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Finding the jump rate for fastest decay in the Goldstein-Taylor

model

Helge Dietert∗ Josephine Evans†

March 24, 2021

Abstract

For hypocoercive linear kinetic equations we first formulate an optimisation problem on a spatially
dependent jump rate in order to find the fastest decay rate of perturbations. In the Goldstein-Taylor
model we show (i) that for a locally optimal jump rate the spectral gap is determined by multiple, possible
degenerate, eigenvectors and (ii) that globally the fastest decay is obtained with a spatially homogeneous
jump rate. Our proofs rely on a connection to damped wave equations and a relationship to the spectral
theory of Schrödinger operators.
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1 Introduction

A typical linear kinetic equation takes the form

∂tf + Tf = σ(x) C(f) (1)

for a density f = f(t, x, v) at time t over the phase space consisting of a spatial position x and a velocity v
where T is a transport operator, σ is a spatial weight, and C is a collision operator driving the system to
thermal equilibrium.

The theory of hypocoercivity, [22, 11], ensures, by a variety of proofs, that the equilibrium is reached with
an exponential rate. The spectral gap λ limiting the decay behaves for a constant σ typically as indicated
in Fig. 1. Here we see two distinct regimes:

1. For small jump rates σ the spectral gap scales with σ. Here the decay is limited by the thermalisation
rate of the velocity variable so that a faster jump rate improves the spectral gap.

2. For bigger jump rates σ the spectral gap behaves like σ−1. In this regime the decay rate is limited
by the spatial diffusion. Here a faster decay rate means slower decay as the effective spatial transport
decreases by the law of large numbers.

This motivates the main question of this research.

Question 1. Can we combine spatial regions of large and small jump rates in order to obtain a faster decay
rate? More generally, what is the jump rate σ in order to find the largest spectral gap, i.e. the fastest decay?
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Figure 1: Typical decay rate depending on the noise strength. For a given constant σ, we plot the spectral
gap for typical models of (1).

There have been several research works which fix σ and find bounds on the rate of convergence to
equilibrium for the system; these works fit into the general framework of hypocoercivity. The goal of this
work is to understand the dependence of the rate of convergence to equilibrium on σ by studying the optimal
control problem of finding the choice of σ which maximises the rate. We believe this provides another
direction to understand the precise dependence of the decay rate on the parameters in the equation. We
believe this approach has potential in a variety of other kinetic equations:

• For kinetic equations with a confining potential one could investgate the interplay between jump rate
and the confining potential.

• For equations posed on a domain with boundary one could investigate, in a similar way, the dependence
of the rate on the shape of the domain and boundary conditions. This could produce results similar
to the celebrated Faber-Krahn inequality.

• This problem is related to the control of nuclear reactors as for the radiative transfer equation σ is
related to the presence or absence of control rods.

• In our perturbation result we show that the optimal σ must occur simultaneously with a degeneracy in
the eigenspace associated to the spectral gap eigenvectors. We believe this might point to connections
between the optimal σ and symmetries present in the equation.

Apart from applications in kinetic theory, a main motivation is Markov Chain Monte Carlo algorithms.
In applications of Bayesian statistics, one needs to calculate the posterior distribution which is given up to
a normalisation factor by

e−φ(x).

For a high-dimensional problems an explicit computation is prohibitively expensive and a common solution
is to construct a stochastic process Z which converges to the sought distribution and to sample from that
process. One such a process is a diffusion process

dXt = −∇xφ(Xt) dt+ dWt.

This procedure can sometimes be slow, and Hamiltonian MCMC has been developed as a way to increase
the speed of convergence of these algorithms, see [12, 7] for a rigorous proof of the increase in speed and
references within on HMCMC. The strategy of Hamiltonian Markov chain Monte Carlo is to look at the
related kinetic equation

{

dXt = Vt dt,

dVt = −∇xφ(Xt) dt+ σ(Xt) (dWt − Vt dt)
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which has the equilibrium distribution M(v) e−φ(x) for the velocity equilibrium M(v) so that the sought
distribution is obtained by the spatial distribution. Here the intuitive idea is that the kinetic equation yields
a faster transport of the distribution over large spatial distances. The previous analyses look at the case of
constant σ and we now ask the further question whether the speed of convergence of these processes can be
increase by making σ spatially dependent. This has been investigated numerically in statistics literature,
for example in [15], where they propose a version of the Metropolis adjusted Langevin algorithm (MALA)
which takes into account the geometry of φ.

