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On the Number of Balanced Words of Given

Length and Height over a Two-Letter Alphabet

Nicolas Bédaride ∗, Eric Domenjoud, Damien Jamet, Jean-Luc Rémy†

July 14, 2019

Abstract

We exhibit a recurrence on the number of discrete line segments
joining two integer points in the plane using an encoding of such seg-
ments as balanced words of given length and height over the two-letter
alphabet {0, 1}. We give generating functions and study the asymp-
totic behaviour. As a particular case, we focus on the symmetrical
discrete segments which are encoded by balanced palindromes.

1 Introduction

The aim of this paper is to study some properties of discrete lines by using
combinatorics on words. The first investigations on discrete lines are dated
back to J. Bernoulli[Ber72], E.B. Christoffel [Chr75], A. Markoff [Mar82]
and more recently to G.A. Hedlund and H. Morse [MH40] who introduced
the terminology of Sturmian sequences, for the ones defined on a two-letter
alphabet and coding lines with irrational slope. These works gave the first
theoretical framework for discrete lines. A sequence u ∈ {0, 1}N is Sturmian
if and only if it is balanced and not-eventually periodic. From the 70’s,
H. Freeman [Fre74], A. Rosenfeld [Ros74] and S. Hung [Hun85] extended
these investigations to lines with rational slope and studied discrete seg-
ments. In [Rev91], J.-P. Reveillès defined arithmetic discrete lines as sets of
integer points between two parallel Euclidean lines. There are two sort of
arithmetic discrete lines, the naive and the standard one.

There exists a direct relation between naive (resp. standard) discrete
arithmetic lines and Sturmian sequences. Indeed, given a Sturmian sequence
u ∈ {0, 1}N, if one associates the letters 0 and 1 with a shifting along the
vector e1 and e2 (resp. the vectors e1 and e1 + e2) respectively, then, the
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vertices of the obtained broken line are the ones of a naive arithmetic discrete
line (resp. a standard arithmetic discrete line) with the same slope (see
Figure 1).

Let s : N 7−→ N be the map defined by:

s : N −→ N
L 7→ #{w ∈ {0, 1}L, w is balanced},

where #E denotes the cardinal of the set E. In other words, given L ∈
N, s(L) is the number of balanced words of length L, or equivalently, the
number of discrete segments of any slope α ∈ [0, 1] of length L. In [Lip82],
it is proved that

s(L) = 1 +
L∑
i=1

(L− i+ 1)ϕ(i),

where ϕ is Euler’s totient function, that is, ϕ(n) is the number of positive
integers smaller that n and coprime with n. Alternative proofs of this result
can be found in [Mig91, BP93, CHT02, BL88].

In [dLL05, dLL06], de Luca and De Luca investigated the number p(L)
of balanced palindrome words of length L ∈ N, that is the balanced words
coding a symmetrical discrete segments of length L. They proved

p(L) = 1 +

dL/2e−1∑
i=0

ϕ(L− 2i).

In the present work, we investigate the following question. Given two in-
teger points of Z2 (also called pixels in the discrete geometry literature [CM91]),
how many naive discrete segments link these points (see Figure 1)? In other
words, given L ∈ N and h ∈ N, how much is s(L, h) = #{w ∈ {0, 1}L, |w|1 =
h and w balanced}? We exhibit a recurrence relation on s(L, h) and gener-
ating functions and we study the asymptotic behaviour of the maps s. After
this, we focus on the number p(L, h) of balanced palindromes of given length
and height for which we also exhibit a recurrence relation and a generating
function.

We are interested in these formulas to have a better understanding of the
space of Sturmian sequences. Indeed the main combinatorial properties of
theses sequences can be seen in similar formulas. For example the formula
of s(L) is deeply related to the number of bispecial words of length L, see
[CHT02]. One main objective is to generalize these formulas to dimension
two in way to understand the combinatorics structure of discrete planes.
To a discrete plane is associated a two dimensional word. The study of
these words is an interesting problem. The complexity of such a word is not
known, the first step in its computation is the following article [DJVV10].
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Figure 1: There exist six discrete segments of length 5 and height 2.

2 Basic notions and notation

Let {0, 1}∗ and {0, 1}N be the set of respectively finite and infinite words on
the alphabet {0, 1}. We denote the empty word by ε. For any word w ∈
{0, 1}∗, |w| denotes the length of w, and |w|0 and |w|1 denote respectively
the number of 0’s and 1’s in w. |w|1 is also called the height of w. A (finite
or infinite) word w is balanced if and only if for any finite subwords u and v
of w such that |u| = |v|, we have

∣∣|u|0− |v|0∣∣ ≤ 1. A (finite or infinite) word
w is of type 0 (resp. type 1) if the word w does not contain 11 (resp. the word
00). We denote by S the set of finite balanced words and by S0 (resp. S1)
the set of finite balanced words of type 0 (resp. 1).

Let L, h ∈ N and α, β ∈ {0, 1}∗. We denote by Sα,β(L, h) the set of
elements of S of length L and height h, of which α is a prefix and β is a
suffix. Note that α and β may overlap. For short, we usually write S(L, h)
instead of Sε,ε(L, h). Observe that S(L, h) is the set of finite balanced words
which encode the discrete segments between (0, 0) and (L, h). Remark also
that L − h is the width of the word, that is the number of zero’s. We can
count by height or by width, it is the same and this symmetry is used several
times in the paper.

We extend the definition of the function s(L, h) on Z2 by:

s(L, h) =


#S(L, h mod L) if L > 0,
1 if L = 0 and h = 0,
0 if L < 0 or L = 0 and h 6= 0

Observe that for 0 ≤ h ≤ L, since #S(L,L) = #S(L, 0), one has s(L, h) =
#S(L, h).

