
HAL Id: hal-03171597
https://hal.science/hal-03171597v1

Preprint submitted on 17 Mar 2021 (v1), last revised 30 Aug 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Triplet-Watershed for Hyperspectral Image
Classification

Aditya Challa, Sravan Danda, B S Daya Sagar, Laurent Najman

To cite this version:
Aditya Challa, Sravan Danda, B S Daya Sagar, Laurent Najman. Triplet-Watershed for Hyperspectral
Image Classification. 2021. �hal-03171597v1�

https://hal.science/hal-03171597v1
https://hal.archives-ouvertes.fr

1

Triplet-Watershed for Hyperspectral Image
Classification

Aditya Challa, Sravan Danda, Member, IEEE, B.S.Daya Sagar, Senior Member, IEEE,
and Laurent Najman, Senior Member, IEEE

Abstract—Hyperspectral images (HSI) consist of rich spatial
and spectral information, which can potentially be used for
several applications. However, noise, band correlations and high
dimensionality restrict the applicability of such data. This is
recently addressed using creative deep learning network archi-
tectures such as ResNet, SSRN, and A2S2K. However, the last
layer, i.e the classification layer, remains unchanged and is taken
to be the softmax classifier. In this article, we propose to use a
watershed classifier. Watershed classifier extends the watershed
operator from Mathematical Morphology for classification. In its
vanilla form, the watershed classifier does not have any trainable
parameters. In this article, we propose a novel approach to train
deep learning networks to obtain representations suitable for
the watershed classifier. The watershed classifier exploits the
connectivity patterns, a characteristic of HSI datasets, for better
inference. We show that exploiting such characteristics allows the
Triplet-Watershed to achieve state-of-art results. These results
are validated on Indianpines (IP), University of Pavia (UP), and
Kennedy Space Center (KSC) datasets, relying on simple convnet
architecture using a quarter of parameters compared to previous
state-of-the-art networks.

Index Terms—Hyperspectral Imaging, Watershed, Triplet
Loss, Deep Learning, Classification

I. INTRODUCTION

HYPERSPECTRAL imaging has several applications
ranging across different domains [1]. It has seen appli-

cations in earth observations [2] land cover classification [3]
etc. Hyperspectral datasets have rich information both spatially
and spectrally. However, spectral and spatial correlations make
a lot of such information redundant. One can obtain efficient
representations using techniques such as band selection [4], [5]
subspace learning [6], [7] multi-modal learning [8] low-rank
representation [9].

Large number of bands, spatial and spectral feature correla-
tions and curse of dimensionality make Hyperspectral image
classification challenging. Conventional approaches use hand
crafted features with techniques such as scale-invariant feature
transform (SIFT) [10] sparse representation [11] principal
component analysis [12] independent component analysis [13].

Aditya Challa is with the Department of Computer Science and
Automation, Indian Institute of Science, Bengaluru, India, 5600012 e-
mail:aditya.challa.20@gmail.com.

Sravan Danda is with APPCAIR, Department of Computer Science and In-
formation Systems, BITS Pilani K K Birla Goa Campus, NH-17B, Zuarinagar,
Goa 403726. email:sravan8809@gmail.com

B. S. Daya Sagar is with Systems Science and Informatics Unit, Indian Sta-
tistical Institute, Bengaluru, Karnataka, 560059 email: bsdsagar@yahoo.co.uk

Laurent Najman is with Université Gustave Eiffel, LIGM, Equipe A3SI,
ESIEE, France. email:laurent.najman@esiee.fr

Classic approaches to classification such as support vector ma-
chines (SVM) [2], neural networks [14] and logistic regression
[15] aimed at exploiting the spectral signatures alone. Using
spatial features have been extremely useful in obtaining better
representations and higher classification accuracies [16]–[18].
Multiple kernel learning [19]–[21] use hand-designed ker-
nels to exploit the spectral-spatial interactions. Deep learning
approaches, especially CNNs, have been adapted to exploit
the spectral-spatial information. [22] proposes a 3D-CNN
feature extractor to obtain combined spectral-spatial features.
[23] adapts CNN to a two-branch architecture to extract
joint spectral-spatial features. [24] used 3D volumes to ex-
tract spectral-spatial features, which may be improved using
multi-scale approaches [25]. Spectral-spatial residual network
(SSRN) proposed in [26] uses residual networks to remove
the declining accuracy phenomenon. Residual Spectral–Spatial
Attention Networks (RSSAN) [27] exploit the concept of
attention to improve on SSRNs. [28] proposes Attention-
Based Adaptive Spectral-Spatial Kernel Residual networks
(A2S2K) by exploiting adaptive kernels. [29] uses graph
convolution networks and [30] uses capsule networks. Most of
these approaches tackle the problem of Hyperspectral image
classification by considering novel architectures. In this article,
we take a different route to propose a novel classifier based
on the watershed operator.

Watershed operator from Mathematical Morphology [31],
[32] has been widely used for image segmentation, and,
in particular, for Hyperspectral images [33], [34]. In [34],
the authors combine (by majority voting) several watersheds
computed on gradients of different bands. They observe that
class-specific accuracies were improved by using the spatial
information in the classification for almost all the classes, a
result that we are going to confirm in the present paper.

In [35] the watershed operator is adapted to edge-weighted
graphs. It is shown there that the watershed is closely related
to the minimum spanning tree (MST) of the graph. Watersheds
have also been highly successful as a post-processing tool
for image segmentation [36]–[38]. In [39] the authors learn
a representation suitable for MST-based classification. In [40]
the authors learn a representation suitable to mutex-watershed,
a different version of the watershed.

Departing from images, in our previous work [41] we have
proposed to use the watershed operator as a generic classi-
fier. We showed that it obtains a maximum margin partition
similar to the support vector machine. We further showed that
ensemble watersheds obtain comparable performance to other
classifiers such as random forests. In this article we propose a

2

TABLE I
OVERALL ACCURACY (OA) VS NUMBER OF PARAMETERS. OBSERVE

THAT THE PROPOSED METHOD HAS VERY LESS NUMBER OF PARAMETERS
BUT OUTPERFORMS THE CURRENT STATE-OF-THE-ART APPROACHES. IP
INDICATES INDIAN PINES DATASET. UP DENOTES UNIVERSITY OF PAVIA
DATASET AND KSC INDICATES THE KENNEDY SPACE CENTRE DATASET.

params IP UP KSC

A2S2K [28] 370.7K 98.66 99.85 99.34
SSRN [26] 364.1K 98.38 99.77 99.29
ENL-FCN [42] 113.9K 96.15 99.76 99.25
ResNet34 [43] 21.9M 92.44 97.38 79.73

Triplet-Watershed 87.6K 99.57 99.98 99.72

novel approach, simple and efficient, called Triplet-Watershed
to learn representations (also known as embeddings) suitable
for the watershed classifier.

Why watershed classifier? Previous work on hyperspectral
image classification, as discussed above, establish that one
must use both spatial and spectral aspects to obtain good
classifiers. They achieve this with creative approaches to
design neural networks such as adaptive kernels, attention
mechanism, etc. However, most of these still use conventional
softmax classifier. The watershed classifier naturally uses
spatial information for inference. Thus, it allows us to use
simpler networks for representation. Table I shows the overall
accuracy scores obtained by our approach and other state of
art methods. It also shows the number of parameters used.
Observe that Triplet-Watershed parameters are just 25% of
those of the current state-of-art (A2S2K) approach.

The main contributions of this article are the following.
(i) We propose a novel approach, namely the Triplet-

Watershed, to learn a representation suitable to the wa-
tershed classifier. This representation is referred to as
watershed representations in the rest of the article.

(ii) The Triplet-Watershed achieves state-of-art results on the
hyperspectral datasets with very simple networks, using
much fewer parameters than the previous state-of-the-art
approaches.

(iii) The framework used here to obtain representations is not
restricted to watershed classifiers. It can be extended to
use with other classifiers such as random forest or k-
nearest neighbours as well, although watershed results
outperform other classifiers on our datasets.

