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Cohomology groups for spaces of 12-fold tilings

Nicolas Bédaride∗ Franz Gähler† Ana G. Lecuona‡

Abstract

We consider tilings of the plane with 12-fold symmetry obtained by
the cut and projection method. We compute their cohomology groups
using the techniques introduced in [5]. To do this we completely describe
the window, the orbits of lines under the group action and the orbits
of 0-singularities. The complete family of generalized 12-fold tilings can
be described using 2-parameters and it presents a surprisingly rich co-
homological structure. To put this finding into perspective, one should
compare our results with the cohomology of the generalized 5-fold tilings
(more commonly known as generalized Penrose tilings). In this case the
tilings form a 1-parameter family, which fits in simply one of two types of
cohomology.

1 Introduction

This paper deals with tilings of the plane R2. Given a tiling, the group of
translations of the plane acts on it, allowing us to associate to each tiling a
space, the hull of the tiling, defined as the closure of the orbit of the tiling
under the group action. This space, which has been thoroughly studied for
the last 20 years, has many interesting properties. We suggest [11] for a good
introduction.

Cohomology has been an essential tool of algebraic topology. It is a topo-
logical invariant that associates groups (or a more complex ring structure) to
spaces and can be used, among other things, to tell spaces apart. The compu-
tation of the cohomology of the hull of a tiling emerged at the beginning of the
2000’s. It has been successfully used to obtain dynamical results on tilings, see
for examples [8, 9] or [2, 12]. In this article we will compute the cohomology
of some tiling spaces, enhancing our understanding of them and providing the
community with some complete calculations.

There are several classes of tilings with nice properties. Worth mentioning
are the class of substitution tilings and the class of cut and project tilings.
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For the former one, there is a well developed technique that allows to compute
the cohomology groups of these tilings [1, 7]. For the latter ones, in spite of
the general methods described by Gähler, Hunton and Kellendonk to compute
these groups [5], very few examples have been treated in detail. Some examples
can be found in [6, 1]. However, most of these examples are also substitution
tilings; thus, the theoretical method concerning the cut and project tilings has
never been optimized to be applied in actual computations.

In this article we are going to focus on a two parameter family of cut and
projection tiling spaces: the generalized 12-fold tilings. The hull of these tilings
will be denoted by ΩEγ12 with γ ∈ R2 (the notation and construction method are
further explained in Sections 1.1 and 1.2). Our goal is double: first, we want
to obtain a deeper understanding of this space of tilings using cohomology, and
second we want to exploit the techniques in [5] to carry out the computations.
Our computational efforts crystallize in the following theorem.

Theorem 1. The cohomology groups of ΩEγ12 satisfy:

1. For all parameters γ, all the cohomology groups are torsion free.

2. For all parameters γ, H0(ΩEγ12) = Z.

3. The rank of the group H1(ΩEγ12) depends on γ and takes values in the set
{7, 10, 13, 16, 19, 22, 25}. The precise values of γ associated to the different
ranks are explicit in Figure 8.

4. The rank of the group H2(ΩEγ12) depends on γ. Moreover, if the rank of

H1(ΩEγ12) ≤ 13, then the rank of H2(ΩEγ12) is presented in Propositions 32
to 39.

As mentioned before, the proof of this theorem is based on the techniques
described in [5], which we briefly summarize in the next subsection. A detailed
plan of the proof is given in Subsection 1.4.

In this article, the computation of the groups H1(ΩEγ12) is completely ex-

plicit; on the other hand, the results concerning the groups H2(ΩEγ12) are com-

puter assisted if γ 6∈ Z[
√

3] × Z[
√

3]. We have not explicitly described all the
possible ranks of the second cohomology groups as a function of the parameter
γ. However, the information gathered in Proposition 42, particularly in Ta-
bles 1 to 4, makes it very easy to compute the rank of H2(ΩEγ12) for any fixed

value of γ ∈ R2. For a ‘generic’ value of γ we propose the following conjecture,
supported by computer calculations.

Conjecture 2. The maximal cohomology attained among all the generalized
12-fold tilings is

H0(ΩEγ12) = Z, H1(ΩEγ12) = Z25 and H2(ΩEγ12) = Z564.
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1.1 Background on cut-and-projection tilings cohomology

Given a 2-plane E in the vector space Rn containing no integer line (a line
directed by an element of Zn) we want to study the tiling T of the plane E
obtained by the cut and projection method. We recall this construction: to
start with we need to consider the following orthogonal decomposition

Rn = E ⊕ E⊥.

Let π be the projection on E and π⊥ the projection on E⊥. We are now ready
to describe the tiling T we want to study: Its vertices are the images by π of
the points in Zn ∩ (E + [0, 1]n). The tiles of the tiling are rhombi obtained by
the projection π of the 2-faces of the complex Zn which are inside the “band”
E+ [0, 1]n. Let us denote ΩE the hull of this tiling. In our case it is the closure
of T under the action of the group of translations of the plane E.

Remark that we can also consider an affine plane E = E+γ for some vector γ.
We can associate a tiling to this affine plane by considering the band E + [0, 1]n

and doing the same construction. We obtain a tiling of E + γ and can define
its hull, ΩγE . Obviously if γ is in Zn or in E we have the same hull. Otherwise
the tilings can be different. This is in particular the case for Penrose tilings,
where one obtains for a generic value γ what is known under the name of a
“generalized Penrose tiling”.

During the last decade, starting with the work of [1] and [4], a lot of effort
has been put into understanding the topology of ΩE . We are particularly inter-
ested in computing the cohomology groups with integer coefficients, Hk(ΩE ,Z)
for k = 0, 1, 2, of the hull of the tiling. A general description of these coho-
mology groups is given by Gähler-Hunton-Kellendonk in [5]. In order to state
their results, we need to introduce quite a bit of notation and establish some
conventions, which we will follow throughout the paper.

• The group π⊥(Zn) will be called Γ. The closure of this group is the
product of a free abelian group and a continuous group since it has no
torsion part: Γ ∼ Zk × R`. We call ∆ the discrete part of Γ.

• Denote by F the vector space generated by ∆ ⊂ E⊥. We will decompose
the space E⊥ as E⊥ = F ⊕ F⊥, with F⊥ parallel to Γ, and denote by ∆0

the stabilizer of F⊥ under the group Γ.

• Assuming that ` = dimF⊥ = 2, we let P be the collection of planes
parallel to F⊥, defined as

P =
⋃
δ∈∆

F⊥ + δ.

• The polytope obtained by projecting the cube [0, 1]n onto E⊥ will be called
the window and is denoted W . We need to assume that the intersection
between W and P is a union of polygons, segments and points. The
boundaries of the polygons and the segments are contained in lines directed
by the vectors f1, . . . , fn.

3



• We consider the action of Γ on the lines described in the last point. The
set of orbits is denoted I1 and each orbit is called a 1-singularity. The
cardinality of the set I1 will be denoted L1 = |I1|.

• The intersection of any two 1-singularities will be called a 0-singularity.
The set of all orbits of 0-singularities is denoted I0. The cardinality of the
set I0 will be denoted L0 = |I0|.

• Let Γi ≤ Γ be the stabilizer under the action of Γ of the vector space
spanned by fi. Every 1-singularity α ∈ I1 is generated by some direction
fi. We denote by Lα0 the set of orbits of 0-singular points on α under the
action of Γi, and we set Γα := Γi, if the 1-singularity α is in direction fi.

• Since Γα ⊂ ∆0 for all α ∈ I1, we can define the natural inclusion map

β :
⊕
α∈I1

Λ2Γα → Λ2∆0, (1)

where Λ2A denotes the exterior product of two copies of the free abelian
group A. In our case, each group Γα is of rank two, thus generated by two
vectors, and Λ2Γα represents the exterior product of the two generators.

• We define the numbers R and e as:

R = rkβ and e = −L0 +
∑
α∈I1

Lα0 .

e will turn out to be the Euler characteristic of the tiling space ΩE .

With all this notation and conventions in place, we are now ready to state
two general results about the cohomology groups H∗(ΩE ,Z).

Firstly, we note (compare [5, Thm. 2.10]) that the cohomology is finitely
generated, iff there exists a natural number ν such that rk ∆0 = ν dimF⊥ (or,
equivalently, d = (ν − 1) dimF⊥), and ν = rk Γα for all α ∈ I1. In our case,
these conditions are met for ν = 2, and the cohomologies of all dodecagonal
tilings considered here are finitely generated.

Secondly, with the notation introduced above, the cohomology groups can
now be expressed explicitly.

Theorem 3 (Thm. 5.3 in [5]). The free abelian part of Hk(ΩE ,Z) is given by
the following isomorphisms:

H0(ΩE ,Z) H1(ΩE ,Z) H2(ΩE ,Z)

Z Z4+L1−R Z3+L1+e−R

The torsion part of H2(ΩE ,Z) is isomorphic to the torsion in cokerβ :=
Λ2∆0/〈Λ2Γα〉α∈I1 , whereas the other cohomology groups are torsion free.
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We note that R = rkβ = rk〈Λ2Γα〉α∈I1 depends only on the directions of
the 1-singularities α, not on their positions, and the same holds true for cokerβ.
Hence, these quantities are the same for all dodecagonal tilings considered here.
As we shall see, we have R = 3, and the torsion of cokerβ vanishes, so that the
cohomology of all dodecagonal tilings is free.

1.2 Background on n-fold tilings

In this section we recall the definition of the n-fold tiling and summarize some
known results on its cohomology groups. Following the description in the pre-
vious section, to produce a tiling by the cut and projection method we need to
start with a 2-plane in a vector space. In this case the plane we intend to tile,
En, is defined as follows:

• If n = 2p+ 1, then En is the 2-plane in R2p+1 generated by
1

cos 2π
2p+1
...

cos 4pπ
2p+1

 and


0

sin 2π
2p+1
...

sin 4pπ
2p+1

 .

• If n = 2p, then En is the 2-plane in Rp generated by
1

cos πp
...

cos (p−1)π
p

 and


0

sin π
p

...

sin (p−1)π
p

 .

The plane En yields a decomposition of the ambient space as Rk = En⊕E⊥n ,
where the value k depends on the parity of n. Furthermore, the space E⊥n
decomposes as E⊥n = Fn ⊕ F⊥n where Fn is the vector space spanned by the
discrete part of π⊥(Zk) ⊂ E⊥n . The space E⊥n allows to define a family of
“related” tilings by considering the translate planes En+γ, γ ∈ E⊥n . If γ ∈ F⊥n ,
then the tiling of the plane En and of En + γ coincide, so the interesting cases
occur when the translation vector γ belongs to Fn. Moreover, if γ, γ′ ∈ Fn and
γ−γ′ ∈ ∆, then the tilings of En+γ and En+γ′ coincide. Notice that translating
En by γ and looking at integer points in the band is the same as keeping En
and looking at points of the form −γ+Zn in the band. Finally, remark that all
the results on the cohomology groups only depend on the geometry of W and
the action of Γ on the lines supporting W . We intersect W by planes F⊥n + δ
and try to compute numbers involved in Theorem 3. Here if we translate E by
γ we will study these tilings by cutting the window W , which does not depend
on the parameter γ, with translates of the family of planes P of the form

P γ =
⋃
δ∈∆

F⊥n + δ + γ, with γ ∈ Fn.
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For each of these tilings, we are interested in the cohomology of their respective
hulls, ΩEγn . We refer to [3] for further references on these tilings.

The following statement resumes all the known values of the cohomology
groups of the (undecorated) n-fold tilings (cf. [5, Table 5.1]). These results had
mostly been announced without proof already in [6], but that paper contains
some mistakes in the cohomology of the generalized Penrose tilings, which were
corrected later by Kalugin [10].

Theorem 4. For small values of n, the n-fold tilings satisfy:

1. If n = 8, these tilings are also known as Ammann–Beenker tilings. In this
case F = 0. The cohomology groups with integer coefficients of the 8-fold
tilings are:

H0(ΩE8) H1(ΩE8) H2(ΩE8)

Z Z5 Z9

2. If n = 5, these tilings are also known as (Generalized) Penrose tilings.
In this case F is of dimension one and we can understand the translation
parameter γ as a real number. The cohomology groups with integer coef-
ficients of the 5-fold tilings depend on whether γ is in Z[ϕ] or not, where
ϕ is the golden mean. The groups are as follows:

γ H0(ΩEγ5 ) H1(ΩEγ5 ) H2(ΩEγ5 )

Z[ϕ] Z Z5 Z8

R \ Z[ϕ] Z Z10 Z34

3. If n = 12, then F is of dimension two. For all γ ∈ ∆, it holds ΩEγ12 =
ΩE12 . In this case the cohomology groups with integer coefficients of the
12-fold tilings are:

H0(ΩE12
) H1(ΩE12

) H2(ΩE12
)

Z Z7 Z28

4. If n = 7, the cohomology groups with integer coefficients of the 7-fold
tilings are not finitely generated.

1.3 Generalized Penrose tilings vs. 12-fold tilings

To give some perspective to the results in this paper, we will make a fast com-
parison between the computation of the cohomology groups of the generalized
Penrose tilings and the 12-fold tilings.

In the Penrose case, we start from the space R5 and we consider the cut and
project method onto a two dimensional plane. The main character in the con-
struction, the polytope W , is in this case a 3-dimensional rhombic-icosahedron
with vertices in five parallel planes depicted in Figure 1. The intersection of
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these planes and W is a series of points and polygons. The boundaries of the
polygons are contained in lines directed by 5 different vectors. To compute the
cohomology of the standard Penrose tiling, we need to study the orbits of these
lines under the action of a certain group Γ.

In the classic 12-fold tiling, we obtain a 4-dimensional polytope W , described
in Proposition 12. Its vertices are contained in 16 parallel planes. This time the
boundaries of the polygons determined by these vertices are contained in lines
directed by 6 different vectors (see Figure 3).

The main difference between these two settings though is not simply that
there is one more direction in the 12-fold tiling. The main difference is apparent
when we consider the generalized tilings. Indeed, to compute the cohomology
of the generalized tilings we need to shift the planes cutting the polytope. In
the Penrose case, the shifting occurs along the vertical axis of the rhombic-
icosahedron (see Figure 1), and it can be encoded by the real number γ in the
statement of Theorem 4.2. When we shift slightly the planes cutting the Penrose
rhombic-icosahedron we obtain some polygons with 10 sides (contained still in
5 directions). Now, depending on whether or not the translation parameter γ is
in Z[ϕ] (where ϕ is the golden mean) the parallel opposite lines on the decagon
will belong or not to the same orbit under the action of Γ.

In the generalized 12-fold tiling, the situation is much richer. The shifting
of the planes that cut the polytope is encoded by a 2-dimensional parameter
γ = (γ1, γ2). In Figure 6 one can see the number of sides that a polygon
cut by the shifted planes will have. The 10 lines obtained in the generalized
Penrose become 24 in the generalized 12-fold tiling (see Proposition 24). Each
one of the original 6 directions can have at most 4 representatives in different
orbits. The game is now to understand when, depending on the value of γ,
these representatives are in the same orbit under the action of Γ. The result,
surprisingly complicated, is the content of Proposition 27 and Figure 8. This
information is enough to compute completely the first cohomology group of the
12-fold generalized tilings. When trying to compute the second cohomology
groups, the intricacy grows further as explored in Section 4.

1.4 Organization of the paper

The proof of the main theorem of this paper is a long and involved computation
of the quantities e, L1 and R which will allow us, via Theorem 3, to compute
the cohomology groups of the 12–fold tilings (as discussed after that theorem,
these groups are all free). Roughly, the steps we will follow are:

1. We intersect W with P γ : we obtain several polygons. We compute the
equations of the lines which support the edges of the polygons. The case
γ ∈ ∆ is presented in Section 2.2 while the general case can be found in
Section 3.1.

