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Abstract

In this paper, we focus on measuring the dissimilarity between preferences with uncer-
tainty and imprecision, modelled by evidential preferences based on the theory of belief
functions. Two issues are targeted: The first concerns the conflicting interpretations of
incomparability, leading to a lack of consensus within the preference modelling community.
This discord affects the value settings of dissimilarity measures between preference relations.
After reviewing the state of the art, we propose to distinguish between two cases: indecisive
and undecided, respectively modelled by a binary relation and union of all relations. The
second concerns a flaw that becomes apparent when measuring the dissimilarity in the theory
of belief functions. Existing dissimilarity functions in the theory of belief functions are not
suitable for evidential preferences, because they measure the dissimilarity between prefer-
ence relations as being identical. This is counter-intuitive and conflicting with almost all the
related works. We propose a novel distance named Unequal Singleton Pair (USP) distance,
able to discriminate specific singletons from others when measuring the dissimilarity. The
advantages of USP distances are illustrated by the evidential preference aggregation and
group decision-making applications. The experiments show that USP distance effectively
improves the quality of decision results.

Keywords: Preference modelling; Theory of belief functions; Decision making; Distance
measure

1. Introduction

Preference is a traditional topic in human history and its corresponding study is of great
interest in various domains, such as sociology [1], economy [2], and more specifically group
decision making [3]. As new applications emerge, preference modelling continues to attract
the attention of recent research communities in computer science, such as social networks [4],
and deep learning communities [5], etc.
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In reality, preferences are not always expressed in a firm or consistent manner, uncer-
tainty and imprecision may exist in preference information, facing unknown situations, or
multiple conflicting information sources. In this paper, we accept terms uncertainty and
imprecision for two different concepts of imperfectness. Term uncertainty refers to a degree
of conformity to reality, while term imprecision refers to quantitative default of knowledge
on the information contained. A simple example is given here for a better understanding of
the two terms, while other scenarios of imperfectness are also possible:

Example 1. In the US presidential election of 2020 between Joe Biden and Donald Trump,
two pieces of information are given: the first is a statement, saying Joe Biden has 50%
chances to win. The second is a data missing case, interpreted as Biden or Trump will win.

In this example, the first case expresses a piece of uncertain preference information, while the
certainty is 50%. The second expresses a piece of preference information with imprecision.
Indeed, the second is an extreme case of imprecision, also known as total ignorance.

Some previous works have already investigated imperfect preferences. For example, the
authors of [6] proposed a fuzzy model to cope with imprecise preferences. Recently, eviden-
tial preference models based on the Theory of Belief Functions (TBF) have been proposed
and attracted much attention in preference modelling venues [7–9]. TBF (also referred to
as Dempster-Shafer Theory [10, 11] or Evidence Theory) is a powerful mathematical tool
for the modelling of uncertainty and imprecision, widely applied in information fusion and
decision making. In addition to the capability of characterizing uncertainty and impreci-
sion, the evidential preference model handles as well the aforementioned ambiguity of the
interpretation of “incomparability”, in a unified framework.

Knowledge with uncertainty is depicted by degree values on the corresponding event,
while knowledge with imprecision is depicted by the union set of possible singletons. Thus,
the evidential preference model is able to express these two aspects of imperfectness in
preference information faithfully. A more detailed introduction on the TBF and evidential
preference model will be provided later in Section 2.

Dissimilarity measure between imperfect preference relations is another issue targeted in
this work in addition to preference modelling. Dissimilarity plays a vital role in preference-
aware systems concerning various applications. For example, distance-based consensus meth-
ods is an important category in preference aggregation. Indeed, some conventional voting
rules are also considered distance-based consensus methods using different distance func-
tions, as explained in [12]. In social network analysis, distances between preferences are
applied for community detection and neighborhood-based recommendation systems [13, 14].

Dissimilarity functions depend predominantly on data representation. For example, for
preferences represented as orders or list-wise, correlation coefficients are widely applied, such
as Kendall’s τ , Spearman’s ρ, Pearson’s r or their extended versions [15]. In the case of a
pair-wise representation of the preferences, dissimilarities are measured between binary rela-
tions [16–19]. Bouyssou et al. [20] mentioned that binary relation is the central tool in most
models of preferences. Thus, measuring the dissimilarity between pairwise preferences is a
fundamental issue. Usually, between any two alternatives ai and aj, four exclusive binary
relations are possible: “strict preference (ai � aj)”, “inverse strict preference (ai ≺ aj)”,
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“indifference (ai ≈ aj)”, and “incomparability (ai ∼ aj)”. The dissimilarity between prefer-
ence relations are mainly measured through these four relations. However, the definition of
“incomparability” may correspond to different interpretations, resulting in different dissim-
ilarity value settings. Two major issues are encountered when measuring the dissimilarity
between evidential preferences. The first is caused by the ambiguous interpretations of
incomparability while the second exists in the context of the theory of belief functions.

First issue: different interpretations of “incomparability”
Relation incomparability between two alternatives is defined as neither prefer, nor indif-

ferent (with the formal definition given in Section 2.1). However, this definition is ambigu-
ous1. In the literature, we have identified two interpretations of incomparability, considered
either as an indecisive or an undecided situation.

Example 2. Indecisive case: Which job is better? [21]

Alice has two available job offers. The first job is poorly paid but corresponds
well to Alice’s interests while the second is well paid but does not match Alice’s
interests. As a consequence, Alice finds herself in a dilemma when she has to
choose between the two jobs.

In Example 2, incomparability is caused by conflicting preferences associated with different
criteria, making the decision indeterminable. We interpret this case as indecisive.

Example 3. Undecided case: Missing opinions in Sushi survey. [22]

In the Sushi preference data set, the respondent (agent) is asked to give her/his
preferences on 10 types of sushi randomly selected among 100 sushi types. The
preferences are expressed in the forms of both score and order. However, the
preferences on the other 90 sushi of each agent are missing, making them incom-
parable.

The second example shows a case where incomparability is caused by missing information,
which relates to the ignorance of knowledge. We interpret this case as undecided.

To avoid misleading in engineering aspects, we need to mention that missing information
is not always interpreted as ignorance. In some scenarios, indifference or not preferred
could be better interpretations. For example, in democratic voting systems, blank votes are
usually considered as abstention; In a top-k ranking system, alternatives without preference
information are considered as lower-ranked .

Incomparability can be set without controversy when only one of the two situations men-
tioned before exist in the preference-aware systems. However, for the cases that merge with
both situations, it is necessary to distinguish between the two interpretations. Dissimilarity
measures between pair-wise preference relations may encounter such issues.

1The term ambiguous is applied to one identical definition with multiple possible interpretations.
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Some works (e.g. [23, 24]) differentiate between the two relations as indifference and
incomparability, some works interpret incomparability as an absence of knowledge (e.g. [18,
19, 25]), and some works interpret as a specific case (e.g. [17]). Indeed, this issue exists in
different works but has rarely been systematically discussed in the research community.

The flaws of dissimilarity measure are not limited to preferences. In the Theory of Belief
Functions, some problems in dissimilarity measures rise to be important in the evidential
preference model.

Second issue: a flaw in dissimilarity measures in the Theory of Belief Functions
In TBF, each precise event is modelled by a singleton. Dissimilarity values between

different singletons are always considered equal in existing measures. This is because two
singletons are considered as either different or identical, respecting a binary relation. How-
ever, with this property applied by evidential preferences, dissimilarities between any two
preference relations are equal. A straightforward example is that the dissimilarity be-
tween strict preference and inverse strict preference (denoted as d(�,≺)) is identical to
the dissimilarity between strict preference and indifference (denoted as d(�,≈)), formally,
d(�,≺) = d(�,≈). This equality relation is counter-intuition and in conflict with all previ-
ous works in preference modelling [16–19, 25, 26].

