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Abstract The Continuous Spontaneous Localisation (CSL)
theory in the cosmological context is subject to uncertainties
related to the choice of the collapse operator. In this paper,
we constrain its form based on generic arguments. We show
that, if the collapse operator is even in the field variables, it
is unable to induce the collapse of the wavefunction. Instead,
if it is odd, we find that only linear operators are such that
the outcomes are distributed according to Gaussian statis-
tics, as required by measurements of the cosmic microwave
background. We discuss implications of these results for pre-
viously proposed collapse operators. We conclude that the
cosmological CSL collapse operator should be linear in the
field variables.

1 Introduction

How a specific outcome is obtained when measuring a system
placed in a quantum superposition [1] constitutes the mea-
surement problem of quantum mechanics. In the cosmolog-
ical context, its manifestation is particularly “exacerbated”
[2], since it is clear that no “exterior” observer can perform a
measurement of the entire universe at early time that would
make the wavefunction of cosmological structures collapse.
This implies that the Copenhagen interpretation [3,4] cannot
be used in this situation, and calls for alternative “interpreta-
tions”, or rather formulations, of quantum mechanics.

One possibility is to consider that the standard quantum
theory is only an approximation of a more general frame-
work. Dynamical collapse models [1,5–8] follow this reason-
ing and introduce a non-linear and stochastic modification to
the Schrödinger equation. The most refined version of these

a e-mail: jmartin@iap.fr
b e-mail: vincent.vennin@apc.in2p3.fr (corresponding author)

models is the Continuous Spontaneous Localisation (CSL)
theory [7], in which the modified Schrödinger equation reads

d |�〉
dη

=
{
−i
∫

dxĤ(x) +
√

γ

m0

∫
dx[Ĉ(x) − 〈Ĉ(x)〉]ξ(η, x)

− γ

2m2
0

∫
dx d y[Ĉ(x) − 〈Ĉ(x)〉]

× G(x − y)[Ĉ( y) − 〈Ĉ( y)〉]
}

|�〉,

(1.1)

where ξ(η, x) is a white Gaussian noise with two-point cor-
relation function given by

E
[
ξ(η, x) ξ(η′, y)

] = G(x − y)δ(η − η′). (1.2)

In these expressions, G(x− y) is a Gaussian smearing func-
tion over the distance rc, which is the first free parameter of
the theory,

G(x − y) = e
− |x− y|2

4r2
c(

4πr2
c

)3/2 . (1.3)

In Eq. (1.1), |�〉 is the wavefunction of the system under con-
sideration. In standard quantum mechanics, it evolves with
the local Hamiltonian Ĥ = ∫

dxĤ(x), which gives rise to
the first term in the right-hand side of Eq. (1.1). The two
additional terms are controlled by γ , which is the second
free parameter of the theory, and m0, which is a reference
mass (usually the mass of a nucleon). They involve a col-
lapse operator Ĉ(x) that we keep generic for the moment, and
Eq. (1.1) induces the collapse of the wavefunction towards
one of the eigenstates of this operator. Which eigenstate is
selected depends on the realisation of the stochastic process
ξ(η, x).

Owing to the presence of 〈Ĉ(x)〉 = 〈�|Ĉ(x)|�〉, the
modified Schrödinger equation is non linear in |�〉, which
enables the breakdown of quantum superpositions. The
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stochasticity is then necessary to prevent faster-than-light
signalling [1], so the structure of the modification is essen-
tially unique. It is also worth stressing out that it is naturally
endowed with an amplification mechanism, which allows
microscopic systems to be described by the standard rules
of quantum mechanics to a good accuracy, while preventing
macroscopic systems from being found in a superposition of
macroscopically distinct configurations.

Since macroscopic objects are always found to be localised
in space, it can be argued [8] that a natural choice for the col-
lapse operator is the mass density operator

Ĉ(x) =
∑
i

mi â
†
i (x)âi (x), (1.4)

where â†
i (x) and âi (x) are the creation and annihilation oper-

ators of a particle of type i , which has mass mi , at location x.
One may be concerned with the fact that in practice, one can
measure other microscopic properties than the spatial posi-
tion of particles (say their spin). The argument is however
that even in such situations, ultimately, one only observes
the spatial position of macroscopic objects (say the direction
of an arrow in a detector, the position of a dot on a screen,
etc. ).

With such a choice for the collapse operator, the two
parameters γ and rc have been constrained in various lab-
oratory experiments. The strongest bounds so far come
from X -ray spontaneous emission [9], force noise measure-
ments on ultracold cantilevers [10], and gravitational-wave
interferometers [11]. These constraints leave the region of
parameter space around rc ∼ 10−8−10−4 m and λ ∼
10−18−10−10 s−1 viable, where λ ≡ γ /(8π3/2r3

c ) is known
as the collapse rate.

Since the typical physical scales involved in cosmology
are many orders of magnitude different from those encoun-
tered in the lab (in the early universe, the relevant energy
scales can be as high as ∼ 1015 GeV, corresponding to den-
sities of ∼ 1080 g×cm−3), cosmological observations, which
have reached an exquisite level of precision e.g. in mea-
surements of the Cosmic Microwave Background (CMB)
anisotropies [12], may lead to competitive constraints. More-
over, as argued above, it is essential to understand how cos-
mological structures, born from quantum fluctuations in the
early universe, collapse into a specific configuration before
the CMB is emitted. For these two reasons, it is interesting
to try and apply the CSL theory to primordial cosmological
fluctuations.

When doing so, one however faces the issue that while
CSL is designed as a non-relativistic theory for quantum
particles, cosmological fluctuations are to be described by a
quantum scalar field v̂(x) [13,14], evolving on an expanding
(hence curved) geometrical background. Nonetheless, since
this background is statistically homogeneous and isotropic,

each Fourier mode of this field evolves independently in the
standard theory, and follows the equation of a single-particle
quantum parametric oscillator. In spite of this simplification,
the issue of which collapse operator needs to be used in this
context still remains and several choices are a priori possible.

