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A solution is proposed to a longstanding open problem in kinetic theory, namely, given any set of realizable velocity moments up to order 2n, a closure for the moment of order 2n+1 is constructed for which the moment system found from the free-transport term in the one-dimensional (1-D) kinetic equation is globally hyperbolic and in conservative form. In prior work, the hyperbolic quadrature method of moments (HyQMOM) was introduced to close this moment system up to fourth order (n ≤ 2). Here, HyQMOM is reformulated and extended to arbitrary even-order moments. The HyQMOM closure is defined based on the properties of the monic orthogonal polynomials Qn that are uniquely defined by the velocity moments up to order 2n -1. Thus, HyQMOM is strictly a moment closure and does not rely on the reconstruction of a velocity distribution function with the same moments. On the boundary of moment space, n double roots of the characteristic polynomial P 2n+1 are the roots of Qn, while in the interior, P 2n+1 and Qn share n roots. The remaining n + 1 roots of P 2n+1 bound and separate the roots of Qn. An efficient algorithm, based on the Chebyshev algorithm, for computing the moment of order 2n + 1 from the moments up to order 2n is developed. The analytical solution to a 1-D Riemann problem is used to demonstrate convergence of the HyQMOM closure with increasing n.

1. Introduction. Moment closures in the context of kinetic theory have a long history. The 13-moment closure of Grad [START_REF] Grad | On the kinetic theory of rarefied gases[END_REF] and the moment-closure hierarchies of Levermore [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF] are two well-known examples. In general, finite-dimensional moment systems derived from a kinetic equation will have unclosed terms, usually involving higher-order moments that are not included in the moment vector. For example, the free-transport term in the Boltzmann equation generates an unclosed spatial flux for the moment of order k that depends on the moment of order k + 1. Broadly speaking, the closure of the latter can be accomplished (as proposed by Grad [START_REF] Grad | On the kinetic theory of rarefied gases[END_REF]) using a perturbative solution for the velocity distribution function (VDF) valid near the equilibrium distribution, or (as proposed by Levermore [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF]) using a non-perturbative reconstruction of the VDF such as entropy maximization [START_REF] Mcdonald | Affordable robust moment closures for CFD based on the maximum-entropy hierarchy[END_REF].

Regardless of the method used to derive it, a well-posed moment closure must ensure that the predicted moments are realizable (i.e., they must be in the interior or on the boundary of the convex moment space [START_REF] Hamburger | Hermitian transformations of deficiency-index (1,1), Jacobian matrices, and undetermined moment problems[END_REF][START_REF] Dette | The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis[END_REF][START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF][START_REF] Schmüdgen | The Moment Problem[END_REF]) and that the moment system derived from the kinetic equation is globally hyperbolic [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF][START_REF] Huang | Stability analysis of quadrature-based moment methods for kinetic equations[END_REF][START_REF] Fan | A nonlinear hyperbolic model for radiative transfer equation in slab geometry[END_REF][START_REF] Fan | A nonlinear moment model for radiative transfer equation in slab geometry[END_REF]. Furthermore, the moment closure must be well defined for every set of realizable moments, in particular for every moment vector in the interior of moment space [START_REF] Junk | Domain of definition of Levermore's five-moment system[END_REF][START_REF] Fan | A nonlinear hyperbolic model for radiative transfer equation in slab geometry[END_REF], and preferably result in a moment system in conservative form.

One method to ensure realizability of the unknown moments is to reconstruct a non-negative VDF from the known (realizable) moments; however, this is insufficient to ensure that the resulting moment system will be globally hyperbolic. For example, a one-dimensional (1-D) kinetic equation can be modeled by a moment system up to an even-order (2n) moment, whose flux depends of the unknown moment of order 2n+ 1. Since odd-order moments need only be finite to be realizable, any value can be chosen to close the flux (e.g., set the 2n + 1 central moment equal to zero). Moreover, it is always possible to reconstruct a non-negative VDF based on this choice (e.g., a weighted sum of Dirac delta functions [START_REF] Wheeler | Modified moments and Gaussian quadratures[END_REF][START_REF] Gautschi | Orthogonal Polynomials: Computation and Approximation[END_REF][START_REF] Chebyshev | Sur l'interpolation par la méthode des moindres carrés[END_REF]), but it is unlikely that such an arbitrary choice will result in a globally hyperbolic moment system [START_REF] Huang | Stability analysis of quadrature-based moment methods for kinetic equations[END_REF].

Indeed, there is no need to require that a moment closure corresponds to a particular form of the VDF (except on the boundary of moment space where the VDF is unique [START_REF] Schmüdgen | The Moment Problem[END_REF]). In other words, the ability to reconstruct the VDF from its moments is not a necessary condition for global hyperbolicity. Conversely, poor choices for the moment closure can generate unrealizable moments during the time advancement of the moment system, even if the moment system is hyperbolic and in conservative form [START_REF] Vikas | Realizable high-order finite-volume schemes for quadrature-based moment methods[END_REF]. Thus, care must be taken to guarantee that moments on the boundary of moment space do not leave it due to the closure for the flux.

For classical applications of the Boltzmann equation [START_REF] Torrilhon | Modeling nonequilibrium gas flow based on moment equations[END_REF], it is often acceptable to employ a moment closure that is realizable and conditionally hyperbolic in a subset of moment space [START_REF] Struchtrup | Macroscopic Transport Equations for Rarefied Gas Flows[END_REF] (e.g., near the moments of the equilibrium VDF). A recent example of such a closure applied to rarefied gas dynamics can be found in [START_REF] Koellermeier | Spline moment models for the one-dimensional Boltzmann-Bhatnagar-Gross-Krook equation[END_REF]. For the same application, other authors have 'regularized' or 'modified' the moment system by adding non-conservative terms (see, for example, [START_REF] Cai | Globally hyperbolic regularization of Grad's moment system in one-dimensional space[END_REF][START_REF] Cai | A framework on moment model reduction for kinetic equation[END_REF][START_REF] Koellermeier | Diagram notation for the derivation of hyperbolic moment systems[END_REF][START_REF] Fan | A nonlinear hyperbolic model for radiative transfer equation in slab geometry[END_REF][START_REF] Forgues | Higher-order moment models for laminar multiphase flows with accurate particle-stream crossing[END_REF]) to achieve global hyperbolicity. In doing so, the direct connection between the closure and the reconstructed VDF is lost.

As an example, for moment vectors on the boundary of moment space where the VDF is unique [START_REF] Schmüdgen | The Moment Problem[END_REF], it remains to be shown whether or not the eigenvalues of the modified moment system found using the procedure in [START_REF] Koellermeier | Diagram notation for the derivation of hyperbolic moment systems[END_REF] correspond to the exact values found in [START_REF] Chalons | Beyond pressureless gas dynamics: quadrature-based velocity moment models[END_REF][START_REF] Huang | Stability analysis of quadrature-based moment methods for kinetic equations[END_REF]. The latter are equal to the roots of the nth-order orthogonal polynomial Q n , which can be found from the moments using the Chebyshev algorithm [START_REF] Wheeler | Modified moments and Gaussian quadratures[END_REF][START_REF] Gautschi | Orthogonal Polynomials: Computation and Approximation[END_REF][START_REF] Chebyshev | Sur l'interpolation par la méthode des moindres carrés[END_REF]. In the context of dilute sprays and particulate flows without collisions [START_REF] Desjardins | A quadrature-based moment method for dilute fluid-particle flows[END_REF][START_REF] Fox | Higher-order quadrature-based moment methods for kinetic equations[END_REF][START_REF] De Chaisemartin | Eulerian models for turbulent spray combustion with polydispersity and droplet crossing[END_REF][START_REF] Kah | Second-order scheme for quadrature-based velocity high order moment methods for disperse two-phase flows[END_REF][START_REF] Marchisio | Computational Models for Polydisperse Particulate and Multiphase Systems[END_REF][START_REF] Chalons | Multivariate Gaussian extended quadrature method of moments for turbulent disperse multiphase flow[END_REF][START_REF] Fox | Conditional hyperbolic quadrature method of moments for kinetic equations[END_REF][START_REF] Forgues | Higher-order moment models for laminar multiphase flows with accurate particle-stream crossing[END_REF][START_REF] Huang | Stability analysis of quadrature-based moment methods for kinetic equations[END_REF], moment systems very close to or on the boundary of moment space are regularly encountered. Thus, a robust moment closure must be able to describe accurately the evolution of moment sets near the boundary.