2. For each line α obtained in the preceding point, we consider its orbit
under the action of Γ. The number of orbits is the quantity L1. The

7



Figure 1: Window for the Penrose tilings

relevant computations can be found in Section 3.2 and culminate with
Proposition 27 and Figure 8.

The lines α are in one of 6 possible directions. The smallest value of L1 is
then six, with just one Γ-orbit per direction; and the largest is L1 = 24,
corresponding to the case of four Γ-orbits per direction.

3. We compute the stabilizer Γα of each line α and obtain the quantity
R, which is the rank of 〈Λ2Γα〉α∈I1 . This computation takes place in
Section 3.3 and allows us to compute the first cohomology groups for the
12-fold tiling in Proposition 30.

4. We count the number of intersections, up to the action, between a 1-
singularity α and the other 1-singularities. This quantity is Lα0 . We have
not completed the computation of Lα0 for all the possible values of the
parameter γ. The study breaks down into too many subcases which did
not seem worth looking into in full detail. However:

• In Section 4.1 we present a complete calculation of the second coho-
mology group when γ = 0. In this case we have actually computed
the values L0 and Lα0 (Lemma 31), which is all that is needed to de-
termine the cohomology groups of ΩE12

. These groups were known
(Theorem 4.3) and are restated in Proposition 32.

The case γ = 0 is the simplest analyzed and corresponds to the case
of L1 = 6 described above.
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• In Section 4.2 we have further computed the second cohomology
groups, and thus the full cohomology, for all the cases in which under
the action of Γ there are at most two representatives per line, that
is, the cases L1 ≤ 12. This computation is computer assisted and we
collect the results in Propositions 32 to 39.

• Finally, in Section 4.3 we analyze the general case and summarize the
results in Section 4.4. We consider the largest set of 1-singularities,
which has 4 orbits per direction and thus 24 1-singularities. We inter-
sect each of these with the translates by the action of Γ of the 20 non
parallel 1-singularities. This yields a complete list of 0-singularities
in each 1-singularity. Our results are collected in Proposition 42,
which provides an upper bound on the quantity Lα0 . The complete
lists of 0-singularities are displayed in Tables 1 to 4.

2 The 12-fold tilings

The 12-fold tiling space corresponding to the plane Eγ12 with γ ∈ ∆ was intro-
duced by Socolar in [13], where it was shown to be also a substitution tiling.
Thus, the classical method exposed in [11] allows us to compute its cohomology
groups. Our goal now is to extend this computation to all parameters γ ∈ F12.
Since we will be only concerned with the case n = 12, from now on we will
denote simply by E,F etc. the spaces E12, F12 etc. We start by establishing
some preferred bases for the spaces involved in the decompositions

R6 = E ⊕ E⊥ and E⊥ = F⊥ ⊕ F.

The plane E will have the fixed orthonormal basis {u, v} given by

u =
1√
3



1√
3/2

1/2
0
−1/2

−
√

3/2

 , v =
1√
3



0
1/2√
3/2
1√
3/2

1/2

 .

The plane F will have the following fixed orthogonal basis:

A =
1

3


1
0
−1
0
1
0

 , B =
1

3


0
1
0
−1
0
1

 .

The basis {A,B} is not orthonormal, but it has been chosen to facilitate the
computations. Finally, the plane F⊥ will be chosen to be the algebraic conjugate
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of E and we will denote {u′, v′} its orthonormal basis. (Recall that to obtain
u′, v′ we simply need to replace

√
3 by its opposite in the definition of u and v.)

The projection π⊥ onto E⊥ is described in the following lemma. The simple
proof is left to the reader.

Lemma 5. The image of the canonical basis of R6 by the projection π⊥ onto
F⊥ ⊕ F defines six vectors gi, i = 1, . . . , 6. We have gi = fi + δi with fi ∈
F⊥, δi ∈ F and:

f1 = (
√

3/3, 0)

f2 = (−1/2,
√

3/6)

f3 = (
√

3/6,−1/2)

f4 = (0,
√

3/3)

f5 = (−
√

3/6,−1/2)

f6 = (1/2,
√

3/6)

and



δ1 = (1, 0)

δ2 = (0, 1)

δ3 = (−1, 0)

δ4 = (0,−1)

δ5 = (1, 0)

δ6 = (0, 1).

The vectors fi are expressed in the basis {u′, v′} and the δi in the basis {A,B}.

2.1 Algebra

In this section we collect some technical lemmas that will be useful in the forth-
coming computations. Many of them are straightforward and the proofs are left
to the reader.

Lemma 6. The vectors fi ∈ F⊥, i = 1, . . . , 6, satisfy the following two linear
relations over Z:

f5 = f3 − f1 and f6 = f4 − f2.

Moreover, we have 
f1 − f5 =

√
3f6

f2 − f6 = −
√

3f1

fi + fi+2 = −
√

3fi+1 ∀i = 1, . . . , 6

Corollary 7. The following group isomorphisms hold

π⊥(Z6) ∼ ZA⊕ ZB ⊕ 〈f1, . . . , f6〉Z and π⊥(Z6) ∼ Z2 ⊕ R2.

Proof. Every element in π⊥(Z6) is of the form
∑
nigi. By Lemma 5, we can

rewrite this expression as

6∑
i=1

nifi +

6∑
i=1

niδi =

6∑
i=1

nifi + (n1 − n3 + n5)A+ (n2 − n4 + n6)B.

It is straightforward that Z2 is isomorphic to the abelian group generated by
A,B, while Lemma 6 implies that the closure of the set {

∑6
i=1 nifi : ni ∈ Z} is

isomorphic to R2.
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f1

f6

f4

f2

f5
f3

Figure 2: The vectors f1, . . . , f6 in F⊥ and the directions of the 12th roots of
unity in C.

Corollary 8. If we identify the plane F⊥ with C, then the vectors fi correspond
to some roots of the equation z12 = 3−6. The correspondence, illustrated in
Figure 2, can be written as follows, where x denotes the complex number ei

π
6 :

fi =
1√
3
x5(i−1), i = 1, . . . , 6. (2)

Lemma 9. The complex number x = ei
π
6 is a simple root of the polynomial

X2−
√

3X+1. Moreover, every element of Z[x] can be expressed as a polynomial
in x of degree at most one with coefficients in Z[

√
3]. The precise expressions

are collected in the following chart for k ∈ N:

1 x x2 x3 x4 x5 x6 x6+k

1 x x
√

3− 1 2x−
√

3
√

3x− 2 x−
√

3 −1 −xk

Notation. Since the group Z[
√

3] will play a major role in this article, for
simplicity we will denote it G.

When trying to determine the cohomology groups of the 12-fold tilings, we
will need to understand when certain R-linear combinations of powers of x
belong to Z[x]. In some sense, the next lemma generalizes the equation

√
3f6 =

f1 − f5.

Lemma 10. Let α, β ∈ R and i < j two integers in [0, 5].

1. αxi ∈ Z[x] holds if and only if α belongs to G.
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2. αxi + βxj ∈ Z[x] holds if and only if

j − i = 1, 5 and α, β ∈ G.

j − i = 3 and

{
β = 1

2 (β1 + β2

√
3), α = 1

2 (α1 + α2

√
3), αi, βi ∈ Z,

α1 − 3β2, α2 − β1 ∈ 2Z.

j − i = 2 and

{
β = 1√

3
(β1 + β2

√
3), α = 1√

3
(α1 + α2

√
3), αi, βi ∈ Z,

α1 − β1 ∈ 3Z.

j − i = 4 and

{
β = 1√

3
(β1 + β2

√
3), α = 1√

3
(α1 + α2

√
3), αi, βi ∈ Z,

α1 − 2β1 ∈ 3Z.

Proof. We start with the first claim. By Lemma 9 it is clear that if α belongs to
Z[
√

3] then αxi belongs to Z[x]. We prove the other implication. By assumption,
αxi =

∑
j njx

j , nj ∈ Z, which implies α = x−i
∑
j njx

j . Again by Lemma 9,
we know we can write α = ax+ b, with a, b ∈ G. Since {x, 1} is a basis of C as
an R vector space, we conclude that α = b ∈ G.

We now proceed to argue the second claim in the statement. We need
to understand which conditions on α, β imply αxi + βxj ∈ Z[x]. Since xi is
invertible in Z[x], this last expression is equivalent to α+ βxj−i ∈ Z[x], which,
by Lemma 9 can be rewritten as α+βxj−i = ax+ b, a, b ∈ G. Thus, depending
on the value of j−i and again by Lemma 9, we are looking to one of the following
equations 

βx+ α = ax+ b j − i = 1.

β
√

3x− β + α = ax+ b j − i = 2.

2βx− β
√

3 + α = ax+ b j − i = 3.

β
√

3x− 2β + α = ax+ b j − i = 4.

βx− β
√

3 + α = ax+ b j − i = 5.

Now, since {x, 1} is an R basis for C, we deduce

- If j − 1 = 1: β = a, α = b ⇐⇒ β, α ∈ G.

- If j − 1 = 5: β = a, −β
√

3 + α = b ⇐⇒ β, α ∈ G.

- If j − 1 = 3:

2β = a,−β
√

3 + α = b ⇐⇒ ∃β1, β2, α1, α2 ∈ Z, β =
1

2
(β1 + β2

√
3),

α =
1

2
(α1 + α2

√
3) and b =

α1 − 3β2

2
−
√

3
α2 − β1

2
⇐⇒

β, α ∈ 1

2
G, α1 − 3β2, α2 − β1 ∈ 2Z.

For the two remaining cases, an analogous computation to the preceding
one, and using the same notations, yields

- If j − 1 = 2: β
√

3 = a, −β + α = b ⇐⇒ α, β ∈ 1√
3
G and α1 − β1 ∈ 3Z.

12



- If j−1 = 4: β
√

3 = a, −2β+α = b ⇐⇒ α, β ∈ 1√
3
G and α1−2β1 ∈ 3Z.

We end this section with a last technical lemma which will not be needed
until the reader is confronted with Figure 9.

Lemma 11. Let S := {(γ1, γ2) 6∈ 1
2
√

3
G× 1

2G} and consider its two subsets:

A = {(γ1, γ2) ∈ S | 2γ1

√
3 + 2γ2 ∈ G} and B = {(γ1, γ2) ∈ S | γ1

√
3 + 2γ2 ∈ G}.

Moreover, interchanging the roles of γ1 and γ2, we obtain the analogous sets
S′ := {(γ1, γ2) 6∈ 1

2G×
1

2
√

3
G},

D = {(γ1, γ2) ∈ S′ | 2γ2

√
3+2γ1 ∈ G} and E = {(γ1, γ2) ∈ S′ | γ2

√
3+2γ1 ∈ G}.

Finally, set C = S \ (A ∪B) and F = S′ \ (D ∪ E). Then,

1. A ∩B = D ∩ E = ∅, which implies S = A tB t C and S′ = D t E t F .

2. B ∩ S′ ⊂ F and E ∩ S ⊂ C.

3. A ∩D is the set of couples (γ1, γ2) subject to the following conditions:

(a) (γ1, γ2) 6∈ 1
2
√

3
(G×G).

(b) (γ1, γ2) ∈ 1
4 (G×G), i.e. 4γ1 = a+ b

√
3, 4γ2 = c+d

√
3, a, b, c, d ∈ Z.

(c) The integers a, b, c, d satisfy one of the following parity conditions:

i. a, d even and c, b odd.

ii. a, d odd and c, b even.

iii. a, b, c, d odd.

Proof. By the symmetry in the statement, it suffices to show the first claim
for the sets A,B: if (x, y) ∈ A ∩ B then 2x

√
3 + 2y and x

√
3 + 2y are in G.

Subtracting these two expressions we obtain that x
√

3 ∈ G which contradicts
(x, y) ∈ S. We conclude A ∩B = ∅ and by an analogous argument D ∩ E = ∅.

Now, we proceed to show that B ∩S′ ⊂ F and E ∩S ⊂ C. This amounts to
show that B ∩ E = B ∩D = A ∩ E = ∅.

• B ∩ E = ∅: if there was an element (x, y) ∈ B ∩ E ⊂ S ∩ S′, then
x, y 6∈ 1

2
√

3
G. However, since (x, y) ∈ B ∩ E we arrive to the following

contradiction.{
x
√

3 + 2y ∈ G
2x+ y

√
3 ∈ G

⇒

{
6x+ 4

√
3y ∈ G

6x+ 3
√

3y ∈ G
⇒
√

3y ∈ G.
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• B ∩ D = ∅: if there was an element (x, y) ∈ B ∩ D ⊂ S ∩ S′, then
x, y 6∈ 1

2
√

3
G. However, since (x, y) ∈ B ∩ D we arrive to the following

contradiction.{
x
√

3 + 2y ∈ G
2x+ 2y

√
3 ∈ G

⇒

{
3x+ 2

√
3y ∈ G

2x+ 2
√

3y ∈ G
⇒ x ∈ G.

• A∩E = ∅: the analysis in this case is completely analogous to B ∩D = ∅
swapping the two variables.

Finally, we will completely determine the set A ∩ D ⊂ S ∩ S′. If (x, y) ∈
A ∩ D ⊂ S ∩ S′, then x, y 6∈ 1

2
√

3
G and the following conditions need to be

satistfied: {
2x
√

3 + 2y ∈ G
2x+ 2y

√
3 ∈ G

⇒

{
2x
√

3 + 2y ∈ G
2x
√

3 + 6y ∈ G
⇒ 4y ∈ G.

By the symmetry of the variables we must also have 4x ∈ G. So, (x, y) ∈
1
4 (G×G) and there exist a, b, c, d ∈ Z such that 4x = a+b

√
3 and 4y = c+d

√
3.

Now, if (x, y) ∈ A we have:

2
√

3
1

4
(a+ b

√
3) + 2

1

4
(c+ d

√
3) =

3b+ c

2
+
a+ d

2

√
3 ∈ G = Z[

√
3].

For this last condition to hold we need a + d, 3b + c ∈ 2Z. Analyzing the
constraints imposed by (x, y) ∈ D, we obtain c+ b, 3d+ a ∈ 2Z. It follows that
a and d and that c and b have the same parity. Moreover, since x, y 6∈ 1

2
√

3
G, a

and b cannot be both even and likewise c and d. The parity conditions in the
statement follow.

2.2 Description of the window

In this section we describe the polytope W = π⊥([0, 1]6) and its intersection
with the family of planes P . By definition, the window W is the convex hull of
the 26 = 64 points

∑6
i=1 nigi, where each gi ∈ E⊥ is the projection of the ith

element of the canonical basis of R6 and ni is either 0 or 1. We end this section
establishing a convention regarding the description of the three dimensional
faces of W, which will be thoroughly studied in the next section. The main
result of this part is the following proposition.

Proposition 12.

• The polytope W ⊂ E⊥ = F⊥ ⊕ F has 52 vertices, 132 edges, 120 faces of
dimension two and 40 faces of dimension three.

• All edges have the same length.
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• The vertices are distributed in 16 affine planes parallel to F⊥. Each of
these planes intersects

– F in a point (see Figure 3); and

– W in either a point, a triangle or a hexagon.

The proof of this proposition will be splitted in several lemmas.

Lemma 13. The intersection of the window W and the family of translates of
F⊥ given by P =

⋃
δ∈∆ F⊥ + δ consists of points, triangles and hexagons.

Proof. Let us denote by Pδ the affine plane F⊥ + δ. Throughout this proof we
will follow the conventions established in Sections 1.1, 1.2, and 2.

