in the
vicinity of the solid/fluid interface is filled with valid data to perform the interpolation (e.g. valid data in the solid).

B. Application to the Droplet Equations
The Volume Penalization method [14] consists in adding source terms in the continuous form of the equation

to enforce the desired boundary condition. The source terms are activated/deactivated using a mask function (χ)
equal to unity in the solid and zero in the fluid. In this way, only the solid is penalized and the usual equations are
retrieved in the fluid. A penalization parameter (η) ensures the boundary condition is enforced accurately. The volume
penalization enforces the boundary conditions at the cell centers surrounding the immersed boundary (for a finite
volume cell-centered method). Thus only an approximation of the IB is seen by the solver and this typically limits the
penalization method to 1st order accuracy in space. However, second order accurate approaches can be implemented by
a discretization of the penalization source term [27, 28]. In this paper, the former approach is used.

For the droplet equations, no boundary condition should be applied for impinging droplets and a Dirichlet condition
must be enforced in the shadow zone (vd · nφ ≤ 0) to avoid droplet re-injection in the computational domain (see
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Eq. (10) and Fig. 1). A typical penalization method uses a fluid/solid mask function (χ) to apply the penalization
term everywhere in the solid. In this paper a sharp Heaviside function (Fig. 2 and Eq. (14)) is used. However this is
not sufficient as the Dirichlet condition would then also be applied in the impingement zone (vd · nφ > 0), where no
boundary condition is required. To solve this issue, an inflow/outflow droplet mask function (χd) is also defined as a
sharp Heaviside function (Fig. 3 and Eq. (15)).

χ = 0

χ = 1

Fig. 2 mask function (Solid:χ = 1, Fluid:χ = 0)

χ =

{
0 φ ≥ 0

1 φ < 0
(14)

~nφ

χd = 0 χd = 1

outgoing

incoming

Fig. 3 droplet mask function (shadow zone:χd = 1,
impingement zone:χd = 0)

χd =

{
0 αvd · nφ ≥ 0

1 αvd · nφ < 0
(15)

To apply the penalization term correctly, the two mask functions are combined (χχd) which allows penalizing the
equations only in the solid shadow zones (Fig. 4).

~nφ

χχd = 0
χχd = 1

outgoing

incoming

Fig. 4 combined droplet mask function (shadow solid:χχd = 1, impingement solid/fluid:χχd = 0)

With the combined mask function defined, the penalized droplet equations can be obtained. The penalization terms
are first applied to the non-conservative form of the equations so the boundary conditions are applied on the primitive
variables. Then, the equations are transformed in conservative form for implementation. The non-conservative form can
be expressed as, including the penalization terms:

∂α

∂t
+ ∇ · (αvd) = −χχd

η
α

∂vd
∂t

+ vd ·∇vd = ξ

(
CDRed
24Stk

(va − vd) +

(
1− ρa

ρd

)
1

Fr2
g

)
− χχd

η
vd

(16)
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Implementation-wise the conservative form of the equations is used and it can be written as:

∂α

∂t
+ ∇ · (αvd) = −χχd

η
α

∂(αvd)

∂t
+ ∇ · (αvd ⊗ vd) = ξ

(
CDRed
24Stk

α(va − vd) + α

(
1− ρa

ρd

)
1

Fr2
g

)
− 2

χχd
η
αvd

(17)

For droplets traveling from the solid to the fluid zone (χ = χd = 1), the penalization terms drive the volume fraction of
water (α) and the droplet velocity (vd) to zero. Otherwise when either χ or χd are null, no penalization is applied and
the physical equations are solved in the solid acting as a natural extension of the droplet characteristics from the fluid to
the solid.

When solving Eq. (16) or Eq. (17) in the solid shadow zone (χ = χd = 1), η is selected small enough for the
physical droplet equations to be negligible in front of the penalization terms (η � 1). Using the droplet continuity
equation as an example, it comes back to solving an ordinary differential equation of the form:

dα

dt
= −α

η
(18)

The solution of this ODE is a rapidly decaying exponential, meaning α = 0 is imposed almost instantaneously:

α = A0e
-t/η (19)

The penalization parameter η can be seen as a characteristic timescale which must be small (η � 1) in order to enforce
the boundary condition. In this paper, it is selected as η = 10−8.