For 0 ≤ h ≤ L and α, β ∈ {0, 1}∗ we denote by sα,β(L, h) the cardinal
of Sα,β(L, h). Notice that sα,β(L, h) = sα,β(L,L − h), where w is the word
obtained by replacing the 0’s with 1’s and the 1’s with 0’s in w.
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3 General case

3.1 Main theorem

In the present section, we prove the following result:

Theorem 1. For all L, h ∈ N satisfying 0 ≤ h ≤ L/2, one has:

s(L, h) = s(L−h−1, h)+s(L−h, h)−s(L−2h−1, h)+s(h−1, L−2)+s(h−1, L−1).

In order to prove Theorem 1, let us now introduce some technical defi-
nitions and lemmas. Let ϕ be the morphism defined on {0, 1}∗ and {0, 1}N
by:

ϕ :
0 7→ 0
1 7→ 01

Let us recall that ϕ is a Sturmian morphism, that is, for any Sturmian
sequence u, the sequence ϕ(u) is Sturmian [Par97, MS93]. Moreover:

Lemma 2. [Lot02] Let w ∈ {0, 1}N.

1. If 0w is Sturmian of type 0, then there exists a unique Sturmian se-
quence u satisfying ϕ(u) = 0w.

2. w is Sturmian if and only if so is ϕ(w).

Since every balanced word is a factor of a Sturmian word, we directly
deduce:

Corollary 3. If a finite word w ∈ {0, 1}∗ is balanced then so is ϕ(w).

Definition 1 (0-erasing map). Let θ : {0, 1}∗ → {0, 1}∗ be the map defined
by the recurrence relations:

θ(ε) = ε,
θ(0α+1) = 0α for α ≥ 0,
θ(1v) = 1θ(v),
θ(0α+11v) = 0α1θ(v) for α ≥ 0,

Roughly speaking, θ erases a 0 in each maximal range of 0 in a given
word. In some sense, θ is the inverse of ϕ. Let us now prove some key
properties of θ:

Lemma 4. Consider the set S00,1 = {u ∈ S0, ∃w ∈ {0, 1}∗, u = 0w1} of

words in S0 of the form 0w1 with w ∈ {0, 1}∗. Then

• The map θ restricted to S00,1 is a bijection on S0,1. The map ϕ restricted

to S0,1 is a bijection on S00,1.

• Moreover we have θ(ϕ(w1)) = w1 for all w.

4



Proof. By induction on |w|1.

1. If |w|1 = 0 then w = 0α for some α ≥ 0 and we have ϕ(θ(00α1)) =
ϕ(0α1) = 0α+11 = 0w1.

2. Assume |w|1 ≥ 1 and the result holds for all u such that |u|1 < |w|1.
We have w = 0α1w′ for some α ≥ 0. By assumption, the letter 1 is
isolated in 0w1, so that w′ 6= ε and w′ starts with the letter 0. Hence,

ϕ(θ(0w1)) = ϕ(θ(0α+11w′1)) = ϕ(0α1θ(w′1)) = 0α01ϕ(θ(w′1)).

By the induction hypothesis, we obtain

ϕ(θ(0w1)) = 0α+11w′1 = 0w1.

Example 1. We have by straightforward computations: ϕ(θ(11)) = 0101.
Thus the last equation of Lemma 4 is not true everywhere.

Lemma 5. Let w ∈ {0, 1}∗. If w is balanced then so is θ(w).

Proof. 1. If w is of type 1 (i.e. the letter 0 is isolated in w), then we
verify that θ(w) = 1α for some integer α. Hence it is balanced.

2. Assume now that w ∈ S0.

• There exist α ∈ {0, 1}, β ∈ N and a Sturmian sequence u of type
0 such that the sequence 0αw0β1u is Sturmian and starts with
the letter 0. Notice that u starts with the letter 0 too.

• By point 1 of Lemma 2, there exists a Sturmian sequence u′ such
that u = ϕ(u′).

• We have

ϕ(θ(0αw0β1)u′) = ϕ(θ(0αw0β1))ϕ(u′) since ϕ is a morphism
= 0αw0β1u by Lemma 4.

and by point 2 of Lemma 2, θ(0αw0β1)u′ is Sturmian because
0αw0β1u is Sturmian. Hence θ(0αw0β1) is balanced as a factor
of a balanced word. Finally, we prove by induction on |w|1 that
θ(0αw0β1) = 0α

′
θ(w)0β

′
1 for some integers α′ and β′, so that

θ(w) is balanced as a factor of a balanced word.

The last technical property of θ we need is:

Lemma 6.

5



1. If L ≥ 2h+1 then θ is a bijection from S0,0(L, h) to Sε,ε(L−(h+1), h).

2. If L ≥ 2h then θ is a bijection from S0,1(L, h) to Sε,1(L − h, h) and
from S1,0(L, h) to S1,ε(L− h, h).

3. If L ≥ 2h−1 then θ is a bijection from S1,1(L, h) to S1,1(L−(h−1), h).

Proof. If h = 0 and L 6= 0, S0,0(L, h) = {0L} and Sε,ε(L − (h + 1), h) =
{0L−1} = {θ(0L)}. All others sets are empty so that the result obviously
holds. In the rest of the proof, we assume h ≥ 1. We prove the result for
S0,1(L, h). The proof of other cases is similar and left to the reader.

Notice first that S0,1(L, h) ⊂ S0 iff L ≥ 2h. Indeed, if L = 2h, then
S0,1(L, h) = {(01)h} ⊂ S0. Now, if L > 2h, by the pigeonhole principle, any
w ∈ S0,1(L, h) must contain the subword 00. Since w is balanced, it cannot
contain the subword 11 hence the letter 1 is isolated. Conversely, if the letter
1 is isolated in w, then w must contain at least h 0’s, hence L ≥ 2h.