For the smoothness of writing, related works, as well as comprehensive details about this
flaw, are introduced in Section 2.3, after a preliminary introduction on the TBF.

Contributions
Facing the two issues above, three main contributions are made targeting the issues

introduced above.

– The state of the art in dissimilarity measures over pairwise preferences is reviewed.
Regarding the different interpretations of “incomparability”, the disagreements are clar-
ified and characterized through the evidential preference model.

– A novel metric function for dissimilarity measure between evidential preferences is
proposed by extending the existing Jousselme distance [27], named Unequal Singleton
Pair (USP) distance. USP distance takes into account the different dissimilarity val-
ues between singletons concerning the second issue and also handles well the case of
imprecise information.

– The proposed USP distance is applied in group-decision making and is compared
with other traditional and recent methods on both synthetic and real-world data sets.
The results show that USP distance improves the quality of group decision making.
Besides, a Condorcet’s paradox elimination method for the evidential preference model
is developed and applied as well.

The merits of the techniques proposed in this paper consist of three main parts, two of which
are related to the evidential preference based on TBF.
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– Evidential preferences are able to express imprecise cases, especially missing data cases
faithfully;

– The ambiguous definition of incomparability is clarified by undecided and indecisive in
a unified framework in evidential preference;

– USP distance is capable to discriminate singleton elements for decision making with
the imprecise information taken into account. The advantage of this distance is demon-
strated in group decision-making applications based on the evidential preference model.

This paper is organised as follows: preliminary notions on preference modelling, Theory
of Belief Functions, and dissimilarity measures are introduced in Section 2. Afterwards,
the first contribution is presented in Section 3, where dissimilarity measures over pairwise
preferences are reviewed. In Section 4, the proposed novel distance for evidential objects
is introduced, named Unequal Singleton Pair (USP) distance, along with a value-setting
example and an application of group decision making. In Section 5, the advantages of USP
distance over the other preference aggregation methods are illustrated with experiments on
the sushi preference dataset in the real-world. Finally, conclusions, as well as important
perspectives are, given in Section 6.

2. Preliminaries

In this section, preliminary knowledge on preferences and the theory of belief functions,
as well as some properties of dissimilarity measures are introduced.

2.1. Preference modelling: background
Preference modelling is usually based on order theory. In this paper, we use the widely

accepted notions in studies of preferences from [28].

Definition 1. (Binary Relation) Given a finite set of N alternatives
A = {a1, a2, a3, . . . , aN}, a binary relation R on the alternative set A is a subset of
the Cartesian product A×A, that is, a set of ordered pairs (ai, aj) such that ai and aj are
in A : R ⊆ A×A [28].

Definition 2. (Preference relation) Between any two alternatives ai, aj, only four relations
possibly exist {�,�,≈,∼}, defined from binary relation R as:

Strict preference: ai � aj ⇔ aiRaj and aj¬Rai;
Indifference: ai ≈ aj ⇔ aiRaj and ajRai;

Weak preference: ai � aj ⇔ ai � aj or ai ≈ aj;
Incomparability: ai ∼ aj ⇔ ai¬ � aj and ai¬ ≺ aj and ai¬ ≈ aj.
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Relation “weak preference” is the union of strict preference and indifference. Thus, be-
tween two alternatives ai and aj, the four relations {�,≺,≈,∼} are exclusive and complete2,
illustrated in Figure 1.

Figure 1: Venn diagram of preference relations.

Let R be a binary relation on the alternative set A, we have the definitions of different
orders based on preference structure with relations “strict preference”, “indifference” and
“incomparability” :

Definition 3. (Preference Structure) A preference structure is a collection of binary rela-
tions defined on the set A and such that:

– for each couple (ai, aj), ai, aj ∈ A, at least one relation is satisfied;

– for each couple (ai, aj), ai, aj ∈ A, if one relation is satisfied, any other relation cannot
be satisfied.

Definition 4. (Total/Weak/Partial/Quasi (pre)order)
R is a total order iif. R ∈ {�,≺};
R is a weak order 3 iif. R ∈ {�,≺,≈};
R is a partial order iif. R ∈ {�,≺,∼};
R is a quasi-(pre)order iif. R ∈ {�,≺,≈,∼}.

In this paper, orders without incomparability are called complete orders, i.e. total and
weak orders are complete orders.

Dissimilarity measure for quasi (pre)orders is compatible with all the other three orders
as quasi (pre)order is the most general concept. However, most of the dissimilarity measure
methods are designed for complete orders. The difficulty falls on the dissimilarity measure
on relation “incomparable” , with more details given in Section 3.

2As ai � aj is equivalent to aj ≺ ai, to avoid repetitive comparisons between two alternatives, we assume
that i < j in this article.

3In some work, weak order is also referred to as “partial ranking”, while “partial order” is another type
of preference structure.
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2.2. Theory of belief functions (TBF): notions
Let Ω = {ω1, . . . , ωH} be a finite set representing all possible status of a categorical

attribute, the uncertainty and imprecision of this attribute is expressed by Basic Belief
Assignment (BBA).

Definition 5. (Basic Belief Assignment (BBA)) A (normalized) Basic Belief Assignmen
(BBA) on Ω is a function m : 2Ω → [0, 1] such that:

m(∅) = 0 and
∑
X⊆Ω

m(X) = 1. (1)

The subsets X of Ω such that m(X) > 0 are called focal elements, while the finite set Ω is
called discernment framework. Ω is also considered as total ignorance since it represents all
the possibilities. A BBA representing total ignorance (m(Ω) = 1) is also called a vacuous
BBA. A BBA is simple supported if a non-zero value is assigned only on one singleton and
Ω. In this paper, we accept the term evidential object as an object described by imperfect
information with both uncertainty and imprecision. Thus, an evidential object is represented
by a BBA.

Definition 6. (Categorical BBA) A categorical BBA is a normalized BBA satisfying:

m(X) = 1 , ∀X ⊂ Ω and m(Y ) = 0 ,∀Y ⊆ Ω, Y 6= X. (2)

A categorical BBA on elementX ∈ 2Ω is denoted asX0. With the concept of simple support,
we name a categorical BBA on one singleton as categorically simple supported.

In the process of information fusion, where multiple BBAs are combined into one, various
combination rules are available. The selection of a pertinent combination rule depends on
many criteria, in which an important one is cognitively independent.

Definition 7. (Cognitively Independent Source) Sources are considered as cognitively in-
dependent if the values of BBA on any source has no communication with the others.

The conjunctive combination rule proposed by [29] is applied for finding the consensus among
multiple reliable and cognitively independent sources, defined as:

mconj(X) =
∑

Y1∩...∩Ys=X

S∏
s=1

ms(Ys). (3)

For cognitive dependent sources, the mean value rule is commonly applied. Given a
discernment framework Ω and sources S, BBA on source s ∈ S denoted as ms, for ∀X ∈ 2Ω,
mean value combination is defined as follows:

mmean(X) =
1

S

S∑
s=1

ms(X). (4)

These two combination rules are applied in the evidential preference aggregation process,
with details given in Section 4.5.
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2.3. Properties of dissimilarity measures over evidential objects
Metrics, or distance functions are usually applied to measure the dissimilarity between

two objects.

