Aditya Challa
email: aditya.challa.20@gmail.com

Member, IEEE Sravan Danda
email: sravan8809@gmail.com

Senior Member, IEEE B S Daya Sagar

Laurent Najman
email: laurent.najman@esiee.fr

Triplet-Watershed for Hyperspectral Image Classification

Keywords: Hyperspectral Imaging, Watershed, Triplet Loss, Deep Learning, Classification

Hyperspectral images (HSI) consist of rich spatial and spectral information, which can potentially be used for several applications. However, noise, band correlations and high dimensionality restrict the applicability of such data. This is recently addressed using creative deep learning network architectures such as ResNet, SSRN, and A2S2K. However, the last layer, i.e the classification layer, remains unchanged and is taken to be the softmax classifier. In this article, we propose to use a watershed classifier. Watershed classifier extends the watershed operator from Mathematical Morphology for classification. In its vanilla form, the watershed classifier does not have any trainable parameters. In this article, we propose a novel approach to train deep learning networks to obtain representations suitable for the watershed classifier. The watershed classifier exploits the connectivity patterns, a characteristic of HSI datasets, for better inference. We show that exploiting such characteristics allows the Triplet-Watershed to achieve state-of-art results in supervised and semi-supervised contexts. These results are validated on Indianpines (IP), University of Pavia (UP), Kennedy Space Center (KSC) and University of Houston (UH) datasets, relying on simple convnet architecture using a quarter of parameters compared to previous state-of-the-art networks.

I. INTRODUCTION

H YPERSPECTRAL imaging has several applications ranging across different domains [START_REF] Ghamisi | Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art[END_REF]. It has seen applications in earth observations [START_REF] Melgani | Classification of hyperspectral remote sensing images with support vector machines[END_REF], and land cover classification [START_REF] Gislason | Random forests for land cover classification[END_REF] etc. Hyperspectral datasets have rich information both spatially and spectrally. However, spectral and spatial correlations make a lot of such information redundant. One can obtain efficient representations using techniques such as band selection [START_REF] Cai | Bs-nets: An end-to-end framework for band selection of hyperspectral image[END_REF], [START_REF] Roy | Darecnet-bs: Unsupervised dual-attention reconstruction network for hyperspectral band selection[END_REF] subspace learning [START_REF] Hong | Joint and progressive subspace analysis (jpsa) with spatial-spectral manifold alignment for semi-supervised hyperspectral dimensionality reduction[END_REF], [START_REF] Hong | Joint and progressive learning from high-dimensional data for multi-label classification[END_REF] multi-modal learning [START_REF] Hong | More diverse means better: Multimodal deep learning meets remotesensing imagery classification[END_REF] low-rank representation [9].

Large number of bands, spatial and spectral feature correlations and curse of dimensionality make Hyperspectral image classification challenging. Conventional approaches use hand crafted features with techniques such as scale-invariant feature transform (SIFT) [START_REF] Li | A spatial-spectral sift for hyperspectral image matching and classification[END_REF] sparse representation [START_REF] Shao | Spatial and class structure regularized sparse representation graph for semi-supervised hyperspectral image classification[END_REF] principal component analysis [START_REF] Licciardi | Linear versus nonlinear pca for the classification of hyperspectral data based on the extended morphological profiles[END_REF] independent component analysis [START_REF] Villa | Hyperspectral image classification with independent component discriminant analysis[END_REF]. Classic approaches to classification such as support vector machines (SVM) [START_REF] Melgani | Classification of hyperspectral remote sensing images with support vector machines[END_REF], neural networks [START_REF] Zhong | An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery[END_REF] and logistic regression [START_REF] Li | Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning[END_REF] aimed at exploiting the spectral signatures alone. Using spatial features have been extremely useful to obtain better representations and higher classification accuracies [START_REF] Ghamisi | New frontiers in spectral-spatial hyperspectral image classification: The latest advances based on mathematical morphology, markov random fields, segmentation, sparse representation, and deep learning[END_REF]- [START_REF] Li | Deep learning for hyperspectral image classification: An overview[END_REF], which the classic approaches ignore. Multiple kernel learning [START_REF] Camps-Valls | Composite kernels for hyperspectral image classification[END_REF]- [START_REF] Fang | Classification of hyperspectral images by exploiting spectral-spatial information of superpixel via multiple kernels[END_REF] use hand-designed kernels to exploit the spectral-spatial interactions. Deep learning approaches, especially CNNs, have been adapted to exploit the spectralspatial information. [START_REF] Chen | Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[END_REF] proposes a 3D-CNN feature extractor to obtain combined spectral-spatial features. [START_REF] Yang | Learning and transferring deep joint spectral-spatial features for hyperspectral classification[END_REF] adapts CNN to a two-branch architecture to extract joint spectral-spatial features. [START_REF] Ben Hamida | 3-d deep learning approach for remote sensing image classification[END_REF] used 3D volumes to extract spectral-spatial features, which may be improved using multi-scale approaches [START_REF] He | Multi-scale 3d deep convolutional neural network for hyperspectral image classification[END_REF]. Spectral-spatial residual network (SSRN) proposed in [START_REF] Zhong | Spectral-spatial residual network for hyperspectral image classification: A 3-d deep learning framework[END_REF] uses residual networks to remove the declining accuracy phenomenon. Residual Spectral-Spatial Attention Networks (RSSAN) [START_REF] Zhu | Residual spectral-spatial attention network for hyperspectral image classification[END_REF] exploit the concept of attention to improve on SSRNs. [START_REF] Roy | Attention-based adaptive spectral-spatial kernel resnet for hyperspectral image classification[END_REF] proposes Attention-Based Adaptive Spectral-Spatial Kernel Residual networks (A2S2K) by exploiting adaptive kernels. [START_REF] Hong | Graph convolutional networks for hyperspectral image classification[END_REF] uses graph convolution networks and [START_REF] Paoletti | Capsule networks for hyperspectral image classification[END_REF] uses capsule networks. Most of these approaches tackle the problem of Hyperspectral image classification by considering novel architectures. Another prominent direction of research focusses on using unlabelled data for improving classification accuracies, referred to as semi-supervised learning. In [START_REF] Hong | Learnable manifold alignment (lema): A semi-supervised cross-modality learning framework for land cover and land use classification[END_REF], [START_REF] Hong | Cospace: Common subspace learning from hyperspectral-multispectral correspondences[END_REF] the authors use hyperspectral data for improving inference on multispectral data. In [START_REF] Hong | Graph convolutional networks for hyperspectral image classification[END_REF] the authors propose a semisupervised approach to exploit multi-modal data for better inference. Graph Convolution Networks (GCN) have also been used to obtain state-of-art results on hyperspectral classification as evidenced by S2GCN [START_REF] Qin | Spectral-spatial graph convolutional networks for semisupervised hyperspectral image classification[END_REF] and DC-GCN (Dual Clustering GCN) [START_REF] Zeng | Semi-supervised hyperspectral image classification with graph clustering convolutional networks[END_REF]. Other approaches include local constraintbased sparse manifold hypergraph learning (LC-SMHL) [START_REF] Duan | Local constraint-based sparse manifold hypergraph learning for dimensionality reduction of hyperspectral image[END_REF], self-adaptive manifold discriminant analysis (SAMDA) [START_REF] Huang | Self-adaptive manifold discriminant analysis for feature extraction from hyperspectral imagery[END_REF], DLPNet [START_REF] Li | Dlpnet: A deep manifold network for feature extraction of hyperspectral imagery[END_REF] and adaptive residual convolutional neural network (ARCNN) [START_REF] Huang | Adaptive residual convolutional neural network for hyperspectral image classification[END_REF].