A very simple model to study the exponential decay of kinetic equations is the one-dimensional Goldstein-
Taylor model, which is still actively studied as a test case for hypocoercive results [4], and has been studied
with σ depending on x in [6], relating it to the work Lebeau [19]. It is a special case of BGK models with
only two velocities ±1. Setting u = (t, x) = f(t, x,+1) and v(t, x) = f(t, x,−1) to the respective spatial
densities, the model writes











∂tu+ ∂xu =
σ(x)

2
(v − u),

∂tv − ∂xv =
σ(x)

2
(u− v),

(2)

where we consider the spatial variable x in the torus T with length 2π.
As used before [18, 6], the one-dimensional case has the special feature that the kinetic equation (2) is

equivalent to a damped wave equation by considering

ρ(t, x) :=
u(t, x) + v(t, x)√

2
and j(t, x) :=

u(t, x)− v(t, x)√
2

. (3)

Then the Goldstein-Taylor model (2) can be written as
{

∂tρ+ ∂xj = 0,

∂tj + ∂xρ = −σ(x) j.
(4)

In our results we want to characterise the convergence towards the stationary state which is in the
formulation (2) given by u = v = const or in the formulation (4) by ρ = const and j = 0. By the conservation
of the mass

∫

T
ρ(x) dx, the limiting state can be characterised and using the linearity it therefore suffices to

study the perturbation from the limiting space.
Working in L2 we therefore consider the evolution in the space

L2
p = {(ρ, j) ∈ L2(T) :

∫

T

ρ(x) dx = 0} (5)

with the natural norm given by
‖(ρ, j)‖22 = ‖ρ‖22 + ‖j‖22.

The evolution in L2
p can be understood with a semigroup with the generator Aσ (see Proposition 4 below).

As a first result we characterise a possible jump rate σ = σ(x) by considering perturbations.

Theorem 2. Suppose σ ∈ L∞(T) is such that the spectral gap in L2
p is locally maximised. Then the spectral

gap is not determined by a simple eigenvalue.

Such a wave equation of a string has been studied in Cox and Zuazua [9] with fixed ends. One aspect of
their work is to characterise the eigenvalues along the real axis by the spectrum of an Schrödinger equations
which allows them to find the spatial damping σ minimising the largest real eigenvalues, but they cannot
consider the full spectral gap. However, in our situation, and with our aims in mind, we are able to go
further by associating a different Schrödinger operator. In this newly associated Schrödinger operator we
can obtain the result by looking at the second eigenvalue and exploiting the translation symmetry; this is
key to our bound when ‖σ‖1 is large. Due to the different boundary values we capture the true spectral gap
in contrast to Cox and Zuazua [9] where their result for the eigenvalues along the real axis does not capture
the spectral gap. This yields the following theorem:
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Theorem 3. For the Goldstein-Taylor model (2), the largest spectral gap in L2
p is obtained with the constant

σ = 2 giving the spectral gap 1.

In the context of the wave equation, the corresponding question of the spatially dependent damping has
been studied before and shows that the competing effects of the jump rate are more intricate as the result of a
constant damping in Theorem 3 might suggests. So it is noted by Castro and Cox [8] that an arbitrary large
decay rate can be obtained in the case of fixed-ends and a spatialy dependent damping diverging towards the
boundary. Taking the damping as an indicator function of a set ω and optimising the set ω, the competition
between the effects is non-trivial and yields in general non-existence of optimal sets [17, 20]. Phrased in
terms of the related observability condition it has been further studied in [21]. The problem has also been
formulated in terms of the overall energy [10] and from a numerical side the problem is also studied by e.g.
[14]. It is also studied in more complex geometries in Lebeau [19].

The study of the decay rate for the presented class of systems is a wide field ranging from works in kinetic
theory [1, 2, 4] to the wave equation [16] to numerical methods [3].

As a first step, we formulate in Section 2 the spectral problem precisely and also shows that the spectral
gap determines the decay rate of the L2 norm under the flow of our equation. Furthermore, we find eigenvalues
corresponding to the decay rate ‖σ‖1/(4π) of the velocity distribution alone.