Definition 8. (Metric (distance)) A metric (distance) function d on a set T is defined as:

d : T × T → R≥0,

where R≥0 denotes the set of non-negative real numbers. Given any three elements
ti, tj, tk ∈ T , the following conditions are satisfied:

1. d(ti, tj) ≥ 0 : non-negativity;

2. d(ti, tj) = 0⇔ ti = tj : identity of indiscernible;
3. d(ti, tj) = d(tj, ti) : symmetry;

4. d(ti, tj) ≤ d(ti, tk) + d(tk, tj) : triangle inequality.

(5)

Usually, the term dissimilarity refers to semi-metric, in which the property of triangle
inequality does not hold.

In TBF, different dissimilarity measures are applicable to BBAs. From geometrical
and statistical views, these measures are categorized into three parts: distance [27, 30],
conflicts4 [31], and divergence [32]. Comprehensive surveys are respectively available in [32]
and [33]. We only introduce the properties required in this paper.

As BBAs are defined in space of 2Ω, in addition to the properties for metrics in Equa-
tion set (5), properties considering the structure of discernment are specifically required in
TBF. The authors in [33] resumed three structural properties: Strong structural property
(with consideration of the interaction between focal elements), weak structural property
(with consideration of the cardinality of focal elements), and structural dissimilarity (with
consideration of the interaction between sets of focal elements). We accentuate the strong
structural property hereby, which is the strictest one.

Property 1. Strong structural property: A distance measure function d between two
BBAs m1 and m2 is strongly structural if its definition accounts for the interaction between
the focal elements of m1 and m2.

According to [33], the structural property is usually considered as the axiomatic metric
property for distance measure between evidence objects. A popular distance that is strongly
structural is Jousselme distance [27], defined as:

dJousselme(m1,m2) =
√

(m1 −m2)TJacc(m1 −m2), (6)

where Jacc is the matrix whose elements are Jaccard indices:

Jacc(X1, X2) =
|X1 ∩X2|
|X1 ∪X2|

, for X1, X2 ∈ 2Ω \ ∅. (7)

Matrix Jacc is positive definite and the properties of metric (Equation set (5)) hold in
Jousselme distance, proved in [34].

4Strictly, “conflict” is not a dissimilarity measure, or semi-metric, as the identity of in-discernment prop-
erty does not hold.
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3. Contribution I: A synthetic review of dissimilarity measures over pairwise
preferences

Dissimilarity measures over preferences can be grouped into two categories: between pair-
wise preferences (binary relations) and between list-wise preferences (preference orders). In
this section, the former one is focused, where axiomatic distances and Hamming distance are
mostly applied. Among these distances, different value settings concerning incomparability
are accepted, caused by the ambiguous interpretations aforementioned. In this section,
starting with a synthetic review of dissimilarity over pair-wise preferences, we introduce how
the evidential preference model distinguish these interpretations in a unified framework.

3.1. Axiomatic distances
In axiomatic distances, axioms are used to help to define values of dissimilarity between

preference relations. These axioms are extracted either from the definitions or intrinsic prop-
erties of preference relations. Axiomatic distances were originally proposed for preference
aggregation in distance-based consensus models.

Early research was initiated by Kemeny and Snell [16], where a model for combining
preferences (in weak orders) into a group consensus was proposed (a.k.a. Kemeny-Snell
model, marked as KS model in this paper). However, the definition given in [16] to the
partial order does not include relation indifference since it supposes that an alternative ai
is either preferred or incomparable to another alternative aj. J.M. Blin [25] adopted the
KS model and proposed an aggregation method by distance minimization. Cook et al. [26]
(marked as CS model) consider incomparability by introducing a comparison matrix . In
the CS model, the incomparability is defined as not compared while the axioms respect
definitions in Figure 1. Roy and Slowinski [17] (marked as RS model) proposed logical
conditions to build a distance measure between pairs of binary relations. The authors in [18]
(marked as KM model) respected the RS model and suggested a dissimilarity measure with
supplementary conditions. Then, Jabeur et al. [19] proposed numeric values for dissimilarity
measure between different relations based on [18] (marked as JMK model) by taking the
centroid value in a restrained space created by the axioms. In this paper, we refer to the
distances applied in different models by corresponding model names.

Several contradictions exist within these models, as depicted in Figure 2, where Ω denotes
the ignorance of knowledge. In the RS model, incomparability is interpreted as:

Incomparability relation is the affirmation of the incapacity to establish the rela-
tion type: there is no indifference, no weak preference and no strict preference
between the two alternatives [17].

This interpretation matches the Venn diagram in Figure 2a. However, in other models, such
as CS, KM, and JMK models, incomparability is interpreted as the two alternatives are not
compared (i.e. undecided). This interpretation corresponds to the illustration in Figure 2b.
Axioms accepted in each model are listed in Table 1. These axioms concern the preference
relations �,≺,≈,∼, ? where the symbol ? represent ignorance induced from the undecided
case, (i.e. ? = {� ∪ ≺ ∪ ≈ ∪ ∼}). Distance function between preference relations is

March 17, 2021



10

(a) “Incomparability” as indecisive. (b) “Incomparability” as undecided.

Figure 2: Venn diagrams of the preference relations.

denoted by d∆. In order to distinguish the two interpretations of incomparability, we remark
axioms on the undecided version as BIS.

Table 1: Axioms accepted in different preference models:

Axiom Content Model reference
Axiom 1: properties of metric (Equations (5)) all models
Axiom 2: d∆(�,≈) = d∆(≺,≈) and d∆(�,∼) = d∆(≺,∼) RS model
BIS: d∆(�, ?) = d∆(≺, ?) CS and KM models
Axiom 3: d∆(�,≈) + d∆(≈,≺) = d∆(�,≺) all models
Axiom 4: d∆(�,∼) ≤ d∆(≈,∼) RS model
BIS 1: d∆(�, ?) ≤ d∆(≈, ?) CS model
BIS 2: d∆(�, ?) = d∆(≈, ?) KM model
Axiom 5: d∆(≈,∼) ≤ d∆(≈,�) CS model
BIS: d∆(≈, ?) ≤ d∆(≈, ?) CS and KM models
Axiom 6: d∆(�,≺) = max({d∆(R,R′) : R,R′ ∈ {�,≺,≈,∼}}) all models

Axiom 2 implies that � and ≺ are opposite relations, and symmetric to indifference
≈. Axiom 6 indicates that strict preference and inverse preference relations are most dis-
tinguished. CS and KM models accept the interpretation of undecided for incomparability,
referring to the knowledge of ignorance. CS and KM models confuse the definition of “in-
comparability” with “ignorance”, where “ignorance” is caused by having no knowledge of the
preference relation.

Apart from axiomatic preference distances, Minkowski distances based on the encoding
of different preference relations are often applied. The most popular one is the Hamming
distance.

3.2. Hamming distance
Hamming distance for preference relation is based on the encoding of preference. Given

two alternatives ai and aj, preference relations are encoded in binary by flattening preference
matrix, with corresponding Hamming distance values resumed in Table 2.
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Table 2: Encoding of preference relations and Hamming distance:

R ai � aj
ai aj

ai 0 1
aj 0 0
Code 0100

ai ≺ aj
ai aj
0 0
1 0
0010

ai ≈ aj
ai aj
0 1
1 0
0110

ai ∼ aj
ai aj
0 0
0 0
0000

d∆H
� ≺ ≈ ∼

� 0 2 1 1
≺ 2 0 1 1
≈ 1 1 0 2
∼ 1 1 2 0

3.3. Summary of distances between pair-wise relations
The inequality relations applied in each distance are summarized in Figure 3. An impor-

Figure 3: Inequality relation applied in axiomatic and Minkowski preference distances.
d∆: distance between two preference relations;
?: incomparability as unobserved information (undecided);
∼: incomparability as a specific preference relation (indecisive).

tant advantage of axiomatic methods is that these dissimilarity measures are metrics with
the properties guaranteed. However, the above research works show that the dissimilarity
measures vary with different axioms accepted, these methods have a strong dependency on
the interpretation of different preference relations.

