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Finding the jump rate for fastest decay in the Goldstein-Taylor model
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This paper is about the rate of convergence to equilibrium for hypocoercive linear kinetic equations. We look for the spatially dependent jump rate which yields the fastest decay rate of perturbations. For the Goldstein-Taylor model, we show (i) that for a locally optimal jump rate the spectral bound is determined by multiple, possibly degenerate, eigenvectors and (ii) that globally the fastest decay is obtained with a spatially homogeneous jump rate. Our proofs rely on a connection to damped wave equations and a relationship to the spectral theory of Schrödinger operators.

Introduction

A typical linear kinetic equation takes the form

∂ t f + T f = σ(x) C(f ) (1) 
for a density f = f (t, x, v) at time t over the phase space consisting of a spatial position x and a velocity v. Here T is a transport operator, σ is a spatial weight, and C is a collision operator driving the system to thermal equilibrium. The theory of hypocoercivity, [START_REF] Villani | Hypocoercivity[END_REF][START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF], ensures, by a variety of proofs, that the equilibrium is reached with an exponential rate. The decay rate is limited by the spectral bound λ of -T + σC. In the case of constant σ, the spectral bound λ typically depends on σ as indicated in Fig. 1, where we see two distinct regimes:

1. For small jump rates σ the spectral bound scales with -σ. Here the decay is limited by the thermalisation rate of the velocity variable so that a faster jump rate improves the spectral bound.

2. For bigger jump rates σ the spectral bound behaves like -σ -1 . In this regime, the decay rate is limited by the spatial diffusion. Here a faster decay rate means slower decay as the effective spatial transport decreases by the law of large numbers.

This motivates the main question of this research.

Figure 1: Typical spectral bound depending on the noise strength. For a given constant σ, we plot the spectral bound for typical models of (1).

Question 1. Can we combine spatial regions of large and small jump rates in order to obtain a faster decay rate? More generally, what is the jump rate σ, among functions depending on x, which will give the smallest spectral bound, i.e. the fastest decay?

There has been previous research on finding optimal or good bounds on the rate to equilibrium for a fixed jump rate σ, e.g. [START_REF] Achleitner | On Optimal Decay Estimates for ODEs and PDEs with Modal Decomposition[END_REF]. The goal of this work is to understand the dependence of the rate of convergence to equilibrium on σ by studying the optimal control problem of finding the choice of σ which maximises the decay rate. We believe this provides another direction to understand the precise dependence of the decay rate on the parameters in the equation. In our opinion, this approach has potential in a variety of other kinetic problems, e.g.

• For kinetic equations with a confining potential, one could investigate the interplay between jump rate and the confining potential.

• For equations posed on a domain with boundary, one could investigate, in a similar way, the dependence of the rate on the shape of the domain and boundary conditions. This could produce results similar to the celebrated Faber-Krahn inequality, that the spectral gap of the Dirichlet Laplacian is optimised, amongst all smooth convex subsets of R d , on balls [START_REF] Faber | daß unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt[END_REF][START_REF] Krahn | Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises[END_REF][START_REF] Daners | Krahn's proof of the Rayleigh conjecture revisited[END_REF].

• This problem is related to the control of nuclear reactors as for the radiative transfer equation σ is related to the presence or absence of control rods.

• In our perturbation result we show that the optimal σ must occur simultaneously with a degeneracy in the eigenspace associated to the spectral bound eigenvectors. We believe this might point to connections between the optimal σ and symmetries present in the equation. For example, when σ is constant, the equation is translation invariant which produces a doubling of eigenvalues. More generally, when σ possesses translation or reflection symmetries, this will result in multiple eigenvectors and a candidate for optimality.

Apart from applications in kinetic theory, Markov Chain Monte Carlo (MCMC) algorithms are a main motivation. In applications of Bayesian statistics, one needs to calculate the posterior distribution which is given up to a normalisation factor by e -φ(x) .

