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We propose a novel model for & glass-torming Lliguid which allows to swicch in a continnons manner from
e slandard three-dineensional Tieguid oo Telly conpected mesn-fel] mealel, This s achieved by intradoeing
& additional particle-particle interactiong which thos angmenca the effective ninmhber of peighbors of sach
particle. Our computer simulations of chiz syscem show thee the strocture of the liguid docs ot change
with the tnbreslaction of these peeado neighbonres and by means of analvibieal caleolabions, we determine ihe
atructural properties related to chese addicional peighbora. We show thac the relaxation dynamics of the
svetem slows down very guickly with ineressing & and the: che onset snd che mede-conpling temperatures
increase, The systems with high valoes of & follow the MOT power law behaviowr for a larger temuperatioee
range compared to cthe ones with lower walues of & The dypamic susceptibility indicates that the dynamie
heterogeneity decrenses with increasing & wherens the non-Ganssien parameter i ipdepeadent of it Ths we
conchude that with the inerease in the number of paeudo neighbonrs che saystem beoomes more mean-field like.
By comparing our results with previons studies on mean-field like system we come to the conclusion that the
details of how e mean-Geld Hmit is approgched aee mportant sioce they ean lead o Qifferent dynamiacal

lsehavior in this limit.

L. INTRODUCTIOMN:

The detaila of the relaxation dynamics of glasay sve-
tom and the propertios of the glass has been and con-
i o b o 1lee Tocus ol an ncense reseach activ-
ity!. These investigations are motivated by the fact that
gl are nob only importaenl o omany daily amd Geche
nological applications but are also an incellectnal chal-
Ienge for fundwmental studics sinee =0 far there 33 oo
Hleevretical ramework thal = alde Loogies a0 saliafaelory
desoription of the wnuEanal properties of classy gysvema
anil plassaes. Althouph there are sophisticales] mean-Feld
theories, like the mode-coupling thecey (WOTT of the
glass transition® 7, or the random first order trensition
ey thal are alibe to give in soame mses a0 sorpreis-
ingly good description of real glass former® ', these ap-
provches still hove muany Aaws sinee they fuil to give o
reliahle description of many feanires of glass-forming ave-
tems opening thus the door to other approaches that at-
tempt b deseribe glassy svstemst 72 Koce that these
theories are mean-teld in nature, whereas the experi-
ments and computer simulation studies are three or lower
dimensional syavems, Moreover, it has been found that
MOT, although expected to be mean-teld in natre, does
mob heroose exact even al high dimensions2822a flaw
which might, however, be related to the approvimations
uwseed o describe the structure of che liguid o high di-
mensions. Ths e = ioportant Geoonderstandgd e these
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theories are connected to real glass-forming systems and
e thie properties change as the mean-Aeld character of
the avstem g modified. To eatablish auch a connection it
i# uscful to study systems whereby varving o parameter
v e g Tecarn el dlinsensional sy stem oo leld [MF)
gvetemn. In che past various pessibilities have been pro-
pased to take this lmit, see Tef 23 for sn overvies, Lot
et ol them do have some deawhacks that prevent io
reach g solid underscending howr threc-dimensional ($d)
are] BAF sysiens are reladen] Lo vaech ather?

Crnve inleressbing roncde] thad alloses apgarsuc-ding Che WIF
limnit in a continwons manner has been proposed by Aari
pred Worehan (MR}, The MIK-mode] is a hard-sphere
guetenn in which che inberaction range hetween two par-
ciclos 1 oand § 35 o random verisblo with & variance that
wllomes swritehing fromm o standar] chreealimensional sys
rem to ME ke avetemn. For this model, it is found that
with iocreasing interaction ronge the Stokes-Einstein re-
latican holds down o lower teperatures and chal the
dynamic heterogeneity of the systom., measured by the
four-point suzceptibility and non-Caossian parameter,
decteases. The increase n nteraction range also makes
che evatem follow KOCT like behaviour for a larger range
i temperature. Although all chese resolis alicabe thial
the b mode] can indeed be vsed o stody the transicion
from 3d to ME, there are cortain features of the mode]
that arve disturbing. First of all, the strociueal proper-
cies of the system becomes very ditferent from the one of
v normad liggoad §F the MEF linie is appreoached in thad,
e.2., the radial distribution bnetion becomes gas-like.
Keluted to this is the fact that che three-point correlation
Minehicns vanish, As a eonsegquence cne boses the prog
erty thet nearest neighbors can cage a tagmed particle, a



notion thet is fundomentel for the skesing down of the
dvnamics in real glass-Torming svalems!. Seeomdly, Lhe
maximum attainable packing fracrion diverges in cha ME
Taernid, s hehevvionr Chiad i very dilferend Troom D ome Tl
in finite dimensicms. Some of these nddities are avoided
if ome considers models on o lattice®, Hewever, lustice
i leds, malaldly kinebie Treing, reslels with ooneonseree=d
particle den=ity, do have the drawback that ic is not ab-
vions fo whist exbeat their relicoation denurnics is reluted
to any off-lattice syaiams. Ar a ronseguence one has Lo
be caution: when applying results from lattice models to
chesarilee Elue dlynaomies of real systems.

Another spproach to conneet the propertios of Gd ses-
tems with e WF belaeeior has been propnsed (oo series
of papers by Mivazaki and coworkers who have atudied
the properties of the Ganssinn-Core-Model (GOM )%,
Due to the long interaction range, each particle has a
large mumber of neighbours, and hence che svstem can be
cpecbed Lo he MEF ke, These authors shoseed that come
pared to the (short-ranged) Kob-Andersen (KA} model?,
in the GCM the Stokes-Einstein relotion s followed 3l o
lowwer temperatire regine and chat the pelaxacion denam-
irs ehows a qualitatively better agreement with che 3T
preictions®. Furthermore, it was found that the GCM
shows less dypamic foetnation amd that activated pro-
cessns are suppressed =, in agreement with recent studies
of the thermaodynamie propecticos of Uhis system®,

A further possibility to connect the propertics of Lo
dimensional systems with e MEF pralicuions 15 Lo con-
gider svetems with increasingly higher dimensions. Sen-
pupla e al bave stodied e progpecticos ol some stan-
dand glass foomers in 2, 3, aml 4 divoensions and Fooaned
thet with incressing dimensionelity che breakdoosn of
e Stk Fanstein relabion Tiovismes Toss pranooneig] aoil
that the dynamical heteromeneity decrease™. (harbaon-
mzan of gl b studicd svstoms wp to 6 ditcosions
amd Found chat the shape of the cage does non Lecome
Canssian-like, as expected from MEF*, showing that the
appriaech Lo s ol el T oo commples T ex-
pected.

To the present. paper we intendoee a simple appeoach
that allows crossing over in a continuons manner from &
wormmal 3 Bouid tooa MEF svstem. Tn practice we do this
by increasing for each particle the nnmber of particles in
el interact with, thus incressing the effective interouction
of tlee paartiele wikl the rest of the syseem, Tn oonkrast o
the stwdies discussed above, our method does not modify
in o significant manner the local strocture of the liguid
even when the MFE limit s reached, Leo the sumctinre
is always similar to the one of the % system, So this
alloss ns Bo stody how inereasing connectivity alleets the
relaxation dynamics, without modifving in a noticealle
manmer the structure, sond heonee to probe che densmics
upaan approaching the MF limii.

The rest of the poper is organized as fallows: The ses-
tem and simnlation details are described in See. T1 In
Sec. 1L, we present the result while in Sec. 1V we sum-

marriee ] conaclode.