3.4. Clarification of “incomparability” in evidential preference model
The different interpretations of incomparability can be simultaneously characterized by

the evidential preference model in a unified framework.
The evidential preference model is originally proposed by [8] on weak orders (corre-

sponding to Figure 2b) and extended to quasi orders (corresponding to Figure 2a) with the
consideration of incomparability by [9]. Consider the case that a set of agents U expressing
their preferences between every pair over alternative set A. Each agent is a source, denoted
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as u, u ∈ U . For any alternative pair ai, aj ∈ A, four relations are possible. Therefore, the
discernment framework Ωpref

ij is defined as:

Ωpref
ij = {ωR

ij |R ∈ {�,≺,≈,∼}}. (8)

In evidential preference, the case of undecided is characterized by total ignorance Ωpref
ij ,

while the case of indecisive by a specific binary relation incomparability ω∼ij . Therefore,
different interpretations are distinguished in a unified framework. The degree of uncertainty
on preference relation is represented by values on singletons, which can be regarded as a
fuzzy value5. The imprecision is characterized by values on union sets.

With the combination rules in the framework of the theory of belief functions, the ev-
idential preference model is effective in group decision-making with imperfect preference
information sources. A more in-depth discussion on this topic is given in Section 4.5.

4. Contribution II: USP distance - A novel measure suitable for evidential pref-
erences

Despite that evidential preference can faithfully express all types of preference, none of
the existing distances in the context of the theory of belief functions is able to properly
measure the dissimilarity between evidential preferences, with aforementioned inequality
relations respected. In this section, we analyze the properties that disable a relevant dis-
similarity measure and propose a new distance adapted to evidential preferences, namely
Unequal Singleton Pair (USP) distance. The analysis starts with a detailed introduction to
this flaw.

4.1. A flaw in the dissimilarity measure over evidential preferences
The fact that existing distances in the theory of belief functions are not relevant for

evidential preference is caused by a contradiction between their required properties. In
Section 3, it is concluded that Equation (9) is always applied in measuring the dissimilarity
between preference types.

d∆(�,≺) > d∆(�,≈). (9)

This inequality relation is rewritten as Equation (10) adapted to evidential preferences.

d({ω�}0, {ω≺}0) > d({ω�}0, {ω≈}0), (10)

where {ωR}0 represents the categorical BBA on singleton element ωR (see Definition 6).
However, the existing dissimilarity measures do not distinguish values between singletons

in TBF, thus, none of them satisfies Equation (10). In TBF, a discernment framework
(Ω = {ω1, ω2, . . . , ωH}) requires that all the singleton elements are mutually exclusive (see

5This fuzzy value does not represent a fuzzy preference. Conventional fuzzy preference express the relation
between two alternatives by only one membership with 1 representing strict preference, 0 the reverse strict
preference, and 0.5 the indifference.
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Section 2.2). With the property of exclusivity, any two elements ωi, ωj ∈ Ω are either
identical or distinguished, with respect to a binary relation. Existing distances apply this
binary relation by an assumption that dissimilarity values between singleton elements are
equal, precisely:

Assumption 1. In a discernment framework Ω = {ω1, ω2, . . . , ωH}, the dissimilarity be-
tween any two different singletons is a constant (normalized as 1), formally, ∀ωm, ωn ∈
Ω, ωm 6= ωn,

d({ωm}0, {ωn}0) ≡ 1. (11)

Obviously, Equation (10) and Equation (11) are contradictory. As a consequence, As-
sumption 1 is not suitable for measuring the dissimilarity between evidential preferences.
To propose a theoretically correct solution, an analysis of necessary properties for evidential
preferences is conducted.

4.2. Dissimilarity measure properties for evidential preferences
Three essential properties are required for dissimilarity measures on evidential prefer-

ences.

Property 2. The dissimilarity is measured by a metric, i.e. the properties of metric (Def-
inition 8) hold.

Property 3. The dissimilarity measure takes the difference of dissimilarity between single-
tons into account.

Property 3 abandons Assumption 1. With the account that dissimilarities are measured
between BBAs in the space of 2Ω, the following property must hold as well, matching the
property of strongly structural (see Property 1 in Section 2.3), Specifically described as:

Property 4. Dissimilarity function d forms with such structure:

∀X, Y ∈ 2Ω, d(X0, Y 0) ≤ d({X \ (X ∩ Y )}0, Y 0). (12)

By applying these properties on weak orders, represented by Ω = {ω�, ω≺, ω≈}, the dissim-
ilarity values are set as:

d({ω�}0, {ω≺}0) = 1; (13a)
d({ω�}0, {ω≈}0) = d∆(≺,≈) =p. (13b)

where p is a dissimilarity value between 0 and 1 (strictly smaller than 1).
With respect to Equation (12), the three relations below yield:
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1. Between strict preference � and union with indifference ≈:

d({ω�}0, {ω�, ω≈}0) < d({ω�}0, {ω≈}0)

⇒ d({ω�}0, {ω�, ω≈}0) ∈ (0, p). (14a)

Symmetrically,

d({ω≺}0, {ω≺, ω≈}0) < d({ω≺}0, {ω≈}0)

⇒ d({ω≺}0, {ω≺, ω≈}0) ∈ (0, p). (14b)

2. Between strict preference � and total ignorance (missing data):

d({ω�}0,Ω0) > d({ω�}0, {ω�, ω≈}0). (15a)

Symmetrically,

d({ω≺}0,Ω0) > d({ω≺}0, {ω≺, ω≈}0). (15b)

3. Between strict preference � and union of other two preference types (≺ and ≈):

d({ω�}0, {ω≈}0) < d({ω�}0, {ω≺, ω≈}0) < d({ω�}0, {ω≺}0). (16a)

Symmetrically,

d({ω≺}0, {ω≈}0) < d({ω≺}0, {ω�, ω≈}0) < d({ω�}0, {ω≺}0). (16b)

To apply Properties 2, 3, and 4, we propose Unequal Singleton Pair (USP) distance as a
solution.

4.3. USP distance–a distance for unequal singleton pairs over BBAs
In TBF, Jousselme distance[27] is widely applied because this distance is strongly struc-

tural by taking into account the imprecision in the structure with respect to Property 2
and Property 4. Inspired by the methodology in the conception of Jousselme distance, we
propose a novel distance named Unequal Singleton Pair (USP) distance, with the Property 3
imposed.

Assumption 1 is guaranteed in by Jaccard index (Equation (6)), with Property 4, recalled
here:

Jacc(X1, X2) =
|X1 ∩X2|
|X1 ∪X2|

, for X1, X2 ∈ 2Ω \ ∅.

To drop Assumption 3, we define USP distance by modifying Jaccard index matrix as follows.

dUSP (m1,m2) =
√

(m1 −m2)TSim(m1 −m2), (17)

where Sim differs from Jacc, also referring to the similarity matrix between differ-
ent singleton elements. In Sim, the similarity value between two elements X1 and
X2, (X1, X2 ∈ 2Ω) is denoted as sim(X1, X2). In the first place, with a similar form
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as Jaccard index, sim(X1, X2) is defined as the division between two virtual functions:
resemb(X1, X2, . . . , XM) and entire(X1, X2, . . . , XM):

sim(X1, X2) =
resemb(X1, X2)

entire(X1, X2)
, (18)

where resemb(X1, X2) describes the cause of the similarity between X1 and X2 (say re-
semblance), and entire(X1, X2) the entire part concerned by X1 and X2. resemb(·)
and entire(·) are defined as virtual functions. With Assumption 1, the functions
resembass1(X1, X2, . . . , XM) and entireass1(X1, X2, . . . , XM) are overrode as:

resembass1(X1, X2, . . . , XM) =|
M⋂
i=1

Xi |,

entireass1(X1, X2, . . . , XM) =|
M⋃
i=1

Xi | .