In this paper, two penalization methods are presented and are both available from Eq. (16) or Eq. (17) using the
optional parameter ξ. The Volume Penalization (VP) method is obtained with ξ = 1 and the VP-SSO (VP Solid Source
Off) method with ξ = 0. Option ξ = 1 seems to be a natural expression of the penalization method. But it requires
setting a value for the gas velocity field in the solid area. No investigation will be made on the ideal value to be applied
to this fictitious gas velocity field. If ξ = 1, it will be assumed that such a velocity field is available, for example the one
provided by an IBM solution on the aerodynamic field. Otherwise, option ξ = 0 is available, where the physical source
terms are deactivated in the solid zone rendering the droplet solution independent of the gas velocity field.

C. Numerical Method
In this paper the droplet equations are discretized using a cell-centered Finite Volume Method. The fluxes are

evaluated with a HLL scheme [29] inspired by the work of [30]. A piecewise linear reconstruction is used to obtain a
2nd order accurate scheme. The flux at the face (Fn,f ) is obtained from the left (L) and right (R) states using:

SL = min (vd,L · n, vd,R · n) (20)
SR = max (vd,L · n, vd,R · n) (21)

Fn,f =


FL SL ≥ 0

FHLL SL ≤ 0 ≤ SR
FR SR ≤ 0

(22)

FHLL =
SRFL − SLFR + SLSR(WR −WL)

SR − SL
(23)

with

W =

 α

αud

αvd

 , F = (vd · n)W (24)

An explicit time scheme with implicit source terms is used to avoid stability issues related to the drag and penalization
terms. The gravity term is deactivated for all simulations.
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IV. Results
In this section, four test cases on three different configurations are used to assess the penalization method. The

simulation parameters are summarized in Table 1.

Table 1 Simulation Parameters

Cylinder Airfoil Ice Horn
Geometry Cylinder NACA0012 GLC305
Chord D=2.0 0.5334 0.9144
LE radius 1.0 8.46e-3 –
AoA 0.0 4.0 4.0
Mach 0.1 0.185 0.273
Pstatic 100kPa 95.61kPa 101.325 kPa
Tstatic 300.0K 245.2K 268.3K
LWC 1.0 g/m3 1.3 g/m3 0.54g/m3

MVD 304.5 µm 20 µm 20µm

Stk 9.688 9.689 –

The parameters for the cylinder are selected to achieve a nearly incompressible flow and maintain a similar Stokes
number than encountered in icing simulations. The Stokes number is evaluated against the leading edge radius which
can be computed as RLE = 1.1019(tc)

2c for a NACA 4-digit airfoil [31], where tc is the thickness to chord ratio.
In the following sections, when comparing body-fitted and immersed boundary results, an equivalent mesh size is

used at the wall to provide a fair comparison. Both VP and VP-SSO approaches will be used. Although no definite rule
is given for the definition of the fictitious aerodynamic velocity field, simple choices will be made for this term in order
to compare the VP and VP-SSO methods, and to evaluate what maintaining a source term in the immersed area tends to
produce. For the airfoil cases, the aerodynamic velocity field is provided by the Euler IBM [6]. For the cylinder cases,
the field provided by the potential solution is extended inside the solid domain.

A. No Drag nor Gravity
An interesting test case for the droplet equations occurs when the droplet drag and gravity are set to zero. In such

a case, the droplet equations are independent of the aerodynamic field and an analytical solution is retrieved for the
collection efficiency (β) as long as an analytical equation is available for the wall geometry.

1. Analytical Solution
Considering a cylinder of radius Rc centered at (x, y) = (0, 0), the analytical solution at the wall is expressed as:{

α = α∞, vd = v∞ if vd · nφ > 0

α = 0, vd = 0 if vd · nφ ≤ 0
(25)

where the droplet velocity is:
v∞ = U∞(cos(AoA), sin(AoA)) (26)

and for a cylinder the normal to the wall is:

φ =
√
x2 + y2 −Rc (27)

nφ = − ∇φ

||∇φ||
= − (x, y)√

x2 + y2
. (28)

In turn, the collection efficiency β is evaluated as:

β = αvd · nφ (29)
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It means that for AoA = 0, the collection efficiency is defined at the wall as:

β = α∞U∞max

(
− x

Rc
, 0

)
(30)

or in polar coordinates:
β = α∞U∞max(− cos θ, 0) (31)

For this specific case, the curvilinear distance is s = (θ − π)Rc, which is useful to present the results.

2. Meshes
The simulations are performed for a unit radius cylinder using a body-fitted structured mesh and a Cartesian grid for

the immersed boundary method. The structured mesh has a wall cell size of 0.04 radius for a total of 16 000 cells with a
far-field located at 50 radii from the cylinder. The Cartesian grid has a wall cell size of 0.05 radius for a total of 64 000
cells with a far-field located at 100 radii from the cylinder. Both meshes are illustrated in Fig. 5.