In this article, we take a different route to propose a novel classifier based on the watershed operator. Watershed operator from Mathematical Morphology [START_REF] Vincent | Watersheds in digital spaces: An efficient algorithm based on immersion simulations[END_REF], [START_REF] Beucher | The Morphological Approach to Segmentation: The Watershed Transformation[END_REF] has been widely used for image segmentation, and, in particular, for Hyperspectral images [START_REF] Noyel | Morphological segmentation of hyperspectral images[END_REF], [START_REF] Tarabalka | Segmentation and classification of hyperspectral images using watershed transformation[END_REF]. In [START_REF] Tarabalka | Segmentation and classification of hyperspectral images using watershed transformation[END_REF], the authors combine (by majority voting) several watersheds computed on gradients of different bands. They observe that class-specific accuracies were improved by using the spatial information in the classifi- cation for almost all the classes, a result that we are going to confirm in the present paper. To our knowledge, watersheds have not been used in conjunction with current state-of-art neural networks in the context of hyperspectral images. We propose a novel approach to achieve this in the current article.

In [START_REF] Cousty | Watershed cuts: Minimum spanning forests and the drop of water principle[END_REF] the watershed operator is adapted to edge-weighted graphs. It is shown there that the watershed is closely related to the minimum spanning tree (MST) of the graph. Watersheds have also been highly successful as a post-processing tool for image segmentation [START_REF] Turaga | Maximin affinity learning of image segmentation[END_REF]- [START_REF] Wolf | Learned watershed: End-to-end learning of seeded segmentation[END_REF]. In [START_REF] Funke | Large scale image segmentation with structured loss based deep learning for connectome reconstruction[END_REF] the authors learn a representation suitable for MST-based classification. In [START_REF] Wolf | The mutex watershed and its objective: Efficient, parameter-free graph partitioning[END_REF] the authors learn a representation suitable to mutex-watershed, a different version of the watershed.

Departing from images, in our previous work [START_REF] Challa | Watersheds for semi-supervised classification[END_REF] we have proposed to use the watershed operator as a generic classifier. We showed that it obtains a maximum margin partition similar to the support vector machine. We further showed that ensemble watersheds obtain comparable performance to other classifiers such as random forests. In this article we propose a novel approach, simple and efficient, called Triplet-Watershed to learn representations (also known as embeddings) suitable for the watershed classifier.

Why watershed classifier? Previous work on hyperspectral image classification, as discussed above, establish that one must use both spatial and spectral aspects to obtain good classifiers. They achieve this with creative approaches to design neural networks such as adaptive kernels, attention mechanism, etc. However, most of these still use conventional softmax classifier. The watershed classifier naturally uses spatial information for inference. Thus, it allows us to use simpler networks for representation. Table I shows the overall accuracy scores obtained by our approach and other state of art methods. It also shows the number of parameters used. Observe that Triplet-Watershed parameters are just 25% of those of the current state-of-art (A2S2K) approach.

The main contributions of this article are the following.

(i) We propose a novel approach, namely the Triplet-Watershed, to learn a representation suitable to the watershed classifier. This representation is referred to as watershed representations in the rest of the article. (ii) The Triplet-Watershed achieves state-of-art results on the hyperspectral datasets with very simple networks, using much fewer parameters than the previous state-of-the-art approaches as described in table I.

M a r g i n

Fig. 1. Illustration of maximum margin for support vector machines (SVM) [START_REF] Challa | Watersheds for semi-supervised classification[END_REF]. The key observation is -The margin is defined as the minimum distance between the training point labelled 0 and what would be labelled 1 after classification. And vice versa. The aim of the (linear) SVM classifier is to obtain a decision boundary that maximizes the margin. This can be extended to obtain a maximum-margin partition on an edge-weighted graph. Using (2), a solution of this is provided by the watershed classifier.

(iii) The same Triplet-Watershed approach can be used for both supervised and semi-supervised tasks without any modification, still leading to state-of-the-art results compared to previous approaches. (iv) The framework used here to obtain representations is not restricted to watershed classifiers. It can be extended to use with other classifiers such as random forest or knearest neighbours as well, although watershed results outperform other classifiers on our datasets. (v) The main insight of our paper is that enforcing spatial connectivity (achieved thanks to the watershed classifier) during the training is a relevant constraint for hyperspectral classification.

Overview: Section II reviews the watershed classifier and the required terminology for the rest of the article. In section III we design the neural net (NN) and the training procedure to learn watershed representations. Section IV provides empirical analysis.

II. WATERSHED CLASSIFIER

The watershed classifier is defined on an edge-weighted graph. We follow the exposition as given in [START_REF] Challa | Watersheds for semi-supervised classification[END_REF]. G = (V, E, W) denotes the edge-weighted graph. Here V denotes the set of vertices, E denotes the set of edges which is a subset of V × V and W : E → R + denotes the edge weight assigned to each edge. We assume that the edge weights are all positive in this article.

The (two-class) classification problem on the edge-weighted graph is stated as -Let X 0 , X 1 ⊂ V denote the labelled subset of vertices labelled 0 and 1 respectively. Classification problem requires a partition of V = M 0 ∪M 1 with M 0 ∩M 1 = ∅. With an additional constraint that X 0 ⊂ M 0 and X 1 ⊂ M 1 . Here M 0 denotes all the vertices labelled 0 after classification and M 1 denotes all the vertices labelled 1. We also assume there (c) Fig. 2. Figure illustrating the watershed boundaries [START_REF] Challa | Watersheds for semi-supervised classification[END_REF]. Observe that in all these cases the boundary is in-between the classes. Also, it is in the middle of the zero density (no points exist) regions. This maximizes the margin between the boundaries and the classes. This is consistent with the maximum margin principle of SVM. exists a dissimilarity measure ρ(x, y) between two vertices x, y ∈ V . This measure extends to subsets as

ρ(X, Y) = min x∈X,y∈Y ρ(x, y) (1)
where X, Y are arbitrary subsets of V . Observe that there exist several partitions of V = M 0 ∪ M 1 which satisfy the above conditions. Of these partitions, we only use the Maximum Margin Partitions, i.e the partitions which maximize

min{ρ(X 0 , M 1), ρ(X 1 , M 0)} (2)
This follows from the maximum margin principle of support vector machines (SVM). From figure 1, a key observation can be made -The margin for the SVM is the minimum distance between training point labelled 0 and what would be labelled 1 after classification. And vice versa. Linear SVM tries to obtain the boundary to maximize this margin. This can be extended to the edge-weighted graphs using (2). The Watershed Classifier is defined by considering the dissimilarity measure to be

ρ(x, y) := ρ max (x, y) = min π∈Π(x,y) max e∈π W (e) (3)
where π denotes a specific path between x, y. Π denotes the set of all possible paths. ρ max is sometimes referred to as pass value.