(19)

(20)

Obviously, the similarity matrix Sim is identical to Jaccard matrix Jacc.
Here, we propose a new method to drop Assumption 1. Define a set of elements in 2Ω,

W = {X1, X2, . . . , XM}, thereforeW ⊆ 2Ω. Denote resemb(W ) for resemb(X1, X2, . . . , XM)
and entire(W ) for entire(X1, X2, . . . , XM) to simplify the expression. The size of W is
defined by the number of elements X ∈ 2Ω, denoted by |W |. Singletons in W is defined by
the union of all elements in W , formally:

∪W =
⋃

Xi∈W

Xi. (21)

Denote the subset of W by Wsub, by dropping Assumption 1, entire(W ) is defined as a
generalized version of cardinal function on the union sets:

entire(W ) =
∑

ω∈∪W

entire(ω) −
∑

Wsub⊆W,|Wsub|=2

resemb(Wsub)

+
∑

Wsub⊆W,|Wsub|=3

resemb(Wsub) −
∑

Wsub⊆W,|Wsub|=4

resemb(Wsub)

+ . . . +
∑

Wsub⊆W,|Wsub|=|2Ω|

resemb(Wsub)× (−1)|2
Ω|

=
∑

ω∈∪W

entire(ω) +

|2Ω|∑
t=1

∑
Wsub⊆W,|Wsub|=t

resemb(Wsub)× (−1)t. (22)

In practice, with only the similarity between two singleton elements given, a unique
solution for entire(W ) may not be reached by Equation (22). To enable and simplify the
calculation, two more assumptions are imposed, defined as follows.
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Assumption 2. In a set of exclusive elements Ω = {ω1, ω2, . . . , ωH}, any resemblance is
only shared by maximal two elements, formally :

resemb(W ) = 0, ∀W ⊆ 2Ω, |W | ≥ 3. (23)

Assumption 2 guarantees that a unique solution exists for resemb(ωm, ωn) with only pairwise
similarity sim(ωm, ωn) given.

Assumption 3. To normalize the element values in the calculation, entire part concerned
by one singleton is assigned to 1, formally:

entire(ω) = 1, ∀ω ∈ Ω. (24)

With Assumptions 2 and 3, given similarity sim(ωm, ωn), the resemblance is calculable and
a unique solution exists. Deduced from Equation (22), we have:

entire(X, Y ) =
∑

ω∈X∪Y

entire(ω)−
∑

ωm∈X
ωn∈Y
m 6=n

resemb(ωm, ωn). (25)

Hence, Equation (18) is overrode as:

sim(X1, X2) =

∑
ωm∈X1
ωn∈X2
m6=n

resemb(ωm, ωn)

∑
ω∈X1∪X2

entire(ω)−
∑

ωm∈X1
ωn∈X2
m 6=n

resemb(ωm, ωn)
. (26)

To guarantee the Assumption 2 given by Equation (23), the following condition holds:∑
ωm,ωn∈Ω
ωm 6=ωn

sim(ωm, ωn) ≤ 1. (27)

Property 2 (property of the metric system) is guaranteed because the USP distance is in
the format of the Mahalanobis distance. Moreover, extended from the Jousselme distance,
Property 4 is kept by different values in the similarity matrix Sim.

For a better understanding, we demonstrate the inference and calculation of the USP
distance in the evidence preference by a graphical illustration, followed by an application of
decision-making thereafter.

4.4. Illustrative example-USP for evidential preferences
The calculation of the similarity matrix can be aided by graphics as depicted in Figure 4.

Evidential preference is taken as an example, with four singletons elements: ω�, ω≺, ω≈ and
ω∼. In accordance with the exclusivity of the discernment framework, Figure 4a shows

March 17, 2021



17

that singletons do not share any overlapped parts. Obviously, Figure 4a is isomorphic with
Figure 1. In the conception of USP, we assume that the pairwise dissimilarity difference
between singletons can be described by an overlapped zone in another space than the one in
which they are defined. More precisely, outside the original S space, the singletons can have
an overlapping part in a different S∗ space, represented by the overlapping space between
singletons in figure 4b. In this way, the overlapped part could be used to show the difference
in dissimilarities between the singletons elements.

(a) Element in original space S. (b) Element in space S∗ with different similarity val-
ues.

Figure 4: Graphical representation of similarity matrix calculation.

Thus, the overlap area in space S∗ allows calculating the similarity between simple
elements. In addition, the constraints set by the functions Assumption 2 and Assumption 3
are respectively interpreted as the overlapped zones are shared by 2 elements, and the area
of an element is valued as 1.

Table 3 gives the similarity values between ωR, R ∈ {�,≺,≈,∼}. The function resemb(·)

Table 3: Similarity simS∗ between singletons:

sim(·) ω� ω≺ ω≈ ω∼

ω� 1 0 x y
ω≺ 0 1 x y
ω≈ x x 1 z
ω∼ y y z 1

valuing the overlapped areas are assigned with p1, p2, p3 corresponding to Figure 4 as follows:

resemb(ω�, ω≈) = resemb(ω≺, ω≈) = p1;

resemb(ω�, ω∼) = resemb(ω≺, ω∼) = p2;

resemb(ω≈, ω∼) = p3.

(28)

Plugging Equation (28) in Equations (24) and (25), the following relations are estab-
lished:
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x =
p1

2− p1

⇒p1 =
2x

1 + x
;

y =
p2

2− p2

⇒p2 =
2y

1 + y
;

z =
p3

2− p3

⇒p3 =
2z

1 + z
.

(29)

Thus, similarities in 2Ω×2Ω are calculated by applying Equation (26), and Assumption 2
yields:

2p1 + p3 ≤ 1 ⇒ 4x

1 + x
+

2z

1 + z
≤ 1 ⇒ 2

x+ 1
+

1

z + 1
≤ 5

2
;

2p2 + p3 ≤ 1 ⇒ 4y

1 + y
+

2z

1 + z
≤ 1 ⇒ 2

y + 1
+

1

z + 1
≤ 5

2
;

p1 + p2 ≤ 1 ⇒ 2x

1 + x
+

2y

1 + y
≤ 1 ⇒ 1

x+ 1
+

1

y + 1
≤ 3

2
.

(30)

Equation set (30) defines the limit of value setting, guarantee axiomatic properties, and
metric properties. With this dissimilarity value calculation method, we apply USP distance
in group decision-making applications.

4.5. Application: Group decision making
The USP distance finds its application in group decision making between pairwise alter-

natives, represented by ai, aj ∈ A. Respectively, the discernment framework is designated
by Ωij (see Equation (8)) and the decided relation by Rij. The procedure consists of two
steps: combination and decision, as shown in Figure 5.

m
Ωij
s

m
Ωij

1

...

Conjunctive
combination

mΩij

Decision
Rij ∈ {�,≺,≈,∼}

Figure 5: Group decision making procedure.