Proposition 4. For non-negative σ ∈ L∞ the closed linear operator Aσ defined by

Aσ

(

ρ
j

)

=

(

0 −∂x
−∂x −σ(x)

)(

ρ
j

)

(6)

on L2
p generates a contraction semigroup (etAσ )t matching the evolution (4).

For any ǫ > 0 there exists an eigenvalue λ ∈ C with |ℜλ− ‖σ‖1/(4π)| ≤ ǫ and there are at most finitely
many eigenvalues in the halfspace {λ ∈ C : ℜλ ≥ ‖σ‖1/(4π) + ǫ}.

If for a > −‖σ‖1/(4π) there exists no eigenvalue with ℜλ ≥ a, then we have the growth bound

‖etAσ‖ . eta ∀t ≥ 0.

Note that the corresponding results for the wave equation with fixed ends have been shown in Cox and
Zuazua [9].

The main implication of our study is that, for the Goldstein-Taylor model, the rate of converegence
to equilibrium cannot be improved by making σ depend on x. We believe this suggests that the rate of
convergence to equilibrium is unlikely to be increased, in kinetic models, by adding local oscillations to the
jump rate σ. We note that this does not exclude the possiblility that spatially dependent jump rates cannot
improve the rate of convergence to equilibrium in the presence of more complex geometries. In fact, it is
proposed in [15] to vary σ on large scales in a way that is sympathetic to the confining function φ. Therefore
we close the introduction by the following open question:

Question 5. Does there exist a linear kinetic equation posed on Rd for some d with a confining potential
for which a strictly faster rate of convergence can be achieved by allowing the collision rate σ to depend on
x than is achieved by constant σ?

2 Semigroup and spectral problem

In this section we prove Proposition 4 in two parts. First we show that it we have a well defined semigroup
for the flow.

Proof of Proposition 4 (first part). The generator (6) formally gives the required PDE (4). Without the σ
the solution is given explicitly by the characteristics defined by the transport and this explicit representation
shows that it generates a semigroup. As σ ∈ L∞, the contribution of σ in Aσ is a bounded perturbation so
that it defines a semigroup.
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The required mass conservation follows from the estimate that

d

dt

∫

T

ρ(t, x) dx = −
∫

T

∂xj(t, x) dx = 0

and the contraction property by the estimate

d

dt

∫

T

|ρ(t, x)|2 + |j|2 dx = −
∫

T

(

ρ∂xj + j(∂xρ+ σ(x)j)
)

dx = −
∫

T

σ(x) |j|2dx ≤ 0.

This gives the first part of Proposition 4.

In the spectral property the central object is the resolvent

R(λ,Aσ) := (λ− Aσ)
−1. (7)

For (a, b) ∈ L2
p the image (ρ, j) = R(λ,Aσ)(a, b) is the solution to

(λ −Aσ)

(

ρ
j

)

=

(

a
b

)

(8)

as long it has a unique solution. This equation can be rewritten as

d

dx

(

ρ
j

)

+

(

0 σ + λ
λ 0

)(

ρ
j

)

=

(

b
a

)

. (9)

Associated to (9) we define the solution operator for the homogeneous part and an operator M(σ, λ)
yielding the solvability condition.

Definition 6. Fix σ ∈ L∞ and λ ∈ C. For y ∈ T and given (ρin, jin) consider the linear ODE















d

dx

(

ρ(x)
j(x)

)

+

(

0 σ(x) + λ
λ 0

)(

ρ(x)
j(x)

)

= 0

(

ρ(y)
j(y)

)

=

(

ρin
jin

) (10)

and define Sy→x
σ,λ as solution operator so that Sy→x

σ,λ ((ρin, jin)) = (ρ(x), j(x)). For the resolvent define the
operator

M(σ, λ) = Id− S0→2π
σ,λ . (11)

By Duhamel’s principle the resolvent equation (9) can be written with the solution operator as

(

ρ(y)
j(y)

)

= S0→y
σ,λ

(

ρ0
j0

)

+

∫ y

0

Sx→y
σ,λ

(

b(x)
a(x)

)

dx (12)

for constants ρ0, j0. By the periodic boundary condition ρ(2π) = ρ0 and j(2π) = j0 we must have

M(σ, λ)

(

ρ0
j0

)