By Corollary 7, ∆ is isomorphic to Z2 with generators {A,B}. So, the family
P consists of all translates of F⊥ by an integer linear combination of A and B.
The vertices of W are of the form

n1g1 + · · ·+n6g6 = n1f1 + · · ·+n6f6 + (n1−n3 +n5)A+ (n2−n4 +n6)B, (3)

where ni ∈ {0, 1}. Since the expressions n1 + n5 − n3 and n2 − n4 + n6 take
only 4 different values, the numbers {−1, 0, 1, 2}, it follows that the vertices of
W project onto F onto 16 different points of the lattice ∆. The first step will
be to understand how many of these vertices are projected onto each of these 16
lattice points. To this end, in the next array we collect in how many different
ways the above mentioned numbers are obtained:

ni + ni+4 − ni+2 −1 0 1 2

i = 1 1 3 3 1

i = 2 1 3 3 1

It follows that on the plane P(n1+n5−n3,n2−n4+n6) the number of vertices of W
is at most the product of the corresponding entries on the second and third lines
in the above array. (Notice that not all the 64 projections of the vertices of the
unit cube in R6 need to be vertices of W .) After a straightforward computation,
we obtain:

• In each of P(−1,−1), P(−1,2), P(2,−1), P(2,2) there is one single vertex of W .

• In each of P(−1,0), P(−1,1), P(0,−1), P(0,2), P(1,−1), P(1,2), P(2,0), P(2,1) there
are at most 3 vertices of W . It follows that the intersection of W with
any of these planes is the convex hull of the 3 points obtained projecting
the canonical basis of R6. These points turn out to not be aligned in any
of the 8 planes, so in this case the intersection of W and these planes is a
collection of 8 triangles.

• In each of P(0,0), P(0,1), P(1,0), P(1,1) there are at most 9 vertices of W . We
list the 9 points in each plane and compute their convex hull. It turns out
that in each case the convex hull is a hexagon drawn in Figure 4. In each
of the 4 planes, the vertices of the corresponding hexagon in cyclic order
are given by:
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(0, 0)

(0, 1)
(2, 1)

(1,−1)

(−1, 1)

(1, 2)

A

B

Figure 3: The polytope W ⊂ E⊥ = F ∪ F⊥ has its vertices on 16 planes
parallel to F⊥. The projection of each of these planes onto F , with fixed basis
{A,B}, is a point. In this figure the number of vertices of W in each of the
different 16 planes is encoded by the following color code: Black=isolated point,
red=triangle, green=hexagon.

Figure 4: The four hexagons which appear in the planes
P(0,0), P(1,0), P(0,1), P(1,1).

– Hexagon in the plane P(0,0):

f2 + f4 f4 + f6 f1 + f3 + f4 + f6 f1 + f3 f5 + f3 f2 + f3 + f4 + f5

– Hexagon in the plane P(1,0):

f5 + f2 + f4 f1 + f2 + f4 f1 + f4 + f6 f1 + f5 + f3 + f4 + f6 f1 + f5 + f3 f5

– Hexagon in the plane P(0,1)

f2 + f4 + f6 f2 f3 + f2 + f5 f6 + f5 + f3 f1 + f6 + f3 f1 + f6 + f3 + f2 + f4

– Hexagon in the plane P(1,1):

f1 + f6 f1 + f2 + f4 + f6 f2 + f4 + f5 + f6 f2 + f5 f1 + f2 + f3 + f5 f1 + f3 + f5 + f6

From this last lemma we deduce several results on the structure of W . We
state them here without proof. They are all the result of simple observations or
direct computations. In what follows, we will refer to the points of intersection
between W and the planes P(−1,−1), P(−1,2), P(2,−1), P(2,2) as isolated points or
isolated vertices.
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Corollary 14. The edges of the polygons in the statement of Lemma 13 are
parallel to the directions fi ⊂ F⊥, i = 1, . . . , 6.

Corollary 15. The 1–dimensional complex of W , that is, the set of projections
of the edges of the unit cube in R6 onto F⊥ ⊕ F , has the following properties:

• No two vertices in one of the planes Pδ are connected by an edge.

• Every isolated vertex has valency 6.

• Every vertex in a triangle has valency 5. The 5 edges join the vertex in
the triangle with 2 vertices on the hexagons, with 2 vertices on the closest
triangle, and with the closest isolated vertex.

• In every hexagon, vertices of valency 6 alternate with vertices of valency
4. The latter vertices connect to vertices in the planes at distance 1, the
former ones exhibit the same pattern plus two edges connecting to vertices
in other hexagons.

The following corollary is the last one in this section. In it we introduce the
notion of a cube, which is our shortcut notation for a “3-dimensional face of
the polytope W”. These cubes will play an essential role in this article and the
next subsection is devoted to their explicit description.

Corollary 16. The window W has 40 faces of dimension 3. Every three di-
mensional face has the combinatorics of a cube and comprises 8 vertices. We
will refer to these faces as “cubes”. Their disposition with respect to the vertices
of W is as follows.

• Vertices of valency 6 belong to 8 cubes.

• Vertices of valency 5 belong to 6 cubes.

• Vertices of valency 4 belong to 4 cubes.

In what follows we will need a more precise description of these cubes. Notice
that, in order to completely determine a cube it suffices to know one of its
vertices and the three edges of the cube intersecting at it. A vertex of a cube
of W is a point in F⊥ ⊕F and we will express it as a linear combination of the
vectors g1, . . . , g6. To describe the edges of the cube we start by remarking the
following: in the plane F there is a “rightwards” direction, given by the vector
A and an “upwards” direction, given by the vector B (see Figure 3). From
equation (3) it follows that an edge of a cube directed by

• the vector g1 or g5: is horizontal and rightwards when projected onto F .

• the vector g2 or g6: is vertical and upwards when projected onto F .

• the vector g3: is horizontal and leftwards when projected onto F .

• the vector g4: is vertical and downwards when projected onto F .

17



Therefore, it is enough to recall the projections onto F⊥, given by vectors fi,
of the edges of the cube we want to describe, since it is immediate from this
information and the above remarks how to recover the cube. Furthermore,
instead of the fi, since we are only interested at this point in the directions of the
edges, we can use the complex vector x = e

iπ
6 and its multiples xi, i = 0, . . . , 11

to describe the edges of a cube (cf. Equation (2)). With this notation the
following holds:

• the vectors xi with i even represent edges of the cube which are horizon-
tal in F . More specifically, xi with i = 0, 4, 8 are edges of cubes that
project onto rightwards vectors on F while xi with i = 2, 6, 10 project
onto leftwards vectors.

• the vectors xi with i odd represent edges of the cube which are vertical in
F . More specifically, xi with i = 1, 5, 9 are edges of cubes that project onto
upwards vectors on F while xi with i = 3, 7, 11 project onto downwards
vectors.

Convention 17. In the rest of the paper: A cube is given by a vertex g and three
vectors xi, xj , xk which support the edges of the cubes containing the vertex. We
denote the cube by

{g, xi, xj , xk}.

Example 18. As an example, the set {g3 + g4, x
1, x5, x9} determines a cube

in W with a vertex in g3 + g4 ∈ P(−1,−1) and 3 edges which go upwards in the
plane F and thus connect the vertex g3 + g4 with 3 vertices in the plane P(−1,0).
Each of these vertices is itself connected to 2 vertices in the plane P(−1,1) with
edges that can be again encoded by the vectors x1, x5, x9. Finally, the 3 vertices
in P(−1,1) (each of which connects to 2 vertices in P(−1,0)) are also connected
with the single vertex in P(−1,2). This is a complete description of the 6 vertices
and 12 edges of a cube in W .

2.3 Cubes

With the notation developed above, we now proceed to describe all the cubes
in W . The details of the computation will not be needed in the rest of the
paper; however, the last results of this section Proposition 21 and Corollary 22,
summarizing the findings, are essential.

According to Corollary 15 each of the 4 isolated vertices has valency 6 and
from Corollary 16 we learn that these 6 edges belong to 8 different cubes. After
an easy computation we find out that if we fix any one of the isolated vertices,
precisely two of the 8 cubes which contain it contain also another isolated vertex.
It follows that the number of different cubes containing isolated vertices is 8 +
7 + 7 + 6 = 28. The combinatorics of these cubes is as follows:

• The cubes containing two isolated vertices contain also the 6 vertices of the
two triangles on a line (or column) in Figure 3. There are 4 such cubes.
Following our convention, the two vertical cubes are given by the sets
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{g3 + g4, x
1, x5, x9} and {g1 + g4 + g5, x

1, x5, x9} while the two horizontal
ones correspond to the sets {g3+g4, x

0, x4, x8} and {g2+g3+g6, x
0, x4, x8}.

• The remaining cubes containing one isolated vertex, which are 24 in num-
ber, have all two edges going in the same direction on F and a third edge
going in the perpendicular direction. The complete list follows:

– Cubes containing v1 = g3 + g4 (bottom left isolated vertex):

{v1, x
i, xi+3, xi+4}, i = 1, 5, 9 and {v1, x

i, xi+1, xi+4}, i = 0, 4, 8.

– Cubes containing v2 = g2 + g3 + g6 (top left isolated vertex):

{v2, x
i, xi+1, xi+4}, i = 3, 7, 11 and {v2, x

i, xi+3, xi+4}, i = 0, 4, 8.

– Cubes containing v3 = g1 + g2 + g5 + g6 (top right isolated vertex):

{v3, x
i, xi+3, xi+4}, i = 3, 7, 11 and {v3, x

i, xi+1, xi+4}, i = 2, 6, 10.

– Cubes containing v4 = g1 + g4 + g5 (bottom right isolated vertex):

{v4, x
i, xi+1, xi+4}, i = 1, 5, 9 and {v4, x

i, xi+3, xi+4}, i = 2, 6, 10.

Example 19. If we focus on the isolated vertex in the plane P(−1,−1) it belongs
to 8 cubes which, when projected to F , can be described as: a cube developing
completely to the right, with a vertex in the isolated point in P(2,−1); a cube
developing completely vertically with a vertex in the isolated point P(−1,2); 3
cubes that have two edges towards the right direction, with their furthermost
vertices in the planes P(1,−1) and P(0,−1) and one edge upwards; and finally 3
cubes with two upward edges, leaving the furthermost vertices in this direction
on the planes P(−1,1) and P(0,1), and one rightward edge. The cubes around the
other 3 isolated points have a completely analogous symmetric configuration.

The cubes which contain no isolated vertex have vertices on the triangles and
hexagons described in Lemma 13. Moreover, by Corollaries 15 and 16 we know
that each vertex on a triangle has valency 5 and thus it belongs to 6 different
cubes. From the description above we have that 5 of these cubes contain an
isolated vertex. The cube that we are missing connects the vertex in the triangle
to two vertices in the closest hexagon and to one vertex in the closest triangle.
There is a total of 12 such cubes, 3 for each pair of nearby triangles in Figure 3.
We will not give a description as precise as the ones above for these cubes since
for our purposes the precise vertex on the triangle that these cubes contain will
be irrelevant. The information we need from these cubes is the following:

• Each vertex v1, v2, v3 in the triangle in the plane P(−1,0) belongs to a cube
that contains no isolated vertex of W . These three cubes are given by
{vj , xi, xi+5, xi+4}, i = 0, 4, 8.
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• Each vertex v1, v2, v3 in the triangle in the plane P(0,−1) belongs to a cube
that contains no isolated vertex of W . These three cubes are given by
{vj , xi, xi−1, xi+4}, i = 1, 5, 9.

• Each vertex v1, v2, v3 in the triangle in the plane P(2,1) belongs to a cube
that contains no isolated vertex of W . These three cubes are given by
{vj , xi, xi+5, xi+4}, i = 2, 6, 10.

• Each vertex v1, v2, v3 in the triangle in the plane P(1,2) belongs to a cube
that contains no isolated vertex of W . These three cubes are given by
{vj , xi, xi−1, xi+4}, i = 3, 7, 11.

From this description we learn that we there are two different types of cubes
in the polytope W :

Definition 20.

• Standard cubes, which when projected onto F have two edges in the same
direction and a third edge in the perpendicular one;

• Long cubes, whose 3 defining edges project onto the same direction on F .

These two types of cubes can be horizontal or vertical, depending on which is
their longest direction when projected onto F , see Figure 5.

We summarize our findings in the next proposition.

Proposition 21. The polytope W has 40 cubes.

• 2 vertical and 2 horizontal long cubes each containing two isolated points.

• 24 standard cubes each containing precisely one isolated point.

• 12 standard cubes containing only points in the triangles and hexagons.

Corollary 22. The sets of directions of the edges of the 40 cubes in W are:

• the long cubes yield the sets {x0, x2, x4} and {x1, x3, x5}.

• The 24 standard cubes with one isolated point yield

{xi, xi+4, xi+1} and {xi, xi+4, xi+3} with i = 0, . . . , 11.

• The 12 remaining standard cubes yield

{xi, xi+4, xi+5}, i = 0, 2, 4, 6, 8, 10 and {xi, xi+4, xi−1}, i = 1, 3, 5, 7, 9, 11.
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Figure 5: standard horizontal, standard vertical, long horizontal and long ver-
tical cubes. Remark that all vertices in the long cubes are projected onto the
grid points in a horizontal or vertical line: one vertex on each black dot and
three vertices on each red dot.

3 Cubes, lines of intersection and H1(ΩEγ12
)

3.1 Intersection of a cube and a plane

We want to apply the method described in Section 1.4 to compute the coho-
mology groups of the generalized 12-fold tilings. The first step is to cut the
polytope W by the families of parallel planes P γ =

⋃
δ∈∆ F⊥ + γ + δ with

γ = (γ1, γ2) ∈ F (expressed with respect to the fixed orthogonal basis {A,B}).
Due to the periodicity of ∆, restricting γ1, γ2 to vary in the range [0, 1)× [0, 1)
is enough to obtain all the different families P γ . The intersection of W with P γ

when γ = (0, 0) has been treated in Proposition 12 and we now proceed to study
the intersection when γ 6= (0, 0). To this end, we start noticing that a plane
intersects W if and only if it intersects one of its 3 dimensional faces. Indeed,
since the 4-dimensional polytope W has a boundary consisting of 3–dimensional
faces and it sits in the 4–dimensional space F⊥ ⊕ F , a plane cannot intersect
it without intersecting its boundary. (Notice that a plane could intersect W
without intersecting an edge or a 2 dimensional face.) Thus, our next goal is to
intersect the 40 cubes described in Proposition 21 with the planes in the families
P γ =

⋃
δ∈∆E2 + γ + δ and γ ∈ (0, 1)× (0, 1).

Inside the family of planes P γ very few of them do actually intersect the
window W . Indeed, it is evident from Figure 6 that if γi 6= 0 for i = 1, 2
then there are precisely 9 planes in P γ with non trivial intersection: the ones
that project into the squares delimited by the colored dots in the figure. On
the other hand, if γ 6= (0, 0) but γ1 = 0 or γ2 = 0, then there are 12 such
planes. If we want to individuate one plane in the family P γ we will use the
same notation as in the preceding section, that is, P γδ is defined as the plane
F⊥+γ+ δ. Notice that in what follows, when we refer to a cube we will always
consider it ‘parametrized’ as in the explicit list of the 40 cubes which constitute
the boundary of W described in Section 2.3.

Lemma 23. Consider a plane P γδ = F⊥ + γ + δ intersecting a cube of W .

• If the cube is standard and horizontal, then the intersection is a segment
directed by the difference of the two horizontal vectors in the cube.
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• If the cube is standard and vertical, then the intersection is a segment
directed by the difference of the two vertical vectors.

• If the cube is long, then P γδ is orthogonal to a diagonal of the cube and
thus P γδ ∩W is either a triangle or a hexagon.

Proof. An arbitrary point p in a cube determined by the tuple {v, xi, xj , xk}
has coordinates in E⊥ = F⊥ ⊕ F given by p = v + α1gr + α2gs + α3gt where
α` ∈ [0, 1] and gr, gs and gt are the projections of the basis vectors in R6 onto
F⊥⊕F or their opposites which are determined from xi, xj and xk as previously
explained. We are interested in the projection onto F of this point, which we
will denote πF (p) := π⊥(p) ∩ F .

