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A. Albert,1,2 M. André,3 M. Anghinolfi,4 G. Anton,5 M. Ardid,6 J.-J. Aubert,7 J. Aublin,8 B. Baret,8 S. Basa,9 B. Belhorma,10

V. Bertin,7 S. Biagi,11 M. Bissinger,5 J. Boumaaza,12 M. Bouta,13 M. C. Bouwhuis,14 H. Brânzaş,15 R. Bruijn,14,16

J. Brunner,7 J. Busto,7 A. Capone,17,18 L. Caramete,15 J. Carr,7 S. Celli,17,18 M. Chabab,19 T. N. Chau,8

R. Cherkaoui El Moursli,12 T. Chiarusi,20 M. Circella,21 A. Coleiro,8 M. Colomer-Molla,8,22 R. Coniglione,11 P. Coyle,7

A. Creusot,8 A. F. Díaz,23 G. de Wasseige,8 A. Deschamps,24 C. Distefano,11 I. Di Palma,17,18 A. Domi,4,25 C. Donzaud,8,26

D. Dornic,7 D. Drouhin,1,2 T. Eberl,5 N. El Khayati,12 A. Enzenhöfer,7 A. Ettahiri,12 P. Fermani,17,18 G. Ferrara,11

F. Filippini,20,27 L. Fusco,8,7 P. Gay,8,28 H. Glotin,29 R. Gozzini,22,5 K. Graf,5 C. Guidi,4,25 S. Hallmann,5 H. van Haren,30

A. J. Heijboer,14 Y. Hello,24 J. J. Hernández-Rey,22 J. Hößl,5 J. Hofestädt,5 F. Huang,1 G. Illuminati,8,22 C. W. James,31

M. de Jong,14,32 P. de Jong,14 M. Jongen,14 M. Kadler,33 O. Kalekin,5 U. Katz,5 N. R. Khan-Chowdhury,22 A. Kouchner,8,34

I. Kreykenbohm,35 V. Kulikovskiy,4,36 R. Lahmann,5 R. Le Breton,8 D. Lefèvre,37 E. Leonora,38 G. Levi,20,27 M. Lincetto,7
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The ANTARES detector is an undersea neutrino telescope in the Mediterranean Sea. The search for
pointlike neutrino sources is one of the main goals of the ANTARES telescope, requiring a reliable method
to evaluate the detector angular resolution and pointing accuracy. This work describes the study of the
Sun “shadow” effect with the ANTARES detector. The shadow is the deficit in the atmospheric muon
flux in the direction of the Sun caused by the absorption of the primary cosmic rays. This analysis is based
on the data collected between 2008 and 2017 by the ANTARES telescope. The observed statistical
significance of the Sun shadow detection is 3.7σ, with an estimated angular resolution of 0.59°� 0.10° for
downward-going muons. The pointing accuracy is found to be consistent with the expectations and no
evidence of systematic pointing shifts is observed.

DOI: 10.1103/PhysRevD.102.122007

I. INTRODUCTION

Charged cosmic rays (CRs) (mainly protons), γ-rays, and
neutrinos represent relevant probes for high-energy astro-
physical research. However, γ-rays with energies higher
than few TeV interact with the infrared and the cosmic

microwave background producing electron-positron pairs.
Charged CRs are deflected by cosmic magnetic fields, and
it is almost impossible to identify their origin through the
measurement of their arrival direction. Moreover, the
structure of galactic magnetic fields is so complex that
the distribution of galactic CRs is almost isotropic near the
Earth. Neutrinos have properties which allow to observe
and study the Universe in a unique way. They can
propagate from their sources to the Earth without changing
trajectory and with small probability of being absorbed.
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The ANTARES undersea neutrino telescope [1] is
primarily designed for the detection of neutrino pointlike
sources and both the pointing accuracy and the angular
resolution of the detector are important for the evaluation of
the telescope performance.
The interaction of primary CRs in the atmosphere

produces secondary downward-going muons that can be
detected in the undersea detector. However, the CRs could
be absorbed by the Moon and the Sun leading to a deficit in
the atmospheric muon flux in the directions of these
celestial bodies. This effect has been observed by several
experiments: CYGNUS [2], TIBET [3], BUST [4], CASA
[5], MACRO [6], SOUDAN [7], ARGO-YBG [8], HAWC
[9], MINOS [10], and also IceCube [11]. A Moon shadow
analysis with the ANTARES telescope, corresponding to a
total live time of 3128 days, has also been published [12].
This work presents the Sun shadow analysis using the

ANTARES 2008–2017 data sample, corresponding to a total
detector live time of 2925 days. The analysis is based on
2.6 × 106 events reconstructed as downward-going muons
with the standard ANTARES reconstruction chain [13].
The paper is organized as follows: in Sec. II, the

ANTARES neutrino telescope is described; the Sun shadow
analysis and the obtained results are presented in Sec. III;
finally, the conclusions are summarized in Sec. IV.