=

∫ 2π

0

Sx→2π
σ,λ

(

b(x)
a(x)

)

dx (13)

which yields a unique solution if M(σ, λ) is invertible. If not the kernel gives an eigenvalue solving

{

λρ+ ∂xj = 0,

∂xρ+ (λ+ σ(x))j = 0.
(14)

The characterisation by the operator M corresponds to the well-known shooting method for solving
eigenvalue problems as done in [9]. For the further analysis we note basic properties.
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Lemma 7. For a fixed σ ∈ L∞ and x, y ∈ T, the solution operator Sx→y
σ,λ and M(σ, λ) are analytic with

respect to λ ∈ C.
Moreover, the solution operator is bounded as

‖Sx→y
σ,λ ‖ ≤ exp(|ℜ(λ)| |y − x|+ ‖σ‖1/2)

and the solution operator Sx→y
σ,λ and M(σ, λ) are continuous differentiable with respect to ‖σ‖1.

Proof. The existence and analyticity of the solution operator Sx→y
σ,λ and M(σ, λ) follow from standard ODE

theory.
For the growth bound and the dependence with respect to ‖σ‖1 note the following a priori estimate

d

dx

1

2

(

|ρ|2 + |j|2) = ρ∂xρ+ j∂xj

= −ρ(σ + λ)j − jλρ

= −ρj(σ + λ+ λ)

≤
[

2|ℜ(λ)|+ σ(x)
]1

2

(

|ρ|2 + |j|2),

which yields the result.

Hence we can precisely describe the resolvent.

Lemma 8. The resolvent set consist of λ ∈ C for which the matrix M(σ, λ) is invertible and the resolvent
is bounded in the operator norm as

‖R(λ,A)‖ . ‖M(σ, λ)−1‖ exp
(

4π|ℜ(λ)| + ‖σ‖1
)

.

Moreover, for every λ in the spectrum of Aσ there exists at least one eigenvector.

Proof. The result follows directly from the representation (12) once we determine the constants ρ0, j0 by
(13) and use the bound from Lemma 7.

If λ is in the spectrum of Aσ, then there exists an element in the kernel of M(σ, λ) which yields an
eigenvector.

We now look at the asymptotic form of M as |ℑλ| → ∞ over a finite range of ℜλ.
Lemma 9. Fix a bounded interval I ∈ R and σ ∈ L∞(T), then

M(σ, λ) →





1− cosh
(

λ
(

2π + ‖σ‖1

2λ

))

sinh
(

λ
(

2π + ‖σ‖1

2λ

))

sinh
(

λ
(

2π + ‖σ‖1

2λ

))

1− cosh
(

λ
(

2π + ‖σ‖1

2λ

))





uniformly over ℜλ ∈ I as |ℑλ| → ∞.

This matches [10, Theorem 5.1] where the result has been proven with explicit error bounds by a series
solution. For being self-contained, we give another shorter proof.

Proof. The idea is like in the proof of the Riemann-Lebesgue lemma that we can approximate σ by a piecewise
constant function σ̃, i.e. there exists x0 = 0 < x1 < x2 < · · · < xK = 2π and σ1, σ2, . . . , σK such that

σ̃(y) = σj ∀y ∈ [xj−1, xj).

On each constant part we find the explicit solution

Sxj−1→xj

σ̃,λ =





cosh
(

(xj − xj−1)
√

λ(λ + σj)
)

−λ+σj

λ
sinh

(

(xj − xj−1)
√

λ(λ + σj)
)

− λ
λ+σj

sinh
(

(xj − xj−1)
√

λ(λ+ σj)
)

cosh
(

(xj − xj−1)
√

λ(λ+ σj)
)
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and for |ℑλ| → ∞ this is converging uniformly to

S̃j :=





cosh
(

λ
(

(xj − xj−1) +
(xj−xj−1)σj

2λ

))

− sinh
(

λ
(

(xj − xj−1) +
(xj−xj−1)σj

2λ

))

− sinh
(

λ
(

(xj − xj−1) +
(xj−xj−1)σj

2λ

))

cosh
(

λ
(

(xj − xj−1) +
(xj−xj−1)σj

2λ

))



 .