If the cube is horizontal, then two of the exponents defining it will be even,
say they are the two first ones, and therefore πF (p) = πF (v)+(α1 +α2, α3). On
the other hand, if the cube were vertical, we might assume that again the two
first exponents defining it are odd and therefore in this case πF (p) = πF (v) +
(α3, α1 + α2). It follows that if p ∈ P γδ then,

• in the horizontal case we have πF (v) + (α1 + α2, α3) = (δ1 + γ1, δ2 + γ2);

• in the vertical case πF (v) + (α3, α1 + α2) = (δ1 + γ1, δ2 + γ2) must hold.

So, for a point in a horizontal cube to be also in P γδ its α3 component, the
vertical one in this case, is completely determined by the above equality while
α1 and α2 are subject to the linear condition α1 + α2 = some constant. As α1

and α2 vary in [0, 1], this condition determines a segment in P γδ . Indeed, the
projection of p onto this plane can be written as πPγδ (v) + α1fr + α2fs + α3ft
and the above conditions found on the αi’s allow us to rewrite the expression
as:

πPγδ (v) + (δ1 + γ1 − πF (v)1)fr − α2fr + α2fs + (δ2 + γ2 − πF (v)2)ft

=πPγδ (v) + (δ1 + γ1 − πF (v)1)fr + α2(fs − fr) + (δ2 + γ2 − πF (v)2)ft (4)

Notice that in this last expressions all parameters are fixed except for α2 and
as it varies it defines the segment of intersection between P γδ and the cube
{v, xi, xj , xk}. As claimed in the statement, this segment is directed by the
vector fs − fr. This vector is a multiple of xi − xj , the difference of the two
even powers of x defining the cube. The argument is completely analogous in
the vertical case. See Figure 7.

We now proceed to examine the intersection of P γδ with a long cube. For the
sake of concreteness we will assume that the cube is horizontal, which means
that it is directed by three even powers of x (the vertical case is completely
analogous with three odd powers instead). Just as before, a point in this cube
is given by p = v + α1gr + α2gs + α3gt and this time its projection onto F
reads πF (p) = πF (v) + (α1 + α2 + α3, 0). If we assume p ∈ P γδ we obtain the
equality πF (v) + (α1 + α2 + α3, 0) = (δ1 + γ1, δ2 + γ2). This means that the
plane and the cube are in the same affine space of dimension 3. In this space
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Figure 6: Each of these colored grid points represent the projection on F of a
plane F⊥ containing some vertices of the polytope W . Recall that the plane F
has basis {A,B} highlighted on the left-most grid. The numbers in these grids
represent the number of cubes in W that the planes P (γ1,γ2) meet. The first
grid collects the numbers for γ1, γ2 6= 0, the second for γ2 = 0 and the last one
for γ1 = 0.

the equation of the plane is α1 + α2 + α3 = δ1 + γ1 − πF (v)1 and the cube is
[0, 1]3. Thus the plane is orthogonal to a diagonal of the cube. The intersection
is a polygon, more precisely, a triangle or a hexagon depending on the value of
δ1 + γ1 − πF (v)1. See Figure 7.

With the information we have gathered about the planes P γ and the cubes
in W we could now describe every segment in their intersection. Notice that, for
γ with γi 6= 0 for i = 1, 2, this would imply to explicit 72 segments. Indeed, we
would be looking at 9 different planes in the family P γ that effectively intersect
the cubes inW and the number of cubes intersecting each plane varies depending
on where in F, see Figure 6, these planes are projected to. For example in the
center square a plane intersects 12 cubes of W whereas in a corner square it
meets only 6 cubes.

Thankfully, for the computation we are interested in, we do not need to go
into this level of detail. In fact, the segments of intersection define lines in the
space E⊥ = F⊥ ⊕ F and we are interested in them only up to the action of
Γ = π(Z6). In Lemma 23 we have described these segments/lines as points of
the form v ± α1gi ± α2gj ± α3gk where v is a vertex of a cube and the αi’s
are real numbers in the interval [0, 1] subject to some constraints. Since v is a
vertex of W it is also an element of the group Γ and therefore by a translation of
vector −v we might simply consider the expression α1(±gi)+α2(±gj)+α3(±gk).
Geometrically, this amounts to look at all the lines we are interested in together
in the single plane P γ(0,0) = P γ0 . At this point, since all the information about

these lines on the F component is summarized in the point γ, we might look at
their expressions in the plane P γ0 , which we recall is parallel to F⊥, obtaining
the expressions α1(±fi) + α2(±fj) + α3(±fk). Our description of the cubes in

W is in terms of the powers of the complex vector x = e
iπ
6 instead of the vectors

fi. In this language, the lines we are interested in are of the form

α1(
1√
3
xr) + α2(

1√
3
xs) + α3(

1√
3
xt)
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Figure 7: The left figure represents the intersection between a plane and a long
cube. The plane and the cube live in the same 3-dimensional space and the
intersection is either a hexagon (pink) or a triangle (green). The two other
figures depict the intersection of the planes and the standard cubes. Each plane
intersects a given cube in one line whose direction is determined by the cube.
In the figure dotted lines are meant to be inside the cubes and solid ones on the
faces.

with the necessary constraints on the parameters αi.
As explained in Section 1.4, to compute the cohomology groups of the hull

of the tiling, we need to know the quantity L1, which is the number of orbits of
lines in the intersection between P γ and W under the action of Γ. With all the
previous conventions in place, we are now ready to give a convenient description
of these lines which will be handy to later compute L1. We will use the standard
convention denoting by A+λu the line of direction u passing through the point
A with λ ∈ R.

Proposition 24. The intersection of the family of planes P γ with the cubes in
W yields a family of segments and polygons. Each of these segments and each
side of a polygon belongs to a line that, when translated to the plane P γ0 via a
vector in ∆ ⊂ F , can be described by one of the following 36 equations:

±(
γ1√

3


xi

xi+2

xi+4

+
γ2√

3
xi+1) + λxi for i ∈ {0, 2, 4}

±(
γ2√

3


xi+2

xi+4

xi+6

+
γ1√

3
xi+1) + λxi for i ∈ {1, 3, 5}.

Proof. The list of the 40 cubes which constitute the boundary of the window is
explicit in the discussion before Proposition 21. Since we are working modulo
the translations of ∆ we might ignore the vertices of the cubes and use only the
information in Corollary 22.

We start considering standard cubes, which are all of the form {xi, xi+4, xk}
for i = 1, · · · , 11 and k as in Corollary 22. By Lemma 23 the intersection of a
standard horizontal cube and a single plane in P γ is a segment as in Equation (4)
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directed by the vector xi+4 − xi, which is a multiple of the vector xi−1. If the
cube were vertical, the roles of γ1 and γ2 are swapped. For the sake of clarity,
let us consider horizontal cubes. Since we are now working modulo the action
of ∆ and are interested in the whole line defined by the segment, the relevant
part of the expression (4) which we need reads

γ1fr + α2(fs − fr) + γ2ft where α2 ∈ R.

This expression, rewritten in terms of the powers of x turns into

γ1
1√
3
xi + γ2

1√
3
xk + α2

1√
3
xi−1.

Finally, rewriting α2
1√
3

as λ ∈ R we obtain the general expression of the lines

we are looking for. To compile the list in the statement of the proposition we
simply need to write down all the different lines obtained by this procedure
from the standard cubes in Corollary 22. To ease future computations we have
adopted the convention that the lines will be written in such a way that the
direction is given by the i-th power of x yielding the expressions:

horizontal cubes : γ1
1√
3
xi+1 + γ2

1√
3
xk + λxi for

{
i odd mod 12

k = i+ 2, i+ 4, i+ 6

vertical cubes : γ2
1√
3
xi+1 + γ1

1√
3
xk + λxi for

{
i even mod 12

k = i, i+ 2, i+ 4

Note that we can make the notation a bit more compact taking into account
that xi = −xi+6 mod 12. Adjusting the signs of γ1 and γ2 we obtain the first
point in the statement of the proposition. Indeed, for γ1, γ2 6= 0 all and only
standard cubes are intersected by the planes in P γ since the long cubes are
projected onto lines where one γi is constantly equal to zero (see Figure 5).

We now consider the case of γ = (0, γ2). The intersection of any plane in P γ

with a standard horizontal cube will be either reduced to a point or a segment as
described in Lemma 23. Furthermore, the intersection with a standard vertical
cube will be a segment as described in Lemma 23. The reader can “visualize”
this in Figure 5: for γ = (0, γ2) the planes intersecting standard horizontal cubes
might find their intersection on an edge of the cube or in the “middle”, while
the intersection with a vertical cube for these values of γ happens on a “lateral
face”. We obtain thus all the lines in the first point of this proposition with
γ2 = 0. Furthermore, for these values of γ the intersection with the two vertical
long cubes is non trivial. By Lemma 23 the intersection consists of triangles or
hexagons perpendicular to the diagonal of the cube. Since we are interested on
the lines defined by the sides of the polygones only up to the action of ∆, it is
enough to consider the intersection with just one of the two cubes. We choose
{g3 + g4, x

1, x5, x9}. The three planes in the family P (0,γ2) which intersect this

long vertical cube are P
(0,γ2)
(−1,j) with j = −1, 0, 1.
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If j = −1 we obtain that the intersection is a triangle whose edges, when
considered modulo ∆, that is, translated to the plane P γ0 , can be described as

γ2
1√
3
xi + λxi−1 for i = 1, 5, 9 and λ ∈ R.

(Recall that the vector xi+4−xi is a multiple of xi−1.) Following the convention
of writing the direction of the line as the i-th power we obtain the lines

γ2
1√
3
xi+1 + λxi for i = 0, 4, 8 and λ ∈ R.

Now, if j = 0 the intersection is a hexagon with parallel opposite sides. The
lines they define have the same directions as the ones obtained for j = −1
and modulo ∆ they coincide. Indeed, expressing the equations of these lines
as A + λv we have that A is a point of coordinates g3 + g4 plus some integer
multiples of some basis vectors gi (yielding the coordinates of another vertex
of the cube) plus γ2

1√
3
xi with i = 1, 5 or 9; and the vector v is given by a

difference of the form xi+4−xi. A completely analogous argument can be made
to justify that modulo ∆ we do not obtain new lines when considering the case
j = 1. Finally, notice that the 3 lines we have found for j = −1 coincide with
lines obtained from the intersection with standard vertical cubes so they have
been already been accounted for.

The case of the long horizontal cubes is completely analogous to the one of
the vertical ones, we only need to swap the roles of γ1 and γ2 and of the even
and odd powers of x.

Finally, the intersection P γ ∩W when γ = (0, 0) was studied in Lemma 13.
The lines we obtain in this case are supported by the sides of the triangles
and hexagons found in this intersection. According to Corollary 14 these lines
have all direction xi for some i = 0, . . . , 5. Moreover, since they all go through
vertices of W , it is evident that they can be translated to lines going through
(0, 0) ∈ P 0

0 via an element in ∆.

3.2 Orbits of lines

Now that we have a complete list of lines explicit in Proposition 24, we need to
count the number of orbits of these lines under the action of Γ = ∆⊕〈f1, . . . , f6〉Z
(see Corollary 7). From Proposition 24 we know that the lines appearing in
W ∩ P γ have direction xi with i = 0, . . . , 5 and, depending on the value of γ,
for each fixed direction xi0 there are a certain number of lines when we consider
them translated to the plane P γ0 via an element in ∆. Since we are working in
the plane P γ0 the action of Γ is simplified to the action of ∆0 := 〈f1, . . . , f6〉Z.
For computational reasons, it is better to use the powers of x than the fi,
so we remind the reader that Equation (2) tells us that ∆0 ∼ 1√

3
Z[x]. The

number of orbits will depend on the value of γ, however we can do a first overall
simplification.
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Lemma 25. The two lines in each of the following accolades

γ1√
3

{
xi+2

xi+4
+
γ2√

3
xi+1 + λxi, −(

γ1√
3

{
xi+2

xi+4
+
γ2√

3
xi+1) + λxi, i ∈ {0, 2, 4}

γ2√
3

{
xi+2

xi+4
+
γ1√

3
xi+1 + λxi, −(

γ2√
3

{
xi+2

xi+4
+
γ1√

3
xi+1) + λxi, i ∈ {1, 3, 5}.

are in the same ∆0 orbit.

Proof. Since the argument is completely analogous for all the cases, in order to
ease the notation we will write the details of the proof only for the lines:

γ1√
3
xi+2 +

γ2√
3
xi+1 + λxi and

γ1√
3
xi+4 +

γ2√
3
xi+1 + λxi for i ∈ {0, 2, 4}.

The difference of two arbitrary points in these lines can be expressed as

± γ1√
3

(xi+2 − xi+4) + µxi, for some µ ∈ R.

Now, it holds that ±(xi+2 − xi+4) = ±xi, and therefore

± γ1√
3

(xi+2 − xi+4) + µxi ∈ ∆0 ⇐⇒ (± γ1√
3

+ µ)xi ∈ Z[x].

By Lemma 10 this last condition holds if and only if ± γ1√
3

+ µ ∈ G, which is

always satisfied for, say, µ = ∓ γ1√
3

and thus the two lines we started with are in

the same ∆0 orbit.

Corollary 26. The lines in Proposition 24 in different ∆0 orbits are at most
the following 24:

±(
γ1√

3

{
xi

xi+2
+

γ2√
3
xi+1) + λxi for i ∈ {0, 2, 4}

±(
γ2√

3

{
xi+4

xi+6
+

γ1√
3
xi+1) + λxi for i ∈ {1, 3, 5}.

Proposition 27. The number L1 of different orbits of lines under the action
of Γ depends on γ = (γ1, γ2) and belongs to the set {6, 9, 12, 15, 18, 21, 24}. The
precise value depends on various constraints on γ and it can be found in Figure 8.

When L1 = 24 we have that the 1-singularities have 6 different directions
and each direction has 4 representatives under the action of Γ. The other values
of L1 are obtained when some of the parallel representatives of the 1-singularities
are identified under the action of Γ. The other extreme case, L1 = 6, arrives
when γ1, γ2 ∈ G and there is only one orbit per direction.
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Figure 8: The number of 1-singularities depending on γ = (γ1, γ2) ∈ R2 (recall
that G = Z[

√
3]). The top right part of the chart is to be understood as the

superposition of the regions labelled A,B,C,D,E and F in Figure 9. Moreover,
adding 1 to each of the values on the chart we obtain the rank of H1(ΩEγ12) (cf.
Proposition 30). Finally, the regions enclosed in blue are the ones for which the
second cohomology groups have been completely determined in Section 4.2
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Proof. To start with, recall that we are working with the simplifying assumption
that γ belongs to [0, 1)2 (see beginning of Section 3.1). Moreover, the orbits of
lines under the action of Γ will be computed via de action of the group ∆0 on
translates by ∆ of the lines to the plane P γ0 (see beginning of Section 3.2).
• If the value of γ = (0, 0), then by Proposition 24 we know that we have

a total of 6 lines, one for each direction xi, and these lines are evidently in
different ∆0 orbits.
• If precisely one between γ1 and γ2 is zero then, by Proposition 24, there

are 18 lines to be considered. We start considering the case γ1 = 0. In this case
there are six lines with 3 different directions xi, i ∈ {0, 2, 4} and 12 lines with
direction xi, i ∈ {1, 3, 5}. We want to understand under which conditions on γ2

two parallel lines are on the same orbit under the action of ∆0. For the even
directions, the equations of the lines under consideration are

γ2√
3
xi+1 + λxi and − γ2√

3
xi+1 + λ′xi

and they will be in the same ∆0 orbit if and only if there exist λ, λ′ ∈ R such
that

γ2√
3
xi+1 + λxi − (− γ2√

3
xi+1 + λ′xi) ∈ ∆0.