Il. DETAILS OF SYSTEM AND SIMULATIOMNS

As mentioned in the Introduction. our svetom 3 given
Ly & partieles thal interact with sach odber vin a stan-
dard short-range potential. In addition, each particke
ineraets ol willy “praenedo neiphliors”™, e parbicles thial
are not necealarily close in space. Hence the total inter-
petion potcotial of the system i given by

(L Wk
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The brae term on bhe right-Tandd side s the regular in-
teraction beoween particles while the second term is the
inneraction each particl: has with its pesewdo neighbonrs,
Here we consider the case that the regolar interaction de-
seribes a binary Lennard-Jones [ L) system, with 80% of
the particles of fyvpe A and 30% of the particles of type
B. Thus the interaction betwoen the particles § amd § is
given by

where ry; is the distanee between the particles, @iy is the
ellective dimeter of the particle amd o s the inber-
tiom etrength. Ve wse o4 4 and €44 a5 the unit of length
wied coerpy, setting che Doltzmasnn constent &g 1.
The values of the other parameters are given in Rell 9,
ie. o4 = bH, ore=0H4, c4p=1.5 and err=I0.5, a
choier wlich ks Uhis Bimary svsioon Do b g gliss
former. This potential & cut amd shifted at v = 250,
Ll oasses are g omye 1 oaod time is copress=cd in
TTTHENH T o P

The interaction potential with the psendo neighbours
iz ool in termns of a modified LY potential,

“F.“."ﬂ:n::nj] E':."-.,i L;__.} [‘”
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where Ly 8 a random variable defined below. In our
sitmulations we impose the rescriction thet any two poer-
tieles interact either via wirg) or via rJ"""""“l:.r,‘:]. This
condition determines how for s given confignration egqni-
librated with vhe povential w the pseado neighbors and
the values L, are chosen: Taking this configurations we
seleet For ench particle, € & reondom moonbers Ly, o the
eange o = Ly 2 L, where Dy = D /2 — 1, with
Like the size of the simulation box. [The distribation of
these oo variables will be denoted b 220 0:00 snd in
the fnllowing, we will consider the cage that the discriba-
cion is uniform.) Subsequently we choose & distinet par-
Licles g owith rop = epoam] s e Ty Lo i pereaently
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FIG, 1 The partial radial distribation functicns for
E=0and k=28 pt T =010, The strocture romains
invariant under the inteodoccion of che psendao
neighbonrs,

thee interaction between particles § sod 3, This proceduore
thus makes that each particle ¢ interacts not anly with
the particles that are within the cutoff distance but in ad-
clition po & particles thad can bee Gar sway. Note thal onee
the particle 7 is chosen as a peeudo neighbonr of particle
i, sutometically particle § beromes a pseada neighbour
of particle 3. The gysten, a8 defines] here, can then e
simulated nsing a standard simulation algorichms.

The molecular dynamics (MDY simulation have hean
chome wsing N = 3744 particles. We have performed con-
stant. volume, ronstant. tem parature gimnlacions (veloeing
rescaling] at density g = 1.2, thus Ly, = LL1T46, using
a L indegridion slep ol A0 = 00000, For oo, we hae
taken A0, slightly below the maxinom saloe of 108, We
Tuwwer: sivrmlated four diffcrent svstores wich the nonber of
peemla neighloares, =004, 12, aml 28.

1. RESLILTS
A, Strecture of the Bguid

T start., we diseuss the elfect of 1he peewdo nelghbosres
on the structure of the liquid. In Fig. 1 we show the three
purtinl radial distribution function, gee(e] with o, 3
{A, B}, for the & = 0 amd the & = 28 syatems. The
temperature is T = 0.9, which for the & = O system is
slightly abewee Al onset temperature, see Refl 9, while
for the & = 28 svetem it corTesponds to a state gt whicn
the svetem is already rather viscous (see below), The
graph shows that the radial disceibion functions for the
two systems overlap perfectly well, Le. the structure is
ilepenadent of & foe this walwe of & Thus this indicales
that the interactions doe to the psendo neighbours dao
mot affcet the local structure of the system, one of the
ressoms e cur chiodee of the inleeactions of e model.

To prodae wlwd s che steocboee of e Tigoid on s

dpe 1 L L B e e a———
L o E“Iq'l T k=0
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& ﬁh-c[“:' Tir k=01
— 5, ,Iqt for k=18 1
&, ol k=24
- Eml_u:l:l'ur E=2E 7]

1 L L 1
0 3 11 15 ) 25 n
4

FIG:. 20 The parcial suracenre factors for & = 0 and
=28 at T = 1.0, Similar to what we have ohtained in
the rawcdial hgtrbaation functicn, the sbroctore remains
invariant under the intreduction of the peewdoe
neiphibours,

large acale 18 influenced by che introduction of the peewdo
neighbors we hove coleulated che partiol static strwcture
factors and show them in Fig. 2 for che case of & = 01 and
n = 25 Einee the two sets of curves mateh each other
perfectly well, we can conclade that also the Targe scabe
anrnetire 18 nob intheneed by che additional neighbors.

B. Static properties of the pseudo neighbors

T ki submecbione. we charsclorien oo of Lhe steoe-
tral properties of the psendo neighlora with respect 1o
i tagmed particle,

Ter sl wer frsl caleolaie e probabiling Ty thad a
given paedo neighbng § interarts with the tagged particke
i, where L Ly, Beglecting the indirect ioteractioons
rwiin Bhiee aliresed neightaoes) Tetween (e Gaggen] guertiche

and the peeudo neighbor one can express My as

Iy L dre Bulr=Liy(r)
Fr = |I'|- dp g—Bulr—L) [ﬁ:l

Here 3 = 1/kgT, Vi & the voliee accessible Lo the
peenda neighbor, and v is a stop function that takes
intn pooount that che potentind s et off at 250,04,
e, yir) =1L <+ < L4+ 28,5 and glr) = 0 foa
pll ether values of v. The volome integrals in Eg. {6) can
L decomposed into a spherieal part that is contained in-
side the cubic boor, and the rest. The lateer volume =
piven ly

13, - 3r{ 22’ (7)
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FIGi. & Probahilicy that a paendo neighbowr i3 whithin
the inberaction range s a function of temperature. The
pink loe b the theoretical prediciion froan Eogs, 111
and (12}, Inser: Bame quantitics extending che
temperature cange to T = 0, The theoretical curee
ahows a slgmoidal shape.

A spherical integration in Eqg. (G gives then

Loy . PP P 1
_|Ir ' l'i‘l".l'it'. [+ TR N

P, = : L]
fhm' il ¢ 2p—Anir—L) _ AT
Mote that in tlee above expression, L o= Ly s lxed

llenee for a discribution of L, the probebilicy of hnding
i peeuds neighbour within the inleraction raope of Lhi
tagmed particle is given Ly

Lmax Lilrg ILE"' 2., Hulr L)
F= f AL L) — "r’-.2 E i

Jo i dr rle Mol LY 4 AV

To the mmmerator we make e solstibotion = 0= T
which allows to interchange the owo integrals:

2 11 Lo
:':l.r + I:.._I'-" AT Al |

-

ra Loriax
P=f rIr'f al. A 7 — :
i r. | el Sy ple—Fulr=L1 4 AV

£
i11)

We thus find that this probability is independene of &,
a result that is ressonable since we have neplected oy
coreelations hetween the peeudo neighbors. Also note
that P depende on the intersetion potential vie wiv) and
v For a binaey svstem, we can gencealize chis caleila-
tion to obtain the partial probabilitiea &,z and chen the
total probabality s given by

P=riPag+2earaPap+c5Pep . (12)
where =, 5 the concentration of species o, In the simla-

tion, this probability can be obtained by calomlacing the

raabie by SRy wheere Bgois Uwe vonnliere ol pseoida neighbares

3 T T T T T T T
28 O = =
I O k=12
N ¥ & k=28
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= 4 'ii == capl-fuir )l ]
L i i
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R aamea

FIG, 4: Hedial discribution function for peoudo
neighbours from simolations st T = 1.0 for £ = 4,12
and 25, The discribucion fonction of the peewdo
neighbours is independent of &, The solid line is the
vesnull feom vhe theoretionl expression given by Eg. (1G],
The dashed line is the cheoretical prediction from the
bare potensiol,

thal have a non-zern interaction with the tageed particle.
In Fiz., 3 we show the temperature dependence of P oas
nbatainex] fronn Feps, (117 amd (2] Csolia Tioe ) and comgaree
it with the corresponding quanticy &, /& determined from
the simmlutions (symbols], Choe recognizes that &, % is as
expeclel] ndependent of & amd cthat che simulation data
matches perfectly well che theoretical prediction given by
Fope. (117 aonnd (120, Wote Uhan at e Toseesd, Cempersl wres
at which we could equilibrace the syatems for the ditfer-
cot value of & the probability is weoond 0.3, 1, for the
glazay dvnamics we will disgeuss below only a elalively
amall pare of the peendo neighbors are actually interact-
g weith Ui G peerbicles, Thie il oof Gk Tignere shivaes
that P hecomes 0.5 at arcnnd T = 001, a temperature at
which alreudy the & 0 swstom is vory viseows™, and for
T = 0 the prodabilivy Tecomes 1, a5 expeecied,

T characterize che relacive position of & psendo-
neighbor § with resport tooa tagoeed particle © we oan
ronaider the corresponding radial distribation function

=
i
dar?

i
¥ 8 = |+ L)y, (13)
LR TEY

Hr.h'i-:"'.llh'.ll;.i_.-':l -

where in the second sum che index runs over the peewdo
neighbors of the tagged particle © and g is the average
pretddo neighbonr density,

{ii JII,.r miﬂ- ] [14)

where Vs the total volume of the avstem.
To caleulate g {¢} analytically we can make use of
o remole B P ogiven Ty Fags, (177 ] (12 The nurnbeer



k. of peeudo neighbours within the interastion range con
T e presse] o derimns l.:-r_n:,lm"'d""l:r"_:l a5

. S
= Jﬂf i’ greede oty f AL Lri | L)
Jo 1

(15)
Since &, can alzo be wriccen as &, = & = F we gar,
wsing Eg. (11} and Lq, (13

Lnﬁ'
g""""‘d"'[r'jp;,f dL (L mlr' + L2
Frian = i 2 . —inr) L5
{rf 4 L (']
b AL
Fe .