For high-dimensional problems, an explicit computation is prohibitively expensive and a common solution is to construct a stochastic process that converges to the sought distribution and to sample from that process. One such process is the diffusion process

dX t = -∇ x φ(X t ) dt + √ 2 dW t ,
where W is Brownian noise. This procedure can sometimes be slow, and Hamiltonian MCMC (HMCMC) has been developed as a way to increase the speed of convergence of these algorithms, see [START_REF] Eberle | Couplings and quantitative contraction rates for Langevin dynamics[END_REF][START_REF] Bou-Rabee | Coupling and convergence for Hamiltonian Monte Carlo[END_REF] for a rigorous proof of the increase in speed and references within on HMCMC. The strategy of Hamiltonian Markov Chain Monte Carlo is to look at the related kinetic equation

dX t = V t dt, dV t = -∇ x φ(X t ) dt + σ(X t ) ( √ 2dW t -V t dt),
which has the equilibrium distribution M (v) e -φ(x) for the velocity equilibrium M (v) so that the sought distribution is obtained by the spatial distribution. The intuition is that the kinetic equation yields a faster transport of the distribution over large spatial distances. The previous analyses look at the case of constant σ. We ask the further question, whether the rate of convergence can be increased by making σ spatially dependent. This has been investigated numerically in statistics literature, for example in [START_REF] Girolami | Riemann manifold Langevin and Hamiltonian Monte Carlo methods[END_REF], where the authors propose a version of the Metropolis adjusted Langevin algorithm (MALA), which takes into account the geometry of φ.

A very simple model to study the exponential decay of kinetic equations is the one-dimensional Goldstein-Taylor model, which is still actively studied as a test case for hypocoercive results [START_REF] Arnold | Large Time Convergence of the Nonhomogeneous Goldstein-Taylor Equation[END_REF], and has been studied with σ depending on x in [START_REF] Bernard | Optimal Estimate of the Spectral Gap for the Degenerate Goldstein-Taylor Model[END_REF], relating it to the work by Lebeau [START_REF] Lebeau | Équations des ondes amorties[END_REF]. It is a special case of BGK models with only two velocities ±1. Setting u = (t, x) = f (t, x, +1) and v(t, x) = f (t, x, -1) to the respective spatial densities, the model writes

     ∂ t u + ∂ x u = σ(x) 2 (v -u), ∂ t v -∂ x v = σ(x) 2 (u -v), (2) 
where we consider the spatial variable x in the torus T with length 2π. As used before [START_REF] Kac | A stochastic model related to the telegrapher's equation[END_REF][START_REF] Bernard | Optimal Estimate of the Spectral Gap for the Degenerate Goldstein-Taylor Model[END_REF], the one-dimensional case has the special feature that the kinetic equation ( 2) is equivalent to a damped wave equation by considering

ρ(t, x) := u(t, x) + v(t, x) √ 2 and j(t, x) := u(t, x) -v(t, x) √ 2 . ( 3 
)
Then the Goldstein-Taylor model (2) can be written as

∂ t ρ + ∂ x j = 0, ∂ t j + ∂ x ρ = -σ(x) j. (4) 
In our results, we want to characterise the convergence towards the stationary state which is in the formulation [START_REF] Achleitner | On Optimal Decay Estimates for ODEs and PDEs with Modal Decomposition[END_REF] given by u = v = const or in the formulation (4) by ρ = const and j = 0. By the conservation of the mass T ρ(x) dx, the limiting state can be identified and, using the linearity, it therefore suffices to study the perturbation from the limiting state.

Working in L 2 , we therefore consider the evolution in the space

L 2 p = {(ρ, j) ∈ L 2 (T) : T ρ(x) dx = 0} (5) 
with the natural norm given by (ρ, j)

2 2 = ρ 2 2 + j 2 2 .

The evolution in L 2

p is a semigroup with the generator A σ (see Proposition 4 below). In Section 3 we characterise, as a first result, a possible optimal jump rate σ = σ(x) by considering perturbations.

Theorem 2. Suppose σ ∈ L ∞ (T) is such that the spectral bound of A σ in L 2
p is locally minimised in L ∞ . Then the spectral bound is not determined by a simple eigenvalue.

The same wave equation (but with different boundary conditions) has been studied in Cox and Zuazua [START_REF] Cox | The rate at which energy decays in a damped String[END_REF] with fixed ends. One aspect of their work is to characterise the eigenvalues along the real axis by the spectrum of Schrödinger operators, which allows them to find the spatial damping σ minimising the largest real eigenvalues. They cannot consider the full spectral bound. However, in our situation and with our aims in mind, we are able to go further by associating the equation to a different Schrödinger operator. With this newly associated Schrödinger operator, we can obtain a new bound on the spectral bound by looking at the second eigenvalue and exploiting the translation symmetry. This yields the following theorem (proved in Section 4): Theorem 3. For the Goldstein-Taylor model (2), the smallest spectral bound in L 2 p is obtained with the constant σ = 2 giving the spectral bound -1.