Hereinafter, we consider the velocity moments for a 1-D kinetic equation with only the free-transport term, which suffices for testing whether the proposed moment closure is globally hyperbolic. Further, the moment system consists of the 2n + 1 moments up to order 2n, so that the spatial flux requires a closure for the moment of order 2n + 1. In prior work [START_REF] Fox | Conditional hyperbolic quadrature method of moments for kinetic equations[END_REF], the hyperbolic quadrature method of moments (HyQMOM) was developed for n ≤ 2, and shown to yield a realizable and globally hyperbolic moment system in conservative form. In that work, the motivation for closing the spatial flux was to fix the middle root of the polynomial Q 3 at the mean velocity ū, which leads to a unique choice for the fifth-order velocity moment and corresponds to a VDF as a weighted sum of Dirac delta functions with one abscissa at ū. With this choice, it is possible to compute the five eigenvalues of the moment system analytically and prove global hyperbolicity, as well as realizability.

In the present work, we extend HyQMOM to 2 ≤ n by choosing a closure for the (2n + 1)-order moment in conservative form that results in global hyperbolicity. In the process, we again make use of the polynomials Q n (that are determined from the 2n moments up to order 2n -1) to define a monic polynomial R n+1 of order n + 1 whose roots separate and bound those of Q n . The Chebyshev algorithm [START_REF] Wheeler | Modified moments and Gaussian quadratures[END_REF][START_REF] Gautschi | Orthogonal Polynomials: Computation and Approximation[END_REF][START_REF] Chebyshev | Sur l'interpolation par la méthode des moindres carrés[END_REF] is used to find Q n from a set of realizable moments. We then demonstrate that R n+1 is defined such that the characteristic polynomial of the 1-D moment system is P 2n+1 = Q n R n+1 . For n = 2, this procedure results in the middle root of Q 3 not being equal to ū, and leads to different locations for the eigenvalues for moment vectors in the interior of moment space than in [START_REF] Fox | Conditional hyperbolic quadrature method of moments for kinetic equations[END_REF]. Nonetheless, the basic idea for closing the (2n + 1)-order moment using the properties of Q n remains unchanged, and thus we will continue to refer to the proposed extension as HyQMOM.

In the context of moment closures for the kinetic equation, HyQMOM is a pure moment closure in the sense that it does not rely on the reconstruction of a VDF to define the closure. In theory, an explicit formulae can be written for the HyQ-MOM closure that depends on the recurrence formula for the orthogonal polynomials Q n . However, for large n, this expression is quite complex and must be computed numerically. For this purpose, in section 4, we develop an efficient algorithm for computing the HyQMOM closure based on the Chebyshev algorithm. Before describing the proposed closure, in section 2 we provide background information on the VDF and its moments. In section 3, we introduce the 1-D kinetic equation and prove a theorem that relates the characteristic polynomial of the moment system P 2n+1 to the functional form of the moment closure for the standardized moment S 2n+1 . Then, in section 4, we define the HyQMOM closure for arbitrary n by making use of the polynomials Q n and their recurrence coefficients a n and b n .

The remainder of the paper is then devoted to exploring the properties of the proposed closure. In section 5, examples of the HyQMOM closure for n ≤ 5 are provided to illustrate the behavior of the roots of the characteristic polynomial for selected moment sets. Then, in section 6, a Riemann problem with free transport is solved numerically using the HyQMOM closure and compared to the analytical solution for the moments. For increasing n, we demonstrate numerically that the HyQMOM closure converges uniformly towards the analytical solution. Finally, in section 7, conclusions are drawn and possible future extensions of the HyQMOM closure to multidimensional and bounded domains are briefly discussed.

Velocity distribution function and its moments.

Consider the 1-D VDF f (t, x, u) defined for (t, x, u) ∈ R + ×R×R. The VDF is non-negative and its moments with respect to the velocity u are finite. For a symmetric VDF about the mean velocity ū, f (t, x, u -ū) = f (t, x, ū -u).

2.1. Moments. The moments of f are defined by

(2.1) M k (t, x) := R f (t, x, u)u k du for k ∈ {0, 1, . . . , 2n + 1}
and n ∈ N. Let us also denote the moment vector by

M 2n := (M 0 , M 1 , . . . , M 2n ) t .
The moment M 2n+1 is not included in the moment vector, but we wish to specify it as depending on M 2n subject to some constraints. This is the principal challenge faced in moment closures for the kinetic equation.

Central moments.

For M 0 > 0, the central moments are defined by

(2.2) C k (t, x) := 1 M 0 R f (t, x, u)(u -ū) k du for k ∈ {0, 1, . . . , 2n + 1}
where ū(t, x) = M 1 /M 0 is the mean velocity. By definition, C 0 = 1 and C 1 = 0. The next central moment C 2 ≥ 0 is the velocity variance. Let us remark that the vector C k := (C 0 , . . . , C k ) t = (1, 0, C 2 , . . . , C k ) t is the k th -order moment vector

corresponding to v → 1 M 0 f (ū + v).
For any k ≥ 2, the central moment C k depends uniquely on the moment set M k := (M 0 , M 1 , . . . , M k ) through the relation

(2.3) C k = k i=0 k i - M 1 M 0 k-i M i M 0 .
And inversely, for k ≥ 2, M k depends uniquely on the central moment vector

C k = (M 0 , ū, C 2 , . . . , C k ) t through the relation (2.4) M k = M 0 k i=2 k i ūk-i C i + ūk .
In particular, the unclosed moment M 2n+1 can be written in terms of the components of C 2n as (2.5)

M 2n+1 = M 0 2n i=2 2n + 1 i ū2n+1-i C i + ū2n+1 + C 2n+1
where C 2n+1 must be specified as an algebraic function of C 2n . Thus, in the context of moment closures, specifying C 2n+1 is equivalent to specifying M 2n+1 .

Standardized moments.

For C 2 > 0, the standardized moments are defined by (2.6)

S k := C k C k/2 2 for k ∈ {0, 1, . . . , 2n + 1}.
By definition, (S 0 , S 1 , S 2 ) = (1, 0, 1) and S k := (S 0 , . . . , S k ) t = (1, 0, 1, S 3 , . . . , S k ) t is the k th -order moment vector corresponding to v

→ √ C 2 M 0 f (ū + √ C 2 v) . When
C 2 = 0, all higher-order central moments are null. Unless stated otherwise, hereinafter we assume that 0 < C 2 and define the standardized moment vector S k = (M 0 , ū, C 2 , S 3 , . . . , S k ) t , which has a one-to-one relation with M k in the interior of moment space. In the context of moment closures, we must specify S 2n+1 for 2 ≤ n as an algebraic function of S 2n subject to constraints.

Realizability.

In this work, we will not attempt to reconstruct the VDF from its moments. Instead, we approximate the moment of order 2n + 1 given lowerorder moments, i.e., we seek a particular solution to the truncated Hamburger moment problem [START_REF] Hamburger | Hermitian transformations of deficiency-index (1,1), Jacobian matrices, and undetermined moment problems[END_REF]. Nonetheless, given the data (M 0 , ū, C 2 , S 3 , . . . S 2n , S 2n+1 ) with M 0 > 0, C 2 > 0, a reconstructed VDF consisting of a sum of weighted Dirac delta functions can be found when the moment set is realizable. The latter is verified using the Hankel determinants [START_REF] Schmüdgen | The Moment Problem[END_REF]:

(2.7) ) is in the span of (S j , S j+1 , . . . , S j+n ), j = 0, . . . , n. In this last case, the moment set then lies on the boundary of moment space and the VDF is exactly a weighted sum of k Dirac delta functions. Note that 0 = H 2n defines the lower bound for S 2n (i.e., the even-order moments). In contrast, for the Hamburger moment problem, if H 2k > 0 for k ∈ {2, . . . , n}, the odd-order moment S 2n+1 can take on any finite real value. In the context of moment closures, we require that the algebraic function defining S 2n+1 be valid for any vector of realizable moments M 2n .