In Ref. [15], see also Refs. [16,17], it was proposed that
a natural extension of the notion of mass density to fields is
given by the energy density ρ,

Ĉ(x) = ρ̂(x). (1.5)

Since v̂(x) only self interacts gravitationally, “energy” is
indeed to be understood as “mass energy” here. In General
Relativity, the energy density however depends on the choice
of hypersurface on which it is measured. It was found that
except for the special case where the energy density is eval-
uated in the flat threading, or unless inflation proceeds at
very low energy, for the values of λ and rc mentioned above,
the CSL corrections are incompatible with current measure-
ments of the CMB. This means that when embedding CSL
in a more fundamental, relativistic theory, a mechanism that
selects out the flat threading must emerge, or a strong run-
ning of the effective value of λ and rc with the energy scale
should be obtained; or some other specific mechanism must
be found. In any case, this shows the potential of cosmology
to guide and constrain possible relativistic generalisations of
the CSL theory, which is the main conclusion of Ref. [15].

A fundamental difference between Eqs. (1.4) and (1.5) is
that, while Eq. (1.4) is quadratic in the creation and annihila-
tion operators, the proposal (1.5) also contains linear contri-
butions. The reason is that the energy density can be expanded
as

ρ̂(x) = ρ̄ + δ̂ρ (x) , (1.6)

where ρ̄ is the homogeneous, classical component of the
energy density, which gives a vanishing contribution in the
additional terms of Eq. (1.1). The fluctuation in the energy
density, δ̂ρ(x), is a (non-linear) function of v̂(x) and its con-
jugated momentum p̂(x), hence of the ladder operators. In
cosmological perturbation theory, the dominant contribution
however comes from the linear terms, which differs from
Eq. (1.4) where such linear contributions are absent.

This property was viewed by Ref. [18] as something which
makes the choice of the energy density unrealistic and this
motivated Ref. [18] to propose another collapse operator
when using CSL in the cosmological context, namely the
free Hamiltonian density of the system,

Ĉ(x) = Ĥ(x). (1.7)

It was then argued that, with this choice, the corrections to the
power spectrum of the fluctuations are tiny, and that no com-
petitive constraints can be obtained from cosmology. In other
words, the strong cosmological constraints on CSL found in
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Refs. [16,17] would just be artefacts of an unnatural choice
for the collapse operator.

The goal of this paper is to further discuss the choice of
the CSL collapse operator in a cosmological context. In the
course of this general study, we will further investigate the
possibility to consider the Hamiltonian density as the col-
lapse operator, and we will re-examine whether it succeeds
in making the wavefunction of cosmological perturbations
collapse towards the state observed in the CMB. The arti-
cle is organised as follows. In Sect. 2, we show how the CSL
Schrödinger equation (1.1) can be employed to describe infla-
tionary fluctuations. In Sect. 2.1, we write this equation in
Fourier space. In Sect. 2.2, we introduce in more detail the
proposal made in Ref. [18], and compare it with the one of
Refs. [15–17]. In Sect. 3, we turn to the calculation of the
power spectrum of cosmological fluctuations. In Sect. 3.1, we
discuss how the cosmological power spectrum can be defined
in CSL. In Sect. 3.2, we introduce the quantity denoted R(k),
which allows us to track whether or not the wavefunction has
actually collapsed. In Sect. 3.3, we discuss which collapse
operators are able, at the same time, to make the wavefunction
collapse and lead to a power spectrum that is in agreement
with cosmological data. In particular, we show that the col-
lapse operator of Ref. [18] is unable to make the wavefunc-
tion of cosmological structures collapse, so it cannot explain
the emergence of cosmological structures in the early uni-
verse. This is due to the invariance of the collapse operator
under sign flipping of the field variables, and implies that
the power spectrum Pv(k) strictly vanishes in this model. In
Sect. 4, we show how higher correlation functions, namely
non-Gaussianity, can help us to further constrain the form
of the collapse operator. In this section, a full solution of
the modified Schrödinger equation is presented in the case
where the collapse operator is a linear function of the field
variables, and where all parameters of the wavefunction can
be expressed in terms of the solutions to a single ordinary,
linear differential equation. Finally, in Sect. 5, we present our
conclusions.

2 CSL and inflation

In this section, we first explain how the CSL Schrödinger
equation (1.1), written in real space, can be written in Fourier
space. We compare the approaches of Refs. [15,18] and
check that they use the same stochastic Schrödinger equa-
tion, thus confirming that the only difference between those
two articles lies in the choice of the collapse operator, see
Eqs. (1.5) and (1.7) respectively. In the context of cosmol-
ogy, we then show that an important difference between
the two proposals is that, while Eq. (1.5) leaves different
Fourier modes uncoupled, Eq. (1.7) leads to explicit mode
coupling.

2.1 The modified Schrödinger equation

The modified Schrödinger equation (1.1) applies to the
wavefunctional of the real scalar field v(x), the so-called
Mukhanov–Sasaki variable, which we denote �[v(x)]. This
can also be written as a wavefunctional of all Fourier modes
of the field v(x), i.e.

�
[
{v(x)} ; x ∈ R

3
]

= �
[{

vsk(η)
} ; k ∈ R

3+, s ∈ {R, I}
]
,

(2.1)

where s labels the real and imaginary parts of vk(η). Let
us notice that Ref. [18] considers the curvature perturba-
tion Rk rather than the Mukhanov–Sasaki variable. Both
approaches are in fact similar since these two quantities only
differ by a background quantity, namely Rk = vk/z, with
z = aMPl

√
2ε1 , a being the cosmological scale factor, ε1 the

first slow-roll parameter and MPl the reduced Planck mass.
In Fourier space, the CSL equation (1.1) reads

d |�〉
dη

=
∫
R3

dk
{
−iĤ(k) +

√
γ

m0

[
Ĉ†
k −

〈
Ĉ†
k

〉]
ξk(η)

− γ

2m2
0

[
Ĉ†
k −

〈
Ĉ†
k

〉]
(2π)3/2Gk

[
Ĉk −

〈
Ĉk

〉]}
|�〉 .