(iv) The main insight of our paper is that enforcing spatial
connectivity (achieved thanks to the watershed classifier)
during the training is a relevant constraint for hyperspec-
tral classification.

Overview: Section II reviews the watershed classifier and
the required terminology for the rest of the article. In sec-
tion III we design the neural net (NN) and the training proce-
dure to learn watershed representations. Section IV provides
empirical analysis.

II. WATERSHED CLASSIFIER

The watershed classifier is defined on an edge-weighted
graph. We follow the exposition as given in [41]. G =
(V,E,W) denotes the edge-weighted graph. Here V denotes

M
argin

Fig. 1. Illustration of maximum margin for support vector machines (SVM)
[41]. The key observation is - The margin is defined as the minimum distance
between the training point labeled 0 and what would be labeled 1 after
classification. And vice versa. The aim of the (linear) SVM classifier is to
obtain a decision boundary that maximizes the margin. This can be extended
to obtain a maximum-margin partition on an edge-weighted graph using (2),
a solution of which is provided by the watershed classifier.

the set of vertices, E denotes the set of edges which is a subset
of V ×V and W : E → R+ denotes the edge weight assigned
to each edge. We assume that the edge weights are all positive
in this article.

The (two-class) classification problem on the edge-weighted
graph is stated as - Let X0, X1 ⊂ V denote the labeled subset
of vertices labeled 0 and 1 respectively. Classification problem
requires a partition of V = M0∪M1 with M0∩M1 = ∅. With
an additional constraint that X0 ⊂ M0 and X1 ⊂ M1. Here
M0 denotes all the vertices labeled 0 after classification and
M1 denotes all the vertices labeled 1. We also assume there
exists a dissimilarity measure ρ(x, y) between two vertices
x, y ∈ V . This measure extends to subsets as

ρ(X,Y) = min
x∈X,y∈Y

ρ(x, y) (1)

where X,Y are arbitrary subsets of V . Observe that there exist
several partitions of V = M0 ∪M1 which satisfy the above
conditions. Of these partitions, we only use the Maximum
Margin Partitions, i.e the partitions which maximize

min{ρ(X0,M1), ρ(X1,M0)} (2)

This follows from the maximum margin principle of support
vector machines (SVM). From figure 1, a key observation can
be made - The margin for the SVM is the minimum distance
between training point labeled 0 and what would be labeled 1
after classification. And vice versa. Linear SVM tries to obtain
the boundary to maximize this margin. This can be extended
to the edge-weighted graphs using (2).

The Watershed Classifier is defined by considering the
dissimilarity measure to be

ρ(x, y) := ρmax(x, y) = min
π∈Π(x,y)

max
e∈π

W (e) (3)

where π denotes a specific path between x, y. Π denotes the
set of all possible paths. ρmax is sometimes referred to as pass
value.

3

−2 0 2 4 6
−2

0

2

4

6

(a)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

(c)

Fig. 2. Figure illustrating the watershed boundaries [41]. Observe that in all
these cases the boundary is in-between the classes. Also, it is in the middle of
the zero density (no points exist) regions. This maximizes the margin between
the boundaries and the classes. This is consistent with the maximum margin
principle of SVM.

If each edge-weight indicates the height of the correspond-
ing edge, then ρmax(x, y) indicates the minimum height one
has to climb to reach y from x. When the points belong to
a Euclidean space, the edge weight is given by Euclidean
distance. That is, the edge weight indicates the distance
between the points. Hence ρmax(x, y) would indicate the
minimum “jump” one has to make to reach y from x. Thus the
boundaries (in cases where the classes are separable) would
be along the low-density regions between classes. This is
illustrated in Figure 2. In all the cases, the boundary is between
the classes such that we have the maximum margin. This is
consistent with the maximum margin principle of SVM.

Given the edge-weighted graph, the Watershed algorithm
extends the Maximum Margin Partition principle to several
classes and obtains the labels using the UNIONFIND data
structure. This is described in algorithm 1.

Algorithm 1 Watershed clustering algorithm [41]
Input: edge-weighted graph G = (V,E,W). A subset of

labeled points Vl ⊂ V .
Output: Labels for each of the vertices L

1: Sort the edges E in increasing order w.r.t W .
2: Initialize the union-find data structure UF,
3: for e = (ex, ey) in sorted edge set E do
4: if both ex and ey are labeled then
5: do nothing
6: else
7: UF.union(ex, ey)
8: end if
9: end for

10: Label each vertex of the connected component using labels
Vl.

11: return Labels of the vertices.

Observe that step (10) is possible since each connected
component would have exactly one unique label. One can see
that watershed clustering is a semi-supervised algorithm, in
the sense that it propagates the known labels to points with
unknown label.

In practice, it has been observed that ensemble techniques
improve the robustness of watershed classifier. This is achieved
using only a subset of labeled points and only a subset of
features and taking the weighted average. Details can be found
in [41]. We refer to these two approaches as single watershed
classifier and ensemble-watershed classifier.

Neural NetworkData

R
epresentation

Watershed
Classifier

Labels

Triplet
Loss Loss

Seeds

Fig. 3. Schematic of learning representations for the watershed classifier.
Using a generic neural network we obtain the representation for the dataset.
These representations are fed into the watershed classifier to obtain the labels
using the seeds. Using the labels and the representation, we use triplet loss to
compute the loss and also for obtaining the parameters for the neural network.
Observe that the watershed classifier needs to be computed at every epoch.

III. LEARNING REPRESENTATIONS FOR THE WATERSHED
CLASSIFIER

The previous section described how one can obtain the
labels using the watershed classifier. In [41], it was shown
that this compares reasonably well to other classifiers such as
SVM, random forests, etc. However, observe that this classifier
has no trainable parameters. In this section, we develop an
approach to train a neural network for learning representations
suitable to the watershed classifier.

A key observation is - Watershed classifier reduces the
distances within each component and increases the distance
across components. This leads to the schematic in figure
3. First, we use a generic neural network to obtain the
representations for the dataset. These representations, along
with a subset of labeled points, are used with the watershed
classifier to obtain the labels. Using these labels, we obtain
a metric-learning loss to decide if two pixels are either in
the same component (same label) of the watershed or in two
different components (different label). More precisely, we use
triplet loss [44], [45] to learn the watershed representation.
For training, this cost is minimized using standard autograd
packages such as pytorch.

Why schematic in figure 3 learns watershed representations?
Triplet loss function uses {(anchor, postive, negative)} triplets
for computation of the cost. It compares an anchor-input to
a positive-input and a negative-input. The distance from the
anchor-input to the positive-input is minimized, and the dis-
tance from the anchor-input to the negative-input is maximized
using the cost

min{d(anchor, positive)− d(anchor, negative) + α}+ (4)

where {∗}+ denotes the function max{0, ∗}. By enforcing the
order of distances, triplet loss models embed in the way that
a pair of samples with the same label are smaller in distance
than those with different labels. When watershed labels are
used to obtain {(anchor, postive, negative)} triplets, this leads
to representations that are compatible with the watershed
classifier.
Remark (Supervised vs Semi-Supervised) : Recall that the
watershed classifier uses a subset of training points (referred
to as seeds) to obtain the labels of other training points.
These labels are then used to the train the network with
triplet loss. However, in the case of semi-supervised learning
unlabeled data is also available at train time. These points can
be labeled and be used to train the network. In this article we

4

use the semi-supervised approach, randomly choosing some
seeds for the watershed classifier that iteratively propagates
their labels to their most resembling neighbours, obtaining the
connected components. Hence the combination of watershed
clustering and triplet loss ensures that points with the most
resembling representations are indeed clustered together, in
the same connected component.

Training Dynamics

To summarize the entire training procedure of Triplet-
Watershed, at each epoch

1) Obtain the representations for all the points using the
neural network.