II. THE ANTARES NEUTRINO TELESCOPE

The ANTARES undersea neutrino telescope is taking
data in its final configuration since 2008. It is located in the
Mediterranean Sea, 40 km offshore from Toulon (France) at
42°48 N latitude and 6°10 E longitude. The detector
consists of 12 lines, each is about 450 m long. Each line
comprises 25 storeys with three 10-inch photomultiplier
tubes (PMTs) inside pressure resistant glass spheres (the
optical modules). The first instrumented storey is located
100 m above the seabed. The distance between storeys is
14.5 m and the distance between two lines is about 65 m.
The lines are connected to a junction box that links the
detector to the shore station through an electro-optical cable
about 40 km long.
A relativistic muon induces Cherenkov photons when

traveling through the water, which are detected by the
PMTs producing a signal (hit) [1]. The PMTs face 45°
downward in order to optimize the detection of light from
upward-going particles. The set of hits detected within a
certain time window is called event. If the hits of one event
satisfy spacetime causality, the event is identified as a muon
candidate [13,14]. The reconstruction of the tracks is based
on the probability density function of the arrival times of
photons at the PMTs.

III. THE SUN SHADOW ANALYSIS

The ANTARES telescope can detect only downward-
going atmospheric muons because the upward-going ones

are absorbed by the Earth. The energy threshold of muons
at the sea surface level that can reach the detector is about
500 GeV [15]. In this energy range, the direction of primary
CRs may be assumed as collinear with the secondary
muons. Even though the solar magnetic field is not
expected to introduce a systematic shift in the pointing
accuracy derived using the Sun shadow effect, it is expected
that its influence can lead to a blurring of the shadow [11].
Therefore, the primaries that are blocked by the Sun lead to
a deficit in the atmospheric muon flux in the direction of
the Sun.
The analysis is performed in three steps. The first one is

the data selection optimization which provides the best
sensitivity for the observation of the deficit of events from
the direction of the Sun. The second step provides the
estimation of the angular resolution of the detector for the
reconstructed downward-going events. And in the third
step a possible shift of the Sun shadow center with respect
to the nominal Sun position is investigated using a two-
dimensional approach.

A. The data selection optimization

A Monte Carlo (MC) simulation is produced and
exploited in order to optimize the event selection criteria
of the analysis. The simulation features downward-going
muon events which are generated at the detector level with
the MUPAGE code [16]. MUPAGE is based on parametric
formulas that allow to calculate the flux and the angular
distribution of underwater muon bundles, taking into
account the muon multiplicity and the energy spectrum.
Muons are generated on the surface of a cylinder (can)
surrounding the active volume of the detector, 650 m high,
with a radius of 290 m. The simulation includes the
propagation of the muons in the instrumented volume,
the induced emission of Cherenkov light, the light propa-
gation to the optical modules, and the digitized response of
the PMTs [17]. In order to reproduce the time variability
of the detector conditions, the MC sample is subdivided
in batches corresponding to the actual data-taking periods
(run-by-run MC simulation [18]). The trade-off between
the accuracy of the simulations and CPU time, exploited to
produce the MC sample, limited the MC muon statistics to
1=3 of the actual expected one. In order to enlarge the
statistics of MC simulation, the additional zones approach
was performed: since the muon generation is produced on a
full-sky base, regions of the sky with the same occupancy
as of the Sun region can be exploited, where the MC sample
can be increased. Additional zones are obtained artificially
by shifting the Sun position by 2, 4, 6, 8, 12, 14, 16, 18, 20,
and 22 hours. Therefore, the whole statistics of MC
considering 11 additional zones together with the Sun
zone is 4 times larger than the real data statistics.
Since the atmospheric muon flux is not uniform, the

distribution of muons depends also on the Sun elevation
angle at the moment of muon detection. Statistics of the
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events significantly decreases for muon tracks close to the
horizon; for this reason, a cut on the Sun elevation angle is
applied: θSun > 15°.
The quality of the reconstructed tracks is determined by