In the context of the wave equation, the corresponding question of the spatially dependent damping has been studied before and shows that the competing effects of the jump rate are more intricate than the result for a constant damping in Theorem 3 might suggest. It is noted by Castro and Cox [START_REF] Castro | Achieving Arbitrarily Large Decay in the Damped Wave Equation[END_REF] that an arbitrary large decay rate can be obtained in the case of fixed-ends with a spatialy dependent damping diverging towards the boundary. Taking the damping as an indicator function of a set ω and optimising the set ω, the competition between the effects is non-trivial and yields in general non-existence of optimal sets [START_REF] Hébrard | Optimal shape and position of the actuators for the stabilization of a string[END_REF][START_REF] Münch | Optimal design of the damping set for the stabilization of the wave equation[END_REF]. It has been studied further in [START_REF] Privat | Optimal Observation of the One-dimensional Wave Equation[END_REF], where the results are phrased in terms of a related observability condition. The problem has also been formulated in terms of the overall energy [START_REF] Steven | Designing for Optimal Energy Absorption II, The Damped Wave Equation[END_REF] and from a numerical side the problem is also studied by e.g. [START_REF] Fahroo | Optimal absorption design for damped elastic systems[END_REF][START_REF] Ammari | Numerical Approximation of the Best Decay Rate for Some Dissipative Systems[END_REF].

The study of the decay rate for the presented class of systems is a wide field ranging from works in kinetic theory [START_REF] Achleitner | On Linear Hypocoercive BGK Models[END_REF][START_REF] Achleitner | On Optimal Decay Estimates for ODEs and PDEs with Modal Decomposition[END_REF][START_REF] Arnold | Large Time Convergence of the Nonhomogeneous Goldstein-Taylor Equation[END_REF] to the wave equation [START_REF] Lebeau | Équations des ondes amorties[END_REF][START_REF] Haraux | How to estimate observability constants of one-dimensional wave equations? Propagation versus spectral methods[END_REF].

As a first step, we formulate in Section 2 the spectral problem precisely and show that the spectral bound determines the decay rate of the L 2 norm. Furthermore, we find eigenvalues corresponding to the decay rate σ 1 /(4π) of the velocity distribution alone. Proposition 4. For non-negative σ ∈ L ∞ , the closed linear operator A σ defined by

A σ ρ j = 0 -∂ x -∂ x -σ(x) ρ j (6) 
on L 2 p generates a contraction semigroup (e tAσ ) t matching the evolution (4). For any ǫ > 0 there exists an eigenvalue λ ∈ C with |ℜλ + σ 1 /(4π)| ≤ ǫ and there are at most finitely many eigenvalues in the halfspace {λ ∈ C : ℜλ ≥ -σ 1 /(4π) + ǫ}.

If for a > -σ 1 /(4π) there exists no eigenvalue with ℜλ ≥ a, then we have the growth bound e tAσ e ta ∀t ≥ 0.

Note that corresponding results for the wave equation with fixed ends have been shown in Cox and Zuazua [START_REF] Cox | The rate at which energy decays in a damped String[END_REF].

The main implication of our study is that, for the Goldstein-Taylor model, the rate of convergence to equilibrium cannot be improved by making σ depend on x. We believe this suggests that the rate of convergence to equilibrium is unlikely to be increased, in kinetic models, by adding local oscillations to the jump rate σ. We note that this does not exclude the possibility that spatially dependent jump rates cannot improve the rate of convergence to equilibrium in the presence of more complex geometries (either a confining potential or a boundary that would break some of the symmetries in the model). In fact, it is proposed in [START_REF] Girolami | Riemann manifold Langevin and Hamiltonian Monte Carlo methods[END_REF] to vary σ on large scales in a way that is sympathetic to the confining function φ. Therefore, we close the introduction by the following open question: Question 5. Does there exist a linear kinetic equation posed on R d for some d with a confining potential for which a strictly faster rate of convergence can be achieved by allowing the collision rate σ to depend on x than is achieved by constant σ?

Semigroup and spectral problem

In this section, we prove Proposition 4 in two parts. First, we show that we have a well-defined semigroup for the evolution.

Proof of Proposition 4 (first part). The generator [START_REF] Bernard | Optimal Estimate of the Spectral Gap for the Degenerate Goldstein-Taylor Model[END_REF] formally gives the required PDE (4). Without the σ the solution is given explicitly by the characteristics defined by the transport and this explicit representation shows that it generates a semigroup. As σ ∈ L ∞ , the contribution of σ in A σ is a bounded perturbation so that it defines a semigroup.