2) We consider a randomly chosen subset of labeled points
as seeds

3) Propagate the labels to all points using the watershed
classifier

4) Use the watershed labels to generate
{(anchor, positive, negative)} triplets

5) Use the triplet loss to train the neural network.
Few obvious questions follow - (a) When would the training
converge? (b) What is the steady-state obtained?

Note that the training would converge when there would
be no further improvement in the triplet-loss. At this stage,
the out-of-box score1 of the watershed classifier would not
improve as well. This implies that - all pairs of points with
the same labels and within the same component have similar
representation. Hence, we obtain 100% out-of-box accuracy2

with watershed classifier.
Remark (Overfitting): Traditional machine learning advices
against reaching 100% training accuracy as the models might
be overfitting. However, recent deep learning trends point to
the contrary. Several deep learning models can indeed fit
random data with 100% accuracy [46]. It is still an open
question to understand the generalization ability of these
models. However, few observations point to the inductive bias
[47] as the reason behind good generalization. In our case, the
inductive bias is dictated by the graph constructed from the
data (union of 4-adjacency and EMST edges).

Also, note that during training we use a single watershed
classifier. While, at inference, we use an ensemble-watershed
classifier. This ensures robustness during inference.

IV. EMPIRICAL ANALYSIS

In this section, we explore the application of the watershed
classifier to the hyperspectral image classification task. We use
the standard evaluation metrics for comparison:

(i) Overall Accuracy (OA): it measures the overall accuracy
across all samples, not considering the class imbalance.

(ii) Average Accuracy (AA): it measures the average accu-
racy across the classes and

(iii) Kappa Coefficient (κ): it measures how well the estimates
and groundtruth labels correspond, taking into account
agreement by random chance.

1Accuracy on the training data excluding the seeds
2Here we assume that there exists at least one seed per component

2D Conv
(1x1, 64)

2D Conv
(3x3, 32)

2D Conv
(3x3, 16)

R
epresentation

FC

Fig. 4. Neural Network architecture used. The architecture is composed of 3
convolution layers followed by a fully connected layer to get the representa-
tion. Batch normalization is performed before each layer for efficient training.
The number of parameters is 87K.

Three datasets are used for comparison.
• Indian Pines (IP) : Gathered by the Airborne Visi-

ble/Infrared Imaging Spectrometer (AVIRIS [48]) sensor
over the test site in North-western Indiana. This data set
contains 224 spectral bands within a wavelength range
of 0.4 to 2.5 × 10−6 meters. The 24 bands covering
region of water absorption are removed. The image spatial
dimension is 145× 145, and there are 16 classes not all
mutually exclusive.

• Kennedy Space Centre (KSC) : The Kennedy Space
Center (KSC) data set was gathered on March 23, 1996 by
AVIRIS [48] with wavelengths ranging from 0.4 to 2.5×
10−6 meters. 176 spectral bands are used for analysis
after removal of some low signal-to-noise ratio (SNR)
bands and water absorption bands. 13 classes representing
the various land cover types that occur in this environment
are defined for the site.

• University of Pavia (UP) : Acquired by the ROSIS [49]
sensor during a flight campaign over Pavia, northern Italy.
The number of spectral bands is 103 for Pavia University
and is of size 610×610 pixels. The ground truth identifies
9 classes.

We preprocess the datasets using principal component analysis
(PCA) [50] to obtain orthogonal components. We use 200
principle components for IP, 176 for KSC and 103 for UP
datasets. The train/test split is obtained randomly using 10%
for training and 90% for testing.

Graph Construction: Note that the watershed classifier
is defined on edge-weighted graphs. This is constructed as
follows
• The set of vertices V is taken to be the set of all the pixels

in the dataset ignoring the {labels = 0} class. Since, these
points do not have any groundtruth labels.

• The edge set E is taken to be the union of 4-adjacency
edges induced by the vertex set V (on the image) and
EMST (Euclidean Minimum Spanning Tree) edges on the
feature space. The EMST edges are obtained by consid-
ering the top 32 principal components and constructing
the MST on V using the EMST algorithm [51].

• Given a representation obtained thanks to the neural
network, the edge weights are computed using Euclidean
distance. This representation (and hence the edge weights
themselves) is updated at every epoch during training,
while the edge set itself is never updated.

In all the experiments we use the neural net architecture as
shown in figure 4. We consider a patch (11 × 11 × #Bands)
around each pixel of the input hyperspectral image, suitably

5

TABLE II
OA, AA, AND κ VALUES ON IP DATASET USING 10% OF SAMPLES FOR TRAINING

Classic approaches Deep-Learning approaches

Class Train Test RF [52] SVM [2] Ensemble-Watershed SSRN [26] A2S2K [28] Triplet-Watershed

1 4 42 28.46 ± 0.061 51.22 ± 0.190 41.43 ± 0.2079 57.78 ± 0.423 97.56 ± 0.034 100.00 ± 0.0000
2 142 1286 56.63 ± 0.024 81.22 ± 0.037 81.07 ± 0.0202 98.37 ± 0.012 98.62 ± 0.010 98.62 ± 0.0151
3 83 747 48.42 ± 0.013 65.82 ± 0.013 71.49 ± 0.0250 97.47 ± 0.010 98.58 ± 0.006 100.00 ± 0.0000
4 23 214 33.49 ± 0.025 57.75 ± 0.041 45.70 ± 0.0327 99.12 ± 0.010 98.29 ± 0.014 100.00 ± 0.0000
5 48 435 85.21 ± 0.025 90.04 ± 0.014 92.78 ± 0.0286 97.79 ± 0.013 99.02 ± 0.003 97.98 ± 0.0254
6 73 657 92.64 ± 0.027 96.25 ± 0.006 98.57 ± 0.0033 98.50 ± 0.010 98.71 ± 0.010 99.97 ± 0.0006
7 2 26 2.67 ± 0.038 73.33 ± 0.019 99.17 ± 0.0167 66.67 ± 0.471 93.10 ± 0.097 100.00 ± 0.0000
8 47 431 97.67 ± 0.015 97.98 ± 0.006 98.14 ± 0.0075 96.45 ± 0.029 98.83 ± 0.016 100.00 ± 0.0000
9 2 18 9.26 ± 0.094 50.00 ± 0.045 37.50 ± 0.1854 56.25 ± 0.418 74.26 ± 0.038 100.00 ± 0.0000

10 97 875 60.91 ± 0.047 73.87 ± 0.018 85.81 ± 0.0227 98.33 ± 0.009 98.21 ± 0.016 99.75 ± 0.0040
11 245 2210 87.88 ± 0.019 82.90 ± 0.012 86.68 ± 0.0105 99.08 ± 0.005 99.09 ± 0.001 99.61 ± 0.0054
12 59 534 41.26 ± 0.030 74.91 ± 0.043 69.51 ± 0.0182 98.46 ± 0.009 98.37 ± 0.013 99.89 ± 0.0022
13 20 185 90.09 ± 0.040 96.94 ± 0.021 99.35 ± 0.0079 100.0 ± 0.000 99.80 ± 0.002 100.00 ± 0.0000
14 126 1139 95.46 ± 0.014 93.82 ± 0.010 92.59 ± 0.0085 98.63 ± 0.010 99.22 ± 0.007 100.00 ± 0.0000
15 38 348 41.11 ± 0.029 60.42 ± 0.044 54.48 ± 0.0396 99.24 ± 0.005 97.86 ± 0.013 100.00 ± 0.0000
16 9 84 79.37 ± 0.030 91.27 ± 0.054 79.29 ± 0.1163 95.63 ± 0.062 95.93 ± 0.057 98.10 ± 0.0267

OA 1018 9231 72.98 ± 0.006 82.00 ± 0.006 83.75 ± 0.0076 98.38 ± 0.004 98.66 ± 0.004 99.57 ± 0.0026
AA 59.41 ± 0.005 77.36 ± 0.019 77.10 ± 0.0228 91.11 ± 0.080 96.59 ± 0.003 99.62 ± 0.0029
κ 0.6862 ± 0.007 0.7941 ± 0.007 0.8143 ± 0.0086 0.9815 ± 0.005 0.9848 ± 0.005 0.9951 ± 0.0030