If each edge-weight indicates the height of the corresponding edge, then ρ max (x, y) indicates the minimum height one has to climb to reach y from x. When the points belong to a Euclidean space, the edge weight is given by Euclidean distance. That is, the edge weight indicates the distance between the points. Hence, ρ max (x, y) would indicate the minimum "jump" one has to make to reach y from x. Thus, the boundaries (in cases where the classes are separable) would be along the low-density regions between classes. This is illustrated in Figure 2. In all the cases, the boundary is between the classes such that we have the maximum margin. This is consistent with the maximum margin principle of SVM. Remark: One can replace the pass value in (3) with several other measures, leading to different classifiers. Detailed analysis of replacing pass value with other measures is out of scope for the present article and may be considered for future work. For instance, using the Image Foresting Transform (IFT) [START_REF] Falcão | The image foresting transform: Theory, algorithms, and applications[END_REF] leads to a classifier similar to the one proposed in [START_REF] Amorim | Semisupervised pattern classification using optimum-path forest[END_REF]. Few such techniques are discussed in [START_REF] Challa | Watersheds for semi-supervised classification[END_REF].

Given the edge-weighted graph, the Watershed algorithm extends the Maximum Margin Partition principle to several classes and obtains the labels using the UNIONFIND data structure. This is described in algorithm 1.

Algorithm 1 Watershed clustering algorithm [START_REF] Challa | Watersheds for semi-supervised classification[END_REF] Input: edge-weighted graph G = (V, E, W). A subset of labelled points V l ⊂ V . Output: Labels for each of the vertices L if both e x and e y are labelled then UF.union(e x , e y)

Assign same label for e x and e y . 9:

end if 10: end for 11: Label each vertex of the connected component using labels V l . 12: return Labels of the vertices.

Observe that step [START_REF] Li | A spatial-spectral sift for hyperspectral image matching and classification[END_REF] is possible since each connected component would have exactly one unique label. One can see that watershed clustering is a semi-supervised algorithm, in the sense that it propagates the known labels to points with unknown label.

To illustrate the watershed classifier consider the simple edge-weighted graph in figure 3a. The two distinct colours indicate two classes. No colour indicates that the vertex is not yet labelled. In the first step, the least edge-weight is 1. Adding all these edges (thick edges in figure 3b) gives 4 distinct components. Each component is labelled according to the label present within the component. In case there exists no label, then label assignment is not yet carried out. We then add the edges with weight 2, and label the points accordingly. Observe that there are no more unlabelled points and hence the algorithm terminates.

In practice, it has been observed that ensemble techniques improve the robustness of watershed classifier. This is achieved using only a subset of labelled points and only a subset of features and taking the weighted average. Details can be found in [START_REF] Challa | Watersheds for semi-supervised classification[END_REF]. We refer to these two approaches as single watershed classifier and ensemble-watershed classifier. Using a generic neural network we obtain the representation for the dataset. These representations are fed into the watershed classifier to obtain the labels using the seeds. Using the labels and the representation, we use triplet loss to compute the loss and also for obtaining the parameters for the neural network.

Observe that the watershed classifier needs to be computed at every epoch.

III. LEARNING REPRESENTATIONS FOR THE WATERSHED CLASSIFIER

The previous section described how one can obtain the labels using the watershed classifier. In [START_REF] Challa | Watersheds for semi-supervised classification[END_REF], it was shown that this compares reasonably well to other classifiers such as SVM, random forests, etc. However, observe that this classifier has no trainable parameters. In this section, we develop an approach to train a neural network for learning representations suitable to the watershed classifier.

A key observation is -Watershed classifier reduces the distances within each component and increases the distance across components. This leads to the schematic in figure 4. First, we use a generic neural network to obtain the representations for the dataset. These representations, along with a subset of labelled points, are used with the watershed classifier to obtain the labels. Using these labels, we obtain a metric-learning loss to decide if two pixels are either in the same component (same label) of the watershed or in two different components (different label). More precisely, we use triplet loss [START_REF] Hoffer | Deep metric learning using triplet network[END_REF], [START_REF] Schultz | Learning a distance metric from relative comparisons[END_REF] to learn the watershed representation. For training, this cost is minimized using standard autograd packages such as pytorch.

Why schematic in figure 4 learns watershed representations? Triplet loss function uses {(anchor, postive, negative)} triplets for computation of the cost. It compares an anchor-input to a positive-input and a negative-input. The distance from the anchor-input to the positive-input is minimized, and the distance from the anchor-input to the negative-input is maximized using the cost min{d(anchor, positive) -d(anchor, negative) + α} + [START_REF] Cai | Bs-nets: An end-to-end framework for band selection of hyperspectral image[END_REF] where { * } + denotes the function max{0, * }. By enforcing the order of distances, triplet loss models embed in the way that a pair of samples with the same label are smaller in distance than those with different labels. When watershed labels are used to obtain {(anchor, postive, negative)} triplets, this leads to representations that are compatible with the watershed classifier. Remark (Supervised vs Semi-Supervised) : Recall that the watershed classifier uses a subset of training points (referred to as seeds) to obtain the labels of other training points. These labels are then used to the train the network with triplet loss. However, in the case of semi-supervised learning, unlabelled data is also available at train time. These points can be labelled and be used to train the network. In this article we use the semi-supervised approach, randomly choosing some seeds for the watershed classifier that iteratively propagates their labels to their most resembling neighbours, obtaining the connected components. Hence, the combination of watershed clustering and triplet loss ensures that points with the most resembling representations are indeed clustered together, in the same connected component.

Training Dynamics

To summarize the entire training procedure of Triplet-Watershed, at each epoch 1) Obtain the representations for all the points using the neural network. 2) We consider a randomly chosen subset of labelled points as seeds 3) Propagate the labels to all points using the watershed classifier 4) Use the watershed labels to generate {(anchor, positive, negative)} triplets 5) Use the triplet loss to train the neural network.

Few obvious questions follow -(a) When would the training converge? (b) What is the steady-state obtained?

Note that the training would converge when there would be no further improvement in the triplet-loss. At this stage, the out-of-box score 1 of the watershed classifier would not improve as well. This implies that -all pairs of points with the same labels and within the same component have similar representation. Hence, we obtain 100% out-of-box accuracy2 with watershed classifier. Remark (Overfitting): Traditional machine learning advices against reaching 100% training accuracy as the models might be overfitting. However, recent deep learning trends point to the contrary. Several deep learning models can indeed fit random data with 100% accuracy [START_REF] Zhang | Understanding deep learning requires rethinking generalization[END_REF]. It is still an open question to understand the generalization ability of these models. However, few observations point to the inductive bias [START_REF] Battaglia | Relational inductive biases, deep learning, and graph networks[END_REF] as the reason behind good generalization. In our case, the inductive bias is dictated by the graph constructed from the data.

Also, note that during training we use a single watershed classifier. While, at inference, we use an ensemble-watershed classifier. This ensures robustness during inference.

Remark (Complexity): Two main steps can be identified in the above procedure -(i) Obtaining a representation of the points and (ii) Propagating the labels using watershed. Time complexity for obtaining the representation is dictated by matrix multiplications with the neural network. This can easily be parallelized using GPU. Empirical study of the time taken for this is discussed in the following section. Table XI shows the actual time taken for both training and evaluation. Propagation of labels is done using binary partition trees and can be performed in quasi-linear time [START_REF] Najman | Playing with kruskal: Algorithms for morphological trees in edge-weighted graphs[END_REF]. We use the routines available at [START_REF] Perret | Higra: Hierarchical graph analysis[END_REF] for implementation.