• θ(S0,1(L, h)) ⊂ Sε,1(L− h, h)

Let w ∈ S0,1(L, h). By an easy induction on h, we show that |θ(w)| =
L − h and |θ(w)|1 = |w|1 = h. Furthermore, from Lemma 5, θ(w) is
balanced so that θ(w) ∈ S(L−h, h). Now from the definition of θ, if 1 is
a suffix of w, then it is also a suffix of θ(w) so that θ(w) ∈ Sε,1(L−h, h).

• θ : S0,1(L, h)→ Sε,1(L− h, h) is injective.

Let u, v ∈ S0,1(L, h). We have u = 0α+11u′, v = 0β+11v′ and

θ(u) = θ(v)⇔ 0α1θ(u′) = 0β1θ(v′)⇔ α = β ∧ θ(u′) = θ(v′).

Now, either h = 1 and u′ = v′ = ε so that u = v or h > 1 and
u′, v′ ∈ S0,1(L− α− 1, h− 1). We get the result by induction on h.

• θ : S0,1(L, h)→ Sε,1(L− h, h) is surjective.

Let w ∈ Sε,1(L − h, h). We have w′ = ϕ(w) ∈ S0,1(L, h). Indeed, w′

is balanced because w is, |w′| = |w|0 + 2|w|1 = L − 2h + 2h = L and
|w′|1 = |w|1 = h so that w′ ∈ S(L, h). Since 1 is a suffix of w, it is also
a suffix of w′ and from Lemma 4, θ(w′) = w.

As already said, the proof of other cases is similar. To prove that θ :
S0,0(L, h) → Sε,ε(L − (h + 1), h) is surjective, we consider for each w ∈
Sε,ε(L−(h+1), h), w′ = ϕ(w)0. Then we have w′ ∈ S0,0(L, h) and θ(w′) = w.
For θ : S1,0(L, h) → S1,ε(L − h, h), we consider for each w ∈ S1,ε(L − h, h),
w′ = w′′0 where ϕ(w) = 0w′′. Finally, for θ : S1,1(L, h)→ S1,1(L−(h−1), h),
we consider for each w ∈ S1,1(L− (h− 1), h), w′ = w′′ where ϕ(w) = 0w′′.

Corollary 7. For all L, h such that 2 ≤ h ≤ L, s1,1(L, h) = s1,1(h + (L −
h) mod (h− 1), h).
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Proof. Follows from case 3 by induction on q =
⌊
L−h
h−1

⌋
.

Lemma 8. For all L, h such that 0 ≤ h ≤ L, s0,0(L, h) = s(L − h − 1, h)
and s1,1(L, h) = s(h− 1, L− 1).

Proof. We distinguish several cases.

• If 2h < L, the result is an immediate consequence of case 1 of Lemma 6.

• If h+ 1 < L ≤ 2h (which implies h ≥ 2), we have

s0,0(L, h) = s1,1(L,L− h) by exchanging 0’s and 1’s,
= s1,1(L− h+ h mod (L− h− 1), L− h) by Corollary 7,
= s0,0(L− h+ h mod (L− h− 1), h mod (L− h− 1)) by exchanging 0’s and 1’s,
= s(L− h− 1, h mod (L− h− 1)) by case 1 of Lemma 6,
= s(L− h− 1, h) by definition of s(L, h)

• If L = h+ 1 we have L− h− 1 = 0. Either h = 0 and L = 1 in which
case we have s0,0(1, 0) = #{0} = 1 = #{ε} = s(0, 0), or h > 0 and we
have s0,0(L, h) = 0 = s(0, h).

• If L = h we have s0,0(h, h) = 0 = s(−1, h).

Since s1,1(L, h) = s0,0(L,L − h), we immediately obtain s1,1(L, h) = s(h −
1, L−h). Moreover s(L, h) = s(L, h mod L), so that s1,1(L, h) = s(h−1, L−
1).

We are now ready to prove the main theorem.

of Theorem 1. The property holds for L = 0. If L > 0, then the following
disjoint union holds:

S(L, h) = S0,0(L, h) ] S0,1(L, h) ] S1,0(L, h) ] S1,1(L, h),

and, consequently:

s(L, h) = s0,0(L, h) + s0,1(L, h) + s1,0(L, h) + s1,1(L, h).

From Lemmas 6 and 8, it follows that

s(L, h) = s(L− h− 1, h) + sε,1(L− h, h) + s1,ε(L− h, h) + s(h− 1, L− 1)

= s(L− h− 1, h) + s(L− h, h) + s1,1(L− h, h)

−s0,0(L− h, h) + s(h− 1, L− 1)

= s(L− h− 1, h) + s(L− h, h) + s(h− 1, L− 2)

−s(L− 2h− 1, h) + s(h− 1, L− 1).
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3.2 Remark

To summarize, we can compute the formula for s(L, h) for all integers L, h ∈
Z. Indeed if L is negative, then it is null. If h = 0, then S(L, 0) = 1. If L = 0
then S(0, h) = 1. The other values can be computed with the statement of
Theorem 1 and the relation s(L, h) = s(L,L − h) which is obtained by
exchanging 0’s and 1’s. Sample values of s(L, h) are given in Table 1. The
sum of elements in a row give the value of s(L).

L\h 0 1 2 3 4 5 6 7 8 9 10

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 4 4 1
5 1 5 6 6 5 1
6 1 6 8 6 8 6 1
7 1 7 11 8 8 11 7 1
8 1 8 13 12 8 12 13 8 1
9 1 9 17 13 12 12 13 17 9 1

10 1 10 20 16 16 10 16 16 20 10 1

Table 1: Sample values of s(L, h) for 0 ≤ h ≤ L ≤ 10

3.3 An explicit formula for s(L, 2)

Using the recurrence formula of Theorem 1, we can deduce an explicit for-
mula for some particular cases. Actually we are not able to give an explicit
formula in all cases. For instance, one has:

Proposition 9. Let L ≥ 0 be an integer. Then, one has:

s(L, 2) =

⌊
(L+ 1)2 + 2

6

⌋
.