TABLE III
OA, AA, AND κ VALUES ON UP DATASET USING 10% OF SAMPLES FOR TRAINING

Classic approaches Deep-Learning approaches

Class Train Test RF [52] SVM [2] Ensemble-Watershed SSRN [26] A2S2K [28] Triplet-Watershed

1 663 5968 91.11 ± 0.007 94.30 ± 0.008 94.34 ± 0.0032 99.85 ± 0.001 99.91 ± 0.000 100.0 ± 0.000
2 1864 16785 98.11 ± 0.003 97.65 ± 0.002 95.24 ± 0.0051 99.98 ± 0.000 99.99 ± 0.000 100.0 ± 0.000
3 209 1890 67.71 ± 0.014 81.26 ± 0.018 69.39 ± 0.0151 99.68 ± 0.003 99.88 ± 0.001 99.8 ± 0.004
4 306 2758 88.20 ± 0.006 94.63 ± 0.004 78.69 ± 0.0058 99.92 ± 0.001 99.95 ± 0.001 99.96 ± 0.001
5 134 1211 98.93 ± 0.002 99.20 ± 0.002 87.46 ± 0.0110 99.94 ± 0.000 100.0 ± 0.000 100.0 ± 0.000
6 502 4527 72.14 ± 0,022 90.58 ± 0,008 61.37 ± 0.0111 99.95 ± 0.001 99.91 ± 0,001 99.99 ± 0.001
7 133 1197 75.69 ± 0.017 85.71 ± 0.011 75.49 ± 0.0295 100.0 ± 0.000 100.0 ± 0.000 100.0 ± 0.000
8 368 3314 89.64 ± 0.013 88.20 ± 0.003 74.65 ± 0.0044 98.28 ± 0.015 98.88 ± 0.006 99.97 ± 0.001
9 94 853 99.77 ± 0.002 99.84 ± 0.001 99.77 ± 0.0015 99.39 ± 0.003 99.78 ± 0.003 100.0 ± 0.000

OA 4273 38503 90.41 ± 0.001 94.19 ± 0.002 86.13 ± 0.0023 99.77 ± 0.001 99.85 ± 0.001 99.98 ± 0.001
AA 86.81 ± 0.002 92.38 ± 0.003 81.82 ± 0.0039 99.66 ± 0.001 99.81 ± 0.001 99.97 ± 0.001
κ 0.8710 ± 0.002 0.9229 ± 0.002 0.8136 ± 0.0030 0.9969 ± 0.001 0.9981 ± 0.001 0.9998 ± 0.001

TABLE IV
OA, AA, AND κ VALUES ON KSC DATASET USING 10% OF SAMPLES FOR TRAINING

Classic approaches Deep-Learning approaches

Class Train Test RF [52] SVM [2] Ensemble-Watershed SSRN [26] A2S2K [28] Triplet-Watershed

1 76 685 94.79 ± 0.012 95.43 ± 0.023 96.23 ± 0.0085 99.95 ± 0.001 99.95 ± 0.001 100.0 ± 0.0000
2 24 219 81.58 ± 0 047 83.71 ± 0.012 89.59 ± 0.0247 100.0 ± 0.000 98.68 ± 0.019 100.0 ± 0.0000
3 25 231 86.09 ± 0 020 78.41 ± 0.218 83.98 ± 0.0341 99.66 ± 0.005 98.72 ± 0.012 100.0 ± 0.0000
4 25 227 71.22 ± 0.061 27.17 ± 0.173 69.60 ± 0.0406 91.22 ± 0.047 94.27 ± 0.042 96.56 ± 0.0423
5 16 145 47.59 ± 0.060 22.99 ± 0.170 65.52 ± 0.0474 100.0 ± 0.000 94.46 ± 0.050 99.86 ± 0.0028
6 22 207 48.22 ± 0.014 36.89 ± 0.078 53.33 ± 0.0526 98.45 ± 0.022 99.82 ± 0.003 99.52 ± 0.0000
7 10 95 79.43 ± 0 096 87.94 ± 0.027 85.05 ± 0.0234 95.42 ± 0.050 99.61 ± 0.005 100.0 ± 0.0000
8 43 388 78.61 ± 0.054 70.19 ± 0.073 91.24 ± 0.0297 99.80 ± 0.003 100.0 ± 0.000 99.90 ± 0.0000
9 52 468 89.46 ± 0.011 85.33 ± 0.021 93.08 ± 0.0193 100.0 ± 0.000 100.0 ± 0.000 100.0 ± 0.0000

10 40 364 88.43 ± 0.034 78.88 ± 0.069 92.64 ± 0.0150 100.0 ± 0.000 100.0 ± 0.000 100.0 ± 0.0000
11 41 378 95.58 ± 0.014 93.81 ± 0.008 94.44 ± 0.0261 100.0 ± 0.000 100.0 ± 0.000 100.0 ± 0.0000
12 50 453 82.63 ± 0.032 86.98 ± 0.009 86.98 ± 0.0119 100.0 ± 0.000 100.0 ± 0.000 99.21 ± 0.0159
13 92 835 99.60 ± 0.002 100.0 ± 0.000 99.69 ± 0.0022 100.0 ± 0.000 100.0 ± 0.000 100.0 ± 0.0000

OA 516 4695 86.17 ± 0.004 81.27 ± 0.008 89.54 ± 0.0038 99.29 ± 0.004 99.34 ± 0.0008 99.72 ± 0.0023
AA 80.25 ± 0.004 72.90 ± 0.021 84.72 ± 0.0038 98.80 ± 0.008 98.88 ± 0.0018 99.62 ± 0.0032
κ 0.8459 ± 0.004 0.7909 ± 0.009 0.8834 ± 0.0042 0.9921 ± 0.004 0.9927 ± 0.001 0.9969 ± 0.0026

6

TABLE V
OA, AA, AND κ VALUES ON IP DATASET USING SEMI-SUPERVISED APPROACHES.

Class Train Test S2GCN [53] SSRN [26] DC-GCN [54] Triplet-Watershed

1 30 16 100.0 ± 0.0000 93.24 ± 0.0263 100.00 ± 0.0000 100.00 ± 0.0000
2 30 1398 84.43 ± 0.0250 76.63 ± 0.0596 91.28 ± 0.0360 91.69 ± 0.0194
3 30 800 82.87 ± 0.0553 68.78 ± 0.0753 92.88 ± 0.0396 95.25 ± 0.0610
4 30 207 93.08 ± 0.0195 87.64 ± 0.0249 98.11 ± 0.0151 100.00 ± 0.0000
5 30 453 97.13 ± 0.0134 86.72 ± 0.0154 95.54 ± 0.0339 98.63 ± 0.0171
6 30 700 97.29 ± 0.0127 92.05 ± 0.0182 98.67 ± 0.0104 100.00 ± 0.0000
7 15 13 92.31 ± 0.0000 95.66 ± 0.0051 100.00 ± 0.0000 100.00 ± 0.0000
8 30 448 99.03 ± 0.0093 95.90 ± 0.0297 100.00 ± 0.0000 100.00 ± 0.0000
9 15 5 100.00 ± 0.0000 100.00 ± 0.0000 100.00 ± 0.0000 100.00 ± 0.0000

10 30 942 93.77 ± 0.0373 82.42 ± 0.0324 91.91 ± 0.0378 98.22 ± 0.0232
11 30 2425 84.98 ± 0.0282 82.23 ± 0.0288 91.79 ± 0.0379 94.43 ± 0.0229
12 30 563 80.05 ± 0.0517 69.09 ± 0.0436 90.17 ± 0.0554 99.08 ± 0.0185
13 30 175 99.43 ± 0.0000 95.78 ± 0.0075 99.65 ± 0.0027 100.00 ± 0.0000
14 30 1235 96.73 ± 0.0092 86.52 ± 0.0243 99.73 ± 0.0066 99.87 ± 0.0026
15 30 356 86.80 ± 0.0342 73.12 ± 0.0528 99.94 ± 0.0016 100.00 ± 0.0000
16 30 63 100.00 ± 0.0000 86.21 ± 0.0130 100.00 ± 0.0000 99.37 ± 0.0078

OA 89.4 ± 0.0108 88.34 ± 0.0173 94.65 ± 0.1210 96.74 ± 0.0194
AA 92.9 ± 0.0104 85.75 ± 0.0069 96.85 ± 0.0040 98.53 ± 0.0098
κ 0.880 ± 0.012 0.866 ± 0.019 0.944 ± 0.014 0.9627 ± 0.0221

TABLE VI
OA, AA, AND κ VALUES ON UP DATASET USING SEMI-SUPERVISED APPROACHES.