IV. EMPIRICAL ANALYSIS

In this section, we explore the application of the watershed classifier to the hyperspectral image classification task. We use the standard evaluation metrics for comparison:

(i) Overall Accuracy (OA): it measures the overall accuracy across all samples, not considering the class imbalance. (ii) Average Accuracy (AA): it measures the average accuracy across the classes and (iii) Kappa Coefficient (κ): it measures how well the estimates and groundtruth labels correspond, taking into account agreement by random chance. Four datasets are used for comparison. March 23, 1996 by AVIRIS [START_REF] Green | Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (aviris)[END_REF] with wavelengths ranging from 0.4 to 2.5× 10 -6 meters. 176 spectral bands are used for analysis after removal of some low signal-to-noise ratio (SNR) bands and water absorption bands. 13 classes representing the various land cover types that occur in this environment are defined for the site. • University of Pavia (UP) : Acquired by the ROSIS [START_REF] Kunkel | Rosis (reflective optics system imaging spectrometer) -a candidate instrument for polar platform missions[END_REF] sensor during a flight campaign over Pavia, northern Italy. The number of spectral bands is 103 for Pavia University and is of size 610×610 pixels. The ground truth identifies 9 classes. • University of Houston (UH) : This dataset was acquired over the University of Houston campus and the neighbouring urban area. This dataset was captures with a spatial resolution of 2.5m and with 144 spectral bands in the 380 nm to 1050 nm region. This has 15 groundtruth classes. The dataset can be obtained from https://hyperspectral.ee.uh.edu/?page id=459 3 . We preprocess the datasets using principal component analysis (PCA) [START_REF] Seeley | On lines and planes of closest fit to systems of points in space[END_REF] to obtain orthogonal components. We use 200 principal components for IP, 176 for KSC, 103 for UP and 144 for UH datasets. The train/test split is obtained randomly using 10% for training and 90% for testing.

Graph Construction: Note that the watershed classifier is defined on edge-weighted graphs. This is constructed as follows

• The set of vertices V is taken to be the set of all the pixels in the dataset ignoring the {labels = 0} class. Since, these points do not have any groundtruth labels. • The edge set E is taken to be the union of 4-adjacency edges induced by the vertex set V (on the image) and edges obtained by EMST (Euclidean Minimum Spanning Tree [START_REF] March | Fast euclidean minimum spanning tree: algorithm, analysis, and applications[END_REF]) for Indianpines (IP), University of Pavia (UP) 3 Accessed on 30 April 2021. and Kennedy Space Centre (KSC), and K-Neighbour edges with k=50 for University of Houston (UH) dataset.

The EMST and K-Neighbour edges are obtained by considering the top 32 principal components. • Given a representation obtained thanks to the neural network, the edge weights are computed using Euclidean distance. This representation (and hence the edge weights themselves) is updated at every epoch during training, while the edge set itself is never updated. An illustration of the graph construction procedure is provided in appendix A.

In all the experiments we use the neural net architecture as shown in figure 5. We consider a patch (11 × 11 × #Bands) around each pixel of the input hyperspectral image, suitably padded with 0s. We use 3 conv2d layers and a fully-connected layer to obtain the representation. These representations are then used for watershed classification and training. All models are trained using stochastic gradient descent (SGD) with cyclic learning rates [START_REF] Smith | Cyclical learning rates for training neural networks[END_REF]. We use 40% of the training data as seeds for the watershed classifier. The default weight initialization by pytorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF] is used. We use 64 as the dimension for the representations. All accuracies are reported in the format mean × 100% ± stdev to be consistent with [START_REF] Roy | Attention-based adaptive spectral-spatial kernel resnet for hyperspectral image classification[END_REF]. The code is available at https://github.com/ac20/TripletWatershed Code.

Remark on evaluation: Different kind of evaluations of possible -Random train/test split or Patch-based evaluation as proposed in [START_REF] Nalepa | Validating hyperspectral image segmentation[END_REF]. Here we use the former since -(i) Patch-based evaluation does not recommend using connectivity patterns, while watershed classifier is designed to exploit such patterns, (ii) Irrespective of the evaluation procedure, we remain consistent with baseline methods (A2S2K, SSRN). Hence, the observations in this article still remain valid.

A. Supervised Classification

Firstly, we provide the results of Triplet-Watershed for supervised classification. We compare our approach with standard baselines (SVM [START_REF] Melgani | Classification of hyperspectral remote sensing images with support vector machines[END_REF] and Random Forest [START_REF] Ham | Investigation of the random forest framework for classification of hyperspectral data[END_REF]), and also with the two recent state-of-art methods SSRN [START_REF] Zhong | Spectral-spatial residual network for hyperspectral image classification: A 3-d deep learning framework[END_REF] and A2S2K [START_REF] Roy | Attention-based adaptive spectral-spatial kernel resnet for hyperspectral image classification[END_REF]. Tables II, III, IV show the results (OA, AA, κ) obtained. The train test splits per class are described in these tables. Note that Triplet-Watershed outperforms existing state-of-art A2S2KResNet [START_REF] Roy | Attention-based adaptive spectral-spatial kernel resnet for hyperspectral image classification[END_REF] and other approaches in several aspects. This can be attributed to the fact that -Triplet Watershed exploits the connectivity patterns (edges within the pixels) in the dataset to propagate labels. Other approaches treat each pixel as a separate entity

B. Semi-Supervised Classification

We compare the Triplet-Watershed with three recent stateof-art semi-supervised approaches -S2GCN [START_REF] Qin | Spectral-spatial graph convolutional networks for semisupervised hyperspectral image classification[END_REF], SSRN [START_REF] Zhong | Spectral-spatial residual network for hyperspectral image classification: A 3-d deep learning framework[END_REF] and DC-GCN (Dual Clustering GCN) [START_REF] Zeng | Semi-supervised hyperspectral image classification with graph clustering convolutional networks[END_REF]. We consider 30 samples for training if the class size is greater than 30 and 15 if the class size is less than 30. Tables VI, VII show the results obtained. Observe that, once again, Triplet-Watershed obtains the state-of-art in several aspects.

C. Evaluation of Representation

Recall that accuracies in tables II-VII for Triplet-Watershed use ensemble watershed classifier. However, ensemble watershed exploits the connectivity patterns in the data. We now try to understand how well watershed representations compare with representations obtained by other approaches. Qualitatively, we use the TSNE [START_REF] Van Der Maaten | Visualizing data using t-sne[END_REF] plots as in Figure 7. Note that there does not exist any major differences except that within a class, A2S2K and SSRN have "clumps" points while Triplet-Watershed has a uniform density. Quantitatively we use the mean average precision (MAP) over all points. The computation procedure is as follows:

1) Given a data point x k , we order all other data points {y i } i using an inverse function of distance, exp(-distance). 2) Labels are assigned based on whether the points {y i } i belong to the same class as x k or not with class label 1 and 0 respectively. 3) Average precision (AP) computes the area under the precision-recall curve. 4) The AP scores are averages over all points {x k } k to obtain the MAP score. This procedure is as suggested in [START_REF] Musgrave | A metric learning reality check[END_REF] to evaluate representations. The results are shown in Table IX. Observe that the watershed outperforms the current state-of-art techniques.