By the group property of the solution operator we find

S0→2π
σ̃,λ = Sxj−1→2π

σ̃,λ ◦ Sxj−2→xj−1

σ̃,λ ◦ · · · ◦ Sx0→x1

σ̃,λ

which therefore converges uniformly to

S̃j ◦ S̃j−1 ◦ · · · ◦ S̃1 =





cosh
(

λ
(

2π + ‖σ̃‖1

2λ

))

− sinh
(

λ
(

2π + ‖σ̃‖1

2λ

))

− sinh
(

λ
(

2π + ‖σ̃‖1

2λ

))

cosh
(

λ
(

2π + ‖σ̃‖1

2λ

))



 .

As we can approximate any function σ ∈ L∞ arbitrary well by the piecewise function in L1 the result follows
from the stability of Lemma 7.

We can now prove the remaining parts of Proposition 4.

Proof of Proposition 4 (remaining part). The asymptotic expression of M in Lemma 9 is invertible except
when λ = −‖σ‖1/(4π) + 2πin for n ∈ Z. By considering the uniform convergence over ℜλ ∈ [−‖σ‖1/(4π)−
ǫ,−‖σ‖1/(4π) + ǫ] then yields the existence of root of limiting expression for detM in the strip for |ℑλ|
large enough. As detM is analytic, Rouge’s theorem ensures then the existence of a root for detM , i.e. an
eigenvalue for the generator.

As Aσ generates a contracting semigroup so that there are no eigenvalues λ with ℜλ > 0. By the
asymptotic expression there are no eigenvalues in −‖σ‖1/(4π) + ǫ for large enough |ℑλ|. As M is analytic
there can be only finitely many eigenvalues in the remaining bounded region.

For the last part assume a > −‖σ‖1/(4π) such that there is no eigenvalue λ with ℜλ ≥ a. For ℜλ > 1 we
can use the fact that (etAσ )t is a contraction semigroup to find a uniform bound on the resolvent R(λ,Aσ).
By the asymptotic expression of Lemma 9 we have a uniform bound of ‖M(σ, λ)−1‖ for large enough |ℑλ|
and ℜλ ∈ [a, 1]. As there are no eigenvalue with real part equal to a and M is continuous, this shows

sup
ℜλ∈[−a,1]

‖M(σ, a+ ib)−1‖ < ∞.

By Lemma 8 this shows the same bound for the resolvent. As our function space L2
p is a Hilbert space, we

can thus apply Gearhart-Prüss-Greiner theorem [13, Thm 1.11 in Chapter V] to find the claimed growth
bound.

Remark 10. An alternative for using the Gearhart-Prüss-Greiner theorem is an adaptation of the theory
of positive semigroups as done in Bernard and Salvarani [5]. Cox and Zuazua [9] establish the growth bound
by studying the eigenvector system in more detail.

We close this section noting the eigenvalues for the case that σ is constant.

Lemma 11. Suppose that σ is constant. Then the spectrum in L2
p consists of

−‖σ‖1
4π

±
√

‖σ‖21
(4π)2

− n2 for n = 1, 2, 3, . . .

and

−‖σ‖1
2π

.
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Proof. In this setting the spatial Fourier modes decouple and the result follows directly by solving the
eigenvalue problem for each mode, where we exclude the stationary state as it is done in L2

p. Alternatively,
we can use the explicit expression of M for a constant σ as in the proof of Lemma 9.

For a detailed study of the decay behaviour in the case of constant σ we refer to Achleitner, Arnold, and
Signorello [2].

3 Perturbation analysis

Given some σ0 ∈ L∞ and a perturbation η ∈ L∞ we can compute how the eigenvalues of Aσ0+ǫη are changing
for varying ǫ. The eigenvalues (ρǫ, jǫ) satisfy the equation

(λǫ −Aσ0+ǫη)

(

ρǫ
jǫ

)

= 0

and formally taking the derivative with respect to ǫ yields

(λ′
ǫ −A′

σ0+ǫη)

(

ρǫ
jǫ

)

+ (λǫ −Aσ0+ǫη)

(

ρ′ǫ
j′ǫ

)

= 0.

Testing with a suitable adjoint (ρ∗ǫ , j
∗
ǫ ) yields

λ′
ǫ

〈(

ρ∗ǫ
j∗ǫ

)

,

(

ρǫ
jǫ

)〉

=

〈(

ρ∗ǫ
j∗ǫ

)

, A′
σ+ǫη

(

ρǫ
jǫ

)〉

.