Class Train Test S2GCN [53] SSRN [26] DC-GCN [54] Triplet-Watershed

1 30 6601 92.78 ± 0.0379 98.80 ± 0.0110 92.85 ± 0.0351 99.56 ± 0.0088
2 30 18619 87.06 ± 0.0447 98.45 ± 0.0054 97.53 ± 0.0140 100.00 ± 0.0000
3 30 2069 87.97 ± 0.0477 77.05 ± 0.1024 97.94 ± 0.0118 99.85 ± 0.0084
4 30 3034 90.85 ± 0.0094 83.02 ± 0.0907 94.57 ± 0.0109 99.99 ± 0.0003
5 30 1315 100.00 ± 0.0000 99.96 ± 0.0009 99.49 ± 0.0068 100.00 ± 0.0000
6 30 4999 88.69 ± 0.0264 87.03 ± 0.0626 98.57 ± 0.0278 99.99 ± 0.0001
7 30 1300 98.88 ± 0.0108 83.92 ± 0.0897 100.00 ± 0.0000 100.00 ± 0.0000
8 30 3652 89.97 ± 0.0328 88.41 ± 0.0463 96.00 ± 0.0277 92.15 ± 0.1560
9 30 917 98.89 ± 0.0053 99.97 ± 0.0004 97.51 ± 0.0140 100.00 ± 0.0000

OA 89.74 ± 0.0170 92.81 ± 0.0190 96.87 ± 0.0111 99.20 ± 0.0129
AA 92.80 ± 0.0047 90.73 ± 0.0226 97.16 ± 0.0076 98.95 ± 0.0165
κ 0.8665 ± 0.020 0.9059 ± 0.024 0.9677 ± 0.012 0.9894 ± 0.0170

TABLE VII
COMPARISON OF TRIPLET-WATERSHED WITH TRIPLET-RANDOM-FOREST

AND TRIPLET-K-NEAREST-NEIGHBORS

Triplet-Watershed Triplet-RF Triplet-KNN

IN 99.57 ± 0.0026 91.46 ± 0.011 90.86 ± 0.013
UP 99.98 ± 0.001 98.06 ± 0.007 99.62 ± 0.000

KSC 99.72 ± 0.0023 87.80 ± 0.039 82.38 ± 0.031

padded with 0s. We use 3 conv2d layers and a fully-connected
layer to obtain the representation. These representations are
then used for watershed classification and training. All models
are trained using stochastic gradient descent (SGD) with cyclic
learning rates [55]. We use 40% of the training data as seeds
for the watershed classifier. The default weight initialization
by pytorch [56] is used. We use 64 as the dimension for
the representations. All accuracies are reported in the format
mean× 100%± stdev to be consistent with [28]. The code is
available at https://github.com/ac20/TripletWatershed Code.

TABLE VIII
MEAN AVERAGE PRECISION (MAP) SCORES FOR THE REPRESENTATIONS.

Triplet-Watershed A2S2K [28] SSRN [26]

IN 0.9819 0.9713 0.9135
UP 0.9970 0.9821 0.9703

KSC 0.9822 0.9837 0.9846

TABLE IX
TRIPLET-WATERSHED: ACCURACY VS EMBED DIMENSION

Dimension KSC IN UP

16 99.53 ± 0.0031 99.45 ± 0.0025 99.95 ± 0.0002
32 99.70 ± 0.0029 99.72 ± 0.0010 99.97 ± 0.0003
64 99.54 ± 0.0017 99.67 ± 0.0011 99.98 ± 0.0001
128 99.72 ± 0.0004 99.84 ± 0.0009 99.97 ± 0.0001

A. Supervised Classification

Firstly, we provide the results of Triplet-Watershed for
supervised classification. We compare our approach with
standard baselines (SVM [2] and Random Forest [52]), and

7

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% Train

88

90

92

94

96

98

100

Ac
cu
ra
cy

Triplet-Watershed
A2S2K
SSRN

(a) IP

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% Train

97.5

98.0

98.5

99.0

99.5

100.0

Ac
cu

ra
cy

Triplet-Watershed
A2S2K
SSRN

(b) UP

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% Train

93

94

95

96

97

98

99

100

Ac
cu

ra
cy

Triplet-Watershed
A2S2K
SSRN

(c) KSC

Fig. 5. Accuracy (OA) vs % training data. We observe that Triplet-Watershed outperforms other approaches even at small sizes of training data.

(a) Triplet-Watershed-IP (b) Triplet-Watershed-UP (c) Triplet-Watershed-KSC

(d) A2S2K-IP (e) A2S2K-UP (f) A2S2K-KSC

(g) SSRN-IP (h) SSRN-UP (i) SSRN-KSC

Fig. 6. T-SNE Scatterplot of the various representations obtained. All approaches provide well-separated clusters, relatively compact. Table VIII however
shows that triplet-watershed achieves a better precision (MAP score).

also with the two recent state-of-art methods SSRN [26] and
A2S2K [28]. Tables II, III, IV show the results (OA, AA,
κ) obtained. The train test splits per class are described in
these tables. Note that Triplet-Watershed outperforms existing
state-of-art A2S2KResNet [28] and other approaches in several
aspects. This can be attributed to the fact that - Triplet Water-
shed exploits the connectivity patterns (4-adjacency and EMST
edges) which exist in the datasets. Other approaches treat

each pixel as a separate entity which would not exploit this
observation. Simple Ensemble-Watershed results are shown in
the tables as well.

B. Semi-Supervised Classification

We compare the Triplet-Watershed with three recent state-
of-art semi-supervised approaches - S2GCN [53], SSRN [26]
and DC-GCN (Dual Clustering GCN) [54]. We consider 30

8

samples for training if the class size is greater than 30 and 15
if the class size is less than 30. Tables V, VI show the results
obtained. Observe that, once again, Triplet-Watershed obtains
the state-of-art in several aspects.

C. Evaluation of Representation

Recall that accuracies in tables II-VI for Triplet-Watershed
use ensemble watershed classifier. However, ensemble wa-
tershed exploits the connectivity patterns in the data. We
now try to understand how well watershed representations
compare with representations obtained by other approaches.
Qualitatively, we use the TSNE [57] plots as in Figure 6.
Note that there does not exist any major differences except
that within a class, A2S2K and SSRN have “clumps” points
while Triplet-Watershed has a uniform density. Quantitatively
we use the mean average precision (MAP) over all points. The
computation procedure is as follows:

1) Given a datapoint xk, we order all other datapoints {yi}i
using an inverse function of distance, exp(−distance).

2) Labels are assigned based on whether the points {yi}i
belong to the same class as xk or not with class label 1
and 0 respectively.

3) Average precision (AP) computes the area under the
precision-recall curve.

4) The AP scores are averages over all points {xk}k to
obtain the MAP score.

This procedure is as suggested in [58] to evaluate representa-
tions. The results are shown in Table VIII. Observe that the
watershed outperforms the current state-of-art techniques.

D. Ablation Study

We now study the importance of various aspects of Triplet-
Watershed for the accuracies.