= puraer g

froam which one abdainsg divectly o090 Moda thal
g (e’ g independent of k. since p ie directly pro-
portional bo k, see Eqg, (141,

Fig. 4 shows the radial disceibution fonetion gP=e e
from the simulations of three different values of & (aym-
bidds) andd we recognize that, as prodicted Ty Eg. (16]
the function & indesd independent of & We have alao
included the anslvtical result from Eq. {160 and we see
that e theory descreibes perfecily well 1he stmulation
data, thus demonstrating that the approximation thak
the: structure of the pseado neighbors con be abtained
well by e hare interaction with the fagged particls iz
vary accurate, at least for the & values considerad in the
proezeol work.  We also nede Vhal sinee one s e re
lation g™ (r"'] = expi(—fulr’}}. which can be derived
from Eq. (16), the function g™"*{r'] can also be ob-
tained divectly Teom the Tare inieraction pelaential el
az shown in Fig.d.

Within the stanebar] theory of Tigpuaids, che aclisd disie
bution finction allows to obtain the potential energe
Doger tor the presence of the psoudo neiphbors this s oo
Towgpeer prrmssi e, sam] Lhos Gl nsad expression Tas o Tes
moditied &s follows. (Mote that in the following we gve
thee expressions for o ope-component systen, For the
hinary svatemn considered here, one will have 1o do the
gum over the various partials) Since the potential co-
erpy ol the system has b conteibobions, one is Phe e
ular neighbour and the other che psendo neighboir (zee
Ecqp. (111, the totel potential energy £ is given b,

[.J..I\‘-:II = gl‘l w(rholrlder?de

o PO
T Il..r_;:' ""':."]."I'Im.lzh:'i"]f A Lnir + fa:!'zrif.rﬂr'.
g o e
(v
A this stage it 15 uselul to introduee an “ettective Ta-

dinl distribution™ function g (] by defining

rlimax . (]
- [ ALY+ LI
g™t (1) = plr) + prg o (r) = g -

(15!

(1]

where che effeotive purticle density is given by

MF =g+ e [1%)

Mote that sinee g Incresses lincarly with &, for large
Eothe lenmily gy i leminaden] By oy sl Teemeer o Uil
limnit g*™ will be directhy proportional to g™y
Uzing ¢ 7{r] we now can express the total potential en-
cray ol P system ae o fonction of the radisl distribation
finekicn _|_."":rl:_."]:

Ii
Lo 'IIL" fl[r]g;"lrl:r':lrirrr?rfr £ [241)
1]

In Flg. § we present 9"+ for the A-A correlation fo
different walues of & Since the regular radial discribu-
tion function g{r} s mdepemwdent of & (see Fig, 11 o
g 1o can he caleulated analytically from Eq. [16) it
is possible to obtpin g7 for arbitrary values of &, The
graph shows thar with nereasing & the radial diseriba-
tion funetion loses s characteristic structure with the
rltiple penks and converpes toward a distribution that
has & single peak ac v = 1. This result can be understood
directly from Eq. {18) since tor large & the first term on
ther vigheTisnad sbile vanishes (0 divicded By o) while the
aecond term i g7 p) mnltiplied by an r—depemdent
fuctor that is iodepoodent of & So we soe that in the
L & Lindl the e Teetbve vadbad disteibation Tometon e
velops a dominant sharp peak at & finite distance. 'With
devrensing temperature, this poeal incresscs sinee most
nf the paedo neighboes will condensace at the optimal
distance L.;. Lo is this growing peak that signals the
incresesing nornbaer ol consbesinis o e syestesm o which e
duce the alowing dowm of che relaxation dynamics. This
L of sirueture of the radial distribotion fuoction s o
Lepacal signature ol mean-leld-Tike sysiames, auch as the
hard-sphere svstem of et [RS8, (Mowever, unlike the
resulis in e peesent stody, o the hard-sphere sysiem
cherve is no peak ac v = 1.

C. Relazation dynamics

W now analvee how the presence of the peewdo neigh-
beors affects ehe relaxation dyoamics, To charpeterize
this dynamics we consider the self part of the overlap
functicn L) and the mean squared displacement (M5S0
of a tageed pacclele, A (15 The former observable is de-
Hned as

N
1
Qit) = 5 2 lwllnit) —wio)) . (20)
T A=l

where the function wiz) s 1iE0 < ¢ < g and w{x] =0
ntherwise, The poarioneter o s chosen o e 003, 0 valoe
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FIG. 5: The effective A-A particle radial distribution
function for k = 0,28,125, and 1250. With increasing k
the multi-peak structure disappears. Inset: gf& y(k) vs
r where y(k) is the height of the main peak. The
smoothing of the undulation with increasing k is clearly
seen.

that is slightly larger than the size of the cage (deter-
mined from the height of the plateau in the MSD at in-
termediate times?.) Thus the quantity Q(¢) tells whether
or not at time ¢ a tagged particle is still inside the cage
it occupied at t = 0.
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FIG. 6: Time dependence of the self part of overlap
function Q(t) for systems with different values of k at
T = 0.9. With increasing k the relaxation dynamics
quickly slows down.

In Fig. 6 we show the time dependence of Q(t) for dif-
ferent values of k. The temperature is T = 0.9 which
corresponds for kK = 0 to a T that is around the onset
temperature”®®. The graph demonstrates that with in-
creasing k, the relaxation dynamics slows down quickly,
in that the correlator for £ = 28 decays on a time scale
that is about two orders of magnitude larger than the
one for k = 0. Also note that for the largest k we clearly
see a two-step relaxation, i.e., the hallmark of glassy dy-
namics in which the particles are temporally trapped by

their neighbors!, while for & = 0 one has just a sim-
ple one-step relaxation, i.e., a normal liquid state re-
laxation. These results demonstrate that the presence
of the pseudo neighbors does have the sought after ef-
fect of strongly slowing down the relaxation dynamics of
the system, although, as demonstrated above, the overall
structure of the liquid is not changed. Interestingly the
shape of the time correlation function in the a-relaxation
regime does not seem to have a noticeable dependence
on k, indicating that the relaxation mechanism is weakly
dependent on k. However, this conclusion only holds for
length scales on the order of 'a’ while it could be that on
larger scales differences become noticeable. Here we also
note that for other mean-field like models, such as the
one introduced by Mari and Kurchan?®, an increase of
the interaction range leads to an acceleration of the dy-
namics, i.e. the hoped for slowing down of the dynamics
is not necessarily guaranteed.

Next, we compare the time dependence of the mean
squared displacement, averaged over all the particles, of
two systems, £ = 0 and k = 28, Fig. 7. For the £ = 0
system we show the MSD for T' = 0.82, i.c., a tempera-
ture close to the onset T and as a consequence one sees
that the curve shows between the ballistic regime at short
times, Ar?(t) oc t2, and the diffusive regime at long times,
Ar?(t) o« t, a weak shoulder. Qualitatively the same
time-dependence is found for the k = 28 system, but this
time at the higher temperature, 7' = 1.5, indicating that
the increase of k leads to an increase of the onset tem-
perature. If for the £ = 0 system the temperature is
lowered to 0.445, the MSD shows at intermediate times
a very pronounced plateau that is due to the temporary
caging of the particles'. The same behavior is found in

10 ; ABLELALLLY LELELLLLLL IR, IR IRLLELLLLLY BRI LLLL B B I”“E

1%k — k=0, T=0.445 . e .

3 — k=28, T=0.82 o E

0'F —- k=0, T=0.82 P ]

- k=28, T=15 ¥

0

10 F 3

A f E

gk 1

10°F E

10°F 1

10°F 1

10-5: PETRTITT BTN EETEETTTT BRSBTS R TTTT EETErEETTT BETETETITTT E ||||||E
10° 107 100 10" 10" 100 100 10" 10’

t

FIG. 7: Time dependence of the mean squared
displacement for the k = 0 and k& = 28 systems in the
high and low temperature regimes. The curves are for
similar value of relaxation time. The k = 28 system
shows a weak sub-diffusive behaviour at high and low
temperature.
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FIG. 8: Double-logarithmic derivative of the MSD of the A particles as a function of time. (a) System for k£ = 0. If
temperature is decreased the derivative shows at low 7" a local minimum, indicating the presence of caging. (b)
System for k = 12. Qualitatively the same time dependence as in panel (a) but now at higher temperatures. (c)
System for k = 28. One sees that the curves show at intermediate times a plateau that is due to the caging caused
by the pseudo neighbors. The arrows pointing upward [downward] in panels (a)-(c) indicate 72 [74], the location of
the peak in the non-Gaussian parameter as(t) [in the dynamic susceptibility x4(¢)]. (d) MSD of the A particles for
different waiting times #,, (see legend). No waiting time dependence is noticeable.

the k = 28 system at T' = 0.82 with a plateau height and
length that is very close to the one of the £ = 0 system.
(This similarity is due to our choice of the temperature
T = 0.82). Since we have seen above that the local struc-
ture of the system at fixed temperature hardly depends
on k, see Fig. 1, the pronounced caging for the k = 28
system (at T=0.82) is thus due to the pseudo neighbors,
i.e., the non-local interactions. From these curves we
hence can conclude that the presence of the additional
interactions leads to a substantial slowing down of the
relaxation dynamics while the details of the MSD, such
as the height of the plateau or its width, at the same ef-
fective temperature (discussed below) are modified only
mildly, at least in the parameter regime probed here.