D. Ablation Study

We now study the importance of various aspects of Triplet-Watershed for the accuracies.

1) Accuracy vs % training data: Figure 6 shows the plots of overall accuracy (OA) vs % training data. For IP and UP datasets, it can be seen that Triplet-Watershed outperforms other approaches even at small sizes of training data. This can be attributed to the fact that the watershed classifier propagates the information to unlabelled nodes, which is in turn used for training. (See Figure 4). For optimal performance, the watershed classifier requires at least one labelled node per component. In cases of very small training data and many components, Triplet-Watershed does not perform well. This is the case for the KSC dataset at 2% and 3% training data, as shown in Figure 6. Detailed analysis of the underperformance of Triplet-Watershed at low train sizes for Kennedy Space Center (KSC) and University of Houston (UH) dataset can be found in appendix B.

2) Replacing Watershed With Other Classifiers: To illustrate the importance of the watershed classifier in the training pipeline (Figure 4), we replace it with Random Forest (RF) classifier and K-Nearest Neighbors (KNN) classifier with k = 5, referring to these as Triplet-Random Forest and Triplet-K-Nearest-Neighbors. The results are shown in Table VIII. Firstly observe the dramatic improvement of accuracies with respect to vanilla classifiers (Tables II, III, IV). Also, observe that Triplet-Watershed outperforms the other techniques. This, once again, is attributed to the fact that watershed exploits the observation that classes in the groundtruth consist of connected components.

Remark: Both Random Forest (RF) and K-Nearest Neighbors (KNN) are considered for this experiment since the labels generated by these are not differentiable with respect to the input representations. This property is shared with the watershed classifier. However, Multi-layered perceptron (MLP) and Support vector machines (SVM) obtain labels using specific costs and are indeed differentiable with respect to their input representations. Hence, the latter approaches are not considered for comparison.

3) Accuracy vs embed dimension: Table X shows the effect of embedding dimension on accuracy. Observe that there does not exist any significant trend with respect to the embedding dimension. We use 64 as the default embedding dimension.

4) Accuracy Vs Patch Size: Recall that one of the hyperparameter of the approach is patch size -The size of the window around the pixel. Table XII shows the results obtained by varying the patch sizes across different datasets. Observe that larger window size implies more information for inference and hence scope for better inference. Thus, as a rule of thumb, larger window size obtain better results. But, it also implies higher computational requirement. However in several cases increasing the window size beyond a threshold would not lead to significant improvements. For example, in table XII IN and UP datasets do not show much improvement with larger window sizes. UH dataset improves with larger window size, but no significant improvement is obtained by increasing the window size from 11 to 13.

V. CONCLUSION

In this article, we proposed a novel approach to train for the watershed classifier. We refer to this as Triplet-Watershed. We show that the watershed classifier exploits the connectivity patterns in the datasets. This leads to huge performance gains compared to other approaches which use simple softmax classifier. We prove this empirically by comparing Triplet-Watershed with existing state-of-art deep learning approaches such as A2S2K [START_REF] Roy | Attention-based adaptive spectral-spatial kernel resnet for hyperspectral image classification[END_REF], SSRN [START_REF] Zhong | Spectral-spatial residual network for hyperspectral image classification: A 3-d deep learning framework[END_REF] and also classic approaches -RF [START_REF] Ham | Investigation of the random forest framework for classification of hyperspectral data[END_REF] and SVM [START_REF] Melgani | Classification of hyperspectral remote sensing images with support vector machines[END_REF]. We also compare the current technique with semi-supervised approaches such as S2GCN [START_REF] Qin | Spectral-spatial graph convolutional networks for semisupervised hyperspectral image classification[END_REF] and DC-GCN [START_REF] Zeng | Semi-supervised hyperspectral image classification with graph clustering convolutional networks[END_REF]. In each case, we achieve better accuracy while using a quarter of the parameters of the previous state-of-theart approaches.

APPENDIX A CONSTRUCTING THE GRAPH ON HSI

Here, we illustrate the process of constructing the graph on HSI dataset. Figure 12a considers a simple hypothetical image with the groundtruth classes as shown. Figure 12b shows the graph obtained using the following steps:

(i) Firstly, only points with groundtruth available, i.e {labels = 0} are considered. This can be trivially extended to other points depending on requirement. These points constitute the vertex set. (ii) The edge set is obtained by taking the union of -(a) 4 adjacency edges denoted by colour black and (b) "other" edges which span across components. These "other" edges are constructed using Euclidean Minimum Spanning Tree (EMST) for IP, UP, and KSC datasets. For UH dataset these edges are constructed using K-Neighbors graph with k=50. The two main principles for selecting the graph are -(i) We require each label-induced subgraph 4 such that the number of connected components are as few as possible and (ii) We also require the number of edges to be as few as possible. Both these act against each other and the right combination is obtained through trial and error.

APPENDIX B TRIPLET-WATERSHED AT SMALL TRAIN SIZES

Note that from figure 6, at low train sizes (2% and 3%, Triplet-Watershed performs better than A2S2KResNet and SSRN on IP, UP datasets. While, Triplet-Watershed is slightly inferior to A2S2KResNet and SSRN on KSC, UH datasets. In this section we analyze and explain this in detail.

There are two main reasons for the different behaviours of Triplet-Watershed at high (10%) and low (2%, 3%) train sizes -(i) At low train sizes, not all components within the data are covered and (ii) There aren't enough points near the boundary to allow for better separation. To understand this better, we perform a post-hoc analysis on UH and IP datasets.

For each label, (both groundtruth and prediction) we consider the subgraph induced by the vertices 5 of the given label. In this subgraph, we count the size of each connected component. Table XIII shows these values for UH/IP datasets, for groundtruth labels, and labels predicted for 10% and 2%. Both the above phenomenon can be observed in table XIII.

(i) Observe that for several classes in UH dataset, there exists small components for UH (example : class 1 with 178 points) which are not represented when only 2% of the data is considered for training. While, this happens for IP dataset (class 5, 147 points), it is relatively low in magnitude. This partly explains why we achieve better 4 Given a graph G = (V, E, W), the subgraph induces by a subset of vertices V ⊂ V is given by G = (V , E , W). Here E = {(ex, ey) ∈ E such that ex, ey ∈ V } 5 See footnote 4.

results at 10% train size. And also why IP performs better at 2% train size comparatively. (ii) The other main reason is -Boundaries are not sufficiently represented at 2% train size. As an example of this, consider class 13 for UH dataset which has a single component 469 points. At 2% train size, this component splits into small components. However, at 10% train size, the component is preserved. This is due to insufficient boundary information at 2% train size. Moreover, as can be intuitively expected, this happens when there is a relatively high standard deviation within the class. The above observations explain the behaviour of Triplet-Watershed at low train sizes.

Fig. 3 .

 3 Fig. 3. Illustrating the watershed classifier. Let (a) denote the edge-weighted. The two distinct colours indicate two different classes. No colour indicates that the vertex is not yet labelled. (b) denotes the graph obtained by adding edges with weight 1. Each vertex is given a label accordingly. (c) denotes the graph obtained by adding the edges with weight 2 and Propagating the labels. Observe that all the points are now labelled and hence the algorithm terminates.

Fig. 4 .