(2.2)

In this equation, Ĉk denotes the Fourier transform of the
collapse operator, Ĉ(x) = (2π)−3/2

∫
dk Ĉk e−ik·x , while

ξk(η) and Gk are the Fourier transforms of the noise and the
smearing function, respectively. The two-point correlation
function of the noise can be expressed as

E
[
ξk(η) ξ∗

k′(η′)
]

= 4πδ(η − η′)δ(k − k′)
∫ +∞

0
dr r2G(r) sinc(kr). (2.3)

If one chooses a Gaussian smearing function, as done in
Eq. (1.3), then Gk = (2π)−3/2e−k2r2

c [and the factor (2π)3/2

appearing in front ofGk in Eq. (2.2) cancels out] and the noise
correlation function becomes

E
[
ξk(η) ξ∗

k′(η′)
] = e−k2 r2

c δ(η − η′)δ(k − k′). (2.4)

These are the equations used in Ref. [18]. It is also possible
to implement the smearing directly in the collapse operator
rather than introducing a function G(x − y) (or Gk) in the
CSL equation. This was the route chosen in Ref. [15]. Indeed,

one can define a new collapse operator ˆ̄Ck ≡ e−k2r2
c /2Ĉk

and a new noise, ξ̄k(η) ≡ ek
2r2

c /2ξk(η) and, with these new
definitions, the CSL equation (1.1) takes the form

d |�〉
dη

=
∫
R3

dk
{
−iĤ(k) +

√
γ

m0

[ ˆ̄C†
k −

〈 ˆ̄C†
k

〉]
ξ̄k(η)

− γ

2m2
0

[ ˆ̄C†
k −

〈 ˆ̄C†
k

〉] [ ˆ̄Ck −
〈 ˆ̄Ck

〉]}
|�〉 ,

(2.5)
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with

E
[
ξ̄k(η) ξ̄∗

k′(η′)
] = δ(η − η′)δ(k − k′). (2.6)

This is the CSL equation used in Ref. [15] and we con-
clude that it is strictly equivalent with the one employed
in Ref. [18]. Notice that the smearing procedure adopted
in Ref. [15], which represents an essential part of what the
CSL equation is about, was criticised in Refs. [19,20] (those
remarks were answered in Refs. [16,17]). The above result
shows that these criticisms would also apply to Ref. [18]
since the smearing procedures in Refs. [15,18] are in fact
identical. The only difference between those two articles is
therefore the choice of the collapse operator, a question on
which we focus in the rest of this paper.

Let us also discuss the quantity Ĥ(k) appearing in
Eqs. (2.2) and (2.5). This quantity is the Hamiltonian when
expressed in terms of the Fourier transform of the field vari-
ables. At leading order in cosmological perturbation theory,
the Hamiltonian is quadratic in the field variables, and in
general it can be written in matricial form as

Ĥ =
∫

dx Ĥ(x) = 1

2

∫
dx ẑT

(x)H(η) ẑ(x), (2.7)

where z is a vector containing the Mukhanov–Sasaki field and
its conjugated momentum, and H is a time-dependent two-
by-two matrix, which involves functions of the background
geometry and gradient operators. This gives rise to

Ĥ =
∫
R3

dk Ĥ(k) =
∫
R3+

dk
∑
s=R,I

Ĥs(k), (2.8)

with

ĤR(k) = �e [ ẑT
(k)]H(η)�e [ ẑ(k)] (2.9)

and similarly for ĤI(k), where the gradients in H are
replaced by the relevant functions of k [so, strictly speak-
ing, one should introduce different notations for H(η) in
Eqs. (2.7) and (2.9)]. The operator Ĥ is thus separable in
Fourier space, since it can be written as a sum of opera-
tors acting in each Fourier subspace separately. It gives rise
to the standard Hamiltonian evolution of the system, which
does not mix different wavenumbers.

2.2 The collapse operator

The other quantity of interest appearing in Eq. (2.2) is Ĉk (or
ˆ̄Ck), which, as already mentioned, is the Fourier transform

of Ĉ(x), the collapse operator. In the context of cosmology
and cosmic inflation, the main discussion has been about
the choice of this operator and different possibilities have
recently been discussed in the literature [15,18–20]. In Ref.
[15], it was proposed that a natural choice is the energy den-
sity, see Eq. (1.5). Then, as argued above, at leading order in

cosmological perturbation theory, this implies that the col-
lapse operator is linear in field variables and can be written
as

ˆ̄Ck = αk(η)v̂k + βk(η) p̂k. (2.10)

Let us notice that the same formula could have been writ-
ten for Ĉ(k) depending of whether the smearing exponen-
tial e−k2r2

c is included or not in the coefficients αk(η) and
βk(η). In any case, this means that the additional terms in the
Schrödinger equation are separable in Fourier space since
they can be written as a sum of operators acting in each
Fourier subspace separately. Therefore, even in the presence
of the additional CSL terms, the wavefunction remains fac-
torisable,

�
[
{v(x)} ; x ∈ R

3
]

=
∏

k∈R3+;s=R,I

�s
k(v

s
k), (2.11)

if its initial state is so (which is the case for the Bunch–
Davies vacuum [21] used in cosmology). This is why, in the
approach of Ref. [15], mode coupling can only appear at next-
to-leading order in perturbation theory (i.e. from the contri-
bution to the energy density that is quadratic in field variables,
as well as the – standard – contribution to the free Hamilto-
nian that is cubic in field variables). As a result, Eq. (2.5) can
be re-expressed as a collection of equations for each Fourier
mode, namely

d
∣∣�s

k

〉
dη

=
{
−iĤs(k) +

√
γ

m0

[ ˆ̄Cs
k −

〈 ˆ̄Cs
k

〉]
ξ̄ sk(η)

− γ

2m2
0

[ ˆ̄Cs
k −

〈 ˆ̄Cs
k

〉]2
} ∣∣�s

k

〉
,

(2.12)

which is exactly Eq. (18) of Ref. [15].1

As mentioned above, after Ref. [15], discussions about the
choice of the collapse operators were published. In particular,
in Refs. [19,20], it was argued that more complicated collapse
operators, such as Tμ

μ , (TμνTμν)1/2, . . . (where Tμν is the
stress-energy tensor), are also possible and could potentially
modify the conclusions of Ref. [15]. However, it was shown
in Ref. [17] that all these alternatives reduce to Eq. (2.10) with
slight modifications of order one in the coefficients αk and
βk, hence they cannot substantially modify the conclusions
based on the choice (2.10). This may not come as a surprise
since the matrix element of these operators are all of the order
of the energy density during inflation.