At sufficiently long times the motion of the particles
is expected to be diffusive, and hence the MSD should
increase linearly in time. Fig. 7 shows that for the k =0
system, this is indeed the case and that this diffusion sets
in once the MSD has reached a value around 1.0. Inter-
estingly one observes for the k = 28 system even at the
longest times a sub-diffusive behavior, with an exponent
that is around 0.8, and this even for values of the MSD
that are on the order of 10. This behavior can be noticed
better by calculating the slope of the MSD in the log-log
presentation, see Fig. 8. For k = 0, panel (a), we see that

E,((T)-E ((T=4.0)

FIG. 9: (a) Inherent structure energy, Eis, as a function
of temperature for the k = 0,4, 12, and 28 systems. (b)
Shifted (by Eis(T" = 4.0)) inherent structure energy vs.
T. Near Ty,set the energy starts to deviate from its high
temperature value allowing to determine Topset. With
increasing k, Tynset moves to higher temperatures.

at short times the slope is 2.0, as expected for a ballistic
motion. At high temperatures the slope crosses over to
1.0 at around ¢ = 3, i.e. the system becomes diffusive.



If T is lowered, the slope starts to show a dip with a
depth and width that increase rapidly with decreasing
temperature. For long times we see, however, that the
curves again attain the value of 1.0, i.e. the system is
diffusive. Qualitatively the same behavior is found for
k = 4 (not shown) and k£ = 12, panel (b). However, a
closer inspection of the curve for T' = 2.0 reveals that
after the first dip in the slope, the curve does not rise
immediately to the value 1.0 but shows instead a plateau
at a height of around 0.9 in the time window 5 < ¢ < 200.
The asymptotic value 1.0 is thus rcached only at longer
times, i.e. the MSD shows a sub-diffusive regime. Quali-
tatively the same behavior is found for k = 28, panel (c),
but now the mentioned plateau at intermediate times be-
comes more visible since its height has decreased to 0.8,
i.e. the deviation from the diffusive regime become more
pronounced. We now clearly see that if the tempera-
ture is lowered the curves reach this second plateau at
a later time, but its height is unchanged (see the curves
for T = 1.0 and 0.82). Note that this plateau at long
times is indeed a distinct dynamic regime and not just a
brief transient during which the system approaches the
diffusive limit. We also exclude the possibility that this
new plateau is just an out-of-equilibrium phenomenon
since, see panel (d), the MSD for different waiting times
show no waiting time dependence. We interpret this new
regime as a consequence of the interaction of the tagged
particle with its pseudo neighbors. These interactions
will vanish only if all the involved pairs have moved by
a radial distance of around r., and, because of geomet-
rical reasons (the volume of the spherical cap increases
with L;;) and the fact that L;; > r., this takes certainly
more time than cutting just the interactions between the
tagged particle and its nearest neighbors, which explains
the long time tail in the MSD. Note, however, that for
sufficiently long times the MSD can be expected to be-
come diffusive for all values of k, see, e.g., the curve for
T = 2.0 in panel (c). This behaviour is thus similar
to that observed earlier in systems where there are two
length-scales®. In order to distinguish in the following
the two mentioned processes, we will refer to the one cor-
responding to the particles leaving their nearest neighbor
cage as the “NN-a-process”, while the dynamics in which
the pseudo-neighbors leave the interaction range of the
tagged particle will be referred to as the “PN-a-process”.
Note that although Fig. 8 clearly indicates that there are
two processes, we will see in the following that not all ob-
servables reveal this in a direct manner. For example, the
time dependence of Q(t), presented in Fig. 6, does not in-
dicate an obvious presence of two different aw—processes,
although the pseudo-neighbors can be expected to affect
not only the relaxation time but also the details of the
correlator.

Since the onset temperature is an important point on
the energy scale of the system, we now have a closer look
at the k-dependence of Tonset. As mentioned above, this
temperature can be identified from the first occurrence
of a plateau in the MSD. Alternatively one can study
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FIG. 10: (a) Arrhenius plot of the a-relaxation time, 7,
and the relaxation time obtained from the MSD, 7p, for
systems with different values of k. Open and full
symbols are for 7 and 7p, respectively. The lines are fits
to 7 with the Vogel-Fulcher-Tammann expression,

Eq. (22). (b) Same data as in (a) but now as a function
of the scaled temperature T, /T, with 7(T,) = 103. (c)
Temperature dependence of the ratio 7p/7 for different
values of k. The arrows indicate Typnsct-

the inherent structure encrgy, Ers, which shows at Toset
a marked change in its T-dependence®>:36. (We recall
that Erg of a configuration is the potential energy eval-
uated at the local minimum of the energy reached from
the configuration via the steepest descent procedure.) In
Fig. 9(a) we show Ejg as a function of T', with the differ-
ent curves corresponding to different values of k. From
the graph, one recognizes that with increasing k the en-
ergy decreases, an effect that is due to the presence of the
pscudo neighbors which can lower the energy by occupy-
ing the well in the interaction potential. Less trivial is the
fact that the temperature at which the curve starts to de-
crease rapidly, i.e. the onset temperature, increases with
increasing k. Thus the increase of Tynset with & can be



seen divectly from this stetic observable, In order to see
betier the E-dependenea of Tope, we plol In Fig, Ol Lhe
inherent structure energy ahifted by Lhg{l" = 4.00. ['The
chivice of T = 4.0 far this noroadicalion is nal crgcid.)
The resuliing graph clearly shows chat. the hand in the
inherent structure coergy ocours ot bhiher tomoporatures
wills groswing & ddemmmsbeating P Gneresase ol Che aneae,
temperature.  Fitting two straight lines to the data for
T o T ] T T, theic ionberscction peodnt oo
be wmed to deteriming Tee. A3 we will show elaswhare™,
the 50 obtained valwes are compatible with che values of
pnsel bemperature as delermined Troan the enteopy®. Ta
Table 1 we list the values of Topem obtalned from these
curves and one secs thet for & oo 28 chis cemperaturs is
aliast HWEE higher than Topeer For &= 1k

A forther important guancity co characcerize the re-
laxation dynmmics of a ploss-former s the o-relaxation
time 7. Here we define this time scale via Q0] = 1/e.
This definition is reasonable ginee we have scen in Fig, 6
that the shape of the time correlation funetions 15 basi-
cally Independent. of &, (MNote that with this definiclon of
r we do not distingnish between the NN-n-process and
1l PMege-process discossed in the context of Fig. 6. For
the valies of & considered here, chis is justified sinee the
final deewy of Q) iovolves both processes,) Fig, 1000]
5 oan Arrhenies plot of * Foe e diferenn sysiems, Choe
clearly sees that with increasing &, the dynamics quickly
slows down aaad that the beonding of the corve secms o
increase, e the svatem hecomes more fragile. To guan-
tify this trend as a function of &, we have ftted (1 &)
al tnbermediate aoed Toae Leanperatores Lo Vogel-Foleler

Tammanni VET)-law:

1 o
TI:.TlI = T oEp [W] . |:.3.£.

Heree Ty i bhe soccallenl WET lempesralare al wlhich
the relaxation time of the eyatam iz predicted to diverga.
The paransder R deseribes the curatuee of the dota
in an Arrhening plot and hence can he considered as a
measure for the fragility of the glass-former. The fizure
demnstrates that this functional Toom gives a good i
to the data (solid lines) and henee allows to estimate T
anmd K.