Hence assuming that both inner products are non-zero we find that formally λǫ is differentiable with a
non-zero derivative and thus by varying ǫ we can change the eigenvalue and improve the spectral gap if the
spectral gap is determined by a single eigenvalue.

The key point for this perturbation analysis is to understand when the weight in front of λ′
ǫ can be

vanishing. By using the formulation with respect to the operator M(σ, λ) from Definition 6 we can show
that for a simple eigenvalue this prefactor never vanishes.

As a first step we sharpen the condition for the spectrum from Lemma 8.

Lemma 12. Suppose λ0 is seperated from the spectrum, then λ0 is determined by a simple eigenvalue if and
only if det(M,σ, λ) has a simple root.

Proof. Recall the formula (12) and (13) for the resolvent map. The inverse of M can be written as product
of det(M)−1 and the adjugate. The spectral projection Πλ0

to λ0 is given by the contour integral

∫

C

R(λ, σ)dλ,

where C is a simple curve separating λ0 from the rest of the specturum. This integral can be computed
using the Laurent series. This gives a one-dimensional image if and only if det(M) has a simple root.

Remark 13. The fact that we have only finitely many eigenvalues in any strip a ≤ ℜ(λ) ≤ b means that
every eigenvalue is separated from the rest of the spectrum.

This allows us to determine M around an eigenvector.

Lemma 14. Suppose that λ0 ∈ C is a simple eigenvalue. Then let (ρ0, j0) be in kerM(σ, λ0) and normalised
to ‖(ρ0, j0)‖2 = 1. In the basis

V1 =

(

ρ0
j0

)

and V2 =

(

−j0
ρ0

)

8



the operator M(σ, λ) takes the form

M̃(σ, λ0 + δλ) :=

(

O(δλ) b +O(δλ)
c δλ+O((δλ)2) O(δλ)

)

for small δλ and constants b, c 6= 0.

Proof. By construction V1 and V2 form an orthonormal basis. Using the solution operator S·→·
σ,λ0

from
Definition 6 we define

(

ρ1(x)
j1(x)

)

= S0→x
σ,λ0

(

ρ0
j0

)

(15)

and
(

ρ2(x)
j2(x)

)

= S0→x
σ,λ0

(

−j0
ρ0

)

. (16)

The idea of the Wronskian is to consider ρ1(x)j2(x) − ρ2(x)j1(x) and by (10) we find

d

dx

(

ρ1(x)j2(x) − ρ2(x)j1(x)
)

= 0.

As (ρ0, j0) ∈ kerM(σ, λ0) we have that (ρ1(2π), j1(2π)) = (ρ0, j0). For V2 we find with the Wronskian

〈(

ρ2(2π)
j2(2π)

)

, V2

〉

= ρ0 j2(2π)− j0 ρ2(2π) = ρ1(2π) j2(2π)− j1(2π) ρ2(2π)

= ρ1(0)j2(0)− ρ2(0)j1(0) = |ρ0|2 + |j0|2 = 1.

Hence we have found that 〈M(σ, λ0)V2, V2〉 = 0. Further recalling that V1 ∈ kerM(σ, λ0) and that M and
M̃ are analytic with respect to λ shows that

M̃(σ, λ0 + δλ) =

(

O(δλ) b+O(δλ)
c δλ+O((δλ)2) O(δλ)

)

for some constants b, c ∈ C. By Lemma 12, the determinant M(σ, λ) = M̃(σ, λ) must have a single root at
λ0 so that b, c 6= 0.

We can now prove the perturbation result.

Proof of Theorem 2. We argue by contradiction and assume that for a σ ∈ L∞ the spectral gap is determined
by the simple eigenvalue λ0.

For a perturbation η ∈ L∞, we then find for M(σ, λ) around λ0 in the form of M̃(σ, λ) defined in
Lemma 14 that

M̃(σ + ǫη, λ0 + δλ) =

(

O(ǫ, δλ) b+O(ǫ, δλ)
c δλ+ dǫ +O((ǫ, δλ)2) O(ǫ, δλ)

)

.

By Duhamel’s principle we have that

S0→x
σ+ǫη,λ0

= S0→x
σ,λ0

+

∫ x

0

Sy→x
σ,λ0

ǫη(y)

(

0 −1
0 0

)

S0→y
σ+ǫη,λ0

dy.