Reorganizing we obtain that this condition is equivalent to

γ2
2√
3
xi+1 + xi(λ− λ′) ∈ ∆0 for some λ, λ′ ∈ R.

Finally, relabelling adequately the real parameters, this last condition reads

2γ2x
i+1 + µxi ∈ Z[x] for some µ ∈ R,

and by Lemma 10 it will be fulfilled if and only if 2γ2, µ ∈ G.
For the odd directions, i ∈ {1, 3, 5}, the equations of the lines under consid-

eration are

γ2√
3
xi+4 + λ1x

i, − γ2√
3
xi+4 + λ2x

i,
γ2√

3
xi+6 + λ3x

i and − γ2√
3
xi+6 + λ4x

i.

Following the same arguments as before, we conclude that the two first lines
will be in the same ∆0 orbit if

2γ2x
i+4 + µxi ∈ Z[x] for some µ ∈ R,

which holds, via Lemma 10, if 2γ2 ∈ 1√
3
G. Noticing that xi+6 = −xi we

conclude that the last two lines are coincident and in fact one only line.
Finally we need to analyze the possibility of the lines passing through the

points ± γ2√
3
xi+4 and γ2√

3
xi being in the same ∆0 orbit. This will be the case if

± γ2√
3
xi+4 + xi(λ− λ′ − γ2√

3
) ∈ ∆0 for some λ, λ′ ∈ R,
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or equivalently, if

±γ2x
i+4 + µxi ∈ Z[x] for some µ ∈ R.

By Lemma 10 we conclude this is the case if γ2 ∈ 1√
3
G. Summing up, since

1√
3
G ⊂ 1

2
√

3
G we have:

∗ For each even direction there is one ∆0 orbit if γ2 ∈ 1
2G and two if γ2 6∈ 1

2G.

∗ For each odd direction we can have:

− three ∆0 orbits if γ2 6∈ 1
2
√

3
G.

− two ∆0 orbits if γ2 ∈ 1
2
√

3
G \ 1√

3
G with representatives passing

through the points γ2√
3
xi+4 and γ2√

3
xi.

− one ∆0 orbit if γ2 ∈ 1√
3
G.

The total number of ∆0 orbits is presented in Figure 9, where the right
hand side has the even directions with values 3 and 6 and the left hand side
the odd directions, with values 3,6 and 9. The quantity L1 is computed by
combining together the information on the lines with even and odd directions.
This information can be read in Figure 8.

The arguments and calculations needed to arrive to the computation of the
number of L0 when γ = (γ1, 0) are analogous to the ones presented for the
case γ = (0, γ2). Indeed, in the former case there will be 3 lines for each even
direction since two of the ones in Corollary 26 will be coincident and the usage
of Lemma 10 will yield the same conclusions. All the relevant results are again
contained in Figures 8 and 9.

• We now proceed to analyze the case γi 6= 0 for i = 1, 2. To start with
notice that a point in any of these lines is of the form A+λv where A is a point
in P γ0 , λ ∈ R and v is the direction of the line. If two lines ` and `′ are in the
same ∆0-orbit we have that

A+ λv − (A′ + λ′v) ∈ ∆0 for some λ, λ′ ∈ R,

which implies
(A−A′) + (λ− λ′)v ∈ ∆0,

and relabeling the real parameter it is equivalent to

A−A′ + µv ∈ ∆0 for some µ ∈ R.

The vector v = xi and the power i might be even or odd. We will write down
the full details for the i even case and the results for the odd case will be given
at the end, without details. For each even power there are 4 different lines and
our aim is to understand the action of ∆0 on them.
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From Corollary 26, we know that for a fixed even direction xi0 the points
A,A′ we need to consider are of the form

±(
γ1√

3

{
xi0

xi0+2
+

γ2√
3
xi0+1)

and, depending on the choices of signs, the difference A−A′ can be written as

Case 1. ± 1√
3
γ1(xj − xk) j, k ∈ {i0, i0 + 2}, j 6= k, or

Case 2. ± 1√
3

(
γ1(xj + xk) + 2γ2x

i0+1
)

j, k ∈ {i0, i0 + 2}.

We start considering the first of these two cases. Under these circumstances
A−A′ + µxi0 ∈ ∆0 if and only if ±γ1(xj − xk) + µ′xi0 ∈ Z[x] for some µ′ ∈ R.
Due to the ± sign in front of this expression, we can assume that j > k, so
k = i0 and j = i0 + 2, which implies xj −xk = xi0+4. It follows that in this first
case the condition we need to determine on γ1 is when does

γ1x
i0+4 + µ′xi0 ∈ Z[x] for some µ′ ∈ R

hold. By Lemma 10 we conclude that this is the case if and only if
√

3γ1 ∈ G. (5)

We move on to consider Case 2 above. Now A−A′ + µxi0 ∈ ∆0 if and only
if γ1(xj + xk) + 2γ2x

i0+1 +µ′xi0 ∈ Z[x], for some µ′ ∈ R. With the appropriate
substitutions of xj + xk, depending on whether j = k or j 6= k, what we need
to understand is for which values of γi do the conditions

2(γ1x
i0 + γ2x

i0+1) + µ′xi0 ∈ Z[x] ⇐⇒ (2γ1 + µ′)xi0 + 2γ2x
i0+1 ∈ Z[x] (6)

2(γ1x
i0+2 + γ2x

i0+1) + µ′xi0 ∈ Z[x] ⇐⇒ 2(γ1x
2 + γ2x) + µ′ ∈ Z[x] (7)

γ1

√
3xi0+1 + 2γ2x

i0+1 + µ′xi0 ∈ Z[x] ⇐⇒ (γ1

√
3 + 2γ2)xi0+1 + µ′xi0 ∈ Z[x]

(8)

With the help of Lemma 10 we conclude that condition (6) is fulfilled if and
only if γ2 ∈ 1

2G, while condition (8) is fulfilled if and only if γ1

√
3 + 2γ2 ∈ G.

Now, condition (7) is equivalent to (2
√

3γ1 + 2γ2)x + µ − γ1 ∈ Z[x]. Thus we
obtain the condition 2(γ1

√
3 + γ2) ∈ G.

To help the reader visualize the results obtained so far, we propose the
following figure:

i

−i

i+ 2

−(i+ 2)

√
3γ1

2γ2 2(γ1

√
3 + γ2)

γ1

√
3 + 2γ2
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After fixing one even direction, every vertex labelled i, i+ 2,−i,−(i+ 2) in the
figure represents one of the four parallel lines in this direction. The labelling
corresponds to the power of x with coefficient γ1 in the description of the line
in Corollary 26. The conditions we have studied above identify parallel lines as
follows:

• Condition 5 identifies lines labelled ±i and ±(i+ 2) if
√

3γ1 ∈ G.

• Condition 6 identifies lines labelled i and −i if 2γ2 ∈ G.

• Condition 7 identifies lines labelled i+2 and −(i+2) if 2(γ1

√
3+γ2) ∈ G.

• Condition 8 identifies lines labelled ±i and ∓(i+ 2) if γ1

√
3 + 2γ2 ∈ G.

To finish the analysis and obtain the number of orbits of lines under the
action of Γ, we need to understand when do the above conditions arrive simul-
taneously. The results follow.

• If
√

3γ1 ∈ G and

– 2γ2 ∈ G, then there is 1 orbit.

– 2γ2 6∈ G, then there are 2 orbits with representatives i and −i.

• If
√

3γ1 ∈ 1
2G \G and

– 2γ2 ∈ G, then there are 2 orbits with representatives i and i+ 2.

– 2γ2 6∈ G, then there are 4 different orbits.

• If
√

3γ1 6∈ 1
2G and

– 2γ2 ∈ G, then there are 3 orbits with representatives i,±(i+ 2).

– 2γ2 6∈ G and

(A) 2γ1

√
3 + 2γ2 ∈ G, then 3 orbits with repr. ±i and i+ 2.

(B) γ1

√
3 + 2γ2 ∈ G, then 2 orbits with repr. i and i+ 2.

(C) 2γ1

√
3 + 2γ2, γ1

√
3 + 2γ2 6∈ G, then 4 orbits.

Since the above results do not depend on the even direction fixed, to obtain
the total number of orbits for the even directions we need to simply multiply the
above numbers by 3. The labelling A,B,C in the last case corresponds to the
sets and notation in Lemma 11. The results up to here have been summarized
in Figure 9.

Next, we must consider the case of lines directed by v = xi with i an odd
number. Following the same arguments as in the even case, we obtain the
analogous 4 conditions:

• Lines labelled ±(i+ 4) and ±(i+ 6) are in the same ∆0-orbit if and only
if for some µ′ ∈ R, it holds

−γ2x
i0+2 + µ′xi0 ∈ Z[x] ⇐⇒

√
3γ2 ∈ G
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Figure 9: The number of different orbits of lines depending on (γ1, γ2). On the
left picture we consider lines directed by xi with i odd. The right picture shows
the result for i even.

• Lines labelled i + 4 and −(i + 4) are in the same ∆0-orbit if and only if
for some µ′ ∈ R, it holds

2(γ2x
i0+4+γ1x

i0+1)+µ′xi0 ∈ Z[x] ⇐⇒ (2
√

3γ2+2γ1)x−(4γ2+µ′) ∈ Z[x]

and this last condition is equivalent to 2(
√

3γ2 + γ1) ∈ G. This should be
compared with set D in Lemma 11.

• Lines labelled i + 6 and −(i + 6) are in the same ∆0-orbit if and only if
for some µ′ ∈ R, it holds

2(−γ2x
i0 +γ1x

i0+1) +µ′xi0 ∈ Z[x] ⇐⇒ 2γ1x
i0+1 + (−2γ2 +µ′)xi0 ∈ Z[x]

and this last condition is equivalent to 2γ1 ∈ G.

• Lines labelled ±(i+ 4) and ∓(i+ 6) are in the same ∆0-orbit if and only
if for some µ′ ∈ R, it holds

γ2

√
3xi0+5+2γ1x

i0+1+µ′xi0 ∈ Z[x] ⇐⇒ (γ2

√
3+2γ1)x+(µ′−3γ2) ∈ Z[x]

and this last condition is equivalent to γ2

√
3 + 2γ1 ∈ G. This should be

compared with set E in Lemma 11.

In the case of lines directed by an odd power of x the ‘square’ we obtain is:
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i+ 4

−(i+ 4)

i+ 6

−(i+ 6)

√
3γ2

2(
√

3γ2 + γ1) 2γ1

γ2

√
3 + 2γ1

A summary of our findings on the number of orbits of lines directed by odd
powers of x is summarized in Figure 9.

Finally, to obtain L1, the total number of orbits of lines under the action
of Γ, we need to combine the information on the lines directed by odd and
even powers of x. The considerations in Lemma 11 together with the analysis
carried out in this proof yield the final result, which we have encapsulated in
Figure 8.

3.3 First cohomology group H1(ΩEγ
12

)

In order to compute the rank of the group H1(ΩEγ12) via Theorem 3 we need one
more ingredient: the value of R, which is the rank of the Z-module generated
by Λ2Γi, i = 1, . . . , n. Recall that Γi ≤ Γ is the stabilizer under the action of Γ
of the vector space spanned by fi.

Lemma 28. For all i = 1, . . . , 6, the rank 2 groups Γi are explicit in the fol-
lowing chart:

Γ1 Γ2 Γ3

〈f1, f6 − f2〉 〈f2, f1 + f3〉 〈f3, f2 + f4〉

Γ4 Γ5 Γ6

〈f4, f3 + f5〉 〈f5, f4 + f6〉 〈f6, f1 − f5〉

Proof. Consider a line directed by the vector fi. The group Γi is the subgroup
{h ∈ Γ | fi + h = µfi, µ ∈ R}. Thus we need to solve an equation of the type

λfi = h = n1f1 + n2f2 + n3f3 + n4f4 + n5f5 + n6f6,

where λ ∈ R and (n1, . . . , n6) ∈ Z6. Using Equation (2) the above expression
can be rewritten in terms of roots of unity and our task is to understand which
λ ∈ R can be written as λ =

∑
k nkx

k. By Lemma 10 we deduce λ ∈ Z[
√

3].

The integer combinations of the fi which yield elements of the form Z[
√

3]fi are
collected in Lemma 6. The results in the table in the statement follow.

Lemma 29. Let β be the map from Eq. (1). For all parameters γ we have
R = rkβ = 3, and cokerβ ∼= Z3.
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Proof. By definition, the image of the map β depends only on the stabilizers Γα

of the 1-singularities α, that is, on their directions fi, and not on their positions.
Let us denote Λi = Λ2Γi for i = 1, . . . , 6, so that imβ is generated by the Λi.
Using the explicit description of the groups Γi in Lemma 28 and the relations
in Lemma 6, we compute the relevant exterior products:

Λ1 = f1 ∧ f6 − f1 ∧ f2 = −2f1 ∧ f2 + f1 ∧ f4,

Λ2 = −f1 ∧ f2 + f2 ∧ f3,

Λ3 = −f2 ∧ f3 + f3 ∧ f4,

Λ4 = f1 ∧ f4 − 2f3 ∧ f4,

Λ5 = 2f5 ∧ f4 − f5 ∧ f2 = f1 ∧ f2 − 2f1 ∧ f4 + f2 ∧ f3 + 2f3 ∧ f4,

Λ6 = 2f6 ∧ f1 − f6 ∧ f3 = 2f1 ∧ f2 − 2f1 ∧ f4 + f2 ∧ f3 + f3 ∧ f4.

In order to compute the rank of the Z-module imβ generated by the Λ2Γi, we
represent each of these exterior products, with respect to the basis fi ∧ fj given
by the lexicographic order, as a column in the following matrix:

−2 −1 0 0 1 2
0 0 0 0 0 0
1 0 0 1 −2 −2
0 1 −1 0 1 1
0 0 0 0 0 0
0 0 1 −2 2 1

 .

The quantity R we seek is the rank of this matrix. It is evident that the first

three columns are linearly independent. We have


Λ4 = Λ1 − 2Λ2 − 2Λ3,

Λ5 = −2Λ1 + 3Λ2 + 2Λ3,

Λ6 = −2Λ1 + 2Λ2

and therefore R = 3.
It is also easy to see that −(Λ2 + Λ3), Λ1 − 2(Λ2 + Λ3) and −Λ3 span a

Z-module of rank 3 with free complement in Z6. As the latter equals Λ2∆0 in
our basis, cokerβ is free of rank 3.

Proposition 30. The rank of H1(ΩEγ12) depends on γ and equals the values
depicted in Figure 8 plus 1.

Proof. By Theorem 3 the rank of H1 can be computed as 4+L1−R. The value
of L1 as a function of γ was computed in Lemma 27. Finally, by the previous
lemma we know that for all γ we have R = 3 and the result follows.

4 Intersection of lines

We are now left with the task of computing the rank of the second cohomology
groups. To this end we need to compute the quantity e in Theorem 3. It is
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defined as a linear combination of the quantities Lα0 and L0 which depend on γ.
We recall the reader that the latter quantity is the cardinality of the set of all
orbits of 0-singularities, while the former is the cardinality of the set of orbits
of 0-singularities on the specific 1-singularity α.

The 0-singularities are obtained intersecting the representatives of orbits of
lines studied in Section 3.2. From Proposition 27 we know that the number
of orbits depends on the value of the parameter γ. In the next subsection we
compute Lα0 and and L0 in the case γ = (0, 0), which corresponds to having
6 different directions, or in other words, one orbit representative per direction.
Following this, Subsection 4.2 describes all the cohomology groups of the gen-
eralized 12-fold tilings with the property of having at most two representatives
of orbits of lines per direction. In the language of Proposition 27 this section
deals with L1 having value 6, 9 or 12. The corresponding values of γ are the
ones in the regions enclosed by a blue line in Figure 8. These results come from
a computed aided calculation. Finally, in the last subsection we address the
general case. We have not obtained a complete description of the second coho-
mology groups in this case. However, again with a computed aided calculation,
we present an example of the extremal case in Proposition 27 when we have 24
different line orbits to deal with.