The values of Ty arve ochaded o Tals, T oas owell and
one sees that Ty changes by abont a factor of tow if & i3
ineressed from O to 25, Lo, s factor that s comparehble
tor thee cne ol For T, T contrast oo chis we Ao
that the parameter K ocewrring in the Yogel-Fulcher-
Tammann-law, Eq. (22), increases Ty abant 305 in the
considered k-range, see Tah, 1. This indicates that the
introduction of the psoudo neighbaors cenders the system
increasingly more fragibe, Another way to s chis 13 w0
define an effective glass transition temperature I, via
(T, = 10" and to plot the reluxation tioe ws o function
of Ty /T, This is done in Fig. 100k} and one sees that,
the eurves tor large & are indeed more bens than the ones
Towr srmaadl &, e thie Tragiliny of Uhe spestean increseses with

&

ko This trend is thus gualitetively similar o the obser-
wvabion ol Bell 29 in which it was ool Chat inereasing
the dimensionalicy of a glass-former gives rise to & higher
Mrangalily

Stomr Lhee BISTY D slovwn Wil dhe sysiem o bwe
kind of ga—pracesses it 15 useful o atndy how the eorme-
spaneding reluxation times relate te coch other, For the
& o N svslams pariicles are caged by Lheir nearesd. neigh
boure g well as by their peondo neizhbours. When a
parbicle Teseves G NI coge the overlap Tunetion diecays
atel this rimescale is captured by 7. We now define a re-
luxation time o for the PR-process as the time scale at
which 1he syseem becomes dillusive, e e Lime where
the logarithmic derivative of the MSD goes to 1%, In
practice we consider ¢ = v for which % = [L.97.
In Fig. liHa) we have included the '.t'-depcn;:lﬂn-:o af TR
fur the & = 0 s the & = 38 svstems and one recog-
niges thae vn & slgnifieantly larger than ¢ hat that its
Tdopendence is weaker. To see the latter in a clearer
wigy wo show o panel (o) the Tedependence of the ratio
T/ T for all valne of & considered. 'We recognize that the
recio starts to decrease quickly for temperatures that ace
beelivwr T pges. L omee che svstems start o show glasay
dynamics. Hince this dectease is very pronounced for
& =0y we conclude that the slowing down of the cverall
dynamics of the system s mainly governed by the NN -
process |which is strongly influenced by the presence of
thee paeude neighlnrs ).

Theese vesulia showw 1hean che peeando meglilors simongly
infinenee the relaxation dymamics of a tagged particle in
Bhiat e Teaving of the coge foroed by the nearst neigh-
Laoa s alrongly slowed] down, as inlicaced by o [T). Tn
vddicion the peeude neighbors slso indwee 6 new show pro-
varss, Ll T process, which s velatesd wo the mabicn of
the peendo neighbors wich respect to the tagoed particle.
Hevrervrr, this slow proces: does not depend very strongly
na T sinee there is oo slrectural roreelation helwesn the
peeude neighbors of A given tagmed particle [this in con-
Lkt Lo the neseest neighbors which are correlade] Tie-
ranae of the loral grerie hindraneme). As a conseguence
chis slowr 'N-or provess is net the mechoanism responsible
for 1he alowing dewn ol e overall dynamics of the sys-
e Uhe relevane mechanism tor chis is thus given by
thee WM-n proeesss,

0. MCT power law

Having presenced onr findings regarding the relaxation
dypamics of the svetom we now probe whether this dy-
namibes can be deseribed by means of mode conpling the-
orv. BCT predicts that close to the eritical temperature
Ty of the theory the relaxation times show o power law
thivergeaee:

AT = el T - Te)™ . (23)
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TABLE L The walue of the characteriztic tomporatures snd the kinetic frupility parameter for systems with different
vilues ol ko T 5 the cnset, peamperatare alowhich Dl inlerent steocione eneegy starts Toodeviate sigoificaontly
from its high temperature valoa. ¥ iz the MO transicion temmperature, 1 i cthe sinoular temperature of the
Woprl-Fulcher-Tameoann couadion, Bag. 02021, Al characteristic tomperatures ineeease with inereasing & Also
included arve the normalized differences betwren varions temperatures, 10 is the Kinetie feagility defined in Eq. (22).
xik] is the prefactor needed for the scaling plot shown in Pis, 1106,

I I o B T e el Kemr e et B L
0 (074 L |nds(2se) 0Tz 4% LAl | .52 [i184) 10
4 |LAG = 008|050 1362 063 .38 1.2 041 0237 LES
12| L0E = 007|062 | (L4656 AL 122 | 0.3 0286 2.0
28| 128 = 022|080 0610 60 i 110 | nat |o2e7] 21

Using this functions! form to fic che cemperature de-
pendence of the relaxation time we obtaan .00 Denloes
are given in Tab. 1), In Fig. 11{a] we present a log-log
plot of the relaxation time s a function of che normalized
temperature (T — T/ T Qe recognizes cthal for & =1,
the increase of 7 with decreaging T is described well by
a power law (deshed line), in agrocment wich proviows
simulations™ ", However, at the lowest s deviations
are chserved, and the increase in 7 is weaker than the
power low predicted by MOT. This deviation is vsunlly
attribnited to the existence of “hopping processes™, ie. a
component in the relaxation dynumics that 35 not taken
e saceonnd b Wee ddvedized version of e 3OT. Tl
two arrows in the plot delimic the -range in which the
power law pives wogood description to che dete.

For the aystem with & = 28 the tamperacare depen-
chemee of 7 s gualitetively very similar Lo chie one Toe dhee
b= 0 gyatem, if one plots the data as a function of the
reduced temperature (20 20072, LThe hizhest temper-
aluee al which the dala Tolloas the power Taw [disshield
line}, marked bv an arrow, i3 arownd 27, and very close
e the corressponding redoced temperatare: for e & = O
syatem.  However, the lower (redoesd) remperatare an
which T starts to deviate from this power lew, soo srrow,
is mrmaller for tlee: & = 38 sysiem chan the correspoading
T for the & = () avstem, showing that for the former sve-
tem the mwentioned hopping provesses are less importans,
ie, the system is more mean-fleld like. For the & = 28
gyatem, this lower limic iz about a faccor of 3 smaller
thasn thee limit for & = 0; thoe the Torange i which the
idealized MOT can be expected to be mellable has in-
creased significantly by the introduction of the psenda
meighibors, In Tale T we have also nelude] the saloe of
T: and one reccgnizes that the ericical temperature For
E = 33 is about 90% higher then the ooe for & = 0,
i the b-depemdence of T, I8 very similar oo vhe ane of
];H'I.-'I'l

Apcording to the analytical caleulationg for the mean-

field p-spin model, for which there i3 no activeced dvr-
minernics, Alwe cnsel lemperalore coineidies wilh che MOT

empereture which is also the temperature at which the
dynamivs divergzesiH8, [ Mote thet this is only troe in
the thermodynamice limit while for finite systems one has
very sirong finite-size effects that completely wash oot
these teansitions, see Rel 44.) Fore the GON G was Tound
that the relative distance herween the three temperatures
Tonsry Loy amil T, 5 much smaller then the one we find
here for the & = 0 spatem®™2® . This the redwction of
thiz relative distance with incressing &, given in Tab. 1,
can alse be foken as oosignotore of ncressing mean-fAeld
like hehavicar.

From Fig. 11{a) we recognize that che relaxation Limes
for the & 28 svetom arce shorter than the oncs for the
&= [ sysbemn il vornpaareed sl Ulae soooe redhe] Leanpera
cure. In fact, &5 plotted in Fis, 11(b) on an intermediace
piroe snde the teo dotn sets coon be superimposed with
high accuracy by applving a multiplicacive Factor eik)
(sce Lok, L for walues), "Uhus we conclude that the main
thilferenees o the Lwenr alilan s s Ul prelaclor 70 0
Er. {235 A dectease in et implies a faster motion in-
sitde the engr, and this is in fact very rensonsble since with
increasing & the tagged parcticls is interacting with more
particles, thus making its effective cage stiffor. Another
winy Lo present his resall 38 wooplod the e seabe 7200k
a3 a hanetion of T./7T, see Fig, 11{c]. We find that chis
reprsentation of che data gives rise to o collapse of the
curves o the different values ol & demonstrating thai
che P-depondenes is indeed wery similar at intormediaoe
pemperatures. Hence we conclude that the introdoction
of the paeido neighbors does ot only inerease the o-
relaxation time strongly but also increase somewhat the
aubempd Feegguency with which the parcticls tries to leave
the cage,

E. Wave-vector Dependence of Relaxation Process

The velaxation time of glass-Forming avstems depends
ot che observable considered.  Within MO chis de-

prendence s owever, eneoled oo prelcior, mep in
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FIG, 11: {a) The relaxacion time obtained from che
overlapr Tometion o a Doocbicn of che sealed weanperadare
[T = T.}/T, for the & = 0 and the & = 25 svetems. [h)
S dute 8z in (a) but s with « multipliod with o
sealing factor (k] (o) Same data as in (h) oas s
function of T.(k} /T