Proof. By induction on L. One checks that the result holds for L ∈ {0, 1, 2, 3, 4}.
Assume L ≥ 5 and the result holds for all nonnegative integers smaller than
L. From Theorem 1, one deduces s(L, 2)− s(L− 3, 2) = s(L− 2, 2)− s(L−
5, 2) + 2.

For all L ≥ 3, let uL = s(L, 2) − s(L − 3, 2). Then, uL+2 = uL + 2 and
one obtains uL = L− 1 + (L mod 2). By induction, it follows:

s(L, 2) =

⌊
(L− 2)2 + 2

6

⌋
+ L− 1 + (L mod 2) =

⌊
L2 + 2L

6

⌋
+ (L mod 2).
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Finally, it suffices to check that:⌊
L2 + 2L

6
+

1

2

⌋
=

⌊
L2 + 2L

6

⌋
+ (L mod 2).

By considering the remainder of L modulo 6, we obtain that the fractional
part of L2+2L

6 is strictly less than 1
2 if and only if L is even. The result

follows.

3.4 Generating functions of s(L, h)

A classical way to obtain an explicit formula of a given function consists in
computing its generating function. In this section, we exhibit for each h ≥ 0
the generating function Sh(X) of s(L, h), namely Sh(X) =

∑
L≥0

s(L, h)XL.

Let us recall that, in that case, s(L, h) =
S(L)h (0)
L!

, where S(L)h is the deriva-
tive

of order L of S(L).

Theorem 10. One has: S0(X) =
1

1−X
, S1(X) =

X

1−X2
and for all

h ≥ 2,

Sh(X) =
Fh(X)

(1−Xh−1)(1−Xh)(1−Xh+1)
,

where

Fh(X) = (1−Xh−1)(V2h,hX
h − Vh−1,hXh+1 −X2h−1) + (1 +X)Bh,

Vn,h =

n−1∑
L=0

s(L, h)XL,

Bh =
h−2∑
r=0

s(h− 1, r)Xr+2h−1.

Proof. We have immediately the two first formulas. From the previous re-
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currence, for h ≥ 2, we get:

Sh(X) =
2h−1∑
L=0

s(L, h)XL +
∑
L≥2h

(
s(L− h− 1, h) + s(L− h, h)− s(L− 2h− 1, h)

+s(h− 1, L− 1) + s(h− 1, L− 2)
)
XL

by using the recurrence of Th. 1.

=
2h−1∑
L=0

s(L, h)XL +Xh+1
∑

L≥h−1
s(L, h)XL +Xh

∑
L≥h

s(L, h)XL

−X2h+1
∑
L≥−1

s(L, h)XL +
∑
L≥2h

(
s(h− 1, L− 1) + s(h− 1, L− 2)

)
XL

=

2h−1∑
L=0

s(L, h)XL +Xh+1

(
Sh(X)−

h−2∑
L=0

s(L, h)XL

)
+

Xh

(
Sh(X)−

h−1∑
L=0

s(L, h)XL

)
−X2h+1Sh(X) + (X +X2)

∑
L≥2h−2

s(h− 1, L)XL − s(h− 1, 0)X2h−1

= (Xh +Xh+1 −X2h+1)Sh(X) +
2h−1∑
L=0

s(L, h)XL −Xh+1
h−2∑
L=0

s(L, h)XL

−Xh
h−1∑
L=0

s(L, h)XL + (X +X2)
∑
q≥2

h−2∑
r=0

s(h− 1, r)Xq (h−1)+r −X2h−1

by setting L = q × (h− 1) + r.

= (Xh +Xh+1 −X2h+1)Sh(X) +
2h−1∑
L=0

s(L, h)XL −Xh+1
h−2∑
L=0

s(L, h)XL −

Xh
h−1∑
L=0

s(L, h)XL + (1 +X)
X2h−1

1−Xh−1

h−2∑
r=0

s(h− 1, r)Xr −X2h−1.

Finally, we get the formula

Sh(X) =
Fh(X)

(1−Xh−1)(1−Xh)(1−Xh+1)

where Fh ∈ Z[X] and deg(Fh) ≤ 3h− 2.

Notice that the previous equality does provide a closed formula for Sh(X)
although it still depends on s(L, h) because each sum is finite. Sample values
of Sh(X) are given in Table 2.
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S2(X) =
X +X3

(1−X)(1−X2)(1−X3)

S3(X) =
X + 2X2 +X4 + 2X5

(1−X2)(1−X3)(1−X4)

S4(X) =
X +X2 + 3X3 + 3X5 + 3X6 + 3X7

(1−X3)(1−X4)(1−X5)

S5(X) =
X + 2X2 + 3X3 + 4X4 + 3X6 + 5X7 + 3X8 + 4X9 +X12

(1−X4)(1−X5)(1−X6)

S6(X) =
X +X2 +X3 + 4X4 + 5X5 + 5X7 + 10X8 + 7X9 + 6X10 + 5X11 +X14

(1−X5)(1−X6)(1−X7)

Table 2: Sample values of Sh(X)

3.5 Asymptotic behaviour of s(L, h)

Using the generating functions we just computed, we may deduce an expres-
sion of s(L, h) which highlights its asymptotic behaviour when L grows.