4.1 First case: γ = (0, 0)

Lemma 31. If γ = (0, 0), then L0 = 14 and for each 1-singularity α we have
Lα0 = 6.

Proof. First of all we show that Lα0 = 6 for each 1-singularity α. For a fixed line
α = Rfi, with i = 1, . . . , 6, we are interested in the intersections of this line with
the orbits of the other lines under the action of Γ. Using the bijection described
in Equation 2 we can write the relevant equations in terms of powers of the root
of unity x instead of the vectors fi. The generic formula we have to deal with
sets a point in a line of direction xi, or rather points in a Γi-orbit, equal a point
in a line of direction xj . In symbols we have, for i 6= j ∈ {1, . . . , 6}:

µxi +
∑

nkx
k = λxj , nk ∈ Z, µ, λ ∈ R ⇐⇒ λ = µxi−j +

∑
k

nkx
k.

It follows that λ is of the form cx+ d+ µ(ax+ b) with a, b, c, d ∈ G. This gives
us the conditions {

λ = d+ µb

−c = µa
=⇒ λ = d− b

a
c. (9)

Inside the infinite collection of points of intersection between a line of direction
xj and the translates by Γ of a line of direction xi, determined in this setting
by the possible values of λ, we need to count how many are in different orbits.
That is, the points λ and λ′ will be identified if λ− λ′ ∈ G.
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Since xi−j = a + xb, by Lemma 9 when i − j varies we obtain five possible
values for − b

a which are collected in the following set:

S = {0,− 1√
3
,
−
√

3

2
,
−2√

3
,−
√

3}.

Keeping the notation λ to refer to its class modulo G, from (9) we see that we
need to understand how many different equivalence classes are there for numbers
of the form λ = b

a (c1 + c2
√

3) where c1, c2 ∈ Z and b
a ∈ S. The complete list is

the following

T = {0, 1√
3
,

2√
3
,

1

2
,

√
3

2
,

1 +
√

3

2
},

from which we deduce that Lα0 = 6 independently of the value of α, that is, of
the direction of the 1-singularity.

We have identified on each line 6 different equivalence classes of points.
However, some of these classes in different lines can be related by an element of
Γ. For example, the class of 0 belongs to every 1-singularity so there are at most
31 different classes. The final quantity we need to compute, L0, is precisely this
total number of classes of 0-singularities under the action of Γ.

Notice that the classes of 0-singularities in the line xi which are in the same
equivalence classes of 0-singularities in the line xj only depend on the difference
i− j. Indeed, we have to solve an equation of the form

λ1x
i − λ2x

j ∈ Γ ⇐⇒ λ1x
i − λ2x

j = a+ bx

with a, b ∈ G and λ1, λ2 ∈ T , which is equivalent to λ1x
i−j − λ2 = a′ + b′x for

some a′, b′ ∈ G. With the help of Lemma 9 we see that the line of direction x0

and the line directed by x1 only share one equivalence class of 0-singularities,
that of 0. So we have that L0 ≥ 11. Comparing the equivalence classes between
the lines directed by x0 and x2 we obtain:

λ1x
2 − λ2 = a+ bx ⇐⇒ λ1(x

√
3− 1)− λ2 = a+ bx =⇒

{
λ1 ∈ 1√

3
G

λ2 ∈ −λ1 +G
.

It follows that the class of 1√
3

and the class of 2√
3

are in the same Γ orbit when

considered in lines directed by xi and xi−2. From here we conclude that L0 ≥ 14
since we have the eleven 0-singularities in different orbits from the lines directed
by x0 and x1 plus three more in the line directed by x2.

An equivalent computation to the one shown above, comparing the lines
directed by x3 and x0 and by x3 and x1 shows that there are no more orbits
of 0-singularities and gives a complete description. Indeed, it turns out that
the line directed by x3 has four orbits in common with the one directed by x0;
while it has three orbits in common with the line directed by x1. Figure 10
summarizes the the result: on each line of direction xi there are six marked
points and points in different lines with the same color are in the same orbit
under the action of Γ. We conclude that L0 = 14.

37



x0

x1

x2

x3

x4

x5

0
1√
3

√
3

2
1+
√

3
2

2√
3

1
2

A

A C

C

B

B

Figure 10: Orbits of points if γ ∈ ∆

4.2 All cases with up to two lines per direction

In this section, we summarize the results of some of the simpler cases, namely all
those with up to two 1-singularities per direction. For this, we need to determine
all values of γ giving rise to these cases, and then determine for each of them
the values of L0, L1, and Lα0 for all line orbits α. As R = 3 and cokerβ is free
independently of γ, we have by Theorem 3:

H2(ΩEγ12) = ZL1+e, H1(ΩEγ12) = Z1+L1 and H0(ΩEγ12) = Z,

where e = −L0 +
∑
α∈I1 L

α
0 .

For each value of γ involved, we have determined the combinatorics of line
intersections with the help of a computer program. In order to be able to connect
the number of orbits Lα0 of points on the individual lines α to the total number
of point orbits L0, we have split the numbers Lα0 as Lα0 =

∑
p L

α
0,p, where

Lα0,p is the number of those orbits whose points are intersections of exactly p
1-singularities. Correcting for double counting, we obtain L0 =

∑
α∈I1 L

α
0,p/p.

These values are tabulated in each case. In these tables, we list L0,p for each
type of line. For example, the symbol L1

0,p indicates lines with combinatorics
of “type 1”, the symbol L2

0,p lines with combinatorics of “type 2” etc. The
superscripts do not stand for directions or any other property of the lines, but
they collect lines with the same type of combinatorics. The column n in the
table indicates the number of lines of a certain type. The column dir specifies
whether lines of this type have even or odd directions, or both. In two further
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lines in the tables, labelled
∑
Lα0,p and L0,p, we give the sum of these data over

all line types, and the corresponding data for the total orbits. The last column
contains the sum over all values of p.

Case 1. We start analyzing γ1, γ2 ∈ G, which is equivalent to γ = (0, 0).
This is the only case with just one line in each of the six directions. The explicit
computations of L0 and Lα0 in this case were carried out in Section 4.1. The
intersection combinatorics in the notation introduced in this section are given
in the following table:

n dir p = 2 p = 3 p = 4 p = 5 p = 6 tot

L1
0,p 6 e, o 3 2 0 0 1 6∑
Lα0,p 6 18 12 0 0 6 36

L0,p 9 4 0 0 1 14

We see that there is only one line type, containing one orbit with six-fold
intersections, two orbits with three-fold intersections, and three orbits with two-
fold intersections. These combinatorics should be compared with Figure 10: all
lines, with even or odd direction, have the same combinatorics. There is precisely
one orbit point, with representative the origin, which is a six-fold intersection.
In each of the lines in Figure 10 there are 3 symbols that appear exactly two
times in the figure, those are the orbits of two-fold intersections; and there are
two symbols that appear exactly three times in the figure, those are the orbits
of three-fold intersections. Putting everything together, we get the following
end result:

Proposition 32 (cf. Theorem 4.3). The ranks of the cohomology groups of the
12-fold tiling, together with the quantities Lα0 , L0, L1 and e, are given by:∑

Lα0 L0 L1 e rkH2(ΩE12
) rkH1(ΩE12

) rkH0(ΩE12
)

36 14 6 22 28 7 1

Case 2. We now determine the intersection combinatorics under the as-
sumption that there is only one line in each even direction and two lines per
odd direction. From the proof of Proposition 27 (see particularly Figure 9) we
see that this situation can arise in two ways.

• The first possibility is γ1 ∈ G and γ2 ∈ 1
2G \ G. All γ-values in this set

give the same intersection combinatorics, which are given in the following
table:
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n dir p = 2 p = 3 p = 4 p = 5 p = 6 tot

L1
0,p 3 e 10 0 0 2 0 12

L2
0,p 3 o 4 5 0 1 0 10

L3
0,p 3 o 2 4 0 2 0 8∑
Lα0,p 9 48 27 0 15 0 90

L0,p 24 9 0 3 0 36

We see here that we have two line types in each odd direction, with differ-
ent intersection combinatorics, but only one line type in even directions.
Putting these data together, we obtain:

Proposition 33. The ranks of the cohomology groups of the generalized
12-fold tilings with parameter γ = (γ1, γ2) satisfying γ1 ∈ G and γ2 ∈
1
2G \G, together with the quantities Lα0 , L0, L1 and e, are given by:∑

Lα0 L0 L1 e rkH2(ΩEγ12) rkH1(ΩEγ12) rkH0(ΩEγ12)

90 36 9 54 63 10 1

• The second possibility occurs for γ1 ∈ 1√
3
G \ G and γ2 ∈ G. For all

γ-values in this set, we obtain:

n dir p = 2 p = 3 p = 4 p = 5 p = 6 tot

L1
0,p 3 e 6 1 0 0 2 9

L2
0,p 6 o 9 2 0 0 1 12∑
Lα0,p 9 72 15 0 0 12 99

L0,p 36 5 0 0 2 43

Here, for each odd direction, we have two lines of the same type. These
two lines are related by symmetry - they are mirror images of each other.
The cohomology of this case is slightly different:

Proposition 34. The ranks of the cohomology groups of the generalized
12-fold tilings with parameter γ = (γ1, γ2) satisfying γ1 ∈ 1√

3
G \ G and

γ2 ∈ G, together with the quantities Lα0 , L0, L1 and e, are given by:∑
Lα0 L0 L1 e rkH2(ΩEγ12) rkH1(ΩEγ12) rkH0(ΩEγ12)

99 43 9 56 65 10 1

Of course, there is also the possibility of one line per odd direction, and two
lines per even direction, but this is completely analogous to the above two cases,
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and we do not list them separately. This symmetry is reflected in Figure 8 by
the symbolic green diagonal.

We now turn to the situation where we have two lines in each even and each
odd direction.

Case 3. We start with the case where the two lines in even directions are
mirror images of each other. There are then three subcases.

• In the first subcase, both γ1 and γ2 are contained in 1√
3
G\G (cf. proof of

Proposition 27 and Figure 8), in which case also the lines in odd directions
form mirror pairs. The corresponding γ-values then all lead to the same
intersection combinatorics as follows:

n dir p = 2 p = 3 p = 4 p = 5 p = 6 tot

L1
0,p 12 e, o 12 1 0 0 2 15∑
Lα0,p 12 144 12 0 0 24 180

L0,p 72 4 0 0 4 80

We see here that in this case, all even and odd lines are of the same type,
and are in fact all symmetry equivalent. This intersection combinatorics
results in the following cohomology:

Proposition 35. The ranks of the cohomology groups of the generalized
12-fold tilings with parameter γ = (γ1, γ2) satisfying γ1, γ2 ∈ 1√

3
G \ G,

together with the quantities Lα0 , L0, L1 and e, are given by:∑
Lα0 L0 L1 e rkH2(ΩEγ12) rkH1(ΩEγ12) rkH0(ΩEγ12)

180 80 12 100 112 13 1

• In the second subcase, we have γ1 ∈ 1√
3
G \G, but now γ2 6∈ 1

2
√

3
G. More

precisely, γ2 depends on γ1, and must satisfy 2γ1 +
√

3γ2 ∈ G, which
corresponds to region E in Figure 9 (cf. proofs of Proposition 27 and
Lemma 11). All γ-values satisfying the conditions in this second subcase
lead to the following intersection combinatorics:

n dir p = 2 p = 3 p = 4 p = 5 p = 6 tot

L1
0,p 6 e 12 0 0 3 0 15

L2
0,p 6 o 10 3 0 2 0 15∑
Lα0,p 12 132 18 0 30 0 180

L0,p 66 6 0 6 0 78

Here, the lines in even and odd directions have different intersection com-
binatorics, but in each direction they form mirror pairs. This intersection
combinatorics results in the following cohomology:
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Proposition 36. The ranks of the cohomology groups of the generalized
12-fold tilings with parameter γ = (γ1, γ2) satisfying γ1 ∈ 1√

3
G \ G, γ2 6∈

1
2
√

3
G and 2γ1 +

√
3γ2 ∈ G, together with the quantities Lα0 , L0, L1 and e,

are given by:∑
Lα0 L0 L1 e rkH2(ΩEγ12) rkH1(ΩEγ12) rkH0(ΩEγ12)

180 78 12 102 114 13 1

We note that this case also occurs with the roles of even and odd directions
interchanged, which we do not list separately.

• In the third subcase, the two lines in an odd direction are not symmetry
equivalent, which is the case if γ1 ∈ G and γ2 ∈ 1

2
√

3
G \ ( 1√

3
G ∪ 1

2G)

(again this characterization of the parameters comes from the proof of
Proposition 27). For all these γ-values, we obtain:

n dir p = 2 p = 3 p = 4 p = 5 p = 6 tot

L1
0,p 6 e 16 0 0 2 0 18

L2
0,p 3 o 8 4 0 2 0 14

L3
0,p 3 o 4 2 0 4 0 10∑
Lα0,p 12 132 18 0 30 0 180

L0,p 66 6 0 6 0 78

Here, we have two types of odd lines with different intersection combina-
torics, but overall, this results in the same cohomology ranks as above:

Proposition 37. The ranks of the cohomology groups of the generalized
12-fold tilings with parameter γ = (γ1, γ2) satisfying γ1 ∈ G and γ2 ∈

1
2
√

3
G \ ( 1√

3
G ∪ 1

2G), together with the quantities Lα0 , L0, L1 and e, are

given by:∑
Lα0 L0 L1 e rkH2(ΩEγ12) rkH1(ΩEγ12) rkH0(ΩEγ12)

180 78 12 102 114 13 1

Of course, this latter case can also occur with the roles of even and odd
directions interchanged, but we do not list it separately.

Case 4: Finally, we can have two line types in both even and odd direc-
tions, which occurs if both γ1 and γ2 are contained in 1

2G \ G (cf. proof of
Proposition 27 and Figure 8). This is the first time in our analysis in which
the G-action on the set of 0-singularities, that is points of intersection between
representatives of lines, has more than one orbit. Indeed, the set of parame-
ters 1

2G \G splits in three G-cosets, so that altogether we need to analyze the
behavior of γ-values (γ1, γ2) from nine different (G × G)-cosets. The analysis
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of these 9 sets gives rise to only two different intersection combinatorics. The
simpler combinatorics is obtained for the γ-values in the cosets with represen-
tatives { 1

2 (1,
√

3), 1
2 (
√

3, 1), 1
2 (1 +

√
3, 1 +

√
3)}. These can be characterised as

those cosets for which γ1 + γ2 ∈
√

3+1
2 G. The intersection combinatorics then

is:

n dir p = 2 p = 3 p = 4 p = 5 p = 6 tot

L1
0,p 12 e, o 6 4 0 0 2 12∑
Lα0,p 12 72 48 0 0 24 144

L0,p 36 16 0 0 4 56

Here, we have again a single type of lines, and the cohomology becomes:

Proposition 38. The ranks of the cohomology groups of the generalized 12-fold
tilings with parameter γ = (γ1, γ2) satisfying γ1, γ2 ∈ 1

2G \ G and γ1 + γ2 ∈√
3+1
2 G, together with the quantities Lα0 , L0, L1 and e, are given by:∑

Lα0 L0 L1 e rkH2(ΩEγ12) rkH1(ΩEγ12) rkH0(ΩEγ12)

144 56 12 88 100 13 1

For the remaining six cosets of γ-values, the combinatorics is:

n dir p = 2 p = 3 p = 4 p = 5 p = 6 tot

L1
0,p 6 e, o 18 0 2 0 0 20

L2
0,p 6 e, o 12 0 4 0 0 16∑
Lα0,p 12 180 0 36 0 0 216

L0,p 90 0 9 0 0 99

Here, we have two line types, each of which occurs both in even and odd
directions. This results in the following cohomology:

Proposition 39. The ranks of the cohomology groups of the generalized 12-fold
tilings with parameter γ = (γ1, γ2) satisfying γ1, γ2 ∈ 1

2G \ G and γ1 + γ2 6∈√
3+1
2 G, together with the quantities Lα0 , L0, L1 and e, are given by:∑

Lα0 L0 L1 e rkH2(ΩEγ12) rkH1(ΩEγ12) rkH0(ΩEγ12)

216 99 12 117 129 13 1

4.3 General case: preliminary computations

We now turn our efforts into computing the numbers L0 and Lα0 in terms of
γ = (γ1, γ2). The strategy is the same as the one described for the case γ =
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(0, 0): we start by intersecting a fixed line from the 24 in Corollary 26 with
all the Γ-translates of the other 20 non-parallel lines. The computation and
description of these intersections is the whole content of this subsection. The
results obtained, which the reader might want to look at first, are collected and
stated in the next section, concretely in Proposition 42.