 4 Fig. 4. Schematic of learning representations for the watershed classifier.Using a generic neural network we obtain the representation for the dataset. These representations are fed into the watershed classifier to obtain the labels using the seeds. Using the labels and the representation, we use triplet loss to compute the loss and also for obtaining the parameters for the neural network. Observe that the watershed classifier needs to be computed at every epoch.

Fig. 5 .

 5 Fig. 5. Neural Network architecture used for obtaining the representations.The architecture is composed of 3 convolution layers followed by a fully connected layer to get the representation. Batch normalization is performed before each layer for efficient training. The number of parameters is 87K.

Fig. 6 .

 6 Fig. 6. Overall Accuracy (OA) vs % training data. We observe that Triplet-Watershed outperforms other approaches even at small sizes of training data for Indianpines and University of Pavia Dataset. IP denotes Indianpines dataset, UP denotes University of Pavia dataset, KSC denotes Kennedy Space Centre dataset and UH denotes University of Houston dataset.

 Fig. 7. T-SNE Scatterplot of the various representations obtained. All approaches provide well-separated clusters, relatively compact. Table IX however shows that triplet-watershed achieves a better precision (MAP score). IP denotes Indianpines dataset, UP denotes University of Pavia dataset, KSC denotes Kennedy Space Centre dataset and UH denotes University of Houston dataset.

Fig. 8 .

 8 Fig. 8. Classification maps for Indianpines (IP) dataset. The main differences with respect to groundtruth have been highlighted. As one can observe, the number of errors of Triplet-Watershed is small compared to SSRN and A2S2K.

Fig. 9 .Fig. 10 .

 910 Fig. 9. Classification maps for Kennedy Space Centre (KSC) dataset.The main differences with respect to groundtruth have been highlighted. As one can observe, the number of errors of Triplet-Watershed is small compared to SSRN and A2S2K.

Fig. 11 .

 11 Fig. 11. Classification maps for University of Houston (UH) dataset.The main differences with respect to groundtruth have been highlighted. As one can observe, the number of errors of Triplet-Watershed is small compared to SSRN and A2S2K.

Fig. 12 .

 12 Fig. 12. Constructing the graph on HSI data. (a) shows a simple toy HSI data with groundtruth classes. Note that class 0 implies that groundtruth is not available. (b) illustrates the graph constructed by considering only points with {labels = 0} as vertices. 4-adjacency edges (black) along with other edges (red) spanning across components are considered. These "other" edges are constructed using techniques such as Euclidean Minimum Spanning Tree (EMST) or K-Neighbors graph.

TABLE I OVERALL

 I ACCURACY (OA) VS NUMBER OF PARAMETERS. OBSERVE THAT THE PROPOSED METHOD HAS VERY LESS NUMBER OF PARAMETERS BUT OUTPERFORMS THE CURRENT STATE-OF-THE-ART APPROACHES. IP INDICATES INDIAN PINES DATASET. UP DENOTES UNIVERSITY OF PAVIA DATASET AND KSC INDICATES THE KENNEDY SPACE CENTRE DATASET.

		# params	IP	UP	KSC
	A2S2K [28]	370.7K	98.66 99.85 99.34
	SSRN [26]	364.1K	98.38	99.77	99.29
	ENL-FCN [50]	113.9K	96.15 99.76 99.25
	ResNet34 [51]	21.9M	92.44	97.38	79.73
	Triplet-Watershed	87.6K	99.57 99.98 99.72

•

 Indian Pines (IP) : Gathered by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS[START_REF] Green | Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (aviris)[END_REF]) sensor over the test site in North-western Indiana. This data set contains 224 spectral bands within a wavelength range of 0.4 to 2.5 × 10 -6 meters. The 24 bands covering region of water absorption are removed. The image spatial dimension is 145 × 145, and there are 16 classes not all mutually exclusive.

• Kennedy Space Centre (KSC) : The Kennedy Space Center (KSC) data set was gathered on

TABLE II OVERALL

 II ACCURACY (OA), AVERAGE ACCURACY (AA), AND KAPPA(κ) VALUES ON INDIANPINES (IP) DATASET USING 10% OF SAMPLES FOR TRAINING.