More recently, Ref. [18] followed a similar line of rea-
soning and also proposed yet another collapse operator cor-
responding to the choice (1.7). This choice implies that

1 Since the wavenumbers k in Eqs. (2.2), (2.5) and (2.12) are physi-
cal wavenumbers, in an expanding universe, additional powers of the
scale factor a(η) appear in the different terms of those equations when
expressed in terms of comoving wavenumbers, as done in Ref. [15].
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Ĉk = Ĥk, a quantity which should not be confused with
Ĥ(k), and which, under the quadratic assumption (2.7), reads

Ĥk = 1

2
(2π)−3/2

∫
R3

dq ẑT
(q)H(η) ẑ(k − q). (2.13)

This operator is manifestly not separable in Fourier space,
and leads to mode coupling. It implies that the evolution
of different Fourier modes is not independent in the CSL
dynamics, and that the quantum state can no longer be fac-
torised according to Eq. (2.11). In Ref. [18], it is argued that
this property is what makes this choice more natural and bet-
ter justified as it would be a way “to retain the characteristic
traits” of CSL when generalised to a cosmological situation.
In other words, because the collapse operator is usually taken
to be quadratic in the creation and annihilation operators, see
Eq. (1.4), this should also be the case when dealing with cos-
mic inflation, and this is not what is done in Ref. [15]. We
will further examine this claim below, but in order to avoid
possible confusion, let us stress already that the form of the
collapse operator has of course nothing to do with the fact
that CSL is a non-linear theory, which is required to let it
break the superposition principle. Indeed, even if the col-
lapse operator is linear in the field variables, the additional
CSL terms are always non linear in the wavefunction, which
is what matters.

One can of course discourse about the advantages and dis-
advantages of linear and non-linear collapse operators and
which ones are more natural. The crucial test is however to
determine whether or not they can lead to theories that are
phenomenologically acceptable, i.e. whether or not they can
meet two requirements: (i) they must make the wavefunc-
tion collapse, so as to explain the emergence of the classical
structures we observe; and (ii) the statistical distribution of
the collapsed states must be in agreement with observations.
This is the case if it follows the Born rule since the “standard”
calculation is known to provide an excellent fit to the CMB
data.

In Ref. [18], it is claimed that the proposal (1.7) meets
the second requirement (while the first one is not explicitly
examined), since the CSL terms only provide tiny corrections
to the predicted power spectrum, making the CMB unable
to provide competitive constraints on CSL in that case. In
the following sections, we will argue that, in fact, neither
requirement is met by the choice (1.7), making the theory
unsuitable for cosmology.

3 Power spectrum

3.1 How to define the power spectrum in CSL?

Let us consider a given wavenumber k, for which vsk is
being measured on the CMB temperature and polarisation

anisotropies maps. Along a given realisation of the stochas-
tic equation (2.2), the quantum expectation value of vsk,
〈v̂sk 〉, and the quantum expectation value of its variance,

〈(v̂sk−〈v̂sk〉)2〉, evolve in a stochastic way.2 In the limit where
the state is fully collapsed, the variance of the wavefunction
vanishes, and the (squared) wavefunction becomes a Dirac
distribution centered on 〈v̂sk〉. It is important to emphasise
that, in the standard (i.e. non-CSL) picture, the quantity 〈v̂sk〉
remains zero. On the contrary, in CSL, due to the stochas-
tic evolution of the wavefunction, we expect each realisa-
tion to acquire a non-vanishing 〈v̂sk〉. Once the wavefunc-
tion has collapsed around 〈v̂sk〉, the quantity that is measured
can be nothing else than 〈v̂sk〉, so observations give access to
the stochastic distribution associated to the first moment of
the wavefunction. In particular, the power spectrum, i.e. the
two-point correlation function observed in the CMB map, is
defined as the second moment of that distribution, namely

Pv(k) ∝ E

(〈
v̂sk

〉2)− E
2 (〈v̂sk〉) . (3.1)

As will be shown below explicitly, because of the invariance
of the averaged theory under sign flipping of the field vari-
ables, one has E

(〈
v̂sk

〉) = 0 and, as a consequence, the power
spectrum reduces to

Pv(k) ∝ E

(〈
v̂sk

〉2)
. (3.2)

This stochastic expectation value then needs to be compared
with the two-point function of cosmological fluctuations
measured on the CMB map [22,23], where the identifica-
tion between stochastic and spatial averages can be made in
the ergodic limit, the deviation from which quantifies cosmic
variance [24].

Let us note that, in quantum mechanics, observables can
be attached to collapsed systems only. In the Copenhagen
interpretation, this is because the measurement process itself
does not leave the state uncollapsed, while in CSL, this is
because the collapse is dynamically realised before the mea-
surement is complete. As a consequence, the power spectrum
is unambiguously defined for collapsed states only. With the
definition we have adopted, it is interesting to notice that, if
γ → 0 (or, equivalently, λ → 0), that is to say in the absence
of the CSL extra terms, the power spectrum necessarily van-
ishes, namely

lim
γ→0

Pv(k) = 0, (3.3)

because, as mentioned before, 〈v̂sk〉 remains zero in that case.
This is in agreement with the idea that no structure is formed

2 If the collapse operator is linear in the field variables, as in Eq. (2.10),
the variance turns out to follow a deterministic equation of motion, see
Eq. (4.10) below, and only the first moment is stochastic.
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Fig. 1 In the framework of CSL, the wave-function of cosmological
perturbations, �(vsk), is a stochastic quantity. As a consequence, its
quantum mean value 〈v̂sk〉 and quantum dispersion 〈(v̂sk − 〈v̂sk〉)2〉 are
random variables. In the left panel, we have sketched the stochastic
“trajectories” of this wave-function for three different realisations. At
the final time, the dispersion of the means, E[〈v̂sk〉2] (the stochastic
average of the means vanishes E[〈v̂sk〉] = 0) is not small compared to

the width of the wave-functions, E[〈(v̂sk − 〈v̂sk〉)2〉], and our collapse
criterion is not satisfied. In this case, the different wave-functions rep-
resenting different realisations are not sufficiently separated to account
for the emergence of different outcomes. In the right panel, on the con-
trary, our criterion is satisfied and different realisations do correspond
to well-separated outcomes. Figure reproduced from Ref. [17]