Our first observation is that each family (1, xi) with i > 0 can be a basis of
F⊥ (see Figure 2). For future reference, we collect in the following table the
expressions of the powers of x in these basis (cf. Lemma 9):

(1, x2) (1, x3) (1, x4) (1, x5)

x 1√
3
(1 + x2) x3

2 +
√

3
2

2√
3

+ 1√
3
x4

√
3 + x5

x2 1
2 + x2

√
3

2 1 + x4 2 +
√

3x5

x3 1√
3
(2x2 − 1)

√
3

3 + 2√
3
x4

√
3 + 2x5

x4 x2 − 1 − 1
2 + x3

√
3

2 1 +
√

3x5

x5 1√
3
(x2 − 2) x3

2 −
√

3
2 −

√
3

3 + 1√
3
x4

Definition 40. In order to simplify the following results we define the sets

A3 = {0,
√

3
3 ,

2
√

3
3 } and A4 = {0, 1

2 ,
√

3
2 ,

1+
√

3
2 }. The notation x+ A3 stands for

the three values x+ y with y ∈ A3.

We consider two generic lines given in Corollary 26 of directions xi, xk with
k > i. There are three possible choices and we will deal with them separately:
i, k are odd, i, k are even or i, k have different parity.

4.3.1 Two even lines

We pick two lines directed by xi and compute their intersection with the trans-
lates by Γ of the four different lines directed by xk when i, k are both even:

γ1√
3

{
xi

xi+2
+

γ2√
3
xi+1 + λxi = ±(

γ1√
3

{
xk

xk+2
+

γ2√
3
xk+1) + µxk +

∑
npx

p.

We simplify by xi and obtain

γ1√
3

{
1

x2
+

γ2√
3
x+ λ = ±(

γ1√
3

{
xk−i

xk+2−i +
γ2√

3
xk+1−i) + µxk−i +

∑
npx

p−i.

(10)
Recall that, by Lemma 9, the number

∑
npx

p−i is equal to ax + b with a, b ∈
G = Z[

√
3]. We consider the basis (1, xk−i) for F⊥ and we compute the value

of λ using the array at the beginning of the section. Notice that because of our
choice of basis we can compute directly λ without worrying about µ. There are
two subcases to consider:
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• if k − i = 2, then subbing the information in (10) we obtain, considering
only the first coordinate in the basis (1, x2):

γ1√
3

{
1

0
+

γ2√
3

√
3/3 + λ = ±(

γ1√
3

{
0

−1
+

γ2√
3

(−
√

3

3
)) + a

√
3

3
+ b,

which implies

λ = ±(
γ1√

3

{
0

−1
− γ2

3
) + a

√
3

3
+ b− γ1√

3

{
1

0
− γ2

3
.

The 8 families of values for λ, each corresponding to the intersection of
one of the two lines directed by xi with one of the four lines directed
by xk with k − i = 2, are collected in the following accolades. On the
left hand side we have the intersection with the line passing through the
point γ1√

3
xi+ γ2√

3
xi+1 and on the right hand side passing through the point

γ1√
3
xi+2 + γ2√

3
xi+1.

λ =


−2γ2

3 + a
√

3
3 −

γ1√
3

−2γ2
3 + a

√
3

3 −
2γ1√

3
a
√

3
3 −

γ1√
3

a
√

3
3

and λ =


−2γ2

3 + a
√

3
3

−2γ2
3 + a

√
3

3 −
γ1√

3
a
√

3
3

a
√

3
3 + γ1√

3

The final step is to consider the above values modulo G. Since a, b ∈ G, we
can get rid of b in all of the above expressions and moreover, expressing a

as a1+a2

√
3 where a1, a2 ∈ Z we see that modulo G the numbers a

√
3

3 split

in three different equivalence classes with representatives in {0,
√

3
3 ,

2
√

3
3 }.

We conclude that the orbits of points on the two lines

γ1√
3

{
xi

xi+2
+

γ2√
3
xi+1 + λxi

obtained by intersecting them with the 4 lines directed by xi+2 are deter-
mined by the following two sets of 12 values of λ.

– Intersection with γ1√
3
xi + γ2√

3
xi+1 + λxi for the values of λ:

− γ1√
3
− 2γ2

3 +A3 − 2γ2
3 −

2γ1√
3

+A3 − γ1√
3

+A3 A3 (11)

– Intersection with γ1√
3
xi+2 + γ2√

3
xi+1 + λxi for the values of λ:

− 2γ2
3 +A3 − 2γ2

3 −
γ1√

3
+A3 A3

γ1√
3

+A3 (12)
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Remark 41. Before we analyze the next case, we remark that if instead
of the two lines

γ1√
3

{
xi

xi+2
+

γ2√
3
xi+1 + λxi,

we had considered the intersections with the two lines

−

(
γ1√

3

{
xi

xi+2
+

γ2√
3
xi+1

)
+ λxi,

then we would have obtained the same values as in the above two tables
with the opposite signs.

• if k− i = 4, we perform the same computations as in the preceding point.
The details are left to the reader. The equations to consider, ignoring the
parameter b ∈ G and written in the basis (1, x4) are

γ1√
3

{
1

1
+

2γ2

3
+ λ = ±

(
γ1√

3

{
0

−1
− γ2

3

)
+ a

2√
3
.

These yield 4 different families of values for λ:

λ =


−γ2 − γ1√

3
+ 2a√

3

−γ2 − 2γ1√
3

+ 2a√
3

−γ23 + 2a√
3

−γ23 −
γ1√

3
+ 2a√

3

Notice that in this case, the two parallel lines of direction xi under con-
sideration yield the same values of λ which, modulo de action of G, are
collected in the following table:

−γ2 − γ1√
3

+A3 −γ2 − 2γ1√
3

+A3 −γ23 +A3 −γ23 −
γ1√

3
+A3

(13)

4.3.2 Two odd lines

If i, k are both odd numbers then we obtain, as in the preceding case, the
following equations from Corollary 26 (with k > i):

±

(
γ2

{
xk+4

xk+6
+ γ1x

k+1

)
+µ
√

3xk+
√

3
∑
p

npx
p = λ

√
3xi+γ2

{
xi+4

xi+6
+γ1x

i+1.

We simplify, multiplying the equation by x−i:

±

(
γ2

{
xk+4−i

xk+6−i + γ1x
k+1−i

)
+µ
√

3xk−i+
√

3
∑
p

npx
p−i = λ

√
3+γ2

{
x4

x6
+γ1x,
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and we substitute the expression
∑
p npx

p−i by ax+ b using Lemma 9:

±

(
γ2

{
xk+4−i

xk+6−i + γ1x
k+1−i

)
+µ
√

3xk−i+
√

3(ax+b) = λ
√

3+γ2

{
x4

x6
+γ1x.

(14)
We now consider the above equation rewritten in the basis (1, xk−i), which
allows us to easily deduce the value of λ. To this end, we use the array at
the beginning of the section. We split the analysis in two cases, depending on
whether k − i is 2 or 4. We deduce

• If k− i = 2, we use the basis (1, x2) and we further split the computations
depending on the sign on the right hand side of (14):

– Considering Equation (14) with sign +:

λ
√

3 + γ2

{
−1

−1
+ γ1

√
3

3
= b
√

3 + a− γ1√
3

+ γ2

{
−1

0
⇐⇒

λ
√

3 = a+ b
√

3− 2γ1

√
3

3
+ γ2

{
−1

0
− γ2

{
−1

−1
⇐⇒

λ
√

3 = a+ b
√

3− 2γ1

√
3

3
+ γ2

{
0

1
⇐⇒

λ = b+
a
√

3

3
− 2γ1

3
+

γ2√
3

{
0

1

– Considering Equation (14) with sign −:

λ
√

3 + γ2

{
−1

−1
+ γ1

√
3

3
= b
√

3 + a+ γ1

√
3

3
− γ2

{
−1

0
⇐⇒

λ
√

3 = b
√

3 + a− γ2

{
−2

−1
⇐⇒

λ = b+ a/
√

3− γ2√
3

{
−2

−1

Finally, we obtain the following 12 different values of λ modulo G. Remark
that in this case the two parallel lines of direction xi yield the same values
of λ.

−2γ1
3 +A3 − 2γ1

3 + γ2√
3

+A3
2γ2√

3
+A3

γ2√
3

+A3 (15)
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• If k − i = 4, we use the basis (1, x4) in (14) and perform a computation
analogous to the one in the preceding case:

λ
√

3 + γ2

{
0

−1
+ γ1

2√
3

= b
√

3 + 2a±

(
−γ1

√
3

3
+ γ2

{
−1

0

)
⇐⇒

λ
√

3 =



b
√

3 + 2a− γ1√
3

+ γ2

{
−1

0
+ γ2

{
0

1
− 2γ1√

3

b
√

3 + 2a+ γ1√
3
− γ2

{
−1

0
− γ2

{
0

−1
− 2γ1√

3

⇐⇒

λ = b+
2a√

3
− γ1 +

γ2√
3


−1

0

1

or λ = b+
2a√

3
− γ1

3
+

γ2√
3


0

1

2

We conclude that, for i odd, the orbits of points on the two lines

γ2√
3

{
xi+4

xi+6
+

γ1√
3
xi+1 + λxi

obtained by intersecting them with the 4 lines directed by xi+4 are deter-
mined by the following 2 sets of 12 values of λ.

– Intersection with γ2√
3
xi+4 + γ1√

3
xi+1 + λxi for the values of λ:

−γ1 +A3 −γ13 +A3 −γ1 − γ2√
3

+A3 −γ13 + γ2√
3

+A3

(16)

– Intersection with γ2√
3
xi+6 + γ1√

3
xi+1 + λxi for the values of λ:

−γ1 +A3 −γ1 + γ2√
3

+A3 −γ13 + 2γ2√
3

+A3 −γ13 + γ2√
3

+A3

(17)

4.3.3 Two lines of different parity, k odd

If i, k are of different parity and k is odd, then we use Corollary 26 to understand
the intersection of two lines of direction xi with the translates of 4 lines of
direction xk. We obtain

±

(
γ2

{
xk+4

xk+6
+ γ1x

k+1

)
+µ
√

3xk+
√

3
∑
p

npx
p = λ

√
3xi+γ1

{
xi

xi+2
+γ2x

i+1.

(18)
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We isolate λ and divide the whole expression by xi,

λ
√

3 = ±

(
γ2

{
xk−i+4

xk−i+6
+ γ1x

k+1−i

)
+µ
√

3xk−i+
√

3
∑
p

npx
p−i−γ1

{
x0

x2
−γ2x.

We use Lemma 9 to substitute the expression
∑
p npx

p−i:

λ
√

3 = ±

(
γ2

{
xk−i+4

xk−i+6
+ γ1x

k+1−i

)
+µ
√

3xk−i+
√

3(ax+b)−γ1

{
1

x2
−γ2x.

We finally divide by
√

3 and obtain the general equation we will be dealing with
in the case of i, k of different parity, k odd:

λ = ±

(
γ2√

3

{
xk−i+4

xk−i+6
+

γ1√
3
xk+1−i

)
+µxk−i+ax+b− γ1√

3

{
1

x2
− γ2√

3
x. (19)

The expression k − i can take any of the following values {−3,−1, 1, 3, 5}.
Notice that since xn = −xn+6, the cases −3 and 3 and −1 and 5 will yield the
same sets of values of λ. Indeed, in Equation 19, when written with respect to
the bases (1, x3) or (1, x−3) the only change is an overall sign change in the first
parenthesis, which leaves unchanged the set of possible values of λ. The same
occurs when comparing the values k − i ∈ {−1, 5} with respect to the bases
(1, x−1) or (1, x5). It follows that we will have a complete answer by studying
the cases k− i = −3,−1, 1. To simplify the notation we will denote by <[ · ] the
linear map that returns the first coordinate of an arbitrary expression on the
basis (1, xk−i).

• If k − i = −3, then Equation (19) yields, ignoring the monomial with
coefficient µ,

λ = <

[
±

(
γ2√

3

{
x

x3
+

γ1√
3
x−2

)
+ ax+ b− γ1√

3

{
1

x2
− γ2√

3
x

]
.

Now, ignoring the parameter b, since ultimately we are interested in λ up
to the action of G, and using the chart at the beginning of this section we
obtain:

λ = ±

(
γ2√

3

{√
3

2

0
+

γ1

2
√

3

)
+
a
√

3

2
− γ1√

3

{
1
1
2

− γ2

2

We conclude that, for i even, the orbits of points on the two lines

γ1√
3

{
xi

xi+2
+

γ2√
3
xi+1 + λxi,
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obtained by intersecting them with the translates of the 4 lines directed
by xk = xi−3 are determined by the following 2 sets of 16 values of λ

modulo G. To compile the tables we used the fact that a
√

3
2 with a ∈ G

can be expressed as

a

√
3

2
= (a1 + a2

√
3)

√
3

2
=

1

2
(a1

√
3 + 3a2) with a1, a2 ∈ Z.

It follows that modulo G, the expression a
√

3
2 is equivalent to an element

in the set {0, 1
2 ,
√

3
2 ,

1+
√

3
2 }.

– Intersection with γ1√
3
xi + γ2√

3
xi+1 + λxi for the values of λ:

− γ1
2
√

3
+A4 −γ2 − γ1

√
3

2 +A4 −γ22 −
γ1

2
√

3
+A4 −γ22 −

γ1
√

3
2 +A4

(20)

– Intersection with γ1√
3
xi+2 + γ2√

3
xi+1 + λxi for the values of λ:

A4 −γ2 − γ1√
3

+A4 −γ22 −
γ1√

3
+A4 −γ22 +A4 (21)

• If k − i = 1 we follow the same steps as in the preceding case to obtain:

λ = <

[
±

(
γ2√

3

{
x3

x5
+

γ1√
3

)
+ µx−1 + ax+ b− γ1√

3

{
1

x2
− γ2√

3
x

]
,

which turns into

λ = ±

(
γ2√

3

{√
3

0
+

γ1√
3

)
+
√

3a− γ1√
3

{
1

2
− γ2.