The required mass conservation follows from the estimate that

d dt T ρ(t, x) dx = - T ∂ x j(t, x) dx = 0
and the contraction property by the estimate

d dt T |ρ| 2 + |j| 2 dx = -2ℜ T ρ∂ x j + j(∂ x ρ + σ(x)j) dx = -2 T σ(x) |j| 2 dx ≤ 0.
This gives the first part of Proposition 4.

In the spectral theory, the central object is the resolvent

R(λ, A σ ) := (λ -A σ ) -1 . (8) For (a, b) ∈ L 2 p , the image (ρ, j) = R(λ, A σ )(a, b) is the solution to (λ -A σ ) ρ j = a b (9) 
as long it has a unique solution. This equation can be rewritten as d dx

ρ j + 0 σ + λ λ 0 ρ j = b a . ( 10 
)
Associated to [START_REF] Steven | Designing for Optimal Energy Absorption II, The Damped Wave Equation[END_REF], we define the solution operator for the homogeneous part and an operator M (σ, λ) yielding the solvability condition. Definition 6. Fix σ ∈ L ∞ and λ ∈ C. For y ∈ T and given (ρ in , j in ) consider the linear ODE

       d dx ρ(x) j(x) + 0 σ(x) + λ λ 0 ρ(x) j(x) = 0, ρ(y) j(y) = ρ in j in (11) 
and define S y→x σ,λ as solution operator so that S y→x σ,λ ((ρ in , j in )) = (ρ(x), j(x)). For the resolvent define the operator

M (σ, λ) = Id -S 0→2π σ,λ . (12) 
By Duhamel's principle, a solution of the resolvent equation ( 10) can be expressed with the solution operator as ρ(y) j(y) = S 0→y σ,λ

ρ 0 j 0 + y 0 S x→y σ,λ b(x) a(x) dx ( 13 
)
for constants ρ 0 , j 0 . The periodic boundary condition ρ(2π) = ρ 0 and j(2π) = j 0 imply that

M (σ, λ) ρ 0 j 0 = 2π 0 S x→2π σ,λ b(x) a(x) dx, (14) 
which yields a unique solution if M (σ, λ) is invertible. If not the kernel gives an eigenvalue solving λρ + ∂ x j = 0,

∂ x ρ + (λ + σ(x))j = 0. ( 15 
)
The characterisation by the operator M corresponds to the well-known shooting method for solving eigenvalue problems as done in [START_REF] Cox | The rate at which energy decays in a damped String[END_REF]. For the further analysis, we note basic properties. For the growth bound and the dependence with respect to σ 1 , note the following a priori estimate d dx

1 2 |ρ| 2 + |j| 2 ) = ℜ ρ∂ x ρ + j∂ x j = -ℜ ρ(σ + λ)j -jλρ = -ℜ ρj(σ + λ + λ) ≤ 2|ℜ(λ)| + σ(x) 1 2 |ρ| 2 + |j| 2 ),
which yields the result.

Similarly if we take two solutions (ρ 1 , j 1 ) corresponding to jump rate σ 1 and (ρ 2 , j 2 ) corresponding to jump rate σ 2 and with the same initial value (ρ 0 , j 0 ), then we have

d dx 1 2 |ρ 1 -ρ 2 | 2 + |j 1 -j 2 | 2 ≤ 2|ℜ(λ)|+σ 1 (x)+σ 2 (x) 1 2 |ρ 1 -ρ 2 | 2 + |j 1 -j 2 | 2 +|σ 1 (x)-σ 2 (x)|ℜ(j 1 (ρ 1 -ρ 2 )).
Integrating this and using our previous bound, we get

1 2 |ρ 1 -ρ 2 | 2 + |j 1 -j 2 | 2 ≤ σ 1 -σ 2 1 e 2π|ℜ(λ)|+ σ1 1+ σ2 1 |ρ 0 | 2 + |j 0 | 2 .
The continuity and differentiability properties follow from this.

Hence we can precisely describe the resolvent.

Lemma 8. The resolvent set of A σ consists of λ ∈ C for which the matrix M (σ, λ) is invertible and the resolvent is bounded in the operator norm as

R(λ, A σ ) M (σ, λ) -1 2π exp 4π|ℜ(λ)| + σ 1 .
Moreover, for every λ in the spectrum of A σ , there exists at least one eigenvector.

Proof. The result follows directly from the representation [START_REF] Eberle | Couplings and quantitative contraction rates for Langevin dynamics[END_REF]. Using [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF] we can write

ρ 0 j 0 = M (σ, λ) -1 2π 0 S x→2π σ,λ b(x) a(x) dx,
and use the bound from Lemma 7.