1) Accuracy vs % training data: Figure 5 shows the plots
of overall accuracy (OA) vs % training data. For IP and UP
datasets, it can be seen that Triplet-Watershed outperforms
other approaches even at small sizes of training data. This can
be attributed to the fact that the watershed classifier propagates
the information to unlabeled nodes, which is in turn used
for training. (See Figure 3). For optimal performance, the
watershed classifier requires at least one labeled node per
component. In cases of very small training data and a large
number of components, Triplet-Watershed does not perform
well. This is the case for the KSC dataset at 2% and 3%
training data, as shown in Figure 5.

2) Replacing Watershed With Other Classifiers: To illus-
trate the importance of the watershed classifier in the training
pipeline (Figure 3), we replace it with Random Forest (RF)
classifier and K-Nearest Neighbors (KNN) classifier with
k = 5, referring to these as Triplet-Random Forest and Triplet-
K-Nearest-Neighbors. The results are shown in Table VII.
Firstly observe the dramatic improvement of accuracies with
respect to vanilla classifiers (Tables II, III, IV). Also, observe
that Triplet-Watershed outperforms the other techniques. This,
once again, is attributed to the fact that watershed exploits
the fact that classes in the groundtruth consist of connected
components.

3) Accuracy vs embed dimension: Table IX shows the effect
of embedding dimension on accuracy. Observe that there does
not exist any significant trend with respect to the embedding
dimension. We use 64 as the default embedding dimension.

V. CONCLUSION

In this article, we proposed a novel approach to train for
the watershed classifier. We refer to this as Triplet-Watershed.
We show that the watershed classifier exploits the connectivity
patterns in the datasets. This leads to huge performance gains
compared to other approaches which use simple softmax
classifier. We prove this empirically by comparing Triplet-
Watershed with existing state-of-art deep learning approaches
such as A2S2K [28], SSRN [26] and also classic approaches -
RF [52] and SVM [2]. We also compare the current technique
with semi-supervised approaches such as S2GCN [53] and
DC-GCN [54]. In each case, we achieve better accuracy while
using a quarter of the parameters of the previous state-of-the-
art approaches.

ACKNOWLEDGMENT

AC would like to thank Indian Institute of Science for
the Raman Fellowship under which this work has been car-
ried out. SD would like to acknowledge the funding re-
ceived from BPGC/RIG/2020-21/11-2020/01 (Research Initi-
ation Grant provided by BITS-Pilani K K Birla Goa Campus).
The work of B. S. D. Sagar was supported by the DST-
ITPAR-Phase-IV project and the Technology Innovation Hub
on Data Science, Big Data Analytics and Data Curation
project sanctioned under the National Mission for the In-
terdisciplinary Cyber-Physical Systems respectively under the
Grant numbers INT/Italy/ITPAR-IV/Telecommunication/2018,
and NMICPS/006/MD/2020-21. The work of Laurent Naj-
man is supported by Programme d’Investissements d’Avenir
(LabEx BEZOUT ANR-10-LABX-58).

REFERENCES

[1] P. Ghamisi, N. Yokoya, J. Li, W. Liao, S. Liu, J. Plaza, B. Rasti, and
A. Plaza, “Advances in hyperspectral image and signal processing: A
comprehensive overview of the state of the art,” IEEE Geoscience and
Remote Sensing Magazine, vol. 5, no. 4, pp. 37–78, 2017.

[2] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote
sensing images with support vector machines,” IEEE Trans. Geosci.
Remote. Sens., vol. 42, no. 8, pp. 1778–1790, 2004. [Online]. Available:
https://doi.org/10.1109/TGRS.2004.831865

[3] P. O. Gislason, J. A. Benediktsson, and J. R. Sveinsson, “Random
forests for land cover classification,” Pattern Recognit. Lett., vol. 27,
no. 4, pp. 294–300, 2006. [Online]. Available: https://doi.org/10.1016/
j.patrec.2005.08.011

[4] Y. Cai, X. Liu, and Z. Cai, “Bs-nets: An end-to-end framework for
band selection of hyperspectral image,” IEEE Trans. Geosci. Remote.
Sens., vol. 58, no. 3, pp. 1969–1984, 2020. [Online]. Available:
https://doi.org/10.1109/TGRS.2019.2951433

[5] S. K. Roy, S. Das, T. Song, and B. Chanda, “Darecnet-bs: Unsupervised
dual-attention reconstruction network for hyperspectral band selection,”
IEEE Geoscience and Remote Sensing Letters, pp. 1–5, 2020.

[6] D. Hong, N. Yokoya, J. Chanussot, J. Xu, and X. X. Zhu, “Joint
and progressive subspace analysis (jpsa) with spatial-spectral manifold
alignment for semi-supervised hyperspectral dimensionality reduction,”
2020.

9

[7] D. Hong, N. Yokoya, J. Xu, and X. Zhu, “Joint and progressive learning
from high-dimensional data for multi-label classification,” in Computer
Vision – ECCV 2018, V. Ferrari, M. Hebert, C. Sminchisescu, and
Y. Weiss, Eds. Cham: Springer International Publishing, 2018, pp.
478–493.

[8] D. Hong, L. Gao, N. Yokoya, J. Yao, J. Chanussot, Q. Du, and B. Zhang,
“More diverse means better: Multimodal deep learning meets remote-
sensing imagery classification,” IEEE Transactions on Geoscience and
Remote Sensing, pp. 1–15, 2020.

[9] L. Gao, D. Yao, Q. Li, L. Zhuang, B. Zhang, and J. M. Bioucas-Dias,
“A new low-rank representation based hyperspectral image denoising
method for mineral mapping,” Remote Sensing, vol. 9, no. 11, 2017.
[Online]. Available: https://www.mdpi.com/2072-4292/9/11/1145

[10] Y. Li, Q. Li, Y. Liu, and W. Xie, “A spatial-spectral sift for
hyperspectral image matching and classification,” Pattern Recognition
Letters, vol. 127, pp. 18–26, 2019, advances in Visual Correspondence:
Models, Algorithms and Applications (AVC-MAA). [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167865518305117

[11] Y. Shao, N. Sang, C. Gao, and L. Ma, “Spatial and class
structure regularized sparse representation graph for semi-supervised
hyperspectral image classification,” Pattern Recognition, vol. 81,
pp. 81–94, 2018. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0031320318301171

[12] G. Licciardi, P. R. Marpu, J. Chanussot, and J. A. Benediktsson, “Linear
versus nonlinear pca for the classification of hyperspectral data based
on the extended morphological profiles,” IEEE Geoscience and Remote
Sensing Letters, vol. 9, no. 3, pp. 447–451, 2012.

[13] A. Villa, J. A. Benediktsson, J. Chanussot, and C. Jutten, “Hyperspectral
image classification with independent component discriminant analysis,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 12,
pp. 4865–4876, 2011.

[14] Y. Zhong and L. Zhang, “An adaptive artificial immune network for su-
pervised classification of multi-/hyperspectral remote sensing imagery,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 3,
pp. 894–909, 2012.

[15] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Semisupervised hyperspectral
image segmentation using multinomial logistic regression with active
learning,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 48, no. 11, pp. 4085–4098, 2010.

[16] P. Ghamisi, E. Maggiori, S. Li, R. Souza, Y. Tarablaka, G. Moser, A. De
Giorgi, L. Fang, Y. Chen, M. Chi, S. B. Serpico, and J. A. Benediktsson,
“New frontiers in spectral-spatial hyperspectral image classification: The
latest advances based on mathematical morphology, markov random
fields, segmentation, sparse representation, and deep learning,” IEEE
Geoscience and Remote Sensing Magazine, vol. 6, no. 3, pp. 10–43,
2018.

[17] L. He, J. Li, C. Liu, and S. Li, “Recent advances on spectral–spatial
hyperspectral image classification: An overview and new guidelines,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 3,
pp. 1579–1597, 2018.

[18] S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson,
“Deep learning for hyperspectral image classification: An overview,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 9,
pp. 6690–6709, 2019.