Notice that in this case, modulo de action of G, there is only one orbit
of values of λ for each of the 4 lines of direction xi−1. The values of λ
obtained are:

– Intersection with γ1√
3
xi + γ2√

3
xi+1 + λxi for the values of:

λ ∈ {0,−γ2,−2γ2 −
2γ1√

3
,−γ2 −

2γ1√
3
}. (22)

– Intersection with γ1√
3
xi+2 + γ2√

3
xi+1 + λxi for the values of:

λ ∈ {− γ1√
3
,−γ2 −

2γ1√
3
,−2γ2 −

√
3γ1,−γ2 −

√
3γ1}. (23)

• If k − i = 1, we follow the same steps as in the preceding cases to obtain:

λ = <

[
±

(
γ2√

3

{
x5

x6
+

γ1√
3
x2

)
+ µx1 + ax+ b− γ1√

3

{
1

x2
− γ2√

3
x

]
,
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which turns into

λ = ±

(
γ2√

3

{
−
√

3

0
− γ1√

3

)
+ b− γ1√

3

{
1

−1
,

yielding,

– Intersection with γ1√
3
xi + γ2√

3
xi+1 + λxi for the values of:

λ ∈ {−2γ1√
3
,−2γ1√

3
− γ2, 0, γ2}. (24)

– Intersection with γ1√
3
xi+2 + γ2√

3
xi+1 + λxi for the values of:

λ ∈ {0,−γ2,
2γ1√

3
,

2γ1√
3

+ γ2}. (25)

4.3.4 Two lines of different parity, k even

The last case we need to analyze is k, i of different parity and k even. So,
once again we fix two lines directed by xi and we intersect them with the four
different lines directed by xk. That is, we are looking for the values of λ in the
following equation:

±

(
γ1√

3

{
xk

xk+2
+

γ2√
3
xk+1

)
+µxk+

∑
p

npx
p =

γ2√
3

{
xi+4

xi+6
+
γ1√

3
xi+1 +λxi,

which we divide by xi to obtain:

±

(
γ1√

3

{
xk−i

xk−i+2
+

γ2√
3
xk−i+1

)
+µxk−i+

∑
p

npx
p =

γ2√
3

{
x4

x6
+
γ1√

3
x1 +λ.

(26)
This time the expression k−i can take any of the following values {−5,−3,−1, 1, 3},

and just like in the case k odd, i even, the analysis will be complete if we study
the cases k − i = −3,−1, 1.

• If k − i = −3, then working with the basis (1, x−3) we have:

λ = ±

(
γ1√

3

{
−x3

−x5
− γ2√

3
x4

)
− µx−3 +

∑
p

npx
p − γ2√

3

{
x4

x6
− γ1√

3
x1

λ = ±

(
γ1√

3

{
0

−<(x5)
− γ2√

3
<(x4)

)
+ <(ax+ b)− γ2√

3

{
<(x4)

−1
− γ1√

3
<(x)

λ = ±

(
γ1√

3

{
0
√

3
2

+
γ2

2
√

3

)
+ a

√
3

2
+ b− γ2√

3

{
− 1

2

−1
− γ1

2

yielding
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– Intersection with γ1√
3
xi+1 + γ2√

3
xi+4 + λxi for the values of:

λ = ±

(
γ1√

3

{
0
√

3
2

+
γ2

2
√

3

)
+ a

√
3

2
+ b+

γ2

2
√

3
− γ1

2

which, modulo de action of Γ, can be summarized as:

−γ12 + γ2√
3

+A4
γ2√

3
+A4 −γ1 +A4 −γ12 +A4 (27)

– Intersection with γ1√
3
xi+1 + γ2√

3
xi+6 + λxi for the values of:

λ = ±

(
γ1√

3

{
0
√

3
2

+
γ2

2
√

3

)
+ a

√
3

2
+ b+

γ2√
3
− γ1

2

which, modulo de action of Γ, can be summarized as:

−γ1 + γ2
2
√

3
+A4 −γ12 + γ2

2
√

3
+A4 −γ12 + γ2

√
3

2 +A4
γ2
√

3
2 +A4

(28)

• If k − i = −1, then remark that x−i = −x6−i and we obtain

λ = ±

(
γ1√

3

{
−x5

x
+

γ2√
3

)
− µx5 +

∑
p

npx
p − γ2√

3

{
x4

x6
− γ1√

3
x1

λ = ±

(
γ1√

3

{
0

<(x)
+

γ2√
3

)
+ <(ax+ b)− γ2√

3

{
<(x4)

−1
− γ1√

3
<(x)

λ = ±

(
γ1√

3

{
0

<(x)
+

γ2√
3

)
+ a<(x) + b− γ2√

3

{
<(x4)

−1
− γ1√

3
<(x)

which turns into

λ = ±

(
γ1√

3

{
0√

3
+

γ2√
3

)
+ a
√

3 + b− γ2√
3

{
1

−1
− γ1√

3

√
3

yielding

– Intersection with γ1√
3
xi+1 + γ2√

3
xi+4 + λxi for the values of:

λ = ±

(
γ1√

3

{
0√

3
+

γ2√
3

)
+ a
√

3 + b− γ2√
3
− γ1,

that is

λ ∈ {−2γ1 −
2γ2√

3
,−γ1,−γ1 −

2γ2√
3
, 0}. (29)
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– Intersection with γ1√
3
xi+1 + γ2√

3
xi+6 + λxi for the values of:

λ = ±

(
γ1√

3

{
0√

3
+

γ2√
3

)
+ a
√

3 + b+
γ2√

3
− γ1,

that is,

λ ∈ {2γ2√
3
,−γ1 +

2γ2√
3
,−γ1,−2γ1}. (30)

• If k − i = 1, then working with the basis (1, x) and Lemma 9 we have:

λ = ±

(
γ1√

3

{
x

x3
+

γ2√
3
x2

)
+ µx+

∑
p

npx
p − γ2√

3

{
x4

x6
− γ1√

3
x1

λ = ±

(
γ1√

3

{
0

−
√

3
− γ2√

3

)
− γ2√

3

{
−2

−1

yielding

– Intersection with γ1√
3
xi+1 + γ2√

3
xi+4 + λxi for the values of:

λ = ±

(
γ1√

3

{
0

−
√

3
− γ2√

3

)
+

2γ2√
3

that is,

λ ∈ {−γ1 +
γ2√

3
,
γ2√

3
, γ2

√
3, γ2

√
3 + γ1}. (31)

– Intersection with γ1√
3
xi+1 + γ2√

3
xi+6 + λxi for the values of:

λ = ±

(
γ1√

3

{
0

−
√

3
− γ2√

3

)
+

γ2√
3

that is,

λ ∈ {−γ1, 0,
2γ2√

3
,

2γ2√
3

+ γ1}. (32)

4.4 General case: results

In the previous section we have computed for each line of direction xi all the
intersection points with each of the Γ-translates of the other 20 lines of different
directions. Moreover, we have collected these points in orbits under the Γ-action.
The first step in order to compute the numbers L0 and Lα0 , needed to deter-
mine H2(ΩEγ12), is to organize the information gathered so far, paying special
attention to repetitions in the above tables. This is done in Proposition 42.
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We have not computed explicitly the values L0 and Lα0 for all different pa-
rameters γ. The number of subcases is too large to be considered of interest by
itself. We finish our study with Proposition 42, which gives an upper bound on
Lα0 and moreover it describes explicitly the representatives of the 0-singularities
on each 1-singularity in terms of the parameter γ.

Before we present the general picture in the next proposition, we show here
the intersection combinatorics, obtained with computer assistance, for the case
γ1 = 1/7 +

√
3/11, γ2 = 1/13 +

√
3/17. For technical reasons, our program

requires γi ∈ Q(
√

3), but we conjecture these values are representatives of the
‘generic case’. Remark that the parameter (γ1, γ2) is taken in the region in
Figure 8 labelled with a red 24. The intersection combinatorics for this case
are:

n dir p = 2 p = 3 p = 4 p = 5 p = 6 tot

L1
0,p 24 e, o 42 0 2 0 0 44∑
Lα0,p 24 1008 0 48 0 0 1056

L0,p 504 0 12 0 0 516

We see that we have here a single line type occurring in both even and
odd directions, and that the value of Lα0 really attains the maximal value of
44 admitted by Proposition 42. It is worth pointing out that in this generic
case, not all line intersections are generic in the sense that only two lines may
intersect in a single point (notice the entry in the table under p = 4). The
reason is that the positions of the singular lines do not move independently of
each other when the γ-values vary. In this generic case, we obtain the following
cohomology:

∑
Lα0 L0 L1 e rkH2(ΩEγ12) rkH1(ΩEγ12) rkH0(ΩEγ12)

1056 516 24 540 564 25 1

We conjecture this to be the maximal cohomology attained among all the
generalized 12-fold tilings studied in this paper.

Turning now our attention back to the general case, we present in the next
proposition our findings on the quantity Lα0 . The statement refers to the fol-
lowing explicit list of the 1-singularities α:

(a) α = ± 1√
3
(γ1x

i + γ2x
i+1) + λxi, λ ∈ R, i ∈ {0, 2, 4}.

(b) α = ± 1√
3
(γ1x

i+2 + γ2x
i+1) + λxi, λ ∈ R, i ∈ {0, 2, 4}.

(c) α = ± 1√
3
(γ1x

i+1 + γ2x
i+4) + λxi, λ ∈ R i ∈ {1, 3, 5}.

(d) α = ± 1√
3
(γ1x

i+1 + γ2x
i+6) + λxi, λ ∈ R i ∈ {1, 3, 5}.
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Proposition 42. All the 1-singularities α have an associated value Lα0 bounded
by 44. Moreover, the values of λ identifying representatives of points of inter-
section between α (in the above (a), (b), (c) and (d) cases) and the translates
of the 20 non-parallel 1–singularities are collected (respectively) in Table 1, Ta-
ble 2, Table 3 and Table 4. (The values in the tables are for α with a positive
1√
3

factor; if the factor is negative, one should consider minus the entries in the

tables.)

Proof. The proof of this statement is nothing but organizing the information
collected in the previous computations. We fix a direction xi and we look at
the 4 parallel lines given by Corollary 26.

1. If i is even, then to understand the 0–singularities on:

(a) α = 1√
3
(γ1x

i+γ2x
i+1)+λxi, we collect the values of λ from the sets 11

and 13 (for the intersections with lines directed by xi+2 and xi+4

respectively) and from the sets 20, 22 and 24 (for the intersections
with lines directed by xi+3, xi+5 and xi+1 respectively).

Notice that the value − 2γ1√
3
− γ2 appears in the sets 13, 22 and 24;

the value 0 is in both sets 22 and 24 . The collection of values with
no repetitions is the content of Table 1. Depending on the parameter
γ, some of the values in the table could be in the same orbit under
the action of Γ. We conclude then that the total number of different
values in the table provides an upper bound for Lα0 , which in this
case is easily checked to be 44.

If α = − 1√
3
(γ1x

i + γ2x
i+1) + λxi we use Remark 41 to conclude

that the values we are interested in are minus the ones displayed in
Table 1.

(b) α = 1√
3
(γ1x

i+2 + γ2x
i+1) +λxi, we proceed just as before extracting

the values from the sets 12, 13, 21, 23 and 25. The summary of all
the values, with one repetition, is presented in Table 2.

Again, if we consider α = − 1√
3
(γ1x

i+2+γ2x
i+1)+λxi, by Remark 41,

we obtain minus the values in Table 2. This time, the upper bound
for Lα0 we obtain is 44.

2. If i is odd, we need to discuss the 0-singularities on:

(c) α = 1√
3
(γ2x

i+4 + γ1x
i+1) + λxi, for which we extract the values of λ

from the sets 15, 16, 27, 29 and 31. Notice that in these sets the value
−γ1 appears three times, −γ1 + γ2√

3
twice and γ2√

3
also twice. The

collection of all these values with only one repetition is the content of
Table 3. The upper bound for Lα0 in this case is found to be 44. The
case of α = − 1√

3
(γ2x

i+4 + γ1x
i+1) +λxi is dealt with via Remark 41

as in the previous cases.
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(d) α = 1√
3
(γ2x

i+6 + γ1x
i+1) + λxi we use the values of λ in sets 15,

17, 28, 30, and 32. This time the value −γ1 appears three times
and the values −γ1 + γ2√

3
+ A3, −γ1 + 2γ2√

3
and 2γ2√

3
each appears

twice. The complete set of values with no repetitions is collected
in Table 4. This time the bound obtained is Lα0 ≤ 44. The case
α = − 1√

3
(γ2x

i+6 + γ1x
i+1) + λxi is dealt with via Remark 41.

Remark 43.

• If we replace γ by 0 in the tables, the reader can remark that we obtain
Lα0 = 6 as in Lemma 31.

• For all γ we have L0 ≤ (44 + 44) · 2 · 3 · 2. Of course in the case γ = 0 the
same upper bound gives 6 · 6 = 36, while the actual result is 14. Thus we
can imagine that L0 is always strictly less than this value.

− γ1√
3

+A3 − γ1√
3
− 2γ2√

3
+A3 − 2γ1√

3
− 2γ2

3 +A3 A3

− γ1√
3
− γ2 +A3 −γ2 − 2γ1√

3
+A3 −γ23 +A3 −γ23 −

γ1√
3

+A3

− γ1
2
√

3
+A4 −γ2 − γ1

√
3

2 +A4 −γ22 −
γ1

2
√

3
+A4 −γ22 −

γ1
√

3
2 +A4

0 −2γ2 − 2γ1√
3

− 2γ1√
3

γ2

Table 1: Each value of λ is of the form aγ1+bγ2+c. The value aγ1+bγ2 identifies
the intersection point between the two 1–singularities, while c ∈ A3∪A4 encodes
the different representatives of the equivalence classes under the action of G.
The data on the first 2 lines is from the sets 11, 13 respectively while the last
three lines have values from the sets 20, 22 and 24.
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γ1√
3

+A3 − 2γ2
3 +A3 − 2γ2

3 −
γ1√

3
+A3 A3

− γ1√
3
− γ2

3 +A3 − 2γ1√
3
− γ2 +A3 −γ23 +A3 − γ1√

3
− γ2 +A3

A4 − γ1√
3
− γ2 +A4 − γ1√

3
− γ2

2 +A4 −γ22 +A4

− γ1√
3

−2γ2 −
√

3γ1 −γ2 −
√

3γ1

2γ1√
3

2γ1√
3

+ γ2

Table 2: Each value of λ is of the form aγ1+bγ2+c. The value aγ1+bγ2 identifies
the intersection point between the two 1–singularities, while c ∈ A3∪A4, encodes
the different representatives of the equivalence classes under the action of G.
There is one value repeated in the table, namely − γ1√

3
− γ2. The data on the

first 3 lines is from Tables 12, 13 and 21 respectively while the last line has
values from tables 23 and 25.

− 2γ1
3 +A3 − 2γ1

3 + γ2√
3

+A3
γ2√

3
+A3

2γ2√
3

+A3

−γ1 +A3 −γ13 +A3 −γ1 − γ2√
3

+A3 −γ13 + γ2√
3

+A3

−γ12 + γ2√
3

+A4
γ2√

3
+A4 −γ1 +A4 −γ12 +A4

−2γ1 − 2γ2√
3

−γ1 − 2γ2√
3

0

γ2

√
3 γ2

√
3 + γ1

Table 3: Each value of λ is of the form aγ1+bγ2+c. The value aγ1+bγ2 identifies
the intersection point between the two 1–singularities, while c ∈ A3∪A4, encodes
the different representatives of the equivalence classes under the action of G.
The data on the first 2 lines is from the sets 15, 16 respectively while the last
three lines have values from the sets 27, 29 and 31. Notice the repetition of the
value −γ1.
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− 2γ1
3 +A3 − 2γ1

3 + γ2√
3

+A3
γ2√

3
+A3

2γ2√
3

+A3

−γ1 +A3 −γ1 + γ2√
3

+A3 −γ13 + 2γ2√
3

+A3 −γ13 + γ2√
3

+A3

−γ1 + γ2
2
√

3
+A4 −γ12 + γ2

2
√

3
+A4 −γ12 + γ2

√
3

2 +A4
γ2
√

3
2 +A4

2γ2√
3

−2γ1

0 γ1 + 2γ2√
3

Table 4: Each value of λ is of the form aγ1+bγ2+c. The value aγ1+bγ2 identifies
the intersection point between the two 1–singularities, while c ∈ A3∪A4, encodes
the different representatives of the equivalence classes under the action of G.
The data on the first 2 lines is from the sets 15, 17 respectively while the last
lines have values from the sets 28, 30 and 32.
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