As mentioned above, in CS and KM models, incomparability interprets the absence of
information, (referred to as undecided), however, the final consensus decision strategies are
possible to converge to the absence of information (undecided) as a consequence, which is
meaningless in decision making. To solve this problem, the conjunctive combination rule for
BBAs is more adaptable. More specifically, LNS-CR (Conjunctive Rule for Large Number of
Sources) [35] is applied as it is suitable for the aggregation of preferences without uncertainty,
represented by categorically simple supported BBAs (see Definition 6).

In the decision step, a distance-based strategy is applied, which is originally introduced
in [36], defined by:
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Rij = argmin
R∈{�,≺,≈,∼}

(d(mΩij , {ωR}0)), (31)

where mΩij denotes a BBA for the evidential preference between the alternatives ai and
aj, and {ωR}0 the categorical BBAs respectively representing the relations �,≺,≈, and
∼. With USP distance applied in the decision rule above, the dissimilarities in singleton
pairs are significantly discriminated against. The advantages are further discussed with
experiments in Section 5.

5. Illustrative examples and experiments

In this section, three experiments are conducted. In the first experiment, we compare
decision-making methods by examples on synthetic data with traditional methods, the im-
pact of missing data is particularly studied. In the second experiment, we compare the
differences between USP distance and Jousselme distance in decision making, particularly
confronting a Condorcet Paradox. Afterwards, in the third experiment, group decision mak-
ing is evaluated based on real-world Sushi preference data.

5.1. On synthetic data
In the first and second experiments, preferences are generated in quasi order with missing

data. That is to say, between alternatives ai and aj, in addition to the four preference
relations �, ≺, ≈, and ∼ (indecisive), the case of missing information (undecided) is also
considered, denoted as ?.

5.1.1. Exp. 1: Impact of missing data in preference aggregation
Firstly, preference aggregation results with different numbers of each preference relation

are compared. Following aggregation rules compatible with quasi order are considered:
Borda rule, distance-based consensus rule with KM distance and CS distance, evidential
preference with Jousselme distance (denoted as EPJ), and with USP distance (denoted
as EPUSP ). In Section 3.1, we mentioned that KM and CS models are not applicable
to measuring incomparability as indecisive. To make a fair comparison, preferences with
incomparability interpreted as undecided (denoted with the symbol ?) rather than indecisive
(∼) are generated. Since traditional preference models without uncertainty are compared,
BBAs are categorical in the evidential preference model.

To calculate USP distance, similarity values corresponding to Figure 6 are applied, where
extreme values are taken, i.e. the equality conditions in Formulas (30) are accepted. Table 4
illustrates the agent number settings, with #�, #≺, #≈, #∼. #? denoting the number of
agents giving each preference relation. These numbers are particularly set to highlight the
differences among aggregation strategies.

Aggregation results are illustrated in Table 5. EPXSand EPXΩ respectively represent
the decision on a singleton (in space of Ωpref ) and the power set (in space of 2Ωpref ) with the
evidential preference model. X is written as J and USP to respectively denote Jousselme
distance and USP distance. Only non-zero values in the combined BBAs are illustrated in
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Table 4: Experiment settings of Exp. 1:

SettingN◦ #� #≺ #≈ #∼ #?

1 5 4 4 0 7
2 5 3 3 0 20
3 5 5 4 0 7
4 5 5 5 0 0
5 5 5 5 0 20
6 5 5 0 0 0
7 5 0 5 0 0
8 5 0 5 0 20
9 5 0 4 0 20

Table 5: Results of Exp. 1:

N◦ KM CS Borda EPJ S EPJΩ EPUSP S EPUSP Ω combined BBA singletons m
ω� ω≺ ω≈ Ω

1 ? ≈ � � Ω ≈ � ∪ ≺ ∪ ≈
or Ω

0.184 0.131 0.131 0.295

2 ? ? � � Ω � � ∪ ≺ ∪ ≈
or Ω

0.184 0.131 0.131 0.295

3 ? ≈ ≈ �
or ≺ Ω ≈ � ∪ ≺ ∪ ≈

or Ω
0.164 0.164 0.118 0.295

4 ≈ ≈ ≈
�
or ≺
or ≈

Ω ≈ � ∪ ≺ ∪ ≈
or Ω

0.148 0.148 0.148 0.296

5 ? ? ≈
�
or ≺
or ≈

Ω ≈ � ∪ ≺ ∪ ≈
or Ω

0.148 0.148 0.148 0.296

6 �
or ≺

�
or ≺
or ≈

≈ �
or ≺

≈
or Ω

�
or ≺

� ∪ ≺
or � ∪ ≺ ∪ ≈
or � ∪ ≺ ∪ ∼
or Ω

0.25 0.25 0 0.25

7 �
or ≈

�
or ≈ � �

or ≈
� ∪ ≈
or Ω

�
or ≈ � ∪ ≈ 0.25 0 0.25 0.25

8 ? ? � �
or ≈

� ∪ ≈
or Ω

�
or ≈ � ∪ ≈ 0.25 0 0.25 0.25

9 ? ? � � � ∪ ≈ � � ∪ ≈ 0.3 0 0.196 0.247
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sim � ≺ ≈ ∼
� 1 0 1/3 0
≺ 0 1 1/3 0
≈ 1/3 1/3 1 0
∼ 0 0 0 1

Figure 6: Similarity value settings and graphical illustration in Exp. 1.

column “combined BBA” (without the value on ∅). From the results, we draw the following
conclusions:

1. In N◦1, 2, 3, 5, 8, 9, KM and CS models return undecided case (denoted by ?). This
indicates that consensus rules based on axiomatic distances are not appropriate when
a big part of data is missing.

2. From N◦1˜6, we observe that Ω (equivalent to the undecided case ?) is one of the
possible decision results in EPJΩ and EPUSPΩ. This issue is similar to the above one
and reflects that decisions in space of 2Ω are easily influenced by missing data.

3. The decision result from the Borda rule is always precise. However, relations ≈, ∼
and ? are not distinguished. Indeed, the Borda rule merely compares the number of
� and ≺ with other types of preferences neglected.

4. In strategies for evidential preference model, between two distances in settings N◦ 3
and 4, EPUSPS gives a more precise result than EPJS. This is because those decisions
on singletons are discriminated against with USP distance.

5.1.2. Exp. 2: Condorcet’s paradox avoidance in preference aggregation
Condorcet’s paradox is a traditional issue in preference aggregation problems, reflecting

a phenomenon that collective preferences are cyclic while all agents’ preferences are not.
An initial discussion and with an avoidance solution evidential preference model is intro-
duced in [9]. In this experiment, we demonstrate different results between EPUSP and EPJ

strategies concerning Condorcet’s paradox.
In Figure 7, we generate BBA of three agents U = {u1, u2, u3} expressing their uncertain

preferences on three alternatives A = {a1, a2, a3}. The aggregation results decided by rules
EPJ and EPUSP are illustrated in Figure 8. It can be observed that EPJ decision strategy
returns a cyclic preference order, indicating Condorcet’s paradox, while EPUSP decision
strategy returns indifference among the three alternatives. This shows the advantage of
USP distance. Still, we need to point that EPUSP does not definitively eliminate Condorcet’s
paradox. The example here demonstrates only a specific case. Condorcet’s paradox is not
definitively avoided by EPUSP . To avoid Condorcet’s paradox, we develop an elimination
method for the evidential preference model.
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1

2 3
u1

1

2 3
u2

1

2 3
u3

m(ω�) m(ω≺) m(ω≈)

BBA of agent u1

(a1, a2) 0.7 0 0.3
(a1, a3) 0.9 0 0.1
(a2, a3) 0.7 0 0.3

BBA of agent u2

(a1, a2) 0 0.9 0.1
(a1, a3) 0 0.7 0.3
(a2, a3) 0.7 0 0.3

BBA of agent u3

(a1, a2) 0.7 0 0.3
(a1, a3) 0 0.7 0.3
(a2, a3) 0 0.9 0.1

Figure 7: BBA value settings of evidential preferences from 3 agents.