H 2k = 1 0 1 S 3 • • • S k 0 1 S 3 S
2.5. Linear functional associated with a moment vector. For a moment vector M N , one can define the linear functional . M N on the space R[X] N of the real polynomial function of degree smaller than N by (2.8)

X k M N = M k , for k ∈ {0, 1, . . . , N }. Let us remark that if M N is associated with a VDF f , then (2.9) ∀P ∈ R[X] N P M N = R P (u)f (u)du.
Let us consider the linear functionals . S N associated with the standardized moments defined in subsection 2.3. It is linked to the one associated with M N by

(2.10) ∀P ∈ R[X] N P (X) M N = M 0 P ū + C 2 X S N .
In the following, the notation . is used for simplicity and corresponds to . S2n . Indeed, it is easier to work with S 2n than directly with M 2n , and it is equivalent as soon as M 0 > 0 and C 2 > 0. Moreover, as soon as M 2n (or equivalently S 2n ) is strictly realizable, the application (p, q) → pq defines a scalar product on R[X] n .

3. Kinetic equation and its moment system. The 1-D kinetic equation for the VDF including only free transport is

(3.1) ∂ t f + u∂ x f = 0, with initial condition f (0, x, u) = f 0 (x, u). The exact solution is given by f (t, x, u) = f (0, x -ut, u) = f 0 (x -ut, u).
In this work, we seek to approximate the moments of the VDF found from (3.1) by formulating a finite-dimensional moment system.

3.1. Moment system. The unclosed governing equations for the moment vector are (3.2)

∂ t M 0 + ∂ x M 1 = 0, ∂ t M 1 + ∂ x M 2 = 0, . . . ∂ t M N + ∂ x M N +1 = 0;
or, in vector form,

(3.3) ∂ t M N + ∂ x F(M N ) = 0
where the unclosed flux vector is

F(M N ) = (M 1 , M 2 , . . . , M N , M N +1 ) t .
A viable moment closure provides an algebraic function M N +1 (M N ) that is well defined for any realizable moment vector M N . It then must be demonstrated that such a closure is globally hyperbolic. In this work, the characteristic polynomial derived from (3.3) will be used for this purpose. The system (3.3) with the closed flux vector will then have a conservative hyperbolic form.

Characteristic polynomial.

The Jacobian matrix of system (3.3) is given by

(3.4) DF DM =        0 1 0 . . . 0 0 0 1 0 . . . . . . . . . . . . 0 0 0 0 1 ∂M N +1 ∂M0 ∂M N +1 ∂M1 ∂M N +1 ∂M2 . . . ∂M N +1 ∂M N        .
Equivalently, as soon as M 0 > 0, the variable set

C N = (M 0 , ū, C 2 , . . . , C N ) t can be used, as well as S N = (M 0 , ū, C 2 , S 3 , . . . , S N ) t if in addition M 2 M 0 > M 2 1
, where the central moments C k and the standardized moments S k are defined by (2.3) and (2.6), respectively. The closure is then given by the algebraic function C N +1 ( C N ) or S N +1 ( S N ), and (2.5).

In terms of the central moments, as soon as the variables are regular enough, the system can be rewritten:

(3.5) ∂ t C N + J∂ x C N = 0 with (3.6) J := DM D C -1 DF DM DM D C .
Of course, the characteristic polynomial of DF DM is the same as the one of J and is denoted P N +1 (X) := |J -XI|. The following proposition can then be shown.

Proposition 3.1. Let M N = (M 0 , M 1 , M 2 , . . . , M N ) t be a realizable moment vector such that M 0 > 0 and M 2 M 0 > M 2
1 , and let S N = (M 0 , ū, C 2 , S 3 , . . . , S N ) t be the corresponding standardized moment vector. Let us assume that the function S N +1 does not depend on (M 0 , ū, C 2 ), i.e., S N +1 (S 3 , . . . , S N ). Then, the following polynomial

(3.7) P N +1 (X) := P N +1 ū + C 1/2 2 X C -(N +1)/2 2 = J -ū + C 1/2 2 X I C -(N +1)/2 2
, where J is defined by (3.6), only depends on (S 3 , . . . , S N ).

Proof. The equations for M 0 and ū are (3.8)

∂ t M 0 + ū∂ x M 0 + M 0 ∂ x ū = 0, ∂ t ū + C 2 M 0 ∂ x M 0 + ū∂ x ū + ∂ x C 2 = 0.
Since the moment vector M N +1 (t, x) is realizable for each (t, x), it can be associated with a VDF f (t, x, u).

Setting u = v + ū(t, x), the function f (t, x, v) := f (t, x, v + ū(t, x)) is then such that (3.9) ∂ t f + u∂ x f = ∂ t f + v∂ x f + ū∂ x f -(∂ t ū + ū∂ x ū + v∂ x ū)∂ v f .
The central moments are such that

M 0 C k = R v f (t, x, v)dv for k = 2, . . . , N . Since R u k (∂ t f + u∂ x f )(t,
x, u)du = 0, for k = 2, . . . , N , then, thanks to (3.9):

(3.10) ∂ t (M 0 C k ) + ∂ x (M 0 C k+1 ) + ū∂ x (M 0 C k ) + (∂ t ū + ū∂ x ū)kM 0 C k-1 + (∂ x ū)(k + 1)M 0 C k = 0.
This equation can be rewritten, using (3.8):

(3.11) ∂ t C k + C k+1 -kC 2 C k-1 M 0 ∂ x M 0 +kC k ∂ x ū-kC k-1 ∂ x C 2 + ū∂ x C k +∂ x C k+1 = 0.
This result, along with (3.8), allows to write the matrix J. Then,

J -ū + C 1/2
2 X I can be written as

-X √ C 2 M 0 0 C2 M0 -X √ C 2 1 C3 M0 2C 2 -X √ C 2 C4-3C2C2 M0 3C 3 -3C 2 . . . . . . . . . C N -1 -(N -2)C2C N -3 M0 (N -2)C N -2 -(N -2)C N -3 C N -(N -1)C2C N -2 M0 (N -1)C N -1 -(N -1)C N -2 C N +1 -N C2C N -1 M0 N C N -N C N -1 + ∂C N +1 ∂C2 0 • • • 0 0 0 • • • 0 0 1 • • • 0 0 -X √ C 2 . . . 0 0 . . . . . . 0 1 0 0 -X √ C 2 1 ∂C N +1 ∂C3 . . . ∂C N +1 ∂C N -1 ∂C N +1 ∂C N -X √ C 2 .
Let us remark that, thanks to the assumption on

S N +1 , C N +1 (C 2 , . . . , C N ). Factoring C 1/2 2 /M 0 to the first row, C i/2 2
to each row i > 1 and M 0 to the first column and

1/C (j-1)/2 2
to each column j > 1, we obtain

C (N +1)/2 2 -X 1 0 1 -X 1 S 3 2 -X S 4 -3S 2 3S 3 -3 . . . . . . . . . S N -1 -(N-2)S N -3 (N-2)S N -2 -(N-2)S N -3 S N -(N-1)S N -2 (N-1)S N -1 -(N-1)S N -2 S N +1 -N S N -1 N S N -N S N -1 + N +1 2 S N +1 0 • • • 0 0 0 • • • 0 0 1 • • • 0 0 -X . . . 0 0 . . . . . . 0 1 0 0 -X 1 ∂S N +1 ∂S3 . . . ∂S N +1 ∂S N -1 ∂S N +1 ∂S N -X .
This result shows that P N +1 (X) only depends on (S 3 , . . . , S N ), thus concluding the proof.