We prove the following theorem:

Theorem 11. For all h ≥ 2, there exist u0, . . . , uh−2, v0, . . . , vh−1, w0, . . . , wh ∈
Q such that

∀L ≥ 0, s(L, h) = αL2 + β L+ uL mod (h−1) + vL mod h + wL mod (h+1)

with α =
1

h (h2 − 1)

h−1∑
i=1

(h − i)ϕ(i) and β =
1

h (h+ 1)

h∑
i=1

ϕ(i) where ϕ is

Euler’s totient function.

Before proving this theorem, we need some preliminary results.

Lemma 12. For all h ≥ 2, there exist R,A,B,C ∈ Q[X] such that deg(R) <
3, deg(A) < h− 1, deg(B) < h, deg(C) < h+ 1 and

Sh(X) =
R(X)

(1−X)3
+

A(X)

1−Xh−1 +
B(X)

1−Xh
+

C(X)

1−Xh+1
. (1)

Proof. We have

Sh(X) =
Fh(X)

(1−Xh−1)(1−Xh)(1−Xh+1)
=

Fh(X)

(1−X)3
1−Xh−1

1−X
1−Xh

1−X
1−Xh+1

1−X

where Fh ∈ Z[X] and deg(Fh) ≤ 3h− 2.

11



If h is even, (1 −X)3, 1−Xh−1

1−X , 1−Xh

1−X and 1−Xh+1

1−X are pairwise coprime
so that

Sh =
R(X)

(1−X)3
+

A0(X)

1−Xh−1

1−X

+
B0(X)

1−Xh

1−X

+
C0(X)

1−Xh+1

1−X

for some R,A0, B0, C0 ∈ Q[X] with deg(R) < 3, deg(A0) < h−2, deg(B0) <
h − 1 and deg(C0) < h. The result follows with A(X) = (1 − X)A0(X),
B(X) = (1−X)B0(X) and C(X) = (1−X)C0(X).

If h is odd, 1−Xh−1

1−X and 1−Xh+1

1−X are divisible by 1 +X. But in this case,
we notice that Fh(−1) = 0 so that Fh(X) is also divisible by 1 +X and we
may write

Sh(X) =

Fh(X)

1 +X

(1−X)3
1−Xh−1

1−X
1−Xh

1−X
1−Xh+1

1−X2

where (1−X)3, 1−Xh−1

1−X , 1−Xh

1−X and 1−Xh+1

1−X2 are pairwise coprime. Thus we
get

Sh =
R(X)

(1−X)3
+

A0(X)

1−Xh−1

1−X

+
B0(X)

1−Xh

1−X

+
C0(X)

1−Xh+1

1−X2

for some R,A0, B0, C0 ∈ Q[X] with deg(R) < 3, deg(A0) < h−2, deg(B0) <
h− 1 and deg(C0) < h− 1. The result follows with A(X) = (1−X)A0(X),
B(X) = (1−X)B0(X) and C(X) = (1−X2)C0(X).

Lemma 13. We recall that s(L) is the number of balanced words of length

L, and that it is equal to
∑
h

s(L, h). For all L ≥ 0 we have,

L−1∑
h=0

s(L, h)h =
L

2
(s(L)− 2).

Proof. Let ZL =

L∑
h=0

s(L, h)h. Then

ZL =

L∑
u=0

s(L,L− u)(L− u) by setting h = L− u

ZL =
L∑
u=0

s(L, u)(L− u)because s(L,L− u) = s(L, u) for all L, u ∈ Z

12



ZL = Ls(L)− ZL

Hence ZL = L
2 s(L) and

∑L−1
h=0 s(L, h)h = ZL − L = L

2 (s(L)− 2).

Lemma 14. For all h ≥ 1,

2h−1∑
L=h

s(L, h)−
h−1∑
L=0

s(L, h) = s(h) + s(h− 1)− (h+ 1)

Proof.

2h−1∑
L=h

s(L, h)−
h−1∑
L=0

s(L, h)

=

h−1∑
L=0

s(L+ h, h)−
h−1∑
L=0

s(L, h)

=
h−1∑
L=0

(s(h, L) + s(h− 1, L)− s(h− L− 1, L) + s(L− 1, L+ h− 1)

+s(L− 1, L+ h− 2))−
h−1∑
L=0

s(L, h)

by using the recurrence relation from Th. 1

=

h−1∑
L=0

(s(h, L) + s(h− 1, L)− s(h− 1− L, h− 1)

+s(L− 1, h) + s(L− 1, h− 1))−
h−1∑
L=0

s(L, h)

by using the relation s(L, h) = s(L, h mod L) on 3rd, 4th and 5th terms

= s(h)− 1 + s(h− 1)−

(
h−1∑
u=0

s(u, h− 1)−
h−1∑
L=0

s(L− 1, h− 1)

)

−

(
h−1∑
L=0

s(L, h)−
h−1∑
L=0

s(L− 1, h)

)
by setting u = h− 1− L

= s(h) + s(h− 1)− (h+ 1).

We are now ready to prove the main theorem of this section.

13



Proof of Theorem 11. We first prove existence. In Equation 1, we write

R(X) = r0 + r1 (1−X) + r2 (1−X)2.

A(X) =

h−2∑
k=0

akX
k, B(X) =

h−1∑
k=0

bkX
k, C(X) =

h∑
k=0

ckX
k.

Thus

Sh(X) =
r0

(1−X)3
+

r1

(1−X)2
+

r2
1−X

+
A(X)

1−Xh−1 +
B(X)

1−Xh
+

C(X)

1−Xh+1
.