					Classic approaches	Deep-Learning approaches
	Class Train	Test	RF [64]	SVM [2]	Ensemble-Watershed [49]	SSRN [26]	A2S2K [28]	Triplet-Watershed
	1	4	42	28.46 ± 0.061	51.22 ± 0.190	41.43 ± 0.2079	57.78 ± 0.423	97.56 ± 0.034	100.00 ± 0.0000
	2	142	1286	56.63 ± 0.024	81.22 ± 0.037	81.07 ± 0.0202	98.37 ± 0.012	98.62 ± 0.010	98.62 ± 0.0151
	3	83		48.42 ± 0.013	65.82 ± 0.013	71.49 ± 0.0250	97.47 ± 0.010	98.58 ± 0.006	100.00 ± 0.0000
	4	23		33.49 ± 0.025	57.75 ± 0.041	45.70 ± 0.0327	99.12 ± 0.010	98.29 ± 0.014	100.00 ± 0.0000
	5	48		85.21 ± 0.025	90.04 ± 0.014	92.78 ± 0.0286	97.79 ± 0.013	99.02 ± 0.003	97.98 ± 0.0254
	6	73		92.64 ± 0.027	96.25 ± 0.006	98.57 ± 0.0033	98.50 ± 0.010	98.71 ± 0.010	99.97 ± 0.0006
	7	2	26	2.67 ± 0.038	73.33 ± 0.019	99.17 ± 0.0167	66.67 ± 0.471	93.10 ± 0.097	100.00 ± 0.0000
	8	47		97.67 ± 0.015	97.98 ± 0.006	98.14 ± 0.0075	96.45 ± 0.029	98.83 ± 0.016	100.00 ± 0.0000
	9	2	18	9.26 ± 0.094	50.00 ± 0.045	37.50 ± 0.1854	56.25 ± 0.418	74.26 ± 0.038	100.00 ± 0.0000
	10	97		60.91 ± 0.047	73.87 ± 0.018	85.81 ± 0.0227	98.33 ± 0.009	98.21 ± 0.016	99.75 ± 0.0040
	11	245	2210	87.88 ± 0.019	82.90 ± 0.012	86.68 ± 0.0105	99.08 ± 0.005	99.09 ± 0.001	99.61 ± 0.0054
	12	59		41.26 ± 0.030	74.91 ± 0.043	69.51 ± 0.0182	98.46 ± 0.009	98.37 ± 0.013	99.89 ± 0.0022
	13	20		90.09 ± 0.040	96.94 ± 0.021	99.35 ± 0.0079	100.0 ± 0.000	99.80 ± 0.002	100.00 ± 0.0000
	14	126	1139	95.46 ± 0.014	93.82 ± 0.010	92.59 ± 0.0085	98.63 ± 0.010	99.22 ± 0.007	100.00 ± 0.0000
	15	38		41.11 ± 0.029	60.42 ± 0.044	54.48 ± 0.0396	99.24 ± 0.005	97.86 ± 0.013	100.00 ± 0.0000
	16	9	84	79.37 ± 0.030	91.27 ± 0.054	79.29 ± 0.1163	95.63 ± 0.062	95.93 ± 0.057	98.10 ± 0.0267
	OA	1018	9231	72.98 ± 0.006	82.00 ± 0.006	83.75 ± 0.0076	98.38 ± 0.004	98.66 ± 0.004	99.57 ± 0.0026
	AA			59.41 ± 0.005	77.36 ± 0.019	77.10 ± 0.0228	91.11 ± 0.080	96.59 ± 0.003	99.62 ± 0.0029
	κ			0.6862 ± 0.007 0.7941 ± 0.007	0.8143 ± 0.0086	0.9815 ± 0.005 0.9848 ± 0.005	0.9951 ± 0.0030
						TABLE III			
	OVERALL ACCURACY (OA), AVERAGE ACCURACY (AA), AND KAPPA(κ) VALUES ON UNIVERSITY OF PAVIA (UP) DATASET USING 10% OF SAMPLES
						FOR TRAINING.			
					Classic approaches	Deep-Learning approaches
	Class	Train	Test	RF [64]	SVM [2]	Ensemble-Watershed [49]	SSRN [26]	A2S2K [28]	Triplet-Watershed
	1	663		91.11 ± 0.007	94.30 ± 0.008	94.34 ± 0.0032	99.85 ± 0.001	99.91 ± 0.000	100.0 ± 0.000
	2	1864	16785	98.11 ± 0.003	97.65 ± 0.002	95.24 ± 0.0051	99.98 ± 0.000	99.99 ± 0.000	100.0 ± 0.000
	3	209		67.71 ± 0.014	81.26 ± 0.018	69.39 ± 0.0151	99.68 ± 0.003	99.88 ± 0.001	99.8 ± 0.004
	4	306		88.20 ± 0.006	94.63 ± 0.004	78.69 ± 0.0058	99.92 ± 0.001	99.95 ± 0.001	99.96 ± 0.001
	5	134		98.93 ± 0.002	99.20 ± 0.002	87.46 ± 0.0110	99.94 ± 0.000	100.0 ± 0.000	100.0 ± 0.000
	6	502		72.14 ± 0,022	90.58 ± 0,008	61.37 ± 0.0111	99.95 ± 0.001	99.91 ± 0,001	99.99 ± 0.001
	7	133		75.69 ± 0.017	85.71 ± 0.011	75.49 ± 0.0295	100.0 ± 0.000	100.0 ± 0.000	100.0 ± 0.000
	8	368		89.64 ± 0.013	88.20 ± 0.003	74.65 ± 0.0044	98.28 ± 0.015	98.88 ± 0.006	99.97 ± 0.001
	9	94	853	99.77 ± 0.002	99.84 ± 0.001	99.77 ± 0.0015	99.39 ± 0.003	99.78 ± 0.003	100.0 ± 0.000
	OA	4273	38503	90.41 ± 0.001	94.19 ± 0.002	86.13 ± 0.0023	99.77 ± 0.001	99.85 ± 0.001	99.98 ± 0.001
	AA			86.81 ± 0.002	92.38 ± 0.003	81.82 ± 0.0039	99.66 ± 0.001	99.81 ± 0.001	99.97 ± 0.001
	κ			0.8710 ± 0.002 0.9229 ± 0.002	0.8136 ± 0.0030	0.9969 ± 0.001 0.9981 ± 0.001	0.9998 ± 0.001

TABLE V OVERALL

 V ACCURACY (OA), AVERAGE ACCURACY (AA), AND KAPPA(κ) VALUES ON UNIVERSITY OF HOUSTON (UH) DATASET USING 10% OF SAMPLES FOR TRAINING.

					Classic approaches	Deep-Learning approaches
	Class	Train	Test	RF [64]	SVM [2]	Ensemble-Watershed [49]	SSRN [26]	A2S2K [28]	Triplet-Watershed
	1	125	1126	82.52 ± 0.0000	82.33 ± 0.0000	93.68 ± 0.0279	99.66 ± 0.0012	99.79 ± 0.0021	98.99 ± 0.0080
	2	125	1129	83.30 ± 0.0011	83.36 ± 0.0000	81.97 ± 0.0191	99.96 ± 0.0004	100.0 ± 0.0000	100.0 ± 0.0000
	3	69	628	97.62 ± 0.0000	99.80 ± 0.0000	99.90 ± 0.0013	100.0 ± 0.0000 100.0 ± 0.0000	100.0 ± 00000
	4	124	1120	91.41 ± 0.0027	98.95 ± 0.0000	74.27 ± 0.0240	99.66 ± 0.0046	99.17 ± 0.0095	100.0 ± 0.0000
	5	124	1118	96.49 ± 0.0020	98.76 ± 0.0000	82.15 ± 0.0214	100.0 ± 0.0000 100.0 ± 0.0000	100.0 ± 00000
	6	32	293	99.30 ± 0.0000	97.90 ± 0.0000	92.22 ± 0.0613	100.0 ± 0.0000	100.0 ± 0.0000	99.43 ± 0.0080
	7	126	1142	75.09 ± 0.0020	77.42 ± 0.0000	69.63 ± 0.0272	99.10 ± 0.0119	98.98 ± 0.0088	99.65 ± 0.0050
	8	124	1120	33.04 ± 0.0020	60.30 ± 0.0000	78.25 ± 0.0242	99.38 ± 0.0016	99.72 ± 0.0038	96.25 ± 0.0338
	9	125	1127	69.31 ± 0.0042	76.77 ± 0.0000	52.56 ± 0.0159	99.30 ± 0.0052	98.47 ± 0.0101	97.96 ± 0.0145
	10	122	1105	44.11 ± 0.0034	61.29 ± 0.0000	63.66 ± 0.0207	94.85 ± 0.0152	94.90 ± 0.0178	100.0 ± 0.0000
	11	123	1112	70.20 ± 0.0020	80.55 ± 0.0000	56.83 ± 0.0379	99.23 ± 0.0075	99.42 ± 0.0040	99.07 ± 0.0131
	12	123	1110	54.81 ± 0.0036	79.92 ± 0.0000	54.77 ± 0.0319	98.76 ± 0.0028	99.46 ± 0.0033	99.64 ± 0.0000
	13	46	423	60.23 ± 0.0129	70.87 ± 0.0000	06.52 ± 0.0130	99.90 ± 0.0013	99.01 ± 0.0101	98.74 ± 0.0089
	14	42	386	99.32 ± 0.0019	100.0 ± 0.0000	94.15 ± 0.0089	98.63 ± 0.0193	100.0 ± 0.0000	100.0 ± 0.0000
	15	66	594	97.25 ± 0.0017	96.40 ± 0.0000	98.55 ± 0.0051	100.0 ± 0.0000 100.0 ± 0.0000	100.0 ± 00000
	OA			73.02 ± 0.0004	81.86 ± 0.0000	72.50 ± 0.0030	99.10 ± 0.0013	99.12 ± 0.0030	99.25 ± 0.0039
	AA			76.93 ± 0.0004	84.31 ± 0.0000	73.27 ± 0.0046	99.23 ± 0.0016	99.26 ± 0.0020	99.32 ± 0.0031
	Kappa			71.01 ± 0.0003	80.42 ± 0.0000	70.22 ± 0.0033	99.03 ± 0.0015	99.05 ± 0.0033	99.19 ± 0.0042