The eigenvalues of (3.3) are then written

λ k = ū + C 1/2
2 µ k , where µ k is a root of P N +1 that only depends on (S 3 , . . . , S N ). It is then easy to calculate the coefficients of the characteristic polynomial: Theorem 3.2. With the same assumptions as in Proposition 3.1, the scaled characteristic polynomial defined by (3.7) has the form

(3.12) P N +1 (X) = N +1 m=0 c m X m
with coefficients defined by

(3.13) c N +1 = 1, c N = - ∂S N +1 ∂S N , c N -1 = - ∂S N +1 ∂S N -1 , • • • , c 3 = - ∂S N +1 ∂S 3 , c 2 = - 1 2 N +1 m=3 mS m c m , c 1 = - N +1 m=3 mS m-1 c m , c 0 = 1 2 N +1 m=3 (m -2)S m c m = -c 2 - N +1 m=3 S m c m .
Proof. We denoted S N := (1, 0, 1, S 3 , . . . , S N ) t . From Proposition 3.1, it is known that P N +1 does not depend on (M 0 , ū, C 2 ), so that we can choose (M 0 , ū, C 2 ) = (1, 0, 1) in such a way that S N = S N . This implies that the corresponding moment vector is M N = S N , as well as for the central moment vector: C N = S N . Then P N +1 is equal to the characteristic polynomial of DF DM for M N = S N . Thus, from (3.4), the coefficients of this polynomial can be written:

c N +1 = 1, (c 0 , c 1 , . . . , c N ) = - DM N +1 DM M N =S N = - DM N +1 D S M N =S N DM D S M N =S N -1
.

Moreover, from (2.4), we can write

DM D S M N =S N =          1 0 0 0 • • • 0 0 1 0 0 • • • 0 1 0 1 0 • • • 0 S 3 3S 2 3 2 S 3 1 • • • 0 . . . . . . . . . . . . S N N S N -1 N 2 S N 0 • • • 1         
, and then

DM D S M N =S N -1 =          1 0 0 0 • • • 0 0 1 0 0 • • • 0 -1 0 1 0 • • • 0 ( 3 2 -1)S 3 -3S 2 -3 2 S 3 1 • • • 0 . . . . . . . . . . . . ( N 2 -1)S N -N S N -1 -N 2 S N 0 • • • 1          .
Furthermore, from (2.5), we can write

DM N +1 D S M N =S N = S N +1 , (N + 1)S N , N + 1 2 S N +1 , ∂S N +1 ∂S 3 , . . . , ∂S N +1 ∂S N .
Multiplying this row by the previous matrix concludes the proof.

Properties of the characteristic polynomial.

From the definition in subsection 2.5 of the linear functional . associated with the moment vector S N , one has (3.14)

P N +1 = c N +1 S N +1 + c N S N + • • • + c 3 S 3 + c 2 + c 0 .
If we define the polynomial P N +1 (X) by

(3.15) P N +1 (X) = N +1 m=1 mc m X m-1 ,
then the properties (3.13) of the coefficients of the scaled characteristic polynomial provide directly the following three constraints:

Corollary 3.3. The scaled characteristic polynomial P N +1 defined by (3.7) is such that

(3.16) P N +1 = 0, P N +1 = 0, XP N +1 = 0.
As shown in subsection 4.3, these constraints are used to define the HyQMOM closure.

4. Quadrature-based moment closure for S 2n+1 . In general, QBMM provide a closure for higher-order moments in terms of the known lower-order moments. For example, M 2n given M 2n-1 , or M 2n+1 given M 2n . Without loss of generality, we describe QBMM using the standardized moments. Before defining the moment closure for S 2n+1 used in HyQMOM, we first review the quadrature method of moments (QMOM), which provides a closure for S 2n in such a way that S 2n is on the boundary of moment space.

4.1. QMOM closure for S 2n and orthogonal polynomials. QMOM considers moments up to S 2n-1 with the closure for S 2n found from H 2n = 0, i.e., on the boundary of moment space. In this case, the unique VDF has the form of a sum of weighted Dirac delta functions located at the roots of the polynomial Q n defined just below. Indeed, to compute the quadrature points, it is interesting to introduce the family of monic orthogonal polynomials Q n , deg(Q n ) = n, for the scalar product defined in subsection 2.5, i.e.,

Q m Q n = Q 2 n δ mn . Moreover, Q 2 n = H 2n /H 2n-2
. This family satisfies the following recurrence relation

(4.1) Q n+1 (X) = (X -a n )Q n (X) -b n Q n-1 (X)
with Q -1 = 0 and Q 0 = 1. The recurrence coefficients a n and b n can be found from the standardized moments using the Chebyshev algorithm [START_REF] Wheeler | Modified moments and Gaussian quadratures[END_REF][START_REF] Gautschi | Orthogonal Polynomials: Computation and Approximation[END_REF][START_REF] Chebyshev | Sur l'interpolation par la méthode des moindres carrés[END_REF], which is given in Appendix A. They are related to the orthogonal polynomials by (4.2)

a n = XQ 2 n Q 2 n , b n = Q 2 n Q 2 n-1 = H 2n H 2n-4 H 2 2n-2
.

The first few are a 0 = 0,

a 1 = S 3 , a 2 = S5-S3(2+S 2 3 +2H4) H4 , b 0 = 1, b 1 = 1, b 2 = H 4 , and b 3 = H 6 /H 2 4 .
For QMOM with a given n, starting from the standardized moments up to S 2n-1 , the Chebyshev algorithm computes the recurrence coefficients up to a n-1 and b n-1 to define Q n . Note that a n depends on standardized moments up to S 2n+1 , with the highest-order moment having a linear dependence; and b n depends on standardized moments up to S 2n . The b n are positive except at the boundary of moment space where they can be zero.

Remark 4.1. For Gaussian moments, Q n is the monic Hermite polynomial He n .

Remark 4.2. The relation (2.10) between . and . M2n induces that the orthogonal monic polynomials Q k related to the scalar product (p, q) → pq M2n on R[X] 2n are such that

(4.3) Q k (X) = C k/2 2 Q k X - ū √ C 2 ,
and the corresponding coefficients ān and bn are ān = XQ

2 n M2n Q 2 n M2n = ū + √ C 2 XQ 2 n Q 2 n = ū + C 2 a k , (4.4) bn = Q 2 n M2n Q 2 n-1 M2n = C 2 Q 2 n Q 2 n-1 = C 2 b n . (4.5)
In general, if the standardized moments correspond to a strictly realizable moment set, then there exists a one-to-one relationship between the moment vector S 2n-1 and the recurrence coefficients (a 1 , . . . , a n-1 , b 2 , . . . , b n-1 ). Thus, the quadrature-based moment closure can be expressed equivalently in terms of the standardized moments or the recurrence coefficients. We will use this fact when defining the HyQMOM closure in subsection 4. 

(4.6) XQ n+1 Q n Q 2 n = n k=0 a k , X 2 Q n Q n Q 2 n = na n + n-1 k=0 a k . Proof. First, let us remark that XQ n = Q n+1 + a n Q n + b n Q n-1 , so that XQ n+1 Q n = (n + 1)a n Q 2 n + b n Q n+1 Q n-1 ,
since each Q k is monic and orthogonal to any polynomial of degree at most k -1. Moreover, since

Q n+1 = Q n + (X -a n )Q n -b n Q n-1
, one can deduce:

Q n+1 Q n-1 = XQ n Q n-1 -na n Q 2 n-1 .
Then, using b n =

Q 2 n Q 2 n-1 : XQ n+1 Q n Q 2 n = (n + 1)a n + XQ n Q n-1 -na n Q 2 n-1 Q 2 n-1 = a n + XQ n Q n-1 Q 2 n-1
, which allows to prove the first equality.

For the second one, we still use

XQ n = Q n+1 + a n Q n + b n Q n-1 to find X 2 Q n Q n = na n Q 2 n + b n XQ n Q n-1 = na n + XQ n Q n-1 Q 2 n-1 Q 2 n .
Thanks to the first equality, this concludes the proof.

Finally, the following result is needed to relate a generalized recurrence relation involving Q n to the constraints in (3.16): Theorem 4.5. For all n = 1, 2, . . . ; let the monic polynomial P 2n+1 be given by (4.7)

P 2n+1 = Q n [(X -α n )Q n -β n Q n-1 ]
where α n and β n are some real numbers. Then, the following statements are equivalent: (i) P 2n+1 = 0, P 2n+1 = 0 and XP 2n+1 = 0.