The Taylor expansions of 1
(1−X)3

, 1
(1−X)2

, 1
1−X give the series expan-

sion of Sh(X) :

Sh(X) =
∑
L≥0

r0
(L+ 1)(L+ 2)

2
XL +

∑
L≥0

r1 (L+ 1)XL +
∑
L≥0

r2X
L

+
∑
n≥0

A(X)Xn (h−1) +
∑
n≥0

B(X)Xnh +
∑
n≥0

C(X)Xn (h+1)

=
∑
L≥0

(
r0

(L+ 1)(L+ 2)

2
+ r1 (L+ 1) + r2

)
XL

+
∑
n≥0

h−2∑
k=0

akX
n (h−1)+k +

∑
n≥0

h−1∑
k=0

bkX
nh+k +

∑
n≥0

h∑
k=0

ckX
n (h+1)+k

=
∑
L≥0

(
r0
2
L2 +

(
3

2
r0 + r1

)
L+ r0 + r1 + r2 + aL mod (h−1) + bL mod h + cL mod (h+1)

)
XL.

We get the result with α = 1
2 r0, β = 3

2 r0 + r1, ui = ai + r0 + r1 + r2, vi = bi
and wi = ci.

From the Taylor series of (1−X)3 Sh(X) at X = 1, we get r0 = Fh(1)
h (h2−1)

and r1 =
3
2
(h−1)Fh(1)−F ′h(1)

h (h2−1) . We have Fh(1) = 2
∑h−2

r=0 s(h− 1, r) = 2(s(h−
1)− 1), and by Lemmas 13 and 14,

F ′h(1) = −(h− 1)

(
2h−1∑
L=h

s(L, h)−
h−1∑
L=0

s(L, h) + (h− 2)

)
+ 2

h−2∑
r=0

s(h− 1, r)r

+(4h− 1)

h−2∑
r=0

s(h− 1, r)

= −(h− 1)(s(h) + s(h− 1)− (h+ 1) + (h− 2))

+2
h− 1

2
(s(h− 1)− 2) + (4h− 1)(s(h− 1)− 1)

= −(h− 1)(s(h)− 1) + (4h− 1)(s(h− 1)− 1).

14



Figure 2: The two symmetrical segments of length 5 and height 2, and their
respective encodings as balanced palindromes

Thus we get finally

α =
Fh(1)

2h (h2 − 1)
=
s(h− 1)− 1

h (h2 − 1)
=

1

h (h2 − 1)

h−1∑
i=1

(h− i)ϕ(i)

β =

3

2
hFh(1)−F ′h(1)

h (h2 − 1)
=
s(h)− s(h− 1)

h (h+ 1)
=

1

h (h+ 1)

h∑
i=1

ϕ(i).

4 Balanced palindromes and symmetrical discrete
segments

In the present section, we focus on the case of segments which are symmet-
rical with respect to the point (L/2, h/2). These segments are encoded by
balanced palindromes.

4.1 Recurrence formula

This investigation is close to the general case by noticing that if w is a
palindrome, then so is θ(w). We first need an additional property of the
mapping θ.

Lemma 15. For all w ∈ {0, 1}∗ and all α ≥ 0,

θ(w1) = θ(w)1

θ(w10α+1) = θ(w)10α

Proof. Easy induction on |w|1.

Corollary 16. For all w ∈ {0, 1}∗, θ(w˜) = (θ(w))˜

Proof. By induction on |w|1. If |w|1 = 0 then w = 0α for some α ≥ 0 and
the result obviously holds. Now assume that |w|1 ≥ 1 and the result holds

15



for all v such that |v|1 < |w|1. Then either w = 1v and

θ(w˜) = θ((1v)˜)
= θ(v˜1)
= θ(v˜)1 by Lemma 15
= θ(v)˜1 by the induction hypothesis
= (1θ(v))˜
= θ(1v)˜ by definition of θ
= θ(w)˜

or w = 0α+11v and

θ(w˜) = θ((0α+11v)˜)
= θ(v˜10α+1)
= θ(v˜)10α by Lemma 15
= θ(v)˜10α by the induction hypothesis
= (0α1θ(v))˜
= θ(0α+11v)˜ by definition of θ
= θ(w)˜.

Corollary 17. If w ∈ {0, 1}∗ is a palindrome, then θ(w) is also a palin-
drome.

Proof. Immediate consequence of Corollary 16

We denote by P(L, h) the set of balanced palindromes of length L and
height h, and, for x ∈ {0, 1}, by Px(L, h) the set of balanced palindromes of
length L and height h the first (and last) letter of which is x. We define the
function p(L, h) on Z2 by:

p(L, h) =


#P(L, h mod L) if L > 0
1 if L = 0 and h = 0
0 if L < 0 or L = 0 and h 6= 0

and for 0 ≤ h ≤ L and x ∈ {0, 1}, we define px(L, h) = #Px(L, h). We have
the following properties.

Lemma 18. Let L, h ∈ N such that 0 ≤ h ≤ L.

1. If L ≥ 2h+ 1, then θ is a bijection from P0(L, h) to P(L− (h+ 1), h).

2. If L ≥ 2h− 1, then θ is a bijection from P1(L, h) to P1(L− (h− 1), h).

Proof.
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1. Since P0(L, h) ⊂ S0,0(L, h), from Lemma 6, we already know that
θ(P0(L, h)) ⊂ S(L − (h + 1), h) and from Corollary 17, θ(P0(L, h)) ⊂
P(L−(h+1), h). Since θ is injective on S0,0(L, h), it is also injective on
P0(L, h). We are left to prove that it is surjective. Let w ∈ P(L− (h+
1), h) and w′ = ϕ(w)0. From Lemma 6, we have w′ ∈ S0,0(L, h) and
θ(w′) = w. We prove by induction on |w|1 that w′ is a palindrome.
If |w|1 = 0 then w = 0α for some α ≥ 0 and w′ = 0α+1 which is
trivially a palindrome. If |w|1 = 1 then w = 0α10α for some α ≥ 0
and w′ = 0α+110α+1 which is again trivially a palindrome. If |w|1 ≥ 2,
assume that ϕ(u)0 is a palindrome for all u such that |u|1 < |w|1.
We have w = 0α1v10α for some α ≥ 0 and some palindrome v with
|v|1 < |w|1. Then w′ = 0α+11ϕ(v)010α+1 is a palindrome because
ϕ(v)0 is a palindrome by the induction hypothesis..