Eq. (23], while T5. and the exponent « are expected to
T tnckependent of the observalbde, While for many slass-
forming avstems this 18 indeed the case, see ez, Ref, LI,
the present system has at least too relevant. lengh scales,
e mearest nedghhor distance and the mean distanes bee
tween the particles and their psendo neighhors, and henee
i s of interest whether che mention etorisabion works
hiere azs well. To probe this we consider the sell interme-
cliate .-it_'a111l:ri:|:|g function F.(g, ¢, whore g 35 the awee-
L ]

=
|
Filg.t) =+ S lespl—iq izt —n0n]: . (24

1=z

11

W defioe the reluxation time w(g) via F.{g. (g1
e and vhis ean sudy s dependence on the lengih
seale, o Fig. 12 we show the g-dependence of (g} for
Lhrer: vl ol & Since one expeets hat al small wave-
vEeLoka Tl I8 peaporiional to o™, e, the Tydeody namie
behuvior, we plot dircetly g2r{g). Panel () is for o fixed
rexdners] lernperalore slighily Tidons the gomsel Lean e
cure while panel (b corresponds to & significantly su-
pereonled state. Toothe context of Tig, 1001 wo T
aran thar, an a fixed eedueed temperature, the relaxation
cime T, obtained from the decey of the overlap function,
shcowe i woeialy alepeemlence on kb, besding wo e inkrodoe
vicn of the factor zk). In order to take into aceount
this E-dependence we Teve muoltiplied also in Fig, 12 the
relaxation Lmes vl with the seme factor w(E). The
graphe shows chat for g = 6.5, e close to the peak of
the static stracture fector, the relaxation times for the
different avstems eolncide perfectly, which demonstrates
that for this wave-vector the overlap and £, (g, 0] probe
che same brpe of dynaomics. For the obher wavesveciors
considered, the wig) curves for che different svetems show
i = dependence thet depends on &, bag this dependence
I relatively weak., Henee we conclude that the presonce
of the psendo neighbors does not introduce & new length
scale that influences che relaxation dyoamics inoa sigoif-
iranl mannee.
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F. Dymamic Heterngenaity
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FIG. 13&: (a) The time dependenee of the non-Cranssian
parameter, az, at different temperscures for the & = 24
sysbean, o) shows o doolile pesls steoctore, (B oaaii
at hixed reduced temperatnre and different values of &
T'he prak at short times i independent of & whils the

cene il lomg Chmes groses willn inereasing k.

(e of the hallmarks of glassy dynamics i3 that time
correlation funetions wre stretehed in time, The resson
oo 1his won-Thebyve relaxation Tias bean a Inng-stamling
puzzle with the contrasting views that each amall do-
manin ol the sample shows the saoe stretchesd tirme de-
pendence or, alternatively, thai the aoetching 8 relanad
to dynamical heterogeneities®,  Exporiments snd sim-
ulaticons bave shown i the homogemsns seenacie =
not compatible with the observations, ie. glass-forming
systemms do have a sipnificant amount of densmical Taet-
erogeneities [DHI . In this Anal section, we therelore
diseuss the b-dependenee of these DH and probe whether
with increasing & one does indees] Aol a decrease of these
fluctnations, the behavior expecred for a8 mean-field ave-
tem

O Arsd stepr bo probee the TH 8 to ook ab the so-
called non-Gaussian parameter (WGP aa(t) which is de-
finer by

i Rl [} | ;
”!H'I_W -1 L

where w(t) & the displacement. of a tagged particle wichin
a time £, Thus os (1) measures whether or not che distri-

Tinivsn ol Che partichs displacemenl, b5 Gassiant48.0152
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In Pig, 13{a) we plot the NG for the & = 38 system,
Tnrerestingly one Ands chat ac high temoperatures ogit)
has fwp peaks: A ficst one st ¢ acound 0.6 and a second
one gt b e 150, The first time i close to the tioescake
at which the M= erosses over from the ballistic regime
to the diffusive one and thus corresponds to the start
of the MMoceprocess, o ageecment witls eaclies stadies",
The eecond peak bas o far not been seen in the glass-
furmming systems considers] before saed s likely due to
the lreaking of (he hoods with the peewdo peighlons,
Lo the PM-ce-relaxation. Mote that the prescnce of this
svenne] peak i colrenl with oor Godings for the BIST,
aee Fig. &c), for which we obeerved a platean in the
slope that, for T 2.0, ended ot around ¢ 107 and we
hadd avgoenl chal chis s doe 1o Lhe maotion of e peeade
neighbors. If 1 ia lowered, the firat peak in as(f) rises
guuicl v aned domminiadess chie second pead, e, oo eeeral ] il
vimne dependenea of the NP becomes again guite similar
o the ooe thee hes boen obscrved o previous studics of
glass forming avstema. The main dilferenes is thal in onr
caze the second peak will make the decay of oo(t) slow
sipee al fong simes the dynamics will be influenes] by
the paendo neighbors, which decorrelabe only alowly [0
chie ducw for the MaD in Fig. 8.

The infloenee of the pseado neighbors on esdd ] s shown
in Fig. 13/b] where we plot this function for different val-
ues of & but keeping (T = T.1/T. constant, One sees that
ak shinet and intermediate thmes, e around the peak, the
curves ame independent of £ which shows that the MNN-
oe=prceress 18 ool allected by the prescnce of the paendo-
neighbors. Chinly ac longer times, the curves for large & are
higher than the cnes for small & showing that the pseudo
nelghbors affect the NGP only at tiose scales thal are T
vond the time seale of the first maximum in the MGE.
Since with decreasing tempersture the peak correspond-
ing to the NN-re-relaxation grows quicker than the secomd
prak we can conclude thee the dominant feature in asit)
sl fo Phe N oeprocess, except 0 & Deconws moch
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FIG. 15: The peak height of as as a function of the
a-relaxation time 7 multiplied by x(k) for different

values of k. Also included is a fit to the data with a
power law.

In Fig. 14 we show o}, the height of the peak in as(t),
as a function of the reduced temperature (T — T¢.)/T..
Surprisingly we find that this quantity is completely in-
dependent of k, i.e. the strength of the non-Gaussianity
of the relaxation dynamics does not depend on whether
or not the system is mean-field like. In other words, the
statistics of the displacement of a tagged particle is inde-
pendent of the number of pseudo neighbors, if measured
at the same reduced temperature. This result reflects
the fact that the first peak in as(t) is dominated by the
dynamics in which the tagged particle leaves the cage
formed by its nearest neighbors.

Note that ob shows a bend at around (I'—1,) /T, ~ 0.1.
Although we did not investigate the origin of this change
in the T-dependence, we expect it to be the signature
of the onset of the hopping processes mentioned above.
The bend indicates that these nrocesses start to become
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FIG. 16: The time scale 72 at which as(t) peaks, as a
function of the a-relaxation time 7. The solid line is a
power law with an exponent x = 0.70.
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FIG. 17: mz(k)"™ as a function of the reduced
temperature (T" — T¢)/T. The solid line is a power law
with exponent -1.54.

prominent at around 10% above T, a value that seems to
be coherent with the observation from Fig. 11 regarding
the T-dependence of the relaxation times.

One might wonder whether the master curve in Fig. 14
is just due to the choice of the scaling factor of the tem-
peratures, i.e. T.. To test this possibility, we show in
Fig. 15 the same data as a function of the relaxation
time 7 multiplied by the same factor (k) that was used
to obtain a master curve in Fig. 11(b). We recognize
that this representation leads to a very nice collapse of
the data onto a master curve which, for intermediate and
long relaxation times, can be described well with a power
law with an exponent close to 0.36 (see solid line in the
figure). It is remarkable that the hopping processes dis-
cussed above, which lead to the bends in the different
curves if the temperature approaches T,, do not seem to
affect the validity of the power law. At present, it is not
clear up to which value of 7 this power law will hold, in
particular, whether it will be observed at temperatures
below T.. Future studies on this point will certainly be
of interest to understand better the relaxation dynamics
of glass-forming liquids.