(ii) α n = a n = 1 n n-1 k=0 a k and β n = 2n + 1 n b n .
Proof. It is easy to see that (4.8)

P 2n+1 = XQ 2 n -α n Q 2 n = (a n -α n ) Q 2 n . Moreover, since P 2n+1 = 2(X -α n )Q n Q n + Q 2 n -β n (Q n Q n-1 + Q n Q n-1 ), (4.9 
)

P 2n+1 = 2n Q 2 n + Q 2 n -nβ n Q 2 n-1 = [(2n + 1)b n -nβ n ] Q 2 n-1 .
And finally

XP 2n+1 = 2 X 2 Q n Q n -2nα n Q 2 n + XQ 2 n -β n XQ n Q n-1 .
Using (4.2) and Lemma 4.4, this leads to (4.10)

XP 2n+1 = (2n + 1)a n + 2 n-1 k=0 a k -2nα n - β n b n n-1 k=0 a k Q 2 n .
Equations (4.8), (4.9) and (4.10) allow to conclude the proof.

4.3.

HyQMOM closure for S 2n+1 . With HyQMOM, the moments up to S 2n are known, and a closure for S 2n+1 is sought that makes the moment system globally hyperbolic. The choice is not unique (see Appendix B for a discussion of the case with n = 2), so we favor closures that are relatively simple to compute for arbitrary n, and for which global hyperbolicity can be demonstrated explicitly for n ≤ 9 and is postulated for larger values of n. Theorem 4.6 (HyQMOM closure for S 2n+1 ). Let Q n be the monic orthogonal polynomial defined by (4.1), with Q -1 = 0, Q 0 = 1, and R n+1 be the monic polynomial defined by

(4.11) R n+1 (X) = (X -α n )Q n (X) -β n Q n-1 (X).
For all n = 1, 2, . . . , 9; the scaled characteristic polynomial in Theorem 3.2 can be written as

(4.12) P 2n+1 (X) = Q n (X)R n+1 (X)
if and only if the closure on S 2n+1 , defined through the coefficient a n , and the coefficients α n and β n in (4.11) are related to the recurrence coefficients a k and b k by

(4.13) a n = α n = 1 n n-1 k=0 a k , β n = 2n + 1 n b n .
Proof. First, if the scaled characteristic polynomial P 2n+1 is given by (4.12), then equations (4.13) follow directly from Theorem 4.5 and the properties (3.16) of the characteristic polynomial.

Conversely, using the closure a n = α n , we just need to prove the relation (4.12). For that, it is easier to use the vector Y = (a 1 , b 2 , . . . , a n-1 , b n ), which is uniquely Result:

P 2n+1 -Q n R n+1 (a 0 , b 0 , b 1 ) ← (0, 1, 1); a n ← 1 n n-1 k=0
a k // Set the closure;

(S 0 , S 1 , S 2 ) ← (1, 0, 1); Initialize each scalar Z k,p to zero for k ∈ {-1, . . . , n}, p ∈ {0, . . . , 2n + 1};

Z 0,0 ← 1 // Reverse Chebyshev algorithm; Z 0,1 ← 0; for k ← 1 to n do Z k,0 ← b k Z k-1,0 ; Z k,1 ← Z k,0 a k + Z k-1,1 Z k-1,0 ; for p ← 1 to 2n do for k ← 0 to n + 1 -p 2 do Z k,p+1 ← Z k+1,p-1 + a k Z k,p + b k Z k-1,p+1 ; S p+1 ← Z 0,p+1 ; Y ← (a 1 , b 2 , a 2 , . . . , a n-1 , b n ) // Computation of the c k ; (c 3 , . . . , c 2n ) ← - DS 2n+1 DY D(S 3 , . . . , S 2n ) DY -1 ; (c 0 , c 1 , c 2 ) ← 1 2 2n+1 m=3 (m -2)S m c m , - 2n+1 m=3 mS m-1 c m , - 1 2 
2n+1 m=3 mS m c m ;

P 2n+1 ← X 2n+1 + 2n k=0 c k X k ; Q -1 ← 0 // Computation of the polynomials Q k ; Q 0 ← 1; for k ← 0 to n -1 do Q k+1 ← (X -a k )Q k -b k Q k-1 ; R n+1 ← (X -a n )Q n - 2n + 1 n b n Q n-1 ; return P 2n+1 -Q n R n+1 // Final verification;
defined from (S 3 , . . . , S 2n ). We can then use the following relation to compute the coefficients of the characteristic polynomial P 2n+1 : .

Then, such computations are done using Matlab symbolic to check (4.12) for n = 2, 3, . . . , 9. Algorithm 1 gives the details of these computations and the Matlab source code can be found in Appendix C. For n = 1 the result is obvious from the closure (see subsection 5.1).

Remark 4.7. For realizable moments, β n ≥ 0 in (4.11).

The main result concerning global hyperbolicity is as follows.

Theorem 4.8. When β n > 0, the n + 1 roots of R n+1 in (4.11) are real-valued and bound and separate the n roots of Q n .

Proof. When β n > 0 (and thus b n > 0), the confluent form of the Christoffel-Darboux formula yields

n k=0 Q 2 k (X) Q 2 k = Q n (X)R n+1 (X) -R n+1 (X)Q n (X) Q 2 n > 0,
and thus

(4.15) Q n (X)R n+1 (X) -R n+1 (X)Q n (X) > 0.
The n roots of Q n are real and distinct [START_REF] Gautschi | Orthogonal Polynomials: Computation and Approximation[END_REF] and denoted by

x 1 < x 2 < • • • < x n .
For any two consecutive roots x k and x k+1 , (4.15) implies that

R n+1 (x k )R n+1 (x k+1 ) < 0.
Then the polynomial R n+1 has at least one root between x k and x k+1 , for each k = 1, . . . , n -1. Moreover, Q n (x n ) > 0, because of the behavior of Q n at +∞. Then R n+1 (x n ) < 0 and R n+1 has a root larger than x n . In the same way, it has also a root smaller than x 1 . This concludes the proof.

Remark 4.9. When β n = 0, n roots of R n+1 are shared with Q n and the root α n has multiplicity of either 1 or 3. The latter occurs when Q n (α n ) = 0, e.g., due to symmetry.

In summary, the HyQMOM closure in Theorem 4.6 is globally hyperbolic for the moment system associated with the 1-D kinetic equation, and is well defined for any realizable moment vector M 2n .

4.4.

Computation of M 2n+1 and the eigenvalues. Formulas for the closure S 2n+1 (S 3 , . . . , S 2n ) could be given analytically. This is done in the next section for n = 1 and n = 2, but these formulas becomes increasing more complicated due to the number of moments involved. In the general case, the Chebyshev and reverse Chebyshev algorithms (see Appendix A) can be used to compute S 2n+1 . But the transformation into standardized moment is not necessary, thanks to Remark 4.2, as well as Proposition 3.1. Indeed, the characteristic polynomial P 2n+1 of the system of moments M 2n is linked to P 2n+1 by (3.7), the monic orthogonal polynomials Q k corresponding to M 2n are linked to the Q k by (4.3). One can therefore define

α n = ū + √ C 2 α n , β n = √ C 2 β n and R n+1 (X) = C (n+1)/2 2 R n+1 X-ū √ C2
in such a way that in Theorem 4.6, the relations (4.13) are equivalent to (4.16)

α n = 1 n n-1 k=0 āk , β n = 2n + 1 n bn , (4.11) is equivalent to (4.17) R n+1 (X) = (X -α n )Q n (X) -β n Q n-1 (X),
and (4.12) is equivalent to

(4.18) P 2n+1 (X) = Q n (X)R n+1 (X).
Then, M 2n+1 can be found from M 2n by Algorithm 2: the āk and bk are first computed from the moments by the Chebyshev algorithm, the value of ān is given by the closure ān = α n , and the reverse Chebyshev algorithm then allows to compute M 2n+1 . The eigenvalues of the corresponding system, i.e., the roots of Q n and R n+1 , are then the eigenvalues of the following Jacobi matrices:

(4.19) J n =         ā0 b1 b1 ā1 b2 . . . . . . . . . bn-2 ān-2 bn-1 bn-1 ān-1         and (4.20) K n+1 =           ā0 b1 b1 ā1 b2 . . . . . . . . . bn-1 ān-1 β n β n α n           . 5.
Examples of the HyQMOM closure for n ≤ 5. In this section, we apply the HyQMOM closure for S 2n+1 from Theorem 4.6 with Theorem 3.2 to find the characteristic polynomial P 2n+1 for n ≤ 5. Example plots are shown to illustrate the behavior of the roots of these polynomials as a function of H 2n (i.e., distance from the boundary of moment space). For completeness, we begin with the trivial case n = 1. [START_REF] Fox | Conditional hyperbolic quadrature method of moments for kinetic equations[END_REF], here S 3 = 0 and the characteristic polynomial is (5.1)

n = 1. As first shown in

P 3 = X(X 2 -3) = Q 1 R 2 =⇒ R 2 = X 2 -3 = XQ 1 -β 1 Q 0 .
Thus, for n = 1, there are three real-valued roots (0, ± √ 3), which correspond to the root of Q 1 and the two roots of R 2 . As is well known in the literature, the moment system (i.e., the 1-D Euler equations) with (M 0 , M 1 , M 2 ) is globally hyperbolic.

n = 2. Here α

2 = 1 2 S 3 yields S 5 = 1 2 S 3 (5S 4 -3S 2 3 -1)
. The coefficients of the characteristic polynomial P 5 are

(5.2) c 5 = 1, c 4 = - 5 2 S 3 , c 3 = 1 2 (-4 + 4S 2 3 -5H 4 ), c 2 = 1 2 S 3 (6 -S 2 3 + 5H 4 ), c 1 = 1 2 (2 -2S 2 3 + 5H 4 ), c 0 = - 1 2 S 3 .
When H 4 = 0, the middle root is located at α 2 . Otherwise, there are two real-valued roots at 1 2 [S 3 ± (4 + S 2 3 ) 1/2 ] (i.e., the roots of Q 2 ), and three distinct real-valued roots from Initialize each scalar σ k,p to zero for k ∈ {-1, . . . , n}, p ∈ {0, . . . , 2n + 1};

(5.3) R 3 = X 3 - 3 2 S 3 X 2 + 1 2 (-2 + S 2 3 -5H 4 )X + 1 2 S 3 .
for p ← 0 to 2n do // Chebyshev algorithm σ 0,p ← M p ; ā0 ← M1 M0 ; b0 ← 0; for k ← 1 to n -1 do for p ← k to 2n -k do σ k,p ← σ k-1,p+1 -āk-1 σ k-1,p -bk-1 σ k-2,p ; āk ← σ k,k+1 σ k,k - σ k-1,k σ k-1,k-1 ; bk ← σ k,k σ k-1,k-1 ; σ n,n ← σ n-1,n+1 -ān-1 σ n-1,n -bn-1 σ n-2,n ; bn ← σ n,n σ n-1,n-1 ; ān ← 1 n n-1 k=0 āk // Set the closure; σ n,n+1 ← σ n,n ān + σ n-1,n σ n-1,n-1 // Reverse Chebyshev algorithm; for k ← n -1 to 0 do σ k,2n-k+1 ← σ k+1,2n-k + āk σ k,2n-k + bk σ k-1,2n-k ; M 2n+1 ← σ 0,2n+1 ;
to zero. Moreover, we can also see how the absolute value of the extremal roots of R 3 increase with H 4 . We can also remark that with Gaussian moments, Q 2 is the Hermite polynomial He 2 and R 3 = X 3 -6X.

5.3. n > 3. For n = 3, 4, 5, the characteristic polynomial P 2n+1 is found from α n = a n . In the same way as for n = 2, Figure 1 illustrates the behavior of its roots with fixed values of (S 3 , . . . , S 2n-1 ) and varying S 2n , or equivalently H 2n . For n = 3, we took (S 3 , S 4 , S 5 ) = (-1, 5, -8); for n = 4, (S 3 , S 4 , S 5 , S 6 , S 7 ) = (-1, 5, -8, 67.3, -100); and for n = 5, (S 3 , S 4 , S 5 , S 6 , S 7 , S 8 , S 9 ) = (-1, 5, -8, 67.3, -100, 3000, 0).

The same type of behavior as for the case n = 2 is observed. Notwithstanding, for large n, the roots of Q n depend on all the standardized moments up to S 2n-1 . Thus, the roots can be very different depending, for example, on how close the moment vector is to the boundary of moment space (which determines the lower bound on the even-order standardized moments).

Let us also remark that for n = 3, with Gaussian moments, Q 3 is the Hermite polynomial He 3 and R 4 = X 4 -10X 2 + 9. In the case n = 4, with nine roots depending on six parameters, the root locations can vary greatly for different values of the central moments, and will be very different from the roots of the Hermite For clarity, the lower-order standardized moments are held constant, but would likely also vary in real applications.

polynomial He 9 used in Grad's moment closure [START_REF] Grad | On the kinetic theory of rarefied gases[END_REF]. For n = 5, Q 5 is the Hermite polynomial He 5 . For nearly Gaussian, asymmetric moment sets, the roots of Q n will be slightly displaced from those of the Hermite polynomial.

For the example in section 6, calculations are done for n up to 20 with no particular difficulties. In practice, the only foreseeable difficulty with using the HyQMOM closure for even larger n is that associated with the accuracy of using the Chebyshev algorithm to find the recurrence coefficients from a realizable moment vector [START_REF] Gautschi | Orthogonal Polynomials: Computation and Approximation[END_REF].

6. Numerical example for the 1-D kinetic equation. In order to illustrate the predictions of the HyQMOM closure, we consider the 1-D Riemann problem from [START_REF] Chalons | Multivariate Gaussian extended quadrature method of moments for turbulent disperse multiphase flow[END_REF][START_REF] Fox | Conditional hyperbolic quadrature method of moments for kinetic equations[END_REF], for which the analytical solution for the VDF can be used to find reference solutions for the moments [START_REF] Chalons | Multivariate Gaussian extended quadrature method of moments for turbulent disperse multiphase flow[END_REF]. The initial condition for the mean velocity has a step at x = 0: Otherwise, for all x, the initial moments correspond to a Maxwellian distribution function (i.e., S 2k+1 = 0 and S 2k+2 = (2k + 1)S 2k for k ≥ 1) with M 0 = 1 and C 2 = 1 3 . Due to the discontinuous mean velocity, for t > 0 and starting near x = 0, the VDF quickly becomes far from Maxwellian. The analytical solution is given in [START_REF] Chalons | Multivariate Gaussian extended quadrature method of moments for turbulent disperse multiphase flow[END_REF], and reported in Figures 2 and3 at t = 0.1.

ū = +1 if x < 0, -1 if x ≥ 0.
The moment system (3.3) is solved numerically on the 1-D computational domain -0.5 < x < 0.5 discretized into 4000 finite volumes using a first-order HLL scheme [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction[END_REF]. The CFL number is set to 0.5. The maximum/minimum eigenvalues over the domain needed to define the HLL fluxes are computed at each time step. They are the maximum/minimum roots of R n+1 and these roots are computed from the coefficients āk and bk by computing the eigenvalues of the corresponding Jacobi matrix by (4.20). For comparison, the results found using the Gaussian, the Gaussian-EQMOM, and the entropy maximization closures are given in Fig. 2 of [START_REF] Chalons | Multivariate Gaussian extended quadrature method of moments for turbulent disperse multiphase flow[END_REF]. Results with n = 2 for the previous definition of HyQMOM (i.e., with a 2 = 0) and QMOM are given in Figs. 1 and2 of [START_REF] Fox | Conditional hyperbolic quadrature method of moments for kinetic equations[END_REF].

Qualitatively, the HyQMOM results for n = 2 with a 2 = 1 2 S 3 are better than with a 2 = 0. This is likely due to the fact that the three eigenvalues are different due to their dependence on a 2 . For example, when S 3 < 0 (i.e., x < 0), the most negative eigenvalue with a 2 = 1 2 S 3 has larger magnitude than with a 2 = 0. Thus, information propagates faster towards the left, giving, for example, a better approximation of the moments when compared to the analytical solution. This is clearly seen for S 3 where the location of the minimum (maximum) is better predicted with a 2 = 1 2 S 3 , as is the maximum of S 4 . With a 2 = 0, the latter is significantly under-predicted (by a factor of two). In summary, for n = 2 using the HyQMOM closure from this work yields more accurate predictions for the eigenvalues and thus for the moments. Notwithstanding, As can be seen from Figures 2 and3, the HyQMOM prediction improves with increasing n. As expected for a hyperbolic system with 2n + 1 degrees of freedom, the different speeds associated with the eigenvalues result in sub-shocks that are not present in the infinite-dimensional analytical solution. Remarkably, as n increases, the speeds adapt to better capture the shapes of the moment profiles. We should remind the reader that these speeds are not known in advance (i.e., unlike with Hermite expansions), but adapt to the changing moments in a highly nonlinear manner. Although this non-linearity makes the analysis of the moment system challenging, it is a significant strength of QBMM because it allows the characteristic speeds to reflect very accurately the underlying moments. For example, with Gaussian moments a subset of the speeds correspond to the roots of a Hermite polynomial, while on the boundary of moment space they reduce to QMOM as required by the known form of the VDF.