1

2 3
EPJ

1

2 3
EPUSP

m(∅) m(ω�) m(ω≺) m(ω≈) m(Ω)

(a1, a2) 0.147 0.186 0.075 0.166 0.426
(a1, a3) 0.147 0.075 0.186 0.166 0.426
(a2, a3) 0.147 0.186 0.075 0.166 0.426

Figure 8: Decision results from two BFpref consensus rules.

We denote the set of edges (preference relations) as:

RCondorcet = {Rij}, Rij ∈ {�,≺},

where i, j are the index of alternative pair (ai, aj) in the cyclic graph representing Condorcet’s
paradox. Among all edges in the cyclic graph, the one whose corresponding BBA is closest
to the categorical BBA of its opposite relation {ωRoppo

ij }0 is searched, where Roppo
ij represent

the opposite relation to Rij.Then, this edge is replaced by its opposite relation. Formally,
the edge to be replaced, denoted by Rreplace, is determined by:

Rreplace = argmin
Rij∈RCondorcet

(d(mΩij , {ωRoppo
ij }0)). (32)

This method takes the idea from Dodgson’s voting method [37], and it degrades to Dodg-
son’s method in traditional cases when preferences are certain. This method for Condorcet’s
paradox elimination is applied in the following experiment on data from the real world.

5.2. Exp. 3: Aggregation of conflicting preferences over Sushi preference dataset
In this part, we demonstrate the group decision-making with USP distance in the eviden-

tial preference model on the preference dataset [22] (referred to as SUSHI in the following
text). In this dataset, only three preference relations exist between any two alternatives:
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�,≺ and ≈. Missing data are considered as total ignorance in the evidential preference
model as � ∪ ≺ ∪ ≈.

Several most recent Multi-Criteria Decision-Making (MCDM) methods are compared
with our method. [38–41]. We have chosen PROMETHEE-EDAS [39], TOPSIS-WAA [40],
and 3WD-MADM method [41]. These three methods are fuzzy extensions of traditional
PROMETHEE [42], TOPSIS [43] and ELECTRE I [44] respectively, which are classic
MCDM solutions. Besides, these methods are recent enough to demonstrate the effectiveness
of the proposed method. It should be pointed out that the group decision-making method
based on evidential preference is only adaptable for mono-criteria, where each alternative
is represented by a single value. To adjust the MCDM method for group decision making,
the score of each agent is considered as a criterion of alternatives. For example, the scores
given by agents u1, u2, u3 alternatives a1, a2, a3 are represented by matrix H, as shown in
Table 6. The weight of each criterion (agent) is identical and all agents play a beneficial role
in MCDM.

Table 6: Example: preference data in score:

Score u1 u2 u3

a1 4 3 2
a2 1 3 2
a3 3 0 4

Table 7: Example: Scores converted from preference data in order:

Order No. u1 u2 u3

a1 3rd 2nd 1st
a2 3rd 1st 2nd
a3 2nd 3rd 1st

⇒

Converted score u1 u2 u3

a1 0 1 2
a2 3 1 2
a3 2 3 1

The order data are converted into a score from 9 to 0, with the most preferred given 9
and least given 0. To apply the fuzzy MCDM method and normalize the score, both score
and order data are fuzzified by:

Fuzzy(ai, uj) =
Score(ai, uj)

max(Score(ai, u)|u ∈ U))
, (33)

where Hij represents score on alternative ai from agent uj.
These methods do not consider incomplete cases. Therefore, they are not directly appli-

cable for Sushi preference data. For comparison, missing data are completed by the average
value of all existing data from agents in the corresponding region. In the 3WD-MADM
method, only the average strategy is compared. Due to the consequence of the data comple-
tion strategy that alternatives are close, in parameter selection of ELECTRE I for outrank-
ing calculation, we have chosen a relatively small concordance threshold pELECTRE = 0.55
and large discordance threshold qELECTRE = 0.45. For a similar reason, the threshold
in PROMETHEE-EDAS linear preference function pPROMETHEE should be small. We fix
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pPROMETHEE = 0.05 in the preference function integrated within PROMETHEE-EDAS.
Without specific description, parameters are selected by default values as in [39–41].

Introduction to Sushi preference dataset
SUSHI gathers the preferences of voluntary agents located geographically in the eastern

region (3257 agents) and western region (1742 agents) across Japan (respectively referred
to as East and West Japan). Agents are required to express their preference over 10 sushis
randomly selected from 100 sushis. The preferences are expressed in two forms: score and
order. Scores range from 0 to 4 (5 levels in total). The sparsity of data is therefore 90%. In
this case (preferences are given in two forms), the contradiction is inevitable. For example,
between two sushis magoru and ebi, an agent may give magoru � ebi in order but with
identical scores. Details of the data set are depicted in Table 8.

Table 8: Sushi Preference Dataset:

# agents # alternatives sparsity conflict between
order and score remark

East Region 3257 100 90% 3.45‰ more oily sushi
West Region 1742 100 90% 3.44‰ less oily sushi

The study of Japanese food sociology tells some ground truth knowledge. People from
East and West Japan have different taste preferences on Sushis. Generally, Japanese from
East Japan prefer more oily and saltier food than from West Japan. The oily level denoted
by oil ∈ [0, 4] is also provided for each sushi type. Originally, level 0 refers to the oiliest one
and 4 the least. For the consistency with literal significance, we inverse the order, i.e. 0
refers to the least oily and 4 the most.

Aggregation and evaluation
In SUSHI, the responses in score and order from an identical agent are cognitively de-

pendent . Therefore, the mean rule (Equation (4)) is suitable for the aggregation of personal
preference. The preference aggregation procedure is illustrated in Figure 9, as an extended
version to Figure 5 in Section 4.5.

m
oij
s

m
rij
s

Combination on
identical user

m
Ωij
s

m
oij
1

m
rij
1

Combination on
identical user

m
Ωij

1...
...

...

Conjunctive
combination

mΩij

Figure 9: Combination procedure for sushi preferences.

The evaluation of preference aggregation results is tricky. If an evaluation criterion on
aggregated preference is fixed, it is possible to find a method based on the optimization
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of this criterion. Therefore, the aggregation results are usually evaluated by the effects or
consequences, such as feedback of services [45, 46] or knowledge of ground truths. These
criteria require additional information.

In our experiments, we evaluate the preference aggregation results in two aspects. Firstly,
we focus on the consensus degree between the final result and each expert. Secondly, we
compare the result with the ground truth knowledge in terms of food habits in Japan. In the
first evaluation, the Average Deviation Index (ADI) is applied, defined in Equation (34) [47]:

ADI =
1

|S|
∑
s∈S

τ(σagg, σs), (34)

where, σagg refers to the aggregated preference order, σs the preference order of agent s, and
τ the normalized Fagin distance [15].