TABLE VI OVERALL

 VI ACCURACY (OA), AVERAGE ACCURACY (AA), AND KAPPA(κ) VALUES ON INDIANPINES (IP) DATASET USING SEMI-SUPERVISED

			APPROACHES.		
	Class Train	Test	S2GCN [33]	SSRN [26]	DC-GCN [34]	Triplet-Watershed
	1	16	100.0 ± 0.0000	93.24 ± 0.0263	100.00 ± 0.0000	100.00 ± 0.0000
	2	1398	84.43 ± 0.0250	76.63 ± 0.0596	91.28 ± 0.0360	91.69 ± 0.0194
	3	800	82.87 ± 0.0553	68.78 ± 0.0753	92.88 ± 0.0396	95.25 ± 0.0610
	4	207	93.08 ± 0.0195	87.64 ± 0.0249	98.11 ± 0.0151	100.00 ± 0.0000
	5	453	97.13 ± 0.0134	86.72 ± 0.0154	95.54 ± 0.0339	98.63 ± 0.0171
	6	700	97.29 ± 0.0127	92.05 ± 0.0182	98.67 ± 0.0104	100.00 ± 0.0000
	7	13	92.31 ± 0.0000	95.66 ± 0.0051	100.00 ± 0.0000	100.00 ± 0.0000
	8	448	99.03 ± 0.0093	95.90 ± 0.0297	100.00 ± 0.0000	100.00 ± 0.0000
	9	5	100.00 ± 0.0000 100.00 ± 0.0000 100.00 ± 0.0000	100.00 ± 0.0000
	10	942	93.77 ± 0.0373	82.42 ± 0.0324	91.91 ± 0.0378	98.22 ± 0.0232
	11	2425	84.98 ± 0.0282	82.23 ± 0.0288	91.79 ± 0.0379	94.43 ± 0.0229
	12	563	80.05 ± 0.0517	69.09 ± 0.0436	90.17 ± 0.0554	99.08 ± 0.0185
	13	175	99.43 ± 0.0000	95.78 ± 0.0075	99.65 ± 0.0027	100.00 ± 0.0000
	14	1235	96.73 ± 0.0092	86.52 ± 0.0243	99.73 ± 0.0066	99.87 ± 0.0026
	15	356	86.80 ± 0.0342	73.12 ± 0.0528	99.94 ± 0.0016	100.00 ± 0.0000
	16	63	100.00 ± 0.0000	86.21 ± 0.0130	100.00 ± 0.0000	99.37 ± 0.0078
	OA		89.4 ± 0.0108	88.34 ± 0.0173	94.65 ± 0.1210	96.74 ± 0.0194
	AA		92.9 ± 0.0104	85.75 ± 0.0069	96.85 ± 0.0040	98.53 ± 0.0098
	κ		0.880 ± 0.012	0.866 ± 0.019	0.944 ± 0.014	0.9627 ± 0.0221
			TABLE VII		
	OVERALL ACCURACY (OA), AVERAGE ACCURACY (AA), AND KAPPA(κ) VALUES ON UNIVERSITY OF PAVIA (UP) DATASET USING SEMI-SUPERVISED
			APPROACHES.		
	Class Train	Test	S2GCN [33]	SSRN [26]	DC-GCN [34]	Triplet-Watershed
	1	6601	92.78 ± 0.0379	98.80 ± 0.0110	92.85 ± 0.0351	99.56 ± 0.0088
	2	18619	87.06 ± 0.0447	98.45 ± 0.0054	97.53 ± 0.0140	100.00 ± 0.0000
	3	2069	87.97 ± 0.0477	77.05 ± 0.1024	97.94 ± 0.0118	99.85 ± 0.0084
	4	3034	90.85 ± 0.0094	83.02 ± 0.0907	94.57 ± 0.0109	99.99 ± 0.0003
	5	1315	100.00 ± 0.0000	99.96 ± 0.0009	99.49 ± 0.0068	100.00 ± 0.0000
	6	4999	88.69 ± 0.0264	87.03 ± 0.0626	98.57 ± 0.0278	99.99 ± 0.0001
	7	1300	98.88 ± 0.0108	83.92 ± 0.0897	100.00 ± 0.0000	100.00 ± 0.0000
	8	3652	89.97 ± 0.0328	88.41 ± 0.0463	96.00 ± 0.0277	92.15 ± 0.1560
	9	917	98.89 ± 0.0053	99.97 ± 0.0004	97.51 ± 0.0140	100.00 ± 0.0000
	OA		89.74 ± 0.0170	92.81 ± 0.0190	96.87 ± 0.0111	99.20 ± 0.0129
	AA		92.80 ± 0.0047	90.73 ± 0.0226	97.16 ± 0.0076	98.95 ± 0.0165
	κ		0.8665 ± 0.020	0.9059 ± 0.024	0.9677 ± 0.012	0.9894 ± 0.0170

TABLE XI RUN

 XI -TIMES (IN SECONDS) OF TRIPLET-WATERSHED AND OTHER APPROACHES. OBSERVE THAT THE RUNNING TIME OF TRIPLET-WATERSHED IS COMPARABLE TO OTHER APPROACHES.

		Time(s) Triplet-Watershed A2S2K [28] SSRN [26]
	IN	Train	520.56	829.23	779.33
		Test	3.77	10.55	11.44
	UP	Train	791.22	2582.31	1964.66
		Test	46.23	47.33	33.02
	KSC	Train	978.25	757.46	535.20
		Test	1.58	8.37	5.84
	UH	Train	1460.15	947.73	1145.38
		Test	8.74	11.55	7.85
	figures 8,9,10,11. High resolution stand-alone images can also
	be found in https://github.com/ac20/TripletWatershed Code/
	tree/main/img/classification maps.		

TABLE XIII SIZES

 XIII OF COMPONENTS OF LABEL-INDUCED SUBGRAPHS FOR DATASETS UH AND IP. THREE KINDS OF LABELS ARE CONSIDERED -GROUNDTRUTH, LABELS PREDICTED AT 2% AND 10%. ALSO, SHOWN ARE THE RELATIVE (TO MAXIMUM) STANDARD DEVIATIONS OF THE GROUNDTRUTH COMPONENTS.

			UH					IP		
	Label	Groundtruth	Rel. Stdev.	10%	2%	Label	Groundtruth	Rel. Stdev.	10%	2%

Accuracy on the training data excluding the seeds

Here we assume that there exists at least one seed per component

ACKNOWLEDGMENT

All the authors would like to thank the Associate-Editor, Editor-in-Chief and the anonymous reviewers for their valuable comments. AC would like to thank Indian Institute of Science for the Raman Fellowship and BITS-Pilani K K Birla Goa Campus for the support. SD would like to acknowledge the funding received from BPGC/RIG/2020-21/11-2020/01 (Research Initiation Grant provided by BITS-Pilani K K Birla Goa Campus). The work of B. S. D. Sagar was supported by the DST-ITPAR-Phase-IV project and the Technology Innovation Hub on Data Science, Big Data Analytics and Data Curation project sanctioned under the National Mission for the Interdisciplinary Cyber-Physical Systems respectively under the Grant numbers INT/Italy/ITPAR-IV/Telecommunication/2018, and NMICPS/006/MD/2020-21. The work of Laurent Najman is supported by Programme d'Investissements d'Avenir (LabEx BEZOUT ANR-10-LABX-58).