two parameters: the likelihood-wise parameter, Λ, and the
angular error estimator of the reconstructed direction,
β [19]. In order to determine for which set of cut values
on Λ and β the sensitivity of the Sun shadow detection is
maximal, the hypothesis test approach is used. The null
hypothesis H0 corresponds to the absence of the Sun
shadowing effect, while the H1 hypothesis is compliant
with the presence of this phenomenon. Then two different
MC samples are generated. According to the null hypoth-
esis, in the first sample, the Sun shadow effect is not
introduced in the simulation; according to the H1 hypoth-
esis, in the second sample the Sun shadow effect is
obtained by removing all the muons generated within
the Sun disk, assuming a radius of 0.26°. For each sample,
the distribution of events as a function of the angular
distance from the Sun, up to 10°, is produced. Such a
histogram is subdivided into 25 bins with size Δδ ¼ 0.4°.
Each bin corresponds to a concentric ring with increasing
radius centered on the Sun position. The content of each
bin is normalized to the corresponding area of the ring,
resulting in an event density.
Assuming that the event population in each bin asymp-

totically follows a Gaussian probability distribution, the
test statistic is calculated under the above mentioned two
hypotheses as a χ2 difference, resulting in λ0 and λ1,

λ0 ¼
XNbins

i¼1

�ðni0 − μiÞ2
σ2μ;i

−
ðni0 − νiÞ2

σ2ν;i

�
;

λ1 ¼
XNbins

i¼1

�ðni1 − μiÞ2
σ2μ;i

−
ðni1 − νiÞ2

σ2ν;i

�
; ð1Þ

with μi (νi) the expected number of events in the ith bin
under H1 (H0) hypothesis, σμ;i (σν;i) the error in the ith
bin under H1 (H0). The values of n1 (n0) are derived
according to a Poisson distribution with expectation
values equal to μi (νi). A total of 106 pseudo-
experiments are generated to build the distribution of
the test statistic.
The hypothesis test procedure is repeated for different

sets of cut values on Λ and β to maximize the sensitivity
to the Sun shadow detection (Fig. 1). Figure 2 shows the
estimation of the sensitivity. It is evaluated through the
computation of the p-value of the λ0 distribution (null
hypothesis, H0) corresponding to the median of the λ1
distribution, for which 50% of the pseudo-experiments
under the H1 hypothesis (presence of the Sun shadow) are
correctly identified. For the optimized values of Λ and β,
the p-value is equal to 7.4 × 10−4, corresponding to a
significance of 3.4σ.

It is found that the sensitivity is almost constant for
−6.0 < Λcut < −5.9 and 0.6° < βcut < 1.5°. In this param-
eter space, a particular set of cut values is chosen: Λcut ¼
−5.9 and βcut ¼ 1.1°. For this set of cut values, the muon
density far from the Sun position is flat; this condition is
required in the data significance estimation approach that
will be described below in Sec. III B.

B. The angular resolution estimation
and significance of the results

The reconstructed events from the 2008 to 2017
ANTARES data sample are selected with the optimized
cut values described above, providing 6.5 × 105 events.
The data event density distribution is produced in the same

6.5 6.4 6.3 6.2 6.1 6 5.9 5.8 5.7 5.6
cut

0.4
0.6

0.8
1

1.2
1.4

cut

2.4

2.6

2.8

3

3.2

3.4

S
ig

ni
fic

an
ce

FIG. 1. Expected statistical significance of the Sun shadow
detection during the period from 2008 to 2017 based on MC
simulations, as a function of cut values on Λ and β (Λcut and βcut).
The red point represents the selected set of cut values
(Λcut ¼ −5.9 and βcut ¼ 1.1°). The expected significance for
the selected set of cut values is 3.4σ.
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FIG. 2. Distribution of the test statistic λ for the two hypotheses,
H0 (black curve) and H1 (red curve), obtained for the optimized
set of cut values (Λcut ¼ −5.9 and βcut ¼ 1.1°). The dashed area
represents the fraction of pseudo-experiments (50%) where H1

hypothesis is correctly identified. The colored area corresponds to
the expected median significance (3.4σ) to reject the H0 hypoth-
esis in favor of the H1 hypothesis.
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way as for the MC events described above in the hypothesis
test procedure.
In order to estimate the angular resolution of the detector

for downward-going muons, the data histogram is fitted
with the following function [12] (red line in Fig. 3):

fðδÞ ¼ dN
dΩ

¼ k

�
1 −

R2
Sun

2σ2res
e
− δ2

2σ2res

�
; ð2Þ

where Ω is the solid angle of the concentric ring around the
Sun center, k is the average muon event density in the H0

hypothesis, the value of k from the fit is 2086� 2.6, RSun is
the average angular radius of the Sun (0.26°), and σres is the
width of the Gaussian dip. The number of absorbed events
in the Sun shadow dip is Nabs ¼ kπR2