[19] G. Camps-Valls, L. Gomez-Chova, J. Munoz-Mari, J. Vila-Frances,
and J. Calpe-Maravilla, “Composite kernels for hyperspectral image
classification,” IEEE Geoscience and Remote Sensing Letters, vol. 3,
no. 1, pp. 93–97, 2006.

[20] M. Fauvel, J. Chanussot, and J. Benediktsson, “A spatial–spectral kernel-
based approach for the classification of remote-sensing images,” Pattern
Recognition, vol. 45, no. 1, pp. 381–392, 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0031320311002019

[21] L. Fang, S. Li, W. Duan, J. Ren, and J. A. Benediktsson, “Classification
of hyperspectral images by exploiting spectral–spatial information of
superpixel via multiple kernels,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 53, no. 12, pp. 6663–6674, 2015.

[22] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extraction
and classification of hyperspectral images based on convolutional neural
networks,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 54, no. 10, pp. 6232–6251, 2016.

[23] J. Yang, Y. Zhao, and J. C. Chan, “Learning and transferring deep
joint spectral–spatial features for hyperspectral classification,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 55, no. 8, pp.
4729–4742, 2017.

[24] A. Ben Hamida, A. Benoit, P. Lambert, and C. Ben Amar, “3-d
deep learning approach for remote sensing image classification,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 56, no. 8, pp.
4420–4434, 2018.

[25] M. He, B. Li, and H. Chen, “Multi-scale 3d deep convolutional neural
network for hyperspectral image classification,” in 2017 IEEE Interna-
tional Conference on Image Processing (ICIP), 2017, pp. 3904–3908.

[26] Z. Zhong, J. Li, Z. Luo, and M. Chapman, “Spectral–spatial residual
network for hyperspectral image classification: A 3-d deep learning
framework,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 56, no. 2, pp. 847–858, 2018.

[27] M. Zhu, L. Jiao, F. Liu, S. Yang, and J. Wang, “Residual spectral–spatial
attention network for hyperspectral image classification,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 59, no. 1, pp. 449–462,
2021.

[28] S. K. Roy, S. Manna, T. Song, and L. Bruzzone, “Attention-based adap-
tive spectral-spatial kernel resnet for hyperspectral image classification,”
IEEE Transactions on Geoscience and Remote Sensing, pp. 1–13, 2020.

[29] D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, and J. Chanussot, “Graph
convolutional networks for hyperspectral image classification,” IEEE
Transactions on Geoscience and Remote Sensing, pp. 1–13, 2020.

[30] M. E. Paoletti, J. M. Haut, R. Fernandez-Beltran, J. Plaza, A. Plaza, J. Li,
and F. Pla, “Capsule networks for hyperspectral image classification,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 4,
pp. 2145–2160, 2019.

[31] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient
algorithm based on immersion simulations,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 13, no. 6, pp. 583–598, 1991. [Online]. Available:
https://doi.org/10.1109/34.87344

[32] S. Beucher and F. Meyer, The Morphological Approach to Segmentation:
The Watershed Transformation. CRC Press., 01 1993, vol. Vol. 34, p.
433–481.

[33] G. Noyel, J. Angulo, and D. Jeulin, “Morphological segmentation of
hyperspectral images,” Image Analysis & Stereology, vol. 26, no. 3, pp.
101–109, 2007.

[34] Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, “Segmentation and
classification of hyperspectral images using watershed transformation,”
Pattern Recognition, vol. 43, no. 7, pp. 2367–2379, 2010.

[35] J. Cousty, G. Bertrand, L. Najman, and M. Couprie, “Watershed cuts:
Minimum spanning forests and the drop of water principle,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 31, no. 8, pp. 1362–1374, 2009.
[Online]. Available: https://doi.org/10.1109/TPAMI.2008.173

[36] S. C. Turaga, K. L. Briggman, M. Helmstaedter, W. Denk, and
H. S. Seung, “Maximin affinity learning of image segmentation,”
in Advances in Neural Information Processing Systems 22: 23rd
Annual Conference on Neural Information Processing Systems 2009.
Proceedings of a meeting held 7-10 December 2009, Vancouver, British
Columbia, Canada, Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I.
Williams, and A. Culotta, Eds. Curran Associates, Inc., 2009, pp.
1865–1873. [Online]. Available: https://proceedings.neurips.cc/paper/
2009/hash/68d30a9594728bc39aa24be94b319d21-Abstract.html

[37] K. Maninis, J. Pont-Tuset, P. Arbeláez, and L. Van Gool, “Convo-
lutional oriented boundaries: From image segmentation to high-level
tasks,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 40, no. 4, pp. 819–833, 2018.

[38] S. Wolf, L. Schott, U. Köthe, and F. A. Hamprecht, “Learned watershed:
End-to-end learning of seeded segmentation,” in IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy, October
22-29, 2017. IEEE Computer Society, 2017, pp. 2030–2038. [Online].
Available: https://doi.org/10.1109/ICCV.2017.222

[39] J. Funke, F. Tschopp, W. Grisaitis, A. Sheridan, C. Singh, S. Saalfeld,
and S. C. Turaga, “Large scale image segmentation with structured loss
based deep learning for connectome reconstruction,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 41, no. 7, pp. 1669–
1680, 2019.

[40] S. Wolf, A. Bailoni, C. Pape, N. Rahaman, A. Kreshuk, U. Köthe, and
F. A. Hamprecht, “The mutex watershed and its objective: Efficient,
parameter-free graph partitioning,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, pp. 1–1, 2020.

[41] A. Challa, S. Danda, B. S. D. Sagar, and L. Najman, “Watersheds
for semi-supervised classification,” IEEE Signal Process. Lett.,
vol. 26, no. 5, pp. 720–724, 2019. [Online]. Available: https:
//doi.org/10.1109/LSP.2019.2905155

[42] Y. Shen, S. Zhu, C. Chen, Q. Du, L. Xiao, J. Chen, and D. Pan,
“Efficient deep learning of nonlocal features for hyperspectral image
classification,” IEEE Transactions on Geoscience and Remote Sensing,
pp. 1–15, 2020.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision

10

and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016. IEEE Computer Society, 2016, pp. 770–778. [Online].
Available: https://doi.org/10.1109/CVPR.2016.90

[44] E. Hoffer and N. Ailon, “Deep metric learning using triplet network,”
in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available:
http://arxiv.org/abs/1412.6622

[45] M. Schultz and T. Joachims, “Learning a distance metric from relative
comparisons,” in Advances in Neural Information Processing Systems
16 [Neural Information Processing Systems, NIPS 2003, December
8-13, 2003, Vancouver and Whistler, British Columbia, Canada],
S. Thrun, L. K. Saul, and B. Schölkopf, Eds. MIT Press, 2003, pp.
41–48. [Online]. Available: https://proceedings.neurips.cc/paper/2003/
hash/d3b1fb02964aa64e257f9f26a31f72cf-Abstract.html

[46] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals,
“Understanding deep learning requires rethinking generalization,” in
5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017. [Online]. Available: https://openreview.net/
forum?id=Sy8gdB9xx

[47] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. F. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro,
R. Faulkner, Ç. Gülçehre, H. F. Song, A. J. Ballard, J. Gilmer, G. E.
Dahl, A. Vaswani, K. R. Allen, C. Nash, V. Langston, C. Dyer,
N. Heess, D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li,
and R. Pascanu, “Relational inductive biases, deep learning, and graph
networks,” CoRR, vol. abs/1806.01261, 2018. [Online]. Available:
http://arxiv.org/abs/1806.01261

[48] R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien,
M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit,
M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the
airborne visible/infrared imaging spectrometer (aviris),” Remote Sensing
of Environment, vol. 65, no. 3, pp. 227–248, 1998. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0034425798000649

[49] B. Kunkel, F. Blechinger, R. Lutz, R. Doerffer, H. van der
Piepen, and M. Schroder, “Rosis (reflective optics system imaging
spectrometer) - a candidate instrument for polar platform missions,”
in Optoelectronic Technologies for Remote Sensing from Space, C. S.
Bowyer and J. S. Seeley, Eds. SPIE, Apr 1988. [Online]. Available:
http://dx.doi.org/10.1117/12.943611

[50] K. P. F.R.S., “On lines and planes of closest fit to systems of points in
space,” The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901. [Online].
Available: https://doi.org/10.1080/14786440109462720

[51] W. B. March, P. Ram, and A. G. Gray, “Fast euclidean minimum
spanning tree: algorithm, analysis, and applications,” in Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, DC, USA, July 25-28,
2010, B. Rao, B. Krishnapuram, A. Tomkins, and Q. Yang, Eds.
ACM, 2010, pp. 603–612. [Online]. Available: https://doi.org/10.1145/
1835804.1835882

[52] J. Ham, Yangchi Chen, M. M. Crawford, and J. Ghosh, “Investigation
of the random forest framework for classification of hyperspectral data,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 3,
pp. 492–501, 2005.