(hence the power spectrum vanishes) in the absence of col-
lapse, and this is the reason why this way of defining the
power spectrum seems intuitive. However, for practical pur-
poses, any other “definition” of the power spectrum that
matches Eq. (3.1) in the collapsed limit, but that may dif-
fer when evaluated on uncollapsed states, can a priori also be
used. This is for instance the case for the quantity E

(〈
v̂sk

2
〉)

,
that is interpreted as the power spectrum probed by CMB
experiments in Ref. [18]. In the fully collapsed state, when
measuring v̂sk

2, one necessarily obtains
〈
v̂sk

〉2, hence this coin-
cides with Eq. (3.2).

This quantity is perturbatively calculated in Ref. [18], see
the considerations around Eqs. (17)–(18) and Eqs. (94)–(95),
and it is found that, if the collapse operator is taken to be the
free Hamiltonian (1.7), then the corresponding CSL correc-
tions are negligible. This leads Ref. [18] to conclude that the
predictions of CSL are close to that of the standard Copen-
hagen version of the theory. Let us stress that for this to be
correct, one first needs to check that the wavefunction has
indeed collapsed, otherwise the power spectrum is simply
not defined. The validity of the conclusion made in Ref. [18]
is therefore subject to the efficacy of the collapse, which is
not discussed in that reference, but that we now study.

3.2 Collapse of the wavefunction

We have seen before that, in order to properly describe infla-
tionary perturbations, CSL must be such that the power spec-
trum (and higher correlation functions, see Sect. 4 below) is in
agreement with observations, and such that the wavefunction
collapses. In this section, we study this second requirement.

In practice, collapse is never fully achieved (one never
reaches a Dirac wavefunction exactly), and must be decided
upon a certain criterion that can be introduced as follows. Let
us consider two realisations of the CSL equation (2.2), that
we label “1” and “2”. For the two states they evolve into to be
properly resolved, the distance between their means should
be larger than the sum of their standard deviation,

∣∣〈v̂sk〉1 − 〈
v̂sk

〉
2

∣∣ �
√〈

(v̂sk − 〈v̂sk〉)2
〉
1 +

√〈
(v̂sk − 〈v̂sk〉)2

〉
2 .

(3.4)

The situation is sketched in Fig. 1 (for display convenience,
the case without mode coupling is depicted, where each com-
ponent �s

k of Eq. (2.11) can be treated separately, but the
argument is generic). Whether Eq. (3.4) is satisfied or not
depends on the pair of trajectories one is considering. One
may however require that it is satisfied for most pairs of
realisations. The typical squared distance between the first
moments is given by the stochastic average of the distance
away from the mean,E{[〈v̂sk〉 − E(〈v̂sk〉)

]2}, while the typical
second moment is given by E[〈(v̂sk−〈v̂sk〉)2〉]. At initial time,
one has 〈v̂sk〉 = 0, so E(〈v̂sk〉) = 0 at any time if the averaged
theory is invariant by flipping the sign of v(x) [which is the
case when using both Eq. (1.5) or Eq. (1.7)]. In that case,
the condition that two typical trajectories are well-resolved
reads

R(k) ≡
E

[〈(
v̂sk − 〈

v̂sk

〉)2〉]

E

(〈
v̂sk

〉2) � 1. (3.5)

In the limit where the CSL terms are absent, it is clear that
the collapse cannot happen. In this case, as discussed above,
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〈
v̂sk

〉
remains zero and

lim
γ→0

R(k) = ∞. (3.6)

Let us also notice that R(k) can be rewritten asE
[〈
v̂sk

2
〉]

/Pv(k)−
1 and that, upon inverting this formula, one can obtain an
expression of the power spectrum in terms of the quantity
R(k), namely

Pv(k) = E
[〈
v̂sk

2
〉]

1 + R(k)
, (3.7)

which can be interpreted as follows. In the “standard” picture,
i.e. when the Copenhagen interpretation is used together with
the standard Schrödinger equation, the power spectrum is
simply given by the Born rule

Pv(k)|Copenhagen =
〈
v̂sk

2
〉
γ=0

. (3.8)

As a consequence, the “standard” result is recovered if (i) the
state is collapsed, R(k) � 1, and (ii)

〈
v̂sk

2
〉
is not substantially

modified compared to the situation without CSL corrections,〈
v̂sk

2
〉 � 〈

v̂sk
2
〉
γ�0. The calculation of Ref. [18] shows that,

when the collapse operator is the Hamiltonian density, the
second condition is satisfied, but below, we will show that
the first one is not.

3.3 Which collapse operator?

Having established the two conditions needed in order to have
a convincing explanation for the emergence of structures in
our universe, we now examine which types of collapse opera-
tor can satisfy them. We have seen before that this requires the
calculation of two quantities, namely E(

〈
v̂sk

〉2
) and E

(〈
v̂sk

2
〉)

.

Let us start with the quantity E
(〈
v̂sk

2
〉)

. From the CSL
Schrödinger equation, understood in the Itô formalism, it is
shown in Ref. [15] that one can derive a Lindblad equation for
the statistical average of the density matrix. In turn, this gives
rise to a differential equation for the stochastic expectation
value of the quantum mean of any operator Ô ,E(〈Ô〉). Using
this method, it is demonstrated in Ref. [15] that E

(〈
v̂sk

2
〉)

obeys a third-order linear differential equation. This equation
can then be solved perturbatively and this leads to a solution
of the form

E

(〈
v̂sk

2
〉)

=
〈
v̂sk

2
〉
γ=0

+ γ δ
〈
v̂sk

2
〉
CSL

+ O(γ 2). (3.9)

In Ref. [18], the same strategy is used although the pertur-
bative method appears to be different than the one used in
Ref. [15].