If M (σ, λ) were invertible then we would have a bounded resolvent map, by the formula above, so λ would be in the resolvent set. Therefore if λ is in the spectrum of A σ , then M (σ, λ) will not be invertible and there exists an element in the kernel of M (σ, λ) which yields an eigenvector.

We now look at the asymptotic form of M as |ℑλ| → ∞ over a finite range of ℜλ. Lemma 9. Fix a bounded interval I ⊂ R and σ ∈ L ∞ (T), then let

M ∞ (σ, λ) :=   1 -cosh λ 2π + σ 1 2λ sinh λ 2π + σ 1 2λ sinh λ 2π + σ 1 2λ 1 -cosh λ 2π + σ 1 2λ   .
We have that M (σ, λ) -M ∞ (σ, λ) → 0 uniformly over ℜλ ∈ I as |ℑλ| → ∞.

This matches [10, Theorem 5.1] where the result has been proven with explicit error bounds by a series solution. For being self-contained, we give another shorter proof.

Proof. The idea is like in the proof of the Riemann-Lebesgue lemma that we can approximate σ by a piecewise constant function σ, i.e. there exists

x 0 = 0 < x 1 < x 2 < • • • < x K = 2π and σ 1 , σ 2 , . . . , σ K such that σ(y) = σ j ∀y ∈ [x j-1 , x j ).
For λ = 0 we find on each constant part the explicit solution

S xj-1→xj σ,λ =   cosh (x j -x j-1 ) λ(λ + σ j ) - λ+σj λ sinh (x j -x j-1 ) λ(λ + σ j ) - λ λ+σj sinh (x j -x j-1 ) λ(λ + σ j ) cosh (x j -x j-1 ) λ(λ + σ j )   .
By considering Taylor series, we see that

| λ(λ + σ) -λ(1 + σ/λ)| → 0 and (λ + σ)/λ → 1 as |λ| → ∞.
Hence for |ℑλ| → ∞ the whole matrix is uniformly asymptotically approaching

Sj :=   cosh λ (x j -x j-1 ) + (xj -xj-1)σj 2λ -sinh λ (x j -x j-1 ) + (xj -xj-1)σj 2λ -sinh λ (x j -x j-1 ) + (xj -xj-1)σj 2λ cosh λ (x j -x j-1 ) + (xj -xj-1)σj 2λ   .
By the group property of the solution operator we find

S 0→2π σ,λ = S xj-1→2π σ,λ • S xj-2→xj-1 σ,λ • • • • • S x0→x1 σ,λ
which therefore is uniformly asymptotically approaching

Sj • Sj-1 • • • • • S1 =   cosh λ 2π + σ 1 2λ -sinh λ 2π + σ 1 2λ -sinh λ 2π + σ 1 2λ cosh λ 2π + σ 1 2λ   .
As we can approximate any function σ ∈ L ∞ arbitrary well by the piecewise constant function in L 1 , the result follows from the stability of Lemma 7.

We can now prove the remaining parts of Proposition 4.

Proof of Proposition 4 (remaining part). The asymptotic expression M

∞ of M in Lemma 9 is invertible except when λ = -σ 1 /(4π) + in for n ∈ Z. As det M ∞ (σ, λ) is analytic and M (σ, λ) -M ∞ (σ, λ) → 0 uniformly over ℜλ ∈ [-σ 1 /(4π) -ǫ, -σ 1 /(4π) + ǫ]
as |ℑλ| → ∞, Rouché's theorem ensures that det M has a root close to the asymptotic root λ = -σ 1 /(4π) + in for |n| large enough. In particular, this shows that there exists an eigenvalue λ ∈ C with ℜλ ∈ [-

σ 1 /(4π) -ǫ, -σ 1 /(4π) + ǫ].
As A σ generates a contracting semigroup, there are no eigenvalues λ with ℜλ > 0. By the asymptotic expression there are no eigenvalues in -σ 1 /(4π) + ǫ for large enough |ℑλ|. Therefore, the analyticity of M implies that there are at most finitely many eigenvalues in the remaining bounded region.