Sun ¼ 443� 0.6. The
average muon event density obtained in the ANTARES
Moon shadow study is 2376� 3 [12] and hence the
number of absorbed events is 505� 0.6. The average
muon event density in the Sun analysis is smaller with
respect to the Moon analysis since the quality category to
include a run has been slightly changed and a sample of
runs with a tighter quality selection is chosen for the
current analysis.
The value of σres from the fit is 0.59°� 0.10°. The

goodness of the fit is found to be χ2=d:o:f: ¼ 19.6=23.
Pseudo-experiments are used to evaluate the actual effect

of a finite-size radius of the Sun. Several event densities are
produced and convoluted with a step function representing
the Sun radius assuming different detector angular reso-
lutions. The discrepancies obtained between the assumed
detector angular resolutions and the fitted values of the
Gaussian width are below 10% for the assumed angular
resolution values above 0.35°, i.e., negligible with respect
to the statistical uncertainty. Therefore, the obtained value
of σres can be treated as the angular resolution of the
telescope for downward-going muons.

The angular resolution value σres is compatible with
the one obtained in the ANTARES Moon shadow
analysis (0.73°� 0.14°), with a 3.5σ significance of lunar
detection [12].
The statistical significance of the result is estimated

using the hypothesis test approach. For the H0 hypothesis,
no shadowing effect is assumed. Under this hypothesis, the
data event density in Fig. 3 is fitted with the function which
has one free parameter, k,

dN
dΩ

¼ k: ð3Þ

The corresponding χ2 value is χ20 ¼ 33.5. The H1

hypothesis corresponds to the presence of the shadowing
effect according to Eq. (2). The corresponding deviation of
the data with respect to the H0 hypothesis is computed by
means of the test statistics: −λ ¼ χ20 − χ21, which follows a
χ2 distribution with 1 degree of freedom. A significance of
3.7σ is found. According to the MC pseudo-experiments,
the probability to obtain such value of significance or
higher is 37%.
As reported by the IceCube Collaboration [11], the

primary CRs can be influenced by the Sun magnetic field
which can lead to the blurring of the shadow. In order to
study the influence of this effect, the data sample is divided
into two samples with roughly equal statistics. The first one
covers the period from the middle of 2008 to the middle of
2011, when the Sun activity was in the lower half, while the
second one covers the period from the middle of 2011 to the
end of 2015, when the Sun activity was in the higher half.
The statistical significance of the Sun shadow observation
is almost the same in both data samples, 2.6σ and 2.5σ for
the first and the second data samples, respectively, the
spreading of the dip is also compatible within the statistical
uncertainties. This is compatible with the results obtained
in the other experiments since the statistics of the data
sample is insufficient to obtain significative conclusions.

C. Absolute pointing

The procedure for the estimation of the pointing accu-
racy of the Sun shadow detection follows that used for
the ANTARES Moon shadow study [12]. The distribution
of events which satisfies the selection criteria described
previously is projected in a two-dimensional histogram as a
function of x ¼ ðαμ − αSunÞ × cosðhμÞ and y ¼ hμ − hSun,
where αμ, αSun are the azimuthal coordinates and hμ, hSun
are the elevation angles of the reconstructed track and the
Sun, respectively. The histogram range is ½−10°; 10°� for
both x and y, and it is divided in a grid of 0.4° × 0.4°
squared bins.
For the determination of a possible shift of the Sun

shadow center with respect to the nominal Sun position, the
following approach is used. Since the atmospheric muon
flux depends mainly on the elevation angle, in the H0
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FIG. 3. The muon event density as a function of the angular
distance δ from the Sun center based on the data sample taken in
period 2008–2017 fitted with Eq. (2) (red line). The shaded area
corresponds to the Sun angular radius (0.26°).
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hypothesis (no shadowing effect), the background distri-
bution is approximated with a second degree polynomial,

p2ðx; y;kÞ ¼ k0 þ k1xþ k2x2 þ k3yþ k4y2: ð4Þ

In the H1 hypothesis (presence of the shadowing effect),
the data distribution is approximated with a function
obtained by subtracting from p2ðx; y;kÞ a two-dimensional
Gaussian function,