[53] A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, and Y. Y. Tang,
“Spectral–spatial graph convolutional networks for semisupervised hy-
perspectral image classification,” IEEE Geoscience and Remote Sensing
Letters, vol. 16, no. 2, pp. 241–245, 2019.

[54] H. Zeng, Q. Liu, M. Zhang, X. Han, and Y. Wang, “Semi-supervised
hyperspectral image classification with graph clustering convolutional
networks,” 2020.

[55] L. N. Smith, “Cyclical learning rates for training neural networks,”
in 2017 IEEE Winter Conference on Applications of Computer
Vision, WACV 2017, Santa Rosa, CA, USA, March 24-31, 2017.
IEEE Computer Society, 2017, pp. 464–472. [Online]. Available:
https://doi.org/10.1109/WACV.2017.58

[56] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. dÁlché-Buc,
E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[57] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[58] K. Musgrave, S. Belongie, and S.-N. Lim, “A metric learning reality
check,” in European Conference on Computer Vision. Springer, 2020,
pp. 681–699.

Aditya Challa received the B.Math.(Hons.) degree
in Mathematics from the Indian Statistical Institute
- Bangalore, and Masters in Complex Systems from
University of Warwick, UK - in 2010, and 2012,
respectively. From 2012 to 2014, he worked as a
Business Analyst at Tata Consultancy Services, Ban-
galore. He completed his PhD in computer science
from Systems Science and Informatics Unit, Indian
Statistical Institute - Bangalore. He is currently Ra-
man PostDoc Fellow at Indian Institute of Science,
Bangalore. His current research interests focus on

using techniques from Mathematical Morphology in Machine Learning.

Sravan Danda received the B.Math.(Hons.) degree
in Mathematics from the Indian Statistical Institute
- Bangalore, and the M.Stat. degree in Mathemat-
ical Statistics from the Indian Statistical Institute -
Kolkata, in 2009, and 2011, respectively. From 2011
to 2013, he worked as a Business Analyst at Genpact
- Retail Analytics, Bangalore. He completed his
PhD in computer science from Systems Science
and Informatics Unit, Indian Statistical Institute -
Bangalore under the joint supervision of B.S.Daya
Sagar and Laurent Najman. He is currently working

as a Assistant Professor at Department of Computer Science and Information
Systems, BITS Pilani K K Birla Goa Campus. His current research interests
are discrete mathematical morphology and discrete optimization.

11

B. S. Daya Sagar (M’03-SM’03) is a Full Professor
of the Systems Science and Informatics Unit (SSIU)
at the Indian Statistical Institute. Sagar received
his MSc and Ph.D. degrees in Geoengineering and
Remote Sensing from the Faculty of Engineering,
Andhra University, Visakhapatnam, India, in 1991
and 1994 respectively. He is also the first Head
of the SSIU. Earlier, he worked in the College
of Engineering, Andhra University, and Centre for
Remote Imaging Sensing and Processing (CRISP),
The National University of Singapore in various

positions during 1992-2001. He served as Associate Professor and Researcher
in the Faculty of Engineering & Technology (FET), Multimedia University,
Malaysia, during 2001-2007. Sagar has made significant contributions to the
field of geosciences, with special emphasis on the development of spatial
algorithms meant for geo-pattern retrieval, analysis, reasoning, modeling,
and visualization by using concepts of mathematical morphology and fractal
geometry. He has published over 85 papers in journals and has authored and/or
guest-edited 11 books and/or special theme issues for journals. He recently
authored a book entitled ”Mathematical Morphology in Geomorphology and
GISci,” CRC Press: Boca Raton, 2013, p. 546. He recently co-edited two
special issues on ”Filtering and Segmentation with Mathematical Morphol-
ogy” for IEEE Journal of Selected Topics in Signal Processing (v. 6, no.
7, p. 737-886, 2012), and ”Applied Earth Observation and Remote Sensing
in India” for IEEE Journal of Selected Topics in Applied Earth Observation
and Remote Sensing (v. 10, no. 12, p. 5149-5328, 2017). His recent book
“Handbook of Mathematical Geosciences”, Springer Publishers, p. 942, 2018
reached 750000 downloads. He was elected as a member of the New York
Academy of Sciences in 1995, as a Fellow of the Royal Geographical Society
in 2000, as a Senior Member of the IEEE Geoscience and Remote Sensing
Society in 2003, as a Fellow of the Indian Geophysical Union in 2011. He
is also a member of the American Geophysical Union since 2004, and a
life member of the International Association for Mathematical Geosciences
(IAMG). He delivered the ”Curzon & Co - Seshachalam Lecture - 2009”
at Sarada Ranganathan Endowment Lectures (SRELS), Bangalore, and the
”Frank Harary Endowment Lecture - 2019” at International Conference on
Discrete Mathematics - 2019 (ICDM - 2019). He was awarded the ’Dr.
Balakrishna Memorial Award’ of the Andhra Pradesh Academy of Sciences
in 1995, the Krishnan Medal of the Indian Geophysical Union in 2002, the
’Georges Matheron Award - 2011 with Lectureship’ of the IAMG, and the
Award of IAMG Certificate of Appreciation - 2018. He is the Founding
Chairman of the Bangalore Section IEEE GRSS Chapter. He has been recently
appointed as an IEEE Geoscience and Remote Sensing Society (GRSS)
Distinguished Lecturer (DL) for a two-year period from 2020 to 2022. He is on
the Editorial Boards of Computers & Geosciences, Frontiers: Environmental
Informatics, and Mathematical Geosciences. He is also the Editor-In-Chief of
the Springer Publishers’ Encyclopedia of Mathematical Geosciences.

Laurent Najman (SM’17) received the Habilitation
à Diriger les Recherches in 2006 from University
the University of Marne-la-Vallée, a Ph.D. of ap-
plied mathematics from Paris-Dauphine University
in 1994 with the highest honor (Félicitations du Jury)
and an “Ingénieur” degree from the Ecole des Mines
de Paris in 1991. After earning his engineering
degree, he worked in the central research labora-
tories of Thomson-CSF for three years, working
on some problems of infrared image segmentation
using mathematical morphology. He then joined a

start-up company named Animation Science in 1995, as director of research
and development. The technology of particle systems for computer graphics
and scientific visualization, developed by the company under his technical
leadership received several awards, including the “European Information Tech-
nology Prize 1997” awarded by the European Commission (Esprit programme)
and by the European Council for Applied Science and Engineering and the
“Hottest Products of the Year 1996” awarded by the Computer Graphics
World journal. In 1998, he joined OCÉ Print Logic Technologies, as senior
scientist. He worked there on various problem of image analysis dedicated
to scanning and printing. In 2002, he joined the Informatics Department of
ESIEE, Paris, where he is professor and a member of the Institut Gaspard
Monge, Université Gustave Eiffel. His current research interest is discrete
mathematical morphology and discrete optimization.