Table 9 summarizes the ADI of all methods in comparison, including four rules of eviden-
tial preferences on orders and scores. We observe that the decision rule of EPUSP provides

Table 9: Aggregated conflicting Sushi preferences with ADI:

East Japan West Japan
Order Score Order Score

EPJ 0.2685 0.2395 0.2661 0.2417
EPUSP 0.1462 0.1172 0.1346 0.1103
PROMETHEE-EDAS 0.1821 0.1761 0.2603 0.2609
TOPSIS-WAA 0.1439 0.1960 0.1449 0.1666
3WD-MADM(ELECTRE I) 0.4878 0.4638 0.6445 0.4356

aggregation result with more consensus than EPJ , on both scores and orders. Besides,
EPUSP returns a similar result as TOPSIS-WAA, with a little improvement. The results of
3WD-MADM and PROMETHEE-EDAS are relatively unsatisfactory. The reason is sim-
ilar: 3WD-MADM is calculated based on pairwise rankings with integrated ELECTRE I.
PROMETHEE-EDAS is calculated based on in/out flow on pairwise alternatives. Since the
data set is highly sparse and missing values are filled in with the mean value of observed
data, most criteria are identical between two alternatives, and the distances between alter-
natives are relatively small. In the result of ELECTRE I, almost half of the alternatives in
our experiments are indifferently ranked as least preferred. In the result of PROMETHEE,
most preferences are weak, which the ranking result unreliable.

However, ADI is not always a convincing and reliable homogeneous evaluation criterion.
Lower ADI can be reached by applying a Kendall distance τ minimization strategy. This
also explains the satisfactory performance of EPUSP . Indeed, in cases without uncertainty
nor imprecision, the average value of USP distance between two preference orders is identical
to Kendall distance with Fagin’s extension [48].

To give a more concrete conclusion, in the second place, the preference aggregation results
are evaluated with a piece of sociology knowledge in Japan about eating habits: people from
east Japan usually prefer more oily sushi than people from west Japan. If the aggregated
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preferences can successfully discriminate the oiliness choice largely from the other region, the
aggregation rule is believed to be appropriate. Thus, for verification, the average oiliness
index (AOI) is implemented to the whole aggregated preference order. With the oiliness
degree of sushi ai denoted by oil(ai), we define AOI on the set of sushi Asushi as:

AOI(Asushi) =
1

|Asushi|
∑

ai∈Asushi

oil(ai). (35)

The comparison of AOI on top-k sushis between East and West Japan is calculated respec-
tively upon the difference:

AOIdiff,k = AOI(AEast
k )− AOI(AWest

k ), (36)

where, AOI(AEast
k ) and AOI(AWest

k ) refer respectively to the aggregation orders of top-k
sushi for East and West Japan.
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Figure 10: Sushi AOI difference between East Japan and West Japan.

Figure 10 depicts the AOIdiff of top-k preferred sushi decided by all methods in com-
parison, with k varying from 5 to 100. For 3WD-MADM, k varies from 5 to 40 as the last
60 sushis are all considered indifferently as not preferred. According to the definition of AOI
in Equation (36), positive AOIdiff means oily sushi is more preferred in east Japan than in
west Japan, and vice versa for negative AOIdiff values. It is obvious that AOIdiff has posi-
tive values globally across different k values for decision rules based on both Jousselme and
USP distance, especially for top-10 sushis. The results of EPUSP and EPJ correspond gen-
erally the sociological knowledge mentioned before. Nevertheless, around k = 20, AOIdiff
values drop to negative, for the reason that, the 19th and 20th favorite sushis in the order
are much less oily in the east than in the west Japan. The result of TOPSIS-WAA has a
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similar trend with EP methods but corresponds less with the sociology knowledge. 3WD-
MADM and PROMETHEE-EDAS return rather random results. This does not imply that
these two methods are ineffective in decision-making. Indeed, the unsatisfactory results are
mainly caused by the data completion strategy. With most of the missing data completed
by the mean value, the difference between alternatives is relatively little. Therefore, MCDM
methods based on preference intensity encounter problems in distinguishing the alternatives.

Still, we need to note that people in east Japan prefer more oily sushi is a rough piece of
knowledge rather than a strict rule. This statement does not imply that all oily sushi should
be preferred in east Japan than west, and it is common that some oily sushis are preferred
in both regions, as the existence of several oily sushi more welcomed in east Japan is always
reasonable.

6. Conclusion and discussion

In this paper, we originally bring the discussions on the ambiguity in the interpretation
of incomparability. We find that most of the previous studies do not distinguish between
interpretations of incompatibility according to different situations. In some works, incom-
parability is interpreted as undecided because of certain criteria, while in others it is inter-
preted as undecided because of a lack of observed information. This ambiguity could lead
to controversy in dissimilarity values, especially for pair-wise preference relations. More-
over, reasoning the undecided case as indifference is not a faithful way and may lead to
unexpected consequences. This issue has rarely been discussed in the research community.
Therefore, in order to clarify the different dissimilarity measures at the definition level, we
identify and categorize the two interpretations of incomparability as indecisive and unde-
cided respectively. With the help of the evidential preference model based on the theory
of belief functions, we are able to distinguish indecisive and undecided interpretations and
indifference relation faithfully in a unified framework: the indifference and indecisive cases
are exclusive with other preference relations by being considered as specific binary relations,
while the undecided case of incomparability is considered as total ignorance represented by
the union of all possible relations.

In the second place, we reveal a flaw in existing dissimilarity measures in the theory of
belief functions while applied on evidential preferences after a thorough study on existing
distances between preference relations. Due to the property of belief functions, dissimilar-
ities between exclusive singletons are considered equal, which raises a contradiction with
all previous works in preference modelling. Obviously, this property of belief functions is
not suitable for evidential preferences. To solve this issue, we propose a novel dissimilarity
measure function, named USP distance, for BBAs (evidential objects with both uncertainty
and imprecision). USP distance is an extension of Jousselme distance, which takes the dif-
ference of dissimilarity between singletons into consideration. In the case that dissimilarities
between different singletons are equal, USP distance degrades to Jousselme distance. USP
distance is applied in group decision making with evidential preference and shows a better
performance than Jousselme distance. The advantages of USP distance are also justified by
experimental comparison with several MCDM methods.
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In this paper, the application of USP distance is limited in evidential preference aggre-
gation. USP distance can have more potential utilities in decision making, not only limited
in the circumstances of preference modelling. For example, in a decision system where some
alternatives are riskier than others, it is unfavourable to choose the risky alternatives. Tra-
ditionally, such discrimination is realised by utility functions, as introduced in [49]. USP
distance brings another possible solution. By assigning the pair-wise dissimilarity with
different values, singletons are possible to be discriminated against by USP distance. A
comparative study between the two solutions is in the scope of our future work.

Moreover, other distance-based applications, notably learning tasks on evidential objects
with USP distance, are left to be justified. Here, we propose a potential issue in this task
as a discussion topic without being solved, with the example of clustering over evidential
preferences. Clustering preferences is an important technique, especially in recommendation
systems and social networks where users are profiled by their preference information. For
orders consisting of crisp preference relations, the USP distance degrades to Kendall’s τ
distance in total orders and Fagin’s distance [48] in weak orders. Thus, it is appropriate
to apply USP distance for the classification on complete preference orders. A similar ap-
plication using Jousselme distance has been justified in [50]. Nevertheless, for incomplete
and imprecise preferences, where the impact of ignorance is important, an issue becomes
obvious: the missing preference information modelled by vacuous BBAs (see Definition 5)
are identical and are classified into the same group based on the dissimilarity. With such
results, imprecise information is brutally clustered into crisp clusters, losing the significance
of clustering over preferences. A more rational classification result should be that these vac-
uous BBAs are not classifiable, i.e. the membership of these vacuous BBAs to any group is
also a knowledge of total ignorance. Therefore, it is reasonable to doubt the appropriateness
of existing distance functions in the theory of belief functions, including USP distance. Gen-
erally speaking, this issue is due to the failure of existing distances measuring over evidential
objects with imprecision. To deal with this issue, a study on the properties of dissimilarity
measure for learning tasks over evidential objects is necessary within the scope of our future
work.
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