To examine convergence, the simulations were done without any trouble up to n = 20, showing the robustness of the method. Moreover, for the final solution, the maximal eigenvalue in absolute value is about 3.34 for n = 2, 5.32 for n = 10, and 6.5 for n = 20; so they do not increase drastically. The L 2 norm of the error for each moment is then computed for each simulation and normalized by the L 2 norm of the analytical solution. These results are plotted on Figure 4 as functions of n, varying from 2 to 20. Each line corresponds to a moment, from M 0 to M 20 , with a gradation of the color from red to blue and then from blue to green. The group of curves at the bottom corresponds to even-order moments, whereas the top group corresponds to odd-order moments, with (for fixed n) an error that increases with the order. Example results for the moments with n = 10 are given in Appendix D. With n = 20 the curves nearly overlap and cannot be distinguished with the scaling used for the plots. Based on these results and Figure 4, the HyQMOM closure appears to converge with increasing n. As a measure of the computation cost, the case with n = 20 required 22 mins using Matlab on a laptop computer.

7. Discussion and conclusions. Despite its apparently simple form, the path from the original HyQMOM closure for n = 2 to the general HyQMOM closure in Theorem 4.6 was not straightforward. In [START_REF] Fox | Conditional hyperbolic quadrature method of moments for kinetic equations[END_REF], the 1-D HyQMOM closure for n = 2 was discovered by forcing an abscissa of a representing VDF to be located at the mean velocity (this induces a 2 = 0). We therefore first sought to extend this condition to 2 < n, but were unsuccessful at finding a globally hyperbolic closure. By relaxing this condition, we were able to find closures with α n = 0 that are hyperbolic in restricted regions of moment space. However, the first real breakthrough came from the realization that as H 2n → 0, we must have P 2n+1 (X) → (X -α n )Q 2 n (X). When combined with the condition P 2n+1 = 0, this implies that on the boundary of moment space we must have a n = α n , which provides a closure for S 2n+1 . Thus, using the results from Proposition 3.1 and Theorem 3.2, we next sought functional forms for a n depending only on the standardized moments.

This approach turned out to be relatively fruitful, enabling us to find closures up to n = 5 that, at least numerically, appeared to be globally hyperbolic. Nevertheless, it was impossible to prove global hyperbolicity as the expressions were too complicated to advance analytically. However, we did observe that all such closures were nearly of the form P 2n+1 = Q n R n+1 + remainder, where the remainder term went to zero as H 2n → 0. As discussed in Appendix B for n = 2, the family of closures with P 2n+1 = Q n R n+1 is not unique, nor is it usually possible to prove global hyperbolicity for larger n. But searching only for candidate polynomials R n+1 greatly narrowed the field of possible closures. The decisive final breakthrough was Theorem 4.5, which led us directly to Theorem 4.6. The classical proof of the relationship between the roots of Q n and R n+1 in Theorem 4.8 followed immediately, and established global hyperbolicity at least for n ≤ 9.

From a computational standpoint, Algorithm 2 for computing M 2n+1 (and its extension in Appendix E) is extremely efficient, especially when compared to the other candidate closures discussed above for which the cost of computing M 2n+1 becomes intractable for 5 ≤ n. Likewise, the Jacobi matrices in (4. [START_REF] Henrici | The quotient-difference algorithm[END_REF]) and (4.20) provide the eigenvalues of the free-transport term at very little additional cost. As demonstrated in section 6, this efficiency allowed us to test the convergence of the HyQMOM closure for n = 20 (i.e., up to M 41 ). Nonetheless, it should be possible to go to even larger n using Algorithm 2 if needed.

Because it was developed to control the eigenvalues of the free-transport term in the 1-D kinetic equation, one can ask whether the HyQMOM closure will be useful for closing other terms such as collisions or drag exchange with a second phase [START_REF] Marchisio | Computational Models for Polydisperse Particulate and Multiphase Systems[END_REF]. In any case, a VDF as a weighted sum of n + 1 Dirac delta functions found from J n+1 defined in (4. [START_REF] Henrici | The quotient-difference algorithm[END_REF]) can be uniquely associated with the HyQMOM closure. The pragmatic response is that HyQMOM will be at least as good as QMOM with n + 1 weights and abscissas for evaluating unclosed integrals with respect to the unknown velocity VDF.

For population balance equations defined on semi-infinite or finite domains, it is not obvious that HyQMOM will provide any advantage relative to QMOM. Given that HyQMOM uses the even-order moment M 2n while QMOM uses the odd-order moment M 2n+1 , it will be necessary to prove that the HyQMOM closure for M 2n+1 is realizable for semi-infinite and finite domains. If this is the case, then the HyQMOM closure presented in this work can be used to investigate convergence with increasing n. Besides the kinetic equation and population balances, other potential applications of the HyQMOM closure include radiation transport [START_REF] Vikas | Radiation transport modeling using extended quadrature method of moments[END_REF][START_REF] Fan | A nonlinear hyperbolic model for radiative transfer equation in slab geometry[END_REF][START_REF] Fan | A nonlinear moment model for radiative transfer equation in slab geometry[END_REF] and multiphase-flow models derived from a kinetic equation [START_REF] Marchisio | Computational Models for Polydisperse Particulate and Multiphase Systems[END_REF].

Our current research is focused on the extension of 1-D HyQMOM to multiple dimensions (e.g., 2-D and 3-D) and infinite domains. In prior work with n = 2 [START_REF] Fox | Conditional hyperbolic quadrature method of moments for kinetic equations[END_REF][START_REF] Patel | Three-dimensional conditional hyperbolic quadrature method of moments[END_REF], this was accomplished using the conditional QMOM [START_REF] Yuan | Conditional quadrature method of moments for kinetic equations[END_REF] and a reconstructed VDF based on the weights and abscissas corresponding to Q 3 . For our extension of 1-D HyQMOM, we eschew that approach, and instead seek to close the multi-dimensional moments appearing in the free-transport flux vector using ideas developed in the present work. Our initial results in this direction are promising from both an analytical and computational perspective. Also recall that Q 2 (X) = X 2 -S 3 X -1. The following theorem addresses the existence of hyperbolic closures for which P 5 is divisible by Q 2 .

Theorem B.1 (Hyperbolic closure for n = 2). The polynomial P 5 is divisible by Q 2 , i.e., P 5 = Q 2 R 3 with R 3 a real monic polynomial of degree 3, if and only if there exists a real number γ such that Moreover, R 3 has three real roots, which separate those of Q 2 , if and only if γ ∈ -5 2 , 5 2 . Proof. Identifying the coefficients, where the VDF is a Dirac delta function at u = M 1 /M 0 . This also includes the case where M 2n is a sum of k Dirac delta functions, with k < n, i.e., in such a case that b k = 0. In this last case, the abscissas x p and weights w p for p = 1, . . . , k are computed from the Jacobi matrix J k defined by (4.19). The abscissas are the eigenvalues of this matrix and the weights are computed from the eigenvectors [START_REF] Gautschi | Orthogonal Polynomials: Computation and Approximation[END_REF].