Notice that this method does not allow us to calculate
quantities such as E(〈Ô〉n) for n �= 1. This is why the
calculation of E(〈v̂sk〉2) must proceed differently. For any

quantum operator Ô , an equation of motion for its quan-
tum expectation value can be obtained by differentiating
〈Ô〉 = 〈�|Ô|�〉 and using the CSL Schrödinger equa-
tion (2.2). One obtains

d
〈
Ô
〉

dη
=
∫
R3+

d3k
(
−2i

〈[
Ô, Ĥ(k)

]〉

+ γ

m0
ξk(η)

〈{
Ô, Ĉ†

k −
〈
Ĉ†
k

〉}〉

+ γ

m0
ξ∗
k (η)

〈{
Ô, Ĉk −

〈
Ĉk

〉}〉

− γ

2m2
0

(2π)3/2Gk

〈{
Ô,
[
Ĉk −

〈
Ĉk

〉] [
Ĉ†
k −

〈
Ĉ†
k

〉]

+
[
Ĉ†
k −

〈
Ĉ†
k

〉] [
Ĉk −

〈
Ĉk

〉]}〉)
. (3.10)

In this expression [, ] represents the commutator and {, } the
anticommutator. Let us now consider the case where Ô only
involves odd powers of the field space variables in Fourier
space, i.e.

Ô =
∑
n,m

αn,m v̂k1 · · · v̂kn p̂q1
· · · p̂qm with n + m odd,

(3.11)

(the operators can always be re-ordered in that way upon
using canonical commutation relations), where αn,m are
unspecified coefficients. In that case, if Ĉk = Ĥk, the right-
hand side of Eq. (3.10) only involves terms proportional
to expectation values of odd powers of the field variables.
Indeed, since the Hamiltonian is quadratic in the field vari-
ables, the first term is of order n + m, the second term has
contributions of order n + m + 2 and n + m times terms of
order 2, and the last term has contributions of order n+m+4,
n +m + 2 times terms of order 2, and n +m times terms of
order 2. One should then note that since the initial state is set
to the Bunch–Davies vacuum, it is Gaussian and separable [in
the sense of Eq. (2.11)]. As a consequence, all odd moments
computed on the initial state vanish. Since odd moments are
only sourced by odd moments, we conclude that they van-
ish at any time, 〈Ô〉 = 0. This property was also noticed in
Ref. [18], see the remark after Eq. (92) “However, for a col-
lapse operator which is quadratic in the perturbations, and
hence in the creation and annihilation operators, one has
that the CSL contribution to 〈R̂〉 is zero, as one can easily
deduce from explicit substitution in Eq. (87)”. Concretely, if
one takes Ô = v̂sk, then one obtains
〈
v̂sk

〉 = 0. (3.12)

It follows that the two-point correlation (and, in fact, all sta-
tistical moments, see Sect. 4) of 〈v̂sk〉 vanish. In other words,
since all realisations of the stochastic Schrödinger equation
remain centred around zero, the state never collapses and the
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power spectrum vanishes,

Pv(k) = 0. (3.13)

Another implication of the previous considerations is that,
since the state never collapses, one has

R(k) = ∞, (3.14)

in obvious contradiction with the requirement R � 1.
This result can be interpreted as a direct consequence

of a parity symmetry enjoyed by the free Hamiltonian,
which is invariant under the transformation v(x) → −v(x)

[which implies p(x) → −p(x)]. In the standard quantum-

mechanical theory, this guarantees that the wavefunctional
remains even, �[v] = �[−v]. If the collapse operator is
the free Hamiltonian, it also enjoys the symmetry, hence the
state is still invariant under flipping the sign of v, and can thus
only be centred on 〈v〉 = 0. A successful collapse can only
be achieved by a collapse operator that breaks some of the
symmetries enjoyed by the quantum state in the free theory
[25].

Crucially, it is easy to realise that the above considera-
tions go well beyond the choice Ĉk = Ĥk and are in fact
true for any collapse operator enjoying the parity symmetry,
namely containing only even powers of field variables. As a
consequence, we have in fact shown that the state does not
collapse (and the power spectrum vanishes) for all collapse
operators belonging to this category, a far-fetching conclu-
sion indeed since this allows us to exclude a large class of
collapse operators.

Let us now consider the situation where the collapse oper-
ator contains odd powers of field variables [as in the case for
the energy density (1.5)]. Then the second term in the right-
hand side of Eq. (3.10), i.e. the one proportional to ξk(η),
involves expectation values of even powers while the third
term involves only odd powers. As a consequence, although,
on average, the symmetry is restored, i.e. E(〈v̂sk〉) = 0, it is
not verified by each stochastic realisation of the wavefunction
individually, which guarantees that E(〈v̂sk〉2) �= 0, that is to
say a non-vanishing power spectrum. This also implies that
the quantity R(k) is no longer divergent. This is why having
odd powers in the collapse operator is necessary. However,

this is clearly not sufficient: one still needs to check that the
collapse operator leads to a power spectrum that is compat-
ible with the data and to a quantity R(k) that is sufficient
small. But, at least, we are guaranteed to have Pv(k) �= 0
and R(k) �= ∞.

Among the a priori possible (odd) collapse operators is
the energy density (1.5), which was studied in Ref. [15].
In this article, it was shown that the collapse criterion (3.5)
is always satisfied for the values of λ and rc compatible
with laboratory experiments and quoted in Sect. 1. Find-
ing a general expression of R(k) is a non trivial task, but,
under the assumption that R(k) � 1 (implying that the
limit γ → 0 cannot be taken in the expressions below), one
finds

R(k) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

1 + 3456
γ M2

Pl H2
inf

m2
0

e7�N∗(k)

+ O(γ 2
)
, if Hinfrc < e�N∗(k),

1

1 + 21792

11

γ M2
PlH

2
inf

m2
0

e14�N∗(k) (Hinfrc)
−7

+ O(γ 2
)
, if Hinfrc > e�N∗(k).