2. The proof is similar. We get in the same way that θ(P1(L, h)) ⊂
P1(L − (h − 1), h) and θ is injective on P1(L, h). To prove that it is
surjective, for each w ∈ P1(L − (h − 1), h) we consider w′ such that
ϕ(w) = 0w′. From Lemma 6 we have θ(w′) = w and w′ ∈ S1,1(L, h).
We prove like above that w′ is a palindrome so that w′ ∈ P1(L, h).

Lemma 19. For all L, h ∈ N such that 0 ≤ h ≤ L, p0(L, h) = p(L−h−1, h)
and p1(L, h) = p(h− 1, L− 1)

Proof. Similar to the proof of Lemma 8.

From Lemma 19 and the definition of p(L, h), we deduce the following
recurrence for p(L, h).

Theorem 20. Let L, h ∈ Z,

p(L, h) =


0 if L < 0 or (L = 0 and h 6= 0)
1 if L ≥ 0 and (h = 0 or h = L)
p(L, h mod L) if L > 0 and (h < 0 or h > L)
p(L− h− 1, h) + p(h− 1, L− 1) otherwise

Sample values of p(L, h) are given in Table 3.

4.2 Generating functions of p(L, h)

In the same way we obtained generating functions for s(L, h), we deduce
generating functions for p(L, h) from the recurrence above. We consider the
generating functions Ph(X) =

∑
L≥0

p(L, h)XL.
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L\h 0 1 2 3 4 5 6 7 8 9 10

0 1
1 1 1
2 1 0 1
3 1 1 1 1
4 1 0 2 0 1
5 1 1 2 2 1 1
6 1 0 2 0 2 0 1
7 1 1 3 2 2 3 1 1
8 1 0 3 0 2 0 3 0 1
9 1 1 3 3 2 2 3 3 1 1

10 1 0 4 0 2 0 2 0 4 0 1

Table 3: Sample values of p(L, h) for 0 ≤ h ≤ L ≤ 10

Theorem 21. One has: P0(X) =
1

1−X
, P1(X) =

X

1−X2
and for all

h ≥ 2,

Ph(X) =
1

1−Xh+1

(
h−1∑
L=0

p(L, h)XL +
Xh

1−Xh−1

h−2∑
r=0

p(h− 1, r)Xr

)
.

Proof. One has:

P0(X) =
∑
L≥0

p(L, 0)XL =
∑
L≥0

XL =
1

1−X

P1(X) =
∑
L≥0

p(L, 1)XL

= p(0, 1) + p(1, 1)X +
∑
L≥2

p(L, 1)XL

= X +
∑
L≥2

(p(L− 2, 1) + p(0, L− 1))XL

= X +X2
∑
L≥0

p(L, 1)XL

= X +X2 P1(X).

Hence, P1(X) =
X

1−X2
.
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For all h ≥ 2, we have

Ph(X) =
∑
L≥0

p(L, h)XL

=

h−1∑
L=0

p(L, h)XL +
∑
L≥h

p(L, h)XL

=

h−1∑
L=0

p(L, h)XL +Xh
∑
L≥0

p(L+ h, h)XL

=
h−1∑
L=0

p(L, h)XL +Xh
∑
L≥0

(p(L− 1, h) + p(h− 1, L+ h− 1))XL

=

h−1∑
L=0

p(L, h)XL +Xh
∑
L≥0

p(L− 1, h)XL +Xh
∑
L≥0

p(h− 1, L)XL

=
h−1∑
L=0

p(L, h)XL +Xh+1 Ph(X) +Xh
∑
q≥0

h−2∑
r=0

p(h− 1, q(h− 1) + r)Xq(h−1)+r

=
h−1∑
L=0

p(L, h)XL +Xh+1 Ph(X) +Xh
∑
q≥0

Xq(h−1)
h−2∑
r=0

p(h− 1, r)Xr

= Xh+1 Ph(X) +
h−1∑
L=0

p(L, h)XL +
Xh

1−Xh−1

h−2∑
r=0

p(h− 1, r)Xr.

Finally, we get

Ph(X) =
1

1−Xh+1

(
h−1∑
L=0

p(L, h)XL +
Xh

1−Xh−1

h−2∑
r=0

p(h− 1, r)Xr

)

=

(1−Xh−1)
h−1∑
L=0

p(L, h)XL +Xh
h−2∑
r=0

p(h− 1, r)Xr

(1−Xh−1) (1−Xh+1)

=
Gh(X)

(1−Xh−1) (1−Xh+1)

where Gh(X) ∈ Z[X] and deg(Gh) ≤ 2h− 2.

Sample values of Ph(X) are given in Table 4

4.3 Asymptotic behaviour of p(L, h)

As before, from the generating function, we deduce an expression of p(L, h)
which highlights its asymptotic behaviour. We prove the following theorem.
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P2(X) = X
(1−X)(1−X3)

P3(X) = X
(1−X2)(1−X4)

P4(X) = X +X2 +X3

(1−X3)(1−X5)
P5(X) = X +X3 +X7

(1−X4)(1−X6)

P6(X) = X +X2 +X3 + 2X4 +X5 +X8

(1−X5)(1−X7)

Table 4: Sample values of Ph(X)

Theorem 22. For all h ≥ 2 there exist u0, . . . , uh−2, v0, . . . , vh ∈ Q such
that:

• if h is even then

∀L ≥ 0, p(L, h) = αL+ uL mod (h−1) + vL mod (h+1)

• if h is odd then

∀L ≥ 0, p(L, h) = α (1− (−1)L)L+ uL mod (h−1) + vL mod (h+1)

where α =
1

h2 − 1

dh−1
2 e∑
i=1

ϕ(h+ 1− 2i).