X

Y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

(a) Body-fitted structured mesh (16000 cells)

X

Y

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

(b) Cartesian mesh (D/∆x = 40)

Fig. 5 Meshes for the unit radius cylinder

3. Numerical Solution
The wall collection efficiency (β) is presented in Fig. 6 where the analytical solution is compared with the body-fitted

simulation and the penalization method. It shows that the penalization method is able to reproduce the analytical
solution as all the curves are overlaid.
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−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
s from highlight

0.0

0.2

0.4

0.6

0.8

1.0

β
Analytical
Body-Fitted
Immersed Boundary

Fig. 6 Analytical wall collection efficiency (β) compared to the Body-Fitted and Immersed boundary results

Note that for this test case the VP and VP-SSO methods are equivalent as the drag and gravity term are deactivated
everywhere in the fluid and the solid zones. Thus only one curve labeled "immersed boundary" is illustrated.

The field values for the volume fraction of water (α) are illustrated in Fig. 7 where the impingement (α > 0) and
shadow zones (α = 0) are clearly visible. The immersed cylinder is represented by the white circle in Fig. 7b. This
figure shows that the combined mask function behaves as expected for this test case. The upstream solid portion of
the cylinder is filled with droplets (α = α∞, impingement zone) while the downwind solid portion is empty (α = 0,
shadow zone). Some streamtraces seem to extend in the solid portion of the shadow zone but in this area α ≈ 0 and
vd ≈ 0. The streamtraces are displayed but carry no droplet mass and therefore no droplet is in fact re-injected in the
computational domain.
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(a) Body-Fitted mesh
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0.3
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0.1

0

(b) IB Volume Penalization

Fig. 7 Volume fraction of water (α) field and droplet streamtraces for the cylinder with no drag nor gravity

This canonical test shows that the penalization method behaves properly. However, as the droplet field is a constant
in the impingement zone, this test case is not representative of a real situation and cannot evaluate the quality of the data
extraction at the immersed boundary. For a more realistic test, the drag term is reactivated in the next section.

Note that the white square in Fig. 7b is required by the ice accretion suite as it expects a closed body (a closed wall
boundary). However, it does not affect the quality of the solution in the field or in the solid. It can also be used to reduce
the number of cells inside the solid and therefore the computation cost. In newer versions of IGLOO2D this dummy
body is not mandatory.

B. Low Mach flow around a Cylinder
In this section, a mesh convergence study is performed on a cylinder of unit radius using a family of structured

meshes for the BF solution and Cartesian grids for the IB solution. Some mesh characteristics are listed in Table 2
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where five levels of refinement are used for the structured meshes and four for the Cartesian grids. The finest structured
mesh (Level 5) is used to generate a reference solution.

Table 2 Family of meshes

Structured Cartesian
Refinement Wall ∆x [m] N cell D/∆x Wall ∆x [m] N cell D/∆x

Level 0 1.60e-1 1K 12.5 2.00e-1 4K 10
Level 1 8.00e-2 4K 25.0 1.00e-1 16K 20
Level 2 4.00e-2 16K 50.0 5.00e-2 64K 40
Level 3 2.00e-2 64K 100.0 2.50e-2 256K 80
Level 4 1.00e-2 256K 200.0 1.25e-2 1024K 160
Level 5 5.00e-3 1024K 400.0 – – –

To avoid possible inaccuracies from the penalized aerodynamic field, the analytical potential flow solution around
the cylinder is used. Its definition can be found in the appendix. In this way, the order of convergence for the droplets
can be determined independently of the flow solution.

The simulation parameters are summarized in Table 1. In order to avoid that the droplets behave like tracers
(Stk < 0.1), the MVD is increased to 304.5µm (compared to 20µm for the NACA0012). This gives a Stokes number
(Stk ≈ 9.7) close to typical icing conditions, as computed for the NACA0012 case.

The field values for the volume fraction of water (α) are illustrated in Fig. 8 where the VP and VP-SSO methods are
compared to the body-fitted simulation. The finest meshes are used for comparison which means refinement level 5 for
the structured mesh (BF reference solution) and level 4 for the Cartesian grid (IB). Both VP and VP-SSO methods seem
to reproduce the BF solution in the fluid. However, the solution in the solid behaves differently with the VP method,
exhibiting a smoother transition from the fluid to the solid zone compared to the VP-SSO. The data is interpolated at the
IB with a stencil including both fluid and solid cells. Thus, although the solution on the fluid side is very similar, the
differences on the solid side influence the data extraction at the immersed boundary.
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(a) Volume Penalization (VP)
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0

(b) Volume Penalization Solid Source Off (VPSSO)

Fig. 8 α field for the BF and IB methods. solid lines: BF, dashed lines: IB

The assess the quality of the data extraction, β is evaluated at the wall for all mesh refinement levels for the BF,
VP and VP-SSO methods. On Fig. 9, a mesh converged β distribution is observed from refinement level 4 for the BF
method. It justifies the use of refinement level 5 as the reference mesh when comparing with the IBMs.
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Fig. 9 Collection Efficiency (β) with mesh refinement for the BF mesh.