For the last part, assume a such that all eigenvalue λ of A σ satisfy ℜλ < a. By the first part, this implies a > -σ 1 /(4π). For λ ∈ C with ℜλ > 1, recall that (e tAσ ) t is a contraction semigroup, which yields the uniform bound R(λ, A σ ) ≤ 1 on the resolvent. The asymptotic expression of Lemma 9 shows that M (σ, λ) -1 is uniformly bounded for λ ∈ C with ℜλ ∈ [a, 1] and |ℑλ| for large enough. As there are no eigenvalue with real part bigger or equal to a and M is continuous, this shows sup

ℜλ∈[-a,1] M (σ, a + ib) -1 < ∞.
Lemma 8 implies the same bound for the resolvent. As our function space L 2 p is a Hilbert space, we can thus apply Gearhart-Prüss-Greiner theorem [14, Thm 1.11 in Chapter V] to find the claimed growth bound.

Remark 10. An alternative for using the Gearhart-Prüss-Greiner theorem is an adaptation of the theory of positive semigroups as done in Bernard and Salvarani [START_REF] Bernard | On the exponential decay to equilibrium of the degenerate linear Boltzmann equation[END_REF]. Cox and Zuazua [START_REF] Cox | The rate at which energy decays in a damped String[END_REF] establish the growth bound by studying the eigenvector system in more detail.

We close this section noting the eigenvalues for the case that σ is constant.

Lemma 11. Suppose that σ is constant. Then the spectrum in L 2 p consists of

- σ 1 4π ± σ 2 1 (4π) 2 -n 2 for n = 1, 2, 3, . . . and - σ 1 2π . 
Proof. In this setting, the spatial Fourier modes decouple and the result follows directly by solving the eigenvalue problem for each mode, where we exclude the stationary state as it is done in L 2 p . Alternatively, we can use the explicit expression of M for a constant σ as in the proof of Lemma 9.

For a detailed study of the decay behaviour in the case of constant σ, we refer to Miclo and Monmarché [START_REF] Miclo | Étude spectrale minutieuse de processus moins indécis que les autres[END_REF] and Achleitner, Arnold, and Signorello [START_REF] Achleitner | On Optimal Decay Estimates for ODEs and PDEs with Modal Decomposition[END_REF].

Perturbation analysis

Given some σ 0 ∈ L ∞ and a perturbation η ∈ L ∞ , we can compute how the eigenvalues of A σ0+ǫη are changing for varying ǫ. The eigenvectors (ρ ǫ , j ǫ ) satisfy the equation

(λ ǫ -A σ0+ǫη ) ρ ǫ j ǫ = 0
and formally taking the derivative with respect to ǫ yields

(λ ′ ǫ -A ′ σ0+ǫη ) ρ ǫ j ǫ + (λ ǫ -A σ0+ǫη ) ρ ′ ǫ j ′ ǫ = 0.
Testing with a suitable adjoint (ρ * ǫ , j * ǫ ) (made specific later), yields

λ ′ ǫ ρ * ǫ j * ǫ , ρ ǫ j ǫ = ρ * ǫ j * ǫ , A ′ σ+ǫη ρ ǫ j ǫ , as the adjoint satisfies (λ ǫ -A * σ0+ǫη )(ρ * ǫ , j * ǫ ) = 0.
Hence, assuming that both inner products are non-zero, we find that formally λ ǫ is differentiable with a non-zero derivative and thus by varying ǫ we can change the eigenvalue and improve the spectral gap if the spectral bound is determined by a single eigenvalue.

The key point for this perturbation analysis is to understand when the weight in front of λ ′ ǫ can vanish. By using the formulation with the operator M (σ, λ) from Definition 6, we show that for a simple eigenvalue this prefactor never vanishes.

As a first step, we sharpen the condition for the spectrum from Lemma 8.

Lemma 12. Suppose λ 0 is separated point in the spectrum of A σ , then λ 0 is determined by a simple eigenvalue if and only if det(M (σ, λ)) has a simple root.

Proof. Recall the formula ( 13) and ( 14) for the resolvent map. The inverse of M can be written as product of det(M ) -1 and the adjugate. The spectral projection Π λ0 to λ 0 is given by the contour integral

C R(λ, A σ ) a b dλ (0) = C det(M (σ, λ)) -1 adj(M (σ, λ)) 2π 0 S x→2π σ,λ b(x) a(x) dx dλ,
where C is a simple curve separating λ 0 from the rest of the specturum. As both S x→2π σ,λ and M (σ, λ) are analytic in λ, the integrand has poles only where det(M ) -1 has poles. This integral can be computed using the Laurent series. This gives a one-dimensional image if and only if det(M ) has a simple root.