Before proving this theorem, we need some lemmas.

Lemma 23. For all h ≥ 2:

• if h is even then there exist R,A,B ∈ Q[X] such that deg(R) < 2,
deg(A) < h− 1, deg(B) < h+ 1 and

Ph(X) =
R(X)

(1−X)2
+

A(X)

1−Xh−1 +
B(X)

1−Xh+1
. (2)

• if h is odd then there exist Q,R,A,B ∈ Q[X] such that deg(Q) < 2,
deg(R) < 2, deg(A) < h− 1, deg(B) < h+ 1 and

Ph(X) =
Q(X)

(1 +X)2
+

R(X)

(1−X)2
+

A(X)

1−Xh−1 +
B(X)

1−Xh+1
(3)

Proof. If h is even then Ph(X) may be written as

Ph(X) =
Gh(X)

(1−X)2
1−Xh−1

1−X
1−Xh+1

1−X

.
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Since (1 −X)2, 1−Xh−1

1−X and 1−Xh+1

1−X are pairwise coprime, there exist

R,A0, B0 ∈ Q[X] such that deg(R) < 2, deg(A0) < h− 2, deg(B0) < h and

Ph(X) =
R(X)

(1−X)2
+

A0(X)

1−Xh−1

1−X

+
B0(X)

1−Xh+1

1−X

.

We get the result with A(X) = (1−X)A0(X) and B(X) = (1−X)B0(X).
If h is odd then 1 −Xh−1 and 1 −Xh+1 are also divisible by 1 + X so

that we may write

Ph(X) =
Gh(X)

(1 +X)2 (1−X)2
1−Xh−1

1−X2

1−Xh+1

1−X2

.

Since (1+X)2, (1−X)2, 1−Xh−1

1−X2 and 1−Xh+1

1−X2 are pairwise coprime, there

exist Q,R,A0, B0 ∈ Q[X] such that deg(Q) < 2, deg(R) < 2, deg(A0) <
h− 3, deg(B0) < h− 1 and

Ph(X) =
Q(X)

(1 +X)2
+

R(X)

(1−X)2
+

A0(X)

1−Xh−1

1−X2

+
B0(X)

1−Xh+1

1−X2

.

We get the result with A(X) = (1−X2)A0(X) and B(X) = (1−X2)B0(X).

Lemma 24. For all L, h ∈ N such that L is even and h is odd, p(L, h) = 0.

Proof. By definition of p(L, h), the result is obvious if L = 0. Also, it is
sufficient to prove the result for 0 ≤ h ≤ L because h and h mod L have
the same parity if L is even. In this case, p(L, h) is exactly the number of
balanced palindromes of length L and height h. Let w be a palindrome of
length L. If L is even then w = uu˜ for some u ∈ {0, 1}∗ and |w|1 = 2|u|1.
Hence, there exist no palindrome of even length and odd height.

We are now ready to prove the main theorem of this section.

of Theorem 22. The proof is similar to the proof of Theorem 11. In Equa-
tions 2 and 3, we write

R(X) = α+ β (1−X), Q(X) = α′ + β′ (1 +X)

A(X) =

h−2∑
k=0

akX
k, B(X) =

h∑
k=0

bkX
k

and we get for all h ≥ 2:
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• If h is even then

Ph(X) =
α

(1−X)2
+

β

1−X
+

A(X)

1−Xh−1 +
B(X)

1−Xh+1

and the series expansion of Ph(X) is

Ph(X) =
∑
L≥0

(α (L+ 1) + β)XL +
∑
n≥0

A(X)Xn(h−1) +
∑
n≥0

B(X)Xn(h+1)

=
∑
L≥0

(α (L+ 1) + β)XL +
∑
n≥0

h−2∑
k=0

akX
n(h−1)+k +

∑
n≥0

h∑
k=0

bkX
n(h+1)+k

=
∑
L≥0

(αL+ α+ β + aL mod (h−1) + bL mod (h+1))X
L

Hence

∀L ≥ 0, p(L, h) = αL+ α+ β + aL mod (h−1) + bL mod (h+1)

• If h is odd then

Ph(X) =
α′

(1 +X)2
+

β′

1 +X
+

α

(1−X)2
+

β

1−X
+

A(X)

1−Xh−1+
B(X)

1−Xh+1

and its series expansion is

Ph(X) =
∑
L≥0

(α′ (−1)L (L+1)+β′ (−1)L+α (L+1)+β+aL mod (h−1)+bL mod (h+1))X
L.

Hence

∀L ≥ 0, p(L, h) = α′ (−1)L (L+1)+β′ (−1)L+α (L+1)+β+aL mod (h−1)+bL mod (h+1).

Considering the Taylor expansion of (1−X)2Ph(X) at X = 1 and, in case
h is even, (1 +X)2Ph(X) at X = −1, we get

α =
Gh(1)

h2 − 1
=

1

h2 − 1

h−2∑
r=0

p(h− 1, r) =
1

h2 − 1

dh−1
2 e∑
i=1

ϕ(h+ 1− 2i)

and, if h is odd,

α′ =
Gh(−1)

h2 − 1
=

(−1)h

h2 − 1

h−2∑
r=0

(−1)rp(h− 1, r) =
−1

h2 − 1

h−2∑
r=0

p(h− 1, r)

where the last equality is deduced from Lemma 24. Hence α′ = −α.
Finally, we get the result with ui = α + β + ai if h is even and ui =

(1− (−1)i)α+ β + (−1)iβ′ + ai if h is odd and vi = bi.
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