In Fig. 16 we plot 79, the time at which ay(t) peaks,
as a function of the a-relaxation time 7. Surprisingly we
find that the two quantities show a simple relation with
each other in the form of a power law with an exponent
k = 0.70 (solid line). This result can be rationalized
within the framework of MCT as follows: «a(t) is related
to the shape of the self part of the van Hove function in
that it measures its deviation from a Gaussian®!. At the
end of the caging regime, i.e. the §-relaxation, some of
the particles will have already left their cage, thus giving
rise to a tail to the right of the main peak of the van
Hove function. It is this tail that is responsible for the
non-Gaussian shape of the van Hove function and hence
leads to an increase of as(t). Thus it is reasonable to
assume that 7 is directly related to the time scale of the
B-relaxation 7. MCT predicts that the latter time scale



increases like

5 o (T —T,)~ /D (26)

The a-relaxation time 7 is instead predicted by MCT
to increase like

7o (T =T,) VIV —(p_T )y~ . (27)

In Egs. (26) and (27) the parameters ¢ and b can in
principle be calculated from the T-dependence of the
static structure factor or, exploiting Eq. (27), determined
from the T-dependence of the relaxation time!?°3. For
the k = 0 system it has been found that a is around 0.324
and b is around 0.627 253755 Combining these last two
equations gives, under the assumption that m oc 75,

Ty X 7b/(atb) (28)

Thus we find a power law dependence with an exponent
of 0.66 (using the mentioned values of a and b), which
is indeed very close to our exponent « from the fit (0.7).
We mention here that the observed power law extends
over the whole accessible range of 7, i.e. it also includes
the temperature regime in which we expect hopping pro-
cesses to be present. To the best of our knowledge this
simple connection between 7 and 7 has not been re-
ported before. Since, however, we find it to hold for
all values of k, we expect it to be valid for other glass-
forming systems as well and hence it will be of interest
to check this in the future.

To get Eq. (28) we have made the assumption that 7o
is proportional to 73. As argued above, this hypothe-
sis is reasonable since it can be expected that the non-
Gaussian parameter peaks at a time at which a substan-
tial number of particles start to leave their cage and MCT
defines 75 as the time at which the correlator starts to
drop below the plateau at intermediate times®. Previ-
ous studies have therefore made the assumption that 74
can be determined from the minimum in the slope of the
MSD?. However, we argue that such an identification
might be misleading: For the case of a system with New-
tonian dynamics, the phonons that govern the short-time
dynamics mask the critical decay of the time correlation
functions thus also masking the correlation between the
above-mentioned minimum and 75. (This effect is, how-
ever, absent if the system has a Brownian dynamics®*.)
Therefore we think it is more appropriate to determine
T from a quantity that is not directly influenced by these
vibrational modes, such as the s (t) considered here. In
Fig. 8(a)-(c) we have also included for the various curves
the times 72, arrows pointing upward, and onec sees that
they do not correspond to the location of the minimum in
the curves but that they are located at somewhat larger
times, as expected because of the mentioned effect of the
phonons. Although at present we do not have any solid
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proof why 72 does indeed correspond to 73, our finding
that the relation between 72 and 7 given by Eq. (28) is
obeyed by our data does speak in favour of this identifi-
cation. More tests on this using a system with Brownian
dynamics would certainly be useful to clarify this point
further
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FIG. 18: (a) The time dependence of the dynamical
susceptibility x4(¢) for different temperatures for the

kE = 28 system. x4(t) increases with decreasing
temperature. (b) Time dependence of x4 at a fixed
reduced temperature (T — T.)/T. for different values of
k.

Finally we show in Fig. 17 the time at which as()
peaks, 9, as a function of (T'—T.)/T.. Since we have ar-
gued in the context of Fig. 11 that the k-dependence of 7
will include a factor z(k) that is related to the short time
dynamics, and we also showed that 7 « 7" (Fig. 16), we
plot directly 75 - z(k)"®, with the values of x(k) obtained
from Fig. 11 and  from Fig. 16. We recognize that the
data for the different values of k fall nicely on a mas-
ter curve which follows a power law with an exponent
around -1.54. Also this result can be understood within
the framework of MCT since Eq. (26) predicts that the
slope should be given by —1/(2a) which for a = 0.324
results in an exponent of —1.54, in excellent agreement
with the data from the fit in Fig. 17.

Next we discuss the other parameter which is often
related to the dynamic heterogeneity, the dynamic sus-
ceptibility. The fluctuations of the overlap function Q(¢)
are related to a dynamic susceptibility which indicates
whether or not the system relaxes in a cooperative man-
ner, i.e. shows dynamical heterogeneitics®>°758, Thus
one defines



xalth = o [(QUH} — QU] 1)

ar A measire to quantify this conperativity. In Fig. 18(a)
wir show the time dependones of vy for the sestean with
L o= 25 al different emperaionres. Tonoagresmenl with
earlier studies,*®, we find that y; shows 8 marked peak
e Teigll of which inerenses with decreasing fempeer-
ature and also ita position shifts to larger times npon
decrcasing 1, Lo the cooporativicy becomes more pro-
momneesd and oecors al Tater thes, Toopanal (1 ol the
figure we present y g for ditferent values of b while keeping
e mormmalized femperature [T - T0/T, constant, Thi

graph demonsirates thai, with ihereasing £ 1he halght of

the peak decresses quickly, indicating that che syscem
choess ameleed hecoane more mesn=field ke, as expecied,
and in agreetent with previous simulations of mean-field
like models®*2*, This k-dependence is thus very different
froom the one seen for the heighi of the peak in oz, high-
lighting the ditference between the two quantities, despite
thesr (apperently ] similar time dependence, We also note
that with increasing & the location of che peak in oy it]
ghifts to shorter times, in qualitative agreement wich the
fact that, at fxed redvoeed temperatore, the oerelaxalion
time decreases somewhat, see Fig, 11{a).
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FIGa. 19: Height of the peak in y00] as a lunebion of
the reduced temperature for differen veloes of & The
clinsloed lines are power Taws with exponeot < 1,2 aned e
golid line i3 a power law with an exponent -2,

To probe in more detail how the height of the peak
in yuft), x5, depends on T and & we show in Fig. 18
this height as a fanetion of the redoced temperacore,
We ses lmomsediabely chat chis representation of the data
does not Zive rise to a master curve. Wich increasing &,
the: curves maove downwards, a k-dependence thes s o
contrast 1o the one we found for of shown i Fig. 14.
T'hns we conclude that with increasing & the dynamical
heteropencitics decrease, ie, the system bocome: more
mean-field like, However, we point oot chai even in the
mean-tield limit these heteromeneities cannct be expectod
for vinnish commpletedy®= whind shoses thal his aspect, of

the dypamics s o delivate feature shat i highly non-
Leiwial.

From che fgure, one can conclode thar for redueed
teemperidures higher o grownd 001 Chee beaghi of b
peak shows a power law dependence on the pedueed tem-
perature nud we find o exponent of -1.2 thet is indepen-
tenl of &, which frnplivs it e dependese of 38 on the
nunber of peendo neighhbors is encoded in the prefactor
uf the poarer Joae,

The presence of power lawa in Y can be rationalized by
mesns of MO, This theory prediess that the dynamical

susceptiblity i the VYT ensemble s given by

VT R 4 (d—'ﬂ{“ )2 SN

e " oy a7 L
where oy is the apecific heat at conacant volime 708
Evalnating this expression at ¢+ = 1. thus giving the
hsipghit af $he ek, _1:'1'. ae focls that the Grst term om the
right-hand side of the equation increases like (77— T.17!
while the second one i= found to be proportional to
(T — T.17%. Henoe the power law with exponent -1.2 we
find at intermaediate and higher temperatures can be in-
perpreted to be dee to the power luow fram the ficst term,
Lo with an exponent - 10, swhich 18 somewhat angmentod
by the presence of the second term, thus giving rise to
wopewer Lo with an effeetive cxponent smaller than <1,
Thns it che menticned hopping processes wonld be absent
o would cxpeet that at sutfciently low tomperaturcs,
Lhe power Taw crosses over Lo one owith an expaonent -2,
Whether this is indeed the case will have to be tested for
swelvmms in which one s alile to suppress s hopping
proreaaes, A work That s left for the foiaee.
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FIC:. 2k The height of the peak in y, a3 a function of
moalk) Tor different values of & The solid line is a
power law Bt to the daca for & =4, The twio dashed
lines wre power lews with exponents that correspond to
the theoretienl upper amd lower bownds Trom Fe. (31].

Since the represcotation of cthe datain Fig. 19 depends
ni the choice of T, it & also useful to look af the k-
dependence of ¥ in A more direct manner. "1'his is done
in T 20 wheere s plon Uiz gquaenbily oo Tonectaon ol de



a-relaxation time 7. (Also here we use 7-2(t) as abscissa,
in order to take into account the trivial £ dependence of
the relaxation time.) We see that the shape of the curves
for the different k is basically independent of k, but that
the absolute value of x4 at fixed 7 - z(k) decreases with
increasing k. (The same conclusion is reached if one uses
just 7 as the abscissa.) Hence we confirm the conclu-
sion from Fig. 18(b) that the heterogeneity of the system
decreases with increasing k. For small and intermediate
values of 7, the data falls approximately on a straight
line, and a power law fit gives an exponent 0.51 (solid
line). Expressing the T-dependence on the right hand
side of Eq. (30) as a function of 7 = (T — T.)™7, see
Eq. (23), we obtain for the height of the peak

X4 = ATV 4 BPA (31)

where A and B are expressions that have only a weak
T-dependence. Using our value v = 2.4 gives for the
exponent of the first and second term 0.42 and 0.83, re-
spectively. These values are thus upper and lower bounds
(included in Fig. 20 as well) and the exponent we extract
from our data, 0.51, is thus not too far from the lower
limit. So, although our data do not allow to make strong
statements about the validity of Eq. (31), because of the
lack of sufficiently large window in the dynamics, we can
at least say that our findings are compatible with the

theoretical prediction, in agreement with the results from
Ref. 32.
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FIG. 21: The location of the peak in y4(t) as a function
of the a-relaxation time 7. The symbols are for
different values of k and different T', and the solid line is
a power law with exponent 1.0. Inset: 75 as a function
of 74, showing a power law connection between the two
quantities. The straight line has a slope of 0.70.