Gðx; y;Ash; xs; ysÞ ¼
Ash

2πσ2res
e
−ðx−xsÞ2þðy−ysÞ2

2σ2res ; ð5Þ

where Ash is the amplitude of the deficit caused by the Sun
shadow (free parameter), ðxs; ysÞ is the assumed position of
the Sun. The width of the Gaussian function is assumed to
be the same in both dimensions, so that σx ¼ σy ≡ σres, and
σres is fixed to the value of the angular resolution defined in
Eq. (2) and derived in the previous subsection.
In the pointing accuracy estimation, the Sun shadow

center is assumed to be in the different points of the two-
dimensional histogram described above with a step size
of 0.1°. The nominal Sun position is O≡ ð0°; 0°Þ. The test
statistic function is then calculated for each assumed shift
of the Sun position as

λðxs; ysÞ ¼ χ2H1
ðxs; ysÞ − χ2H0

; ð6Þ

where χ2H0
is the χ2 value obtained from the fit with

Eq. (4), which is a constant value for all the bins of
the histogram, and χ2H1

ðxs; ysÞ is the χ2 value obtained
from the fit with the function used to describe hypothesis
H1, p2ðx; y;kÞ − Gðx; y;Ash; xs; ysÞ.

Figure 4 shows the values of the test statistic as a
function of the assumed Sun position, λðxs; ysÞ. The
minimum value of λðxs; ysÞ is found at ð0.2°; 0°Þ point
and it is equal to λmin ¼ −13.7. The corresponding fitted
value of the Sun shadow dip amplitude is Amin ¼ 55� 15.
The values of λðxs; ysÞ and Ash for the nominal Sun position
are λO ¼ −13.1 and AO ¼ 54� 15. At each bin, −λ
follows the distribution of a χ2 with 1 degree of freedom,
assuming H0 as the true hypothesis. This allows the
significance to reject the no-Sun hypothesis to be esti-
mated. Considering −λO, a p-value of 3.1 × 10−4 is
obtained. The corresponding significance is 3.6σ.
The distribution of values of the test statistic λðxs; ysÞ

can be interpreted as a bidimensional profile likelihood,
with Ash treated as the nuisance parameter. Therefore, the
interval corresponding to a desired confidence level (CL) is
obtained for λðxs; ysÞ ≤ λcut ¼ λmin þQ, where Q is the
quantile for the joint estimation of two parameters, accord-
ing to the values reported on Table 40.2 of [20]. Figure 5
shows the estimation of the confidence regions for
CL≡ f68.27%; 95.45%; 99.73%g.

IV. CONCLUSIONS

The evaluation of the angular resolution of the
ANTARES detector is essential since one of the main
goals of the telescope is the search for pointlike sources
[19,21,22].
This paper presents the observation of the Sun shadow

with the ANTARES neutrino telescope. The analysis is

FIG. 4. The distribution of the test statistic values around the
nominal Sun position O≡ ð0°; 0°Þ. The minimum value λmin ¼
−13.7 is found at (0.2°, 0°) point (white dot).
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FIG. 5. Contours corresponding to different confidence levels
(red: 68.27%; yellow: 95.45%; green: 99.73%). The white
dot indicates (0.2°, 0°) point for which a minimum value of
λmin ¼ −13.7 is obtained.
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based on the data taken in the period between 2008 and 2017
corresponding to a total detector live time of 2925 days.
The Sun shadow effect is studied by means of two

complementary approaches which allow to determine the
angular resolution for downward-going atmospheric muons
and to verify the pointing performance of the detector.
The shadow effect is observed with 3.7σ statistical signifi-
cance using the one-dimensional approach. The angular
resolution for downward-going muons is found to be equal
to 0.59°� 0.10°. A better angular resolution is expected
for upward-going events, as the PMTs of the detector are
pointing 45° below the horizon to maximize the light
collection for upward-going neutrino-induced events.
The obtained angular resolution is compatible with the

angular resolution found in the Moon shadow analysis with
the ANTARES telescope (0.73°� 0.14°) [12].
The influence of the Sun magnetic field on the primary

CRs is investigated; however, the statistics is insufficient to
obtain significative conclusions.
The resulting pointing accuracy of the Sun shadow

detection is found to be consistent with the expectations.
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