(B.
P 5 = Q 2 R 3 with R 3 = X 3 + aX 2 + bX + c is equivalent to       1 0 0 0 -1 -S 3 1 0 -1 0 -1 -S 3

  3. Moreover, for all n = 1, 2, . . . ; S 2n and S 2n+1 expressed in terms of Y = (a 1 , b 2 , a 2 , . . . , a n-1 , b n , a n ) are multivariate polynomials (see Appendix A), as are the components of the vectors of partial derivatives DS 2n DY and DS 2n+1 DY . Finally, the QMOM closure for S 2n corresponds to setting b n = 0 to find S 2n . The form of the characteristic polynomial P 2n for the corresponding system were given in [4, 20]. Theorem 4.3. The QMOM closure b n = 0 induces the following characteristic polynomial P 2n = Q 2 n and the system is only weakly hyperbolic. 4.2. Preliminary results. Before defining the HyQMOM closure, we will first need the following relations for the monic orthogonal polynomials Q n : Lemma 4.4. For all n = 0, 1, . . . ;

Algorithm 1 :

 1 Verification of Theorem 4.6 Data: (a k ) k=1,...,n-1 ,(b k ) k=2,...,n

( 4 .

 4 14) (c 3 , . . . , c 2n ) = -DS 2n+1 DY D(S 3 , . . . , S 2n ) DY -1

Figure 1 2 :

 12 Figure 1 illustrates the behavior of the roots for S 3 = -1 with varying H 4 . The roots of Q 2 are independent of H 4 and the two roots of R 3 join those of Q 2 when H 4 tends

Fig. 1 :

 1 Fig. 1: Roots µ of Q n (blue lines) and R n+1 (red lines) and thus of P 2n+1 = Q n R n+1 as functions of H 2n for n = 2 and S 3 = -1 (top left), n = 3 and (S 3 , S 4 , S 5 ) = (-1, 5, -8) (top right), n = 4 and (S 3 , S 4 , S 5 , S 6 , S 7 ) = (-1, 5, -8, 67.3, -100) (bottom left) and n = 5 for (S 3 , S 4 , S 5 , S 6 , S 7 , S 8 , S 9 ) = (-1, 5, -8, 67.3, -100, 3000, 0) (bottom right).For clarity, the lower-order standardized moments are held constant, but would likely also vary in real applications.

Fig. 2 :

 2 Fig. 2: Numerical solution at t = 0.1 of 1-D Riemann problem for the moments. Black, analytical solution. Blue, n = 2. Green, n = 3. Red, n = 4.

Fig. 3 :

 3 Fig. 3: Numerical solution at t = 0.1 of 1-D Riemann problem for the standardized moments. Black, analytical solution. Blue, n = 2. Green, n = 3. Red, n = 4.

Fig. 4 :

 4 Fig. 4: Error on the moments for the numerical solution at t = 0.1 of the 1-D Riemann problem depending on n. Color gradation from red (for M 0 ) to blue (for M 5 ) and from blue (for M 5 ) to green (M 20 ).

Algorithm 4 :c 3 + 2 (S 3 c 3 +

 4323 Computation of the moments from the coefficients of the recurrence relation Data: (a k ) k=0,...,n and (b k ) k=0,...,n Result: M 2n+1Initialize each scalar Z k,p to zero for k ∈ {-1, . . . , n}, p ∈ {0, . . . , 2n};Z 0,0 ← b 0 ; Z 0,1 ← b 0 a 0 ; for k ← 1 to n do Z k,0 ← b k Z k-1,0 ; Z k,1 ← Z k,0 a k + Z k-1,1 Z k-1,0 ; for p ← 1 to 2n do for k ← 0 to n -p 2 do Z k,p+1 ← Z k+1,p-1 + a k Z k,p + b k Z k-1,p+1 ; for p ← 0 to 2n + 1 do M p ← Z 0,p ; 4S 4 c 4 + S 5 ) , c 1 = -(3c 3 + 4S 3 c 4 + 5S 5 ) , c 0 = 1 2S 4 c 4 + 3S 5 ) .

3 ) S 5 (+ 5 2 H 4 +

 3524 S 3 , S 4 ) = S 3 2 + S 2 3 γH 4 4 + S 2 3 .

.

  This system gives c 3 and c 4 , and, with the change of variable S 4 = H 4 + S2 3 + 1,∂S 5 ∂H 4 S3 = S 5 -S 2 3 -2S 3 H 4 , ∂S 5 ∂S 3 H4 = S 3 S 5 + 2S4 3 + 12S 2 3 + 10H 4 + 8 4 + S 2 3 .

  

  

  If H 2k > 0 for k ∈ {2, . . . , n}, then the moment set is realizable and lies in the interior of moment space. It is then said to be strictly realizable. If H 2k < 0 for any k ∈ {2, . . . , n} then the moment set is unrealizable. Otherwise, the moment set is realizable if and only if there exists k ∈ {2, . . . , n} such that H 4 > 0, . . . , H 2k-2 > 0, H 2k = • • • = H 2n = 0 and the vector (S n+1 , . . . , S 2n+1

	4		
	1 S 3 S 4 S 5 S 3 S 4 S 5 S 6	,	k ∈ {2, . . . , n}.
	. . .	. . .	
	S k	S 2k	

Appendix A. Chebyshev and reverse Chebyshev algorithms. Let us consider a strictly realizable moment vector M N and the associated linear functional . M N on R[X] N defined by (2.8). Let us also define the sequence (Q k ) k=0,...,n of monic orthogonal polynomials for the scalar product (p, q) → pq M N of R[X] n , with n = N 

) can be computed from the moments thanks to several algorithms: Rutishauser's QD algorithm [START_REF] Rutishauser | Der Quotienten-Differenzen-Algorithmus[END_REF][START_REF] Henrici | The quotient-difference algorithm[END_REF], Gordon's PD algorithm [START_REF] Gordon | Error bounds in equilibrium statistical mechanics[END_REF][START_REF] Gordon | Error bounds in spectroscopy and nonequilibrium statistical mechanics[END_REF], and a variation of an algorithm attributed to Chebyshev and given by Wheeler in [START_REF] Wheeler | Modified moments and Gaussian quadratures[END_REF]. However, except for the last one (referred to as the 

to M N : the values ζ k are indeed well defined and positive when the support of the VDF is included on (0, +∞), whereas some of them cannot be defined in some cases, like when the VDF corresponding to the moments is symmetric. That is why we use only the Chebyshev algorithm.

As explained for example in [START_REF] Wheeler | Modified moments and Gaussian quadratures[END_REF][START_REF] Gautschi | Orthogonal Polynomials: Computation and Approximation[END_REF][START_REF] Chebyshev | Sur l'interpolation par la méthode des moindres carrés[END_REF], the Chebyshev algorithm introduces the quantities σ k,p = Q k X p M N and uses the formulas

This is given in Algorithm 3.

Conversely, from the coefficients (a k ) k=0,...,n and (b k ) k=0,...,n , one can compute the moment vector M 2n+1 through the reverse Chebyshev Algorithm 4, using Z k,p = σ k,k+p . Let us remark that it induces

which imply that each Z k,p , and then also M p , is a multivariate polynomial function of the a j and b j .

Appendix B. Hyperbolic closures for n = 2. Let us consider the case with five moments. The closure S 5 (S 3 , S 4 ) allows to compute the characteristic polynomial of the system:

Let us define Y (S 3 , S 4 ) such that S 5 (S 3 , S 4

This leads to Y = γ

, so that we obtain (B.3).

Moreover, let

denote the roots of Q 2 . The values of R 3 at these points are

Since r + > 0 and r -< 0, it is easy to see that R 3 (r + ) < 0 and R 3 (r -) > 0 if and only if γ ∈ -5 2 , 5 2 , thus concluding the proof. The five-moment system with the closure (B.3) is globally hyperbolic for any γ ∈ - 5 2 , 5 2 . Let us remark that (B.3) is equivalent to

So, for γ = 0, one have a 2 = (a 0 + a 1 )/2, which is the HyQMOM closure from Theorem 4.6. Furthermore, the globally hyperbolic closure introduced in [START_REF] Fox | Conditional hyperbolic quadrature method of moments for kinetic equations[END_REF] corresponds to Y = -1 2 (and a 2 = 0). However, since Y is constant, Theorem B.1 does not apply and P 5 found with this closure is not divisible by Q 2 . Appendix E. Algorithm for the computation of M 2n+1 for any realizable moment vector.

Algorithm 2 was restricted to a strictly realizable moment vector. It can be generalized to any realizable moment vector, i.e., possibly on the boundary of moment space. This includes the case M 0 = 0, where the VDF is zero and the case C 2 = 0 Algorithm 5: Computation of M 2n+1 Data: M 2n realizable