And the bottom left hand term of the matrix S0→2π
σ+ǫη,λ0

will be 〈S0→2π
σ+ǫη,λ0

V1, V2〉. Repeating the Wronskian
argument as in the proof of Lemma 14 shows that

d =

∫ 2π

0

η(y)〈Sx→2π
σ,λ0

(

0 −1
0 0

)

S0→x
σ,λ0

, V2〉dy =

∫ 2π

0

(

−j0
ρ0

)

· Sy→2π
σ,λ0

(

−j1(y)
0

)

dy =

∫ 2π

0

j1(y)
2 η(y) dy

9



with j1(y) from (15)1. As the eigenvalue is determined by det M̃ this shows that the eigenvalue behaves as

λ0 −
d

c
ǫ +O(ǫ2).

Hence if we can find some η such that ℜ(d/c) 6= 0, we can choose a small ǫ ∈ R so that σ + ǫη would have a
bigger spectral gap. This shows the result if σ + ǫη is a valid jump rate, i.e. non-negative.

As σ is a non-trivial jump rate, it is strictly positive in a subset I of positive measure. If j1(y)
2 has not

constant complex phase, we can always construct η ∈ L∞ with support in I such that ℜ(d/c) 6= 0 and thus
σ + ǫη yields a valid perturbation of the jump rate. In the case that λ ∈ R, the real and imaginary part
decouple and the constants d and c must be real. In the other case the system is translation invariant and
thus the spectral gap cannot determined by a simple eigenvalue.

4 Global optimum by associated Schrödinger equation

The eigenvector equation (14) can be written as the following second order equation

−∂2
xj + λ(λ+ σ)j = 0. (17)

For a fixed λ ∈ R we then consider the Hamiltonian Hσ,λ by

Hσ,λj = −∂2
xj + λ(λ+ σ(x)) j. (18)

By the construction, our generator Aσ has an eigenvector with eigenvalue λ if Hσ,λ has a zero eigenvector.
By looking at the evolution of the spectrum, similar to Cox and Zuazua [9], we can show a slowly decaying
eigenvector in the diffusive regime.

Proposition 15. Suppose that ‖σ‖1 > 4π and let

λs = −‖σ‖1
4π

+

√

(‖σ‖1
4π

)2

− 1.

Then there exists a λ ∈ [λs, 0) such that λ is an eigenvalue of the generator Aσ from (6) of the Goldstein-
Taylor system (4).

Proof. The Hamiltonian Hσ,λ from (18) is for λ ∈ R a self-adjoint operator and has real eigenvalues µ1, µ2, . . .
(chosen in increasing order) converging to ∞.

For λ = 0, the Hamiltonian Hσ,λ is just the Laplacian so that µ1 = 0 and µ2 = 1. By considering the
perturbation around λ = 0, we find for a small |λs| > ǫ > 0 that for λ = 0− ǫ that µ1 < 0 and µ2 > 0.

For the given σ find a shift φ such that

∫ 2π

0

σ(x) cos(2(x− φ)) dx = 0

and consider the two test functions
j1(x) = 1

and
j2(x) = sin(x− φ)

which are linearly independent.
For these test functions we find

〈j1, Hσ,λs
j1〉 = λ(2πλ+ 2‖σ‖1) < 0

1One could also prove c =
∫
2π

0
(j1(y)2 − ρ1(y)2) dy.
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and

〈j2, Hσ,λs
j2〉 =

2π

2

(

1 + λ

(

λ+
‖σ‖1
2π

))

≤ 0.

Hence we must have µ2(λs) ≤ 0. As µ2(0− ǫ) > 0 this means that there exist some λ ∈ [λs,−ǫ) such that
µ2 = 0 and by the previous discussion this means that there exist an eigenvalue for the generator Aσ.

We can now conclude that the constant σ = 2 yields the fastest decay rate.

Proof of Theorem 3. By Lemma 11 the choice σ = 2 yields the spectral gap 1.
For another σ with ‖σ‖1 ≤ 4π, the bound from the velocity relaxation in Proposition 4 shows that the

spectral gap is not bigger.
For another σ with ‖σ‖1 > 4π, we can apply Proposition 15 to show that the spectral gap needs to be

worse than the constant case σ = 2.
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