Finally, we note that for large 7 we find clear deviations
of our data from the predicted power law in that the
growth of x4 is weaker than predicted. So in this regime,
we can again invoke the argument that hopping processes
decrease the cooperativity of the relaxation dynamics.

Fig. 18(a) shows that the location of the peak in x4(t),
T4, quickly moves to larger times if the temperature is
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lowered. To determine the connection between the a-
relaxation time 7 and the time scale 74 we plot in Fig. 21
74 as a function of 7. Also included in the graph is the
line 74 = 7 (solid line) and one recognizes that all the
data points fall on this line with high accuracy. Hence
we can conclude that the time scale at which the system
shows maximum cooperativity is on the time scale of the
a-process, which is in agreement with carlier results®?.
Also note that this conclusion is independent of &, i.e. the
strength of the mean-field character does not play a role
for this result. This result demonstrates that the a-
relaxation process is tightly related to the presence of the
dynamical heterogeneities and that hence it is useful to
study the latter in order to understand the slowing down
of the relaxation dynamics. Finally we mention that the
direct proportionality of 74 to 7 and the power law con-
nection between 7o and 7, (see Fig. 16) implies that we
have the simple connection 7 o< 74, with an exponent
given by b/(a+1), see Eq. (28). That this relation works
indeed well is shown in the inset of Fig. 21. Since the
exponent s is less than unity, we see that 75 is smaller
than 74, as expected®. This can also be concluded from
Fig. 8 where we have added in panels (a)-(c¢) the values of
74 (downward arrows), in that one recognizes that at low
T, these are indeed to the right of the arrows presenting
T2. These graphs also show that, interestingly, the (loga-
rithmic) slope of the MSD at ¢ = 74 is independent of T'
but weakly dependent on k.

IV. SUMMARY AND CONCLUSION

We have introduced a simple glass-forming system
which allows to tune in a smooth manner its mean-field
character. This is achieved by introducing additional k
“pseudo neighbors” with which a particle can interact.
These additional interactions are long-ranged and hence
with increasing k, cach particle becomes increasingly con-
nected with the rest of the system. However, since we also
keep the original interaction between nearest-neighbor
particles, our model has the advantage of maintaining a
liquid-like structure even in the mean-field limit, i.e. the
nearest neighbor distances are always of the order of the
particle diameter, which is in contrast to other models
that allow tuning their mean-field character?.

We find that the structure of the system, as charac-
terized by the radial distribution function or the static
structure factor, remains unchanged with the addition
of the pseudo neighbours, also this in contrast to previ-
ous models. Due to the way the model is set up, it is
possible to analytically calculate all the static structural
properties of the system from the knowledge of the k£ = 0
system. This allows us to understand that the additional
interactions give rise to an effective potential that in-
creases with k, thus influencing the relevant temperature
scale of the system.

Due to the presence of the pseudo neighbors, the relax-
ation dynamics shows a very strong dependence on k in



that the onset temperature as well as the critical temper-
ature of mode-coupling theory increase with increasing k.
However, once the relaxation times are expressed in terms
of the critical temperature of MCT one finds only a mild
k—dependence, indicating that for this class of systems
T, is the most relevant parameter for the dynamics, at
least in the T'—range investigated here. We note that
the range in temperature in which MCT seems to give
a good description of the relaxation dynamics increases
systematically with increasing £, thus indicating that in
the mean-field limit, the theory becomes exact. This is
also confirmed by the observation that the dynamical het-
erogeneities, characterized by the dynamic susceptibility
xa(t), decrease with increasing k.

It is often believed that the fragility of the glass-former
is directly related to the presence of dynamical hetero-
geneities (or more precisely to the value of the stretching
parameter [ in the Kohlrausch-Williams-Watts function
used to fit the time-correlation functions)®173. Since we
find that the fragility of the system increases with & while
the dynamic heterogeneity decreases we conclude that
there is no such (strict) connection between these two
quantities, although we do not want to exclude the pos-
sibility that in practice there might be a certain correla-
tion. This result is in qualitative agreement with the
findings in earlier studies?®:%%. Sengupta et. al. have,
e.g., reported that compared to a three-dimensional sys-
tem, the corresponding four-dimensional system was less
heterogeneous but more fragile??. This is also corrobo-
rated by experimental data analyzed by Dyre, which in-
dicate that there is no direct connection between fragility
and heterogeneity®?.

The possibility to tune the mean-field character of the
system without changing the structure also allows elu-
cidating the relation between the non-Gaussian param-
eter an(t) and y4(t). While previous studies have often
considered both functions to be indicators for the dy-
namical heterogeneities, our analysis shows that this is
not the case at all since their dependence on k is very
different. Therefore our work clearly shows that these
two observables convey information that is very differ-
ent, a conclusion that is in line with previous results that
showed that the peak in ay(¢) has a temperature depen-
dence which differs from the one of x4 ?°. Furthermore,
we also recall that for the MK-model, Ref. 23, one finds
that y% decreases with increasing mean-field character of
the system, i.e. the same behavior as we have found here,
but that also the value of o decreases, while in our case
we find that of is independent of k. Also in the case
of the Gaussian core model, it was found that it’s aa(t)
peak is lower than the one for the Kob-Andersen model,
whereas the y4 peak is much higher?>2%. The authors of
these papers justified this results by stating that ay pro-
vides a measure of the degree of dynamic heterogeneity
and thus its peak value should be lower for more mean-
field like models and x4 provides a measure of the size
of the domains and systems which have larger domains
should have higher value of y4. Although this interpre-
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tation might apply to the Gaussian core model, it is not
in agreement for the system studied here and hence not
general. This suggests that further studies are required
to understand the exact information provided by x4 and
as and if these two quantities arc indeed related to cach
other.

Finally, we also note that the decrease of y4 with in-
creasing k£ can be due to the fact that the fluctuations
in the overlap function do indeed decrease, i.c. the re-
laxation dynamics of the system becomes more homoge-
neous, as expected for a mean-field-like system. However,
since with increasing k the characteristic temperatures of
the system also increase, the fluctuations should decrease.
So for the moment, it is not clear which one of the two
mechanisms is the main cause for the decrease of X/ that
we observe in the present work.

In an earlier study involving different glass-formers ev-
idence was given that the locally preferred structures
(LPS) are connected to the dynamics only for systems
which are not mean field like%?. The ability of the present
model to continuously tune the mean-field behaviour
makes it thus an ideal system to check the validity of this
observation. Since we find that with increasing number of
pseudo neighbours the LPS remains unchanged whereas
the dynamics slows down, this suggests that with an in-
crease in the mean field nature the correlation between
the LPS and the dynamics decreases, a result that cor-
roborates the earlier findings from Ref. 65.

The range of k£ that we were able to access in the
present simulation is relatively modest since for larger k
the relaxation dynamics became too slow to equilibrate
the system within a reasonable amount of computer time.
It is, however, of interest to make an educated guess on
what will happen if k is increased further. Our analytical
results for the structure, Fig. 5, shows that with increas-
ing &k the main peak in the effective radial distribution
function becomes very high. In this limit one can thus ex-
pect that the contribution from the pseudo neighbors will
start to dominate the one from the real nearest neighbors
and hence will make the system mean-field like. However,
from the graph we recognize that this increase becomes
strong only once k is larger than O(102), i.e., a value
that is at present somewhat beyond the reach of stan-
dard computer simulations. It can be expected, however,
that in the near future improved algorithms will allow
to deal with this bottleneck. In that case our approach
will thus allow to make more stringent investigations on
how the properties of a normal three dimensional glass-
former can be connected to the corresponding system in
the mean field limit.

This summary clearly indicates that the details how
the mean-field limit is approached are important and
future studies are needed to clarify this point. Finally,
we note that the approach we propose here on how the
mean-field character is tuned can be applied to any sys-
tem. Hence it will be interesting to study whether other
types of interaction potentials, such as the Coulomb
potentials used to describe oxide glass-formers, will



give qualitatively the same behavior, or in other words,
whether the approach to the mean-field limit depends
on the nature of the local structure of the system.
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