Remark 13. The fact that we have only finitely many eigenvalues in any strip a ≤ ℜ(λ) ≤ b with a > -σ 1 /(4π) means that every eigenvalue is separated from the rest of the spectrum. This allows us to determine M (σ, λ) for λ around a simple eigenvalue λ 0 . Lemma 14. Suppose that λ 0 ∈ C is a simple eigenvalue. Then let (ρ 0 , j 0 ) be in ker M (σ, λ 0 ) and normalised to (ρ 0 , j 0 ) 2 = 1. Expressing the operator M (σ, λ) in the basis

V 1 = ρ 0 j 0 and V 2 = -j 0 ρ 0 ,
yields the matrix representation M (σ, λ 0 + δλ). Then around λ = λ 0 + δλ it holds that

M (σ, λ 0 + δλ) = O(δλ) b + O(δλ) c δλ + O((δλ) 2 ) O(δλ)
for small δλ and constants b, c = 0.

Proof. By construction V 1 and V 2 form an orthonormal basis. Using the solution operator S •→• σ,λ0 from Definition 6, define

ρ 1 (x) j 1 (x) = S 0→x σ,λ0 ρ 0 j 0 (16) 
and

ρ 2 (x) j 2 (x) = S 0→x σ,λ0 -j 0 ρ 0 . ( 17 
)
The idea of the Wronskian is to consider ρ 1 (x)j 2 (x) -ρ 2 (x)j 1 (x) and by [START_REF] Daners | Krahn's proof of the Rayleigh conjecture revisited[END_REF] we find

d dx ρ 1 (x)j 2 (x) -ρ 2 (x)j 1 (x) = 0.
As (ρ 0 , j 0 ) ∈ ker M (σ, λ 0 ), we have that (ρ 1 (2π), j 1 (2π)) = (ρ 0 , j 0 ). For V 2 we find with the Wronskian

ρ 2 (2π) j 2 (2π) , V 2 = ρ 0 j 2 (2π) -j 0 ρ 2 (2π) = ρ 1 (2π) j 2 (2π) -j 1 (2π) ρ 2 (2π) = ρ 1 (0)j 2 (0) -ρ 2 (0)j 1 (0) = |ρ 0 | 2 + |j 0 | 2 = 1.
Hence we have found that M (σ, λ 0 )V 2 , V 2 = 0. Further recalling that V 1 ∈ ker M (σ, λ 0 ) and that M and M are analytic with respect to λ shows that

M (σ, λ 0 + δλ) = O(δλ) b + O(δλ) c δλ + O((δλ) 2 ) O(δλ)
for some constants b, c ∈ C. By Lemma 12, the determinant M (σ, λ) = M (σ, λ) must have a single root at λ 0 so that b, c = 0.

We now prove the perturbation result.

Proof of Theorem 2. We argue by contradiction and assume that for σ ∈ L ∞ the spectral bound is determined by the simple eigenvalue λ 0 . Around λ 0 express M (σ, λ) in an adapted basis by M as in Lemma 14. For a perturbation η ∈ L ∞ , we then find for some additional constant d that

M (σ + ǫη, λ 0 + δλ) = O(ǫ, δλ) b + O(ǫ, δλ) c δλ + d ǫ + o((ǫ, δλ))
O(ǫ, δλ) .

By Duhamel's principle we have that

S 0→x σ+ǫη,λ0 = S 0→x σ,λ0 + x 0 S y→x σ,λ0 ǫη(y) 0 -1 0 0 S 0→y σ+ǫη,λ0 dy.
The bottom left hand term of the matrix M is S 0→2π σ+ǫη,λ0 V 1 , V 2 . Repeating the Wronskian argument as in the proof of Lemma 14, shows that

d = 2π 0 η(y) S y→2π σ,λ0 0 -1 0 0 S 0→x σ,λ0 V 1 , V 2 dy = 2π 0 η(y) -j 0 ρ 0 •S y→2π σ,λ0
-j 1 (y) 0 dy = 2π 0 j 1 (y) 2 η(y) dy with j 1 (y) from ( 16) 1 . As the eigenvalue is the root of det M , this implies that the eigenvalue behaves as

λ 0 - d c ǫ + o(ǫ).
Hence, if we can find some η such that ℜ(d/c) = 0, we can choose a small ǫ ∈ R so that σ + ǫη would have a smaller spectral bound. This shows the result if σ + ǫη is a valid jump rate, i.e. non-negative. As σ is a non-trivial jump rate, it is strictly positive in a subset I of positive measure. If j 1 (y) 2 has not constant complex phase, we can always construct η ∈ L ∞ with support in I such that ℜ(d/c) = 0 and thus σ + ǫη yields a valid perturbation of the jump rate.