Fig. 10 shows the collection efficiency with mesh refinement for the VP method. The mesh convergence seems to
be slower than for the BF simulation, especially in terms of the maximum β achieved. However, at mesh refinement
level 4, the VP solution offers a good match with the reference solution and is also free of oscillations.
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Fig. 10 Collection Efficiency (β) with mesh refinement for the VP method.

For the VP-SSO method (Fig. 11), the β distribution also converges towards the BF reference solution. Contrary
to the VP method, the VP-SSO solution exhibits oscillations. The amplitude of these oscillations reduces with mesh
refinement but they are still present for the finest mesh. Furthermore, the maximum β does not match the reference
solution.
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Fig. 11 Collection Efficiency (β) with mesh refinement for the VPSSO method.

The idea behind the VP-SSO method is to avoid having to define an aerodynamic solution in the solid zone, which
has no physical meaning and is only required for numerical purposes. This is achieved by deactivating the drag term in
the solid. However, the physical flux is still computed in the solid which provides an extension of the droplet solution
from the fluid to the solid. As illustrated in Fig. 11b, this method fails to generate a smooth and accurate solution for β.
This might be explained by the drag term being turned on and off near the immersed boundary in a staircase manner. On
the other hand, the solution is much better when computing the drag term in the solid (VP method), for this particular
test case. This seems logical as the drag then influences the droplet field more gradually (no staircase effect). Also,
the activation of the physical source term allows a better continuity of the solution near the immersed boundary as
previously shown in Fig. 8).

The order of convergence is verified using local (Eq. (32)) and global (Eq. (33)) criteria. The local criterion compares
the local collection efficiency (βi) against the reference solution (body-fitted mesh, refinement level 5) and combines
it using a root mean square (RMS). The global criterion is computed as the collection efficiency integral along the
cylinder’s surface (denoted βtot).

RMSref =

√√√√ 1

N

N∑
i

(βi − βi,ref )
2 (32)

βtot =

∫ s

0

(βi)ds (33)

The order of convergence p is evaluated using the method described by [32] based on a criterion F which in this paper
is either RMSref or βtot. This requires a monotonic sequence of F on a minimum of three meshes (coarse, medium,
fine). Then the order p can be solved for using a Newton method and the limiting value of F as ∆x→ 0 (denoted F∗)
can be estimated.

The order of convergence is illustrated on Figs. 12–13 along with the 1st and 2nd order theoretical slopes. Using
the structured family of meshes (body-fitted), the order of convergence is p > 1.7 for both criteria which is close to
2nd order accuracy. This gives a baseline on what to expect for the penalization methods. The VP method falls short
with p = 1.47 when using RMSref but compares well with BF when using βtot (p = 1.74). The VP-SSO method
compares well with BF for RMSref (p = 1.79). The order of convergence is not shown for the VP-SSO method on βtot
since the sequence is not monotonic as the mesh is refined. Thus, p cannot be computed with the current method.
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Fig. 12 Order of convergence based on RMSref
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Globally, the IBMs are approaching 2nd order accuracy similar to the body-fitted approach. This was not expected
as the volume penalization method usually limits the order of accuracy to 1st order. However, it is logical to obtain
more than 1st order accuracy for the droplet equations as no penalization is applied in the impingement zone, where β is
evaluated. The penalization terms are only applied in the shadow zone where β = 0, thus not affecting the order of
convergence.

C. NACA0012 in icing conditions
In this section, a clean NACA0012 airfoil is used to assess the penalization methods for typical icing conditions.

This test case uses an unstructured mesh made of triangles with a far-field located at 50 chords (c). The wall cell size is
2.5e-3c with refinements at the leading edge (size 5e-4c) and trailing edge (size 2.5e-4c). A linear growth is applied
from the wall to the far-field (size: 4.0c) which gives a cell count of 77 172. For the immersed boundary mesh, the cell
count is 112 172.

As the drag term is activated, the droplet trajectories are influenced by the aerodynamic solution. For this test case,
it is evaluated using the penalized Euler equations [6] to deal with the immersed boundary. Using this approach, an
aerodynamic solution is readily available in the solid ensuring continuity near the immersed boundary which is useful
for the VP method. Note that the results presented in this section include the effect of both the penalized Euler [6] and
droplet equations.