(3.15)

We see that the value of R(k)depends on whether the mode
under consideration crosses out rc during inflation or during
the subsequent radiation era, i.e. whether rc < e�N∗(k)/Hinf

or rc > e�N∗(k)/Hinf . In these expressions, which assume
that the energy density is not evaluated in the flat thread-
ing, Hinf is the value of the Hubble parameter during infla-
tion, and �N∗(k) is the number of e-folds spent outside the
Hubble radius during inflation. It is typically of order 50 for
the scales probed in the CMB. The condition R(k) � 1
thus imposes a lower bound on γ (or λ). Using the cen-
tral value rc ∼ 10−5 m, and since inflation must proceed
before big-bang nucleosynthesis (so

√
MPlHinf > 10 MeV),

one finds that collapse always occurs if λ > 10−161 s−1,
and since laboratory systems impose λ > 10−19 s−1, it
is clear that the collapse is very effective in the early
universe.

Unfortunately, unless one makes the specific choice where
the energy density is evaluated on the flat threading, the cor-
rections to the power spectrum are too large. Indeed, as shown
in Ref. [15], one finds3

3 When the predicted power spectrum is larger than one, cosmological
perturbation theory breaks down and the result cannot be trusted. How-
ever, although the precise amplitude of the power spectrum cannot be
estimated in that case, it must be large (otherwise a perturbative result
would be obtained), which is excluded by observations. Therefore, con-
trary to what is suggested in the concluding paragraph of Ref. [18],
Eq. (3.16) can be safely used to derive an upper bound on the value of
γ (or λ).
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Pv(k) = Pv(k)|Copenhagen

1 + R(k)
×

⎧⎪⎪⎨
⎪⎪⎩

1 + 448
γ

m2
0

M2
PlH

2
infε1e�N∗(k) if Hinfrc < e�N∗(k),

1 + 35408

143

γ

m2
0

M2
PlH

2
infε1

(Hrc)9 e10�N∗(k) if Hinfrc > e�N∗(k),
(3.16)

where Pv(k)|Copenhagen denotes the “standard” result (3.8),
which we stress again is in excellent agreement with obser-
vations, and ε1 is the first slow-roll parameter. At the central
value rc ∼ 10−5 m, for the corrections to the standard result
to remain negligible, one needs to impose λ < 10−73 s−1

if inflation proceeds at Hinf = 10−5MPl, which excludes the
values in agreement with other laboratory experiments. As
already mentioned, only if the energy density is evaluated on
the flat threading can the theory be made compatible with
CMB measurements.

Let us note that those considerations assume that the val-
ues of λ and rc are the same during inflation and in labo-
ratory experiments. However, in a relativistic context, one
may expect these parameters to run with the energy at which
the experiment is being performed, and to assume different
values at the high energies at which inflation proceeds from
those constrained in laboratory setups. Such a running would
have to account for at least 54 order of magnitude in λ, which
may seem unlikely, but without a fully relativistic formula-
tion of CSL, this remains a possibility.

4 Constraining the collapse operator with
non-Gaussianities

So far, we have shown that even collapse operators are ruled
out and that only collapse operators that contain odd powers
of field variables can successfully collapse the wavefunction
of cosmological fluctuations. In this category, the sub-class
of collapse operators that are linear in field variables was
studied more extensively in Ref. [15] and, in that article, it
was demonstrated that if the collapse operator is taken as the
energy density, unless it is evaluated in the flat threading, it
leads to predictions that are incompatible with the current
CMB data, for the values of the CSL parameters that are
allowed by laboratory experiments.

However, we have not addressed the possibility that the
collapse operator is dominated by other odd powers of field
variables, say cubic powers. In fact, even in the case where
the collapse operator is taken as the Hamiltonian density, it
contains cubic and higher-order terms [26], that might be able
to lead to the collapse of the wavefunction.4 In that case, as

4 Since the amplitude of higher-order terms is Planck-suppressed, and
given that the leading, quadratic terms are unable to substantially alter
the width of the wavefunction (see Ref. [18]), it may seem unlikely that

we shall now see, non-Gaussianities can further tighten the
choice of the collapse operator. Current measurements of the
CMB impose the statistics of cosmological fluctuations to
be Gaussian up to tightly constrained deviations [27]. There-
fore, it is not sufficient that the two-point correlation function
of
〈
v̂sk

〉
is compatible with measurements of the power spec-

trum, one must also ensure that the whole statistics of
〈
v̂sk

〉
is

Gaussian or quasi Gaussian.
Another reason why studying the statistics of

〈
v̂sk

〉
is impor-

tant is that, when the collapse operator is taken as the energy
density in the flat threading, one may wonder whether or
not the non-Gaussianity test can be passed (since the power-
spectrum test is, see above). Interestingly enough, we will
find that if the collapse operator is linear in field variables,
the full statistics of

〈
v̂sk

〉
can be determined exactly.

For explicitness, we consider the case where the (quadratic)
Hamiltonian is the one of a parametric oscillator,

Ĥ =
∫
R3+

dk
[
p̂k + ω2 (k, η) v̂2

k

]
, (4.1)

since it is the case for cosmological perturbations at leading
order in cosmological perturbation theory, but the techniques
we present here can be easily generalised to any quadratic
Hamiltonian [which can otherwise always be cast in the
form (4.1) upon performing a suitable canonical transfor-
mation [28]].

As shown in Sect. 2, with the choice (2.10), the wavefunc-
tion remains factorisable in Fourier space, see Eq. (2.11), and
the CSL equation admits Gaussian solutions of the form

�s
k

(
η, vsk

) = |Nk (η) | exp
{
−�e �k (η)

[
vsk − v̄sk (η)

]2
+ iσ s

k (η) + iχ s
k(η)vsk − i�m �k(η)

(
vsk

)2}
,

(4.2)

where, for the state to be normalised, one has

|Nk| =
(

2�e �k

π

)1/4

. (4.3)

This can be seen by plugging Eq. (4.2) into the CSL equa-
tion (2.2), and by checking that Eq. (4.2) indeed gives a
solution provided the parameters of the Gaussian obey the

higher-order terms make the wavefunction collapse, although it would
remain to be checked explicitly.
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following equations of motion [15],

d ln |Nk (η)|
dη

= 1

4�e �k

d�e �k

dη
, (4.4)

d�e �k

dη
= γ

m2
0

a4α2
k − 4

γ

m2
0

a4β2
k

[
(�e �k)