By the equation ( 11), j 2 1 can have a constant phase only if ℜλ 0 = -σ/2. In this case of a constant phase, either σ is constant and we are back to the special case of Lemma 11 or σ is not constant, where the only other possible value of σ is zero. In the later case, the eigenvalues with ℜλ ≈ -σ 1 /(4π) of Proposition 4 show that λ 0 does not determine the spectral bound.

Global optimum by associated Schrödinger equation

The eigenvector equation [START_REF] Faber | daß unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt[END_REF] for A σ can be rewritten as the following second order equation

-∂ 2 x j + λ(λ + σ)j = 0. ( 18 
)
1 One could also prove c = 2π 0 (j 1 (y) 2 -ρ 1 (y) 2 ) dy.

For a fixed λ ∈ R, we then consider the Hamiltonian H σ,λ defined by H σ,λ j = -∂ 2 x j + λ(λ + σ(x)) j.

By the construction, our generator A σ has an eigenvalue λ, if H σ,λ has a zero eigenvector. By looking at how the spectrum changes with λ, similar to Cox and Zuazua [START_REF] Cox | The rate at which energy decays in a damped String[END_REF], we show the existence of a slowly decaying eigenvector in the diffusive regime (when σ is large in L 1 ).

Proposition 15. Suppose that σ 1 > 4π and let

λ s = - σ 1 4π + σ 1 4π 2 -1.
Then there exists a λ ∈ [λ s , 0) such that λ is an eigenvalue of the generator A σ from (6) of the Goldstein-Taylor system (4).

Proof. The Hamiltonian H σ,λ from ( 19) is for λ ∈ R a self-adjoint operator and has real eigenvalues µ 1 , µ 2 , . . . (chosen in increasing order) converging to ∞.

For λ = 0, the Hamiltonian H σ,λ is just the Laplacian so that µ 1 = 0 and µ 2 = 1. By considering the perturbation around λ = 0, we find for a small enough ǫ that the first eigenvalues of H σ,0-ǫ satisfy µ 1 < 0 and µ 2 > 0.

For the given σ, find a shift φ such that For these test functions we find j 1 , H σ,λs j 1 = λ s (2πλ s + σ 1 ) < 0 and j 2 , H σ,λs j 2 = 2π 2 1 + λ s λ s + σ 1 2π ≤ 0.

Hence we must have µ 2 (λ s ) ≤ 0. As µ 2 (0 -ǫ) > 0 and the spectrum of H σ,λ varies continuously with respect to λ, this shows that there exist some λ ∈ [λ s , -ǫ) such that µ 2 = 0 for H σ, λ. Therefore, H σ, λ has a zero eigenvector and the previous discussion implies that then λ is an eigenvalue for the generator A σ .

We now conclude that the constant σ = 2 yields the fastest decay rate.

Proof of Theorem 3. By Lemma 11, the choice σ = 2 yields the spectral bound -1.

For another σ with σ 1 ≤ 4π, the bound from the velocity relaxation [START_REF] Bou-Rabee | Coupling and convergence for Hamiltonian Monte Carlo[END_REF] in Proposition 4 shows that the spectral bound is greater than -σ 1 /4π ≥ -1.

For another σ with σ 1 > 4π, Proposition 15 implies that the spectral bound needs to be worse than -σ 1 /4π + ( σ 1 /4π) 2 -1 which is in turn greater than -1 when σ 1 > 4π.

Lemma 7 .

 7 For a fixed σ ∈ L ∞ and x, y ∈ T, the solution operator S x→y σ,λ and M (σ, λ) are analytic with respect to λ ∈ C.Moreover, the solution operator is bounded asS x→y σ,λ ≤ exp |ℜ(λ)| |y -x| + σ 1 /2and the solution operator S x→y σ,λ and M (σ, λ) are continuous with respect to σ in L 1 and the functions t → S x→y σ+tη,λ and t → M (σ + tη, λ) are differentiable in t when η ∈ L 1 (T). Proof. The existence and analyticity of the solution operator S x→y σ,λ and M (σ, λ) follow from standard ODE theory.

1 and j 2

 12 cos(2(x -φ)) dx = 0. Such a shift φ exists thanks to the intermediate value lemma as 2π 0 σ(x) cos(2(x -φ)) dx is a continuous function of φ and 2π 0 σ(x) cos(2x) dx = -2π 0 σ(x) cos(2(x -π/2)) dx. Now we consider the two test functions j 1 (x) = (x) = sin(x -φ) which are linearly independent.
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