The wall pressure coefficients (Cp) are first compared against the body-fitted method to assess the quality of the
aerodynamic solution, where a good match can be observed Fig. 14a. The comparison of the collection efficiency is
presented in Fig. 14b where a good match can also be observed between the body-fitted and the penalization methods.
Different mesh refinements were also tested for the NACA0012 case but only the mesh converged solution are shown
here. Fig. 14b illustrates that with mesh refinement the BF and IB methods converge towards the same solution.
Furthermore, smooth results are obtained for both the VP and VP-SSO methods. As a reminder, oscillations were
observed with the VP-SSO on the cylinder case (Fig. 11b). .
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Fig. 14 Comparison of wall data for the NACA0012 airfoil

The α field is represented in Fig. 15 for the body-fitted and immersed boundary simulations. It shows that the
combined mask function behaves correctly not only for the cylinder but also for the NACA0012 case. In the impingement
zone, the droplets travel inside the solid but their re-injection in the fluid is avoided by the application of the Dirichlet
condition in the shadow zone. Again there is a white cylinder inside the solid zone which acts as a dummy body in Fig.
15b. The immersed NACA0012 is represented in by the white line.
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Fig. 15 Volume fraction of water (α) field

D. High Curvature Ice Horn Case
In this section an ice accreted GLC305 airfoil is used to assess the penalization method on a more challenging

geometry (Fig. 16). This test case uses an unstructured mesh made of triangles with a far-field located at 20 chords (c).
The wall cell size is 2.5e-3c with refinements at the leading edge (size 6.25e-4c) and trailing edge (size 2.5e-3c). A
linear growth is applied from the wall to the far-field (size: 4.0c).

(a) Body-Fitted (b) Immersed Boundary

Fig. 16 Mesh around the ice horn

For this test case, the aerodynamic field is again evaluated using the penalized Euler equation of [6]. The pressure
distributionCp from Fig. 17a shows that a good match is obtained between the BF and IB methods. However the suction
peak is slightly overestimated by the IB method (near x/c = 0). This does not seem to affect the collection efficiency
(β) at the wall as shown on Fig. 17b, where the curves are overlaid for the BF, VP and VP-SSO methods. Again the
collection efficiency is free of oscillation for both the VP and VP-SSO solution. This shows that the penalization method
developed for the droplet equations are still able to reproduce the BF solution on airfoils and shows some potential for
ice accreted airfoils.
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Fig. 17 Comparison of wall data for the ice horn

V. Conclusion
This paper proposes a penalization method for the Eulerian simulation of droplet impingement. The application of a

penalization method is not straightforward for the droplet equations as the required wall boundary condition changes
along the immersed boundary and must be treated with care to avoid that droplets enter the solid in an impingement
zone and then be re-injected in the computational domain. A technique based on a double mask function is suggested to
treat the wall boundary correctly.

Amongst the suggested penalization methods (VP and VP-SSO), a better behavior is achieved using the VP method,
which is shown to reproduce the body-fitted solution on all cases while also providing a smooth solution. The activation
of the physical source term in the solid zone (VP method) help in retrieving a smooth solution across the IB thus
increasing the quality of the data extraction. However, it requires the definition of a fictitious aerodynamic field in the
solid. On the other hand, the VP-SSO method is independent of the fictitious aerodynamics in the solid zone and is able
to provide similar results to the VP and BF methods in terms of accuracy and smoothness for the clean NACA0012
airfoil and the ice horn. However, it generates an oscillating β distribution for the cylinder case (with non-zero droplet
drag). With mesh convergence the oscillations become less significant and the collection efficiency tends towards the BF
solution. These results suggest that the activation of the physical source term in the solid zone (VP method) is beneficial
for some cases but is not always necessary.

The volume penalization (VP) is simple to implement, provide smooth results and is able to achieve second order
accuracy like the body-fitted approach. Its application to multi-step ice accretion will be investigated further in the near
future.

Appendix
With Rc the cylinder’s radius, the analytical incompressible airflow solution around a cylinder in Cartesian

coordinates is as follows:
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ρ = ρ∞ (34)

u = U∞

(
1 +

R2

r4
(y2 − x2)

)
(35)

v = −2U∞
R2

r4
xy (36)

P = P∞ +
1

2
ρ∞
(
U2
∞ − (u2 + v2)

)
(37)

U∞ = Mach

√
γ
P∞
ρ∞

(38)

r =
√
x2 + y2 (39)
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