2 − (�m �k)
2
]

+ 4�e �k�m �k − 4
γ

m2
0

a4αkβk�m �k, (4.5)

d�m �k

dη
= 1

2
ω2(k, η) − 2

[
(�e �k)

2 − (�m �k)
2
]

− 8
γ

m2
0

a4β2
k�e �k�m �k + 4

γ

m2
0

a4αkβk�e �k, (4.6)

dv̄sk

dη
= χ s

k − 2v̄sk�m �k

+
√

γ a2

2m0�e �k
(αk − 2βk�m �k) ξ̄ sk(η), (4.7)

dχ s
k

dη
= 2�m �kχ

s
k − 4 (�e �k)

2 v̄sk

+ 8
γ

m2
0

a4βk�e �kv̄
s
k (αk − 2βk�m �k)

+ 2
√

γ

m0
a2βk�e �k ξ̄

s
k(η), (4.8)

dσ s
k

dη
= −�e �k + 2 (�e �k)

2 (v̄sk)
2

− (χ s
k)

2

2
− 2

√
γ

m0
a2βk�e �kv̄

s
k ξ̄

s
k(η)

+ γ a4

2m2
0

βk (αk − 2βk�m �k)
(

1 − 8�e �kv̄
2
k

)
. (4.9)

This system comprises six coupled, non-linear and stochastic
differential equations, and is therefore a priori difficult to
study. However, this apparent complicated structure does not
prevent one from solving the system as follows.

The first equation, Eq. (4.4), is solved by Eq. (4.3), and
simply guarantees that the norm of the wavefunction is pre-
served.

The second and third equations, Eqs. (4.6) and (4.7), are
not stochastic [the noise ξ̄η(k) does not appear in these
equations] and indicate that �k decouples from the other
parameters of the wavefunction. By combining Eqs. (4.6)
and (4.7), one can indeed derive an autonomous equation for
�k = �e �k + i�m �k, namely

�′
k = −2

(
i + 2

γ

m2
0

a4β2
k

)
�2

k + 4i
γ

m2
0

a4αkβk�k

+ γ

m2
0

a4α2
k + i

2
ω2(k, η).

(4.10)

This is a first-order, non-linear differential equation known
as a Riccati equation, and it can be cast in terms of a second-
order, linear differential equation by introducing the change

of variables [15]

�k = 1

2
(
i + 2γ a4β2

k/m
2
0

)
(
g′
k

gk
− 1

2
C1

)
, (4.11)

where the function gk(η) obeys

g′′
k +

(
−1

2
C ′

1 − 1

4
C2

1 + C2

)
gk = 0, (4.12)

and the coefficients C1 and C2 are given by

C1 ≡ −2i
γ

m2
0

[
2a4αkβk −

(
a4β2

k

)′
1 − 2iγ a4β2

k/m
2
0

]
,

C2 ≡
(

1 − 2i
γ

m2
0

a4β2
k

)[
ω2(k, η) − 2i

γ

m2
0

a4α2
k

]
.

(4.13)

Let us note that, when γ = 0, − 1
2C

′
1 − 1

4C
2
1 + C2 = ω2

and one recovers the standard, classical equation of motion
for vsk. In this way, one obtains the parameter �k(η), hence
the parameter Nk(η) using Eq. (4.3). From the form of the
wavefunction (4.2), one can show that

〈(
v̂sk − 〈

v̂sk

〉)2〉 = 1

4�e �k
. (4.14)

This means that this quantum expectation value, which
is nothing but the width of the wave-function, is a non-
stochastic quantity (which justifies the statement made in
footnote 2), and can be obtained from the above considera-
tions.

Having determined �k(η), one notices that the two next
equations in the system, Eqs. (4.8) and (4.9), form a linear
autonomous subsystem for v̄sk and χ s

k . Upon introducing the
vector X = (v̄sk, χ

s
k)

T, where T denotes the transpose, they
can be written in matricial form as

dX
dη

= A · X + Y ξ̄ sk(η), (4.15)

where

A =
( −2�m �k 1

−4 (�e �k)
2 + 8 γ

m2
0
a4βk�e �k (αk − 2βk�m �k) 2�m �k

)

(4.16)

and

Y =
( √

γ a2

2m0�e �k
(αk − 2βk�m �k)

2
√

γ

m0
a2βk�e �k

)
. (4.17)

The Langevin equation (4.15) gives rise to a Fokker–Planck
equation [29] for the probability density associated the vector

123



Eur. Phys. J. C (2021) 81 :516 Page 11 of 13 516

X ,

∂P (X, η)

∂η
= −

2∑
i, j=1

Ai j
∂

∂X i

[
X j P(X, η)

]

+ 1

2

2∑
i, j=1

YiY j
∂2P(X, η)

∂Xi∂X j
.

(4.18)

Since the dynamics of X is linear, it can be solved by mak-
ing use of the Green’s matrix formalism, as shown in detail
in Ref. [30] (in a different context). The Green’s matrix
G(η, η0) is defined as the 2 by 2 matrix that is a solution
of the homogeneous (hence deterministic) problem associ-
ated to the stochastic dynamics of X , i.e.

∂G(η, η0)

∂η
= A(η)G(η, η0) + Iδ(η − η0), (4.19)

where I is the 2 by 2 identity matrix. It can be constructed
explicitly from solutions of the linear homogeneous system
dX/dη = A(η)X . Let us indeed assume that two indepen-
dent solutions (v̄

s (1)
k , χ

s (1)
k ) and (v̄

s (2)
k , χ

s (2)
k ) of this linear

homogeneous system are known. The so-called “fundamen-
tal” matrix of the system is defined as

U(η) =
(

v̄
s (1)
k (η) χ

s (1)
k (η)

v̄
s (2)
k (η) χ

s (2)
k (η)

)
. (4.20)

By construction, one can check that dU(η)/dη = A(η)U(η).
Let us also notice that since the two solutions are indepen-
dent, det(U) �= 0. The matrix U is then invertible and gives
rise to the Green’s matrix

G(η, η0) = U(η) [U(η0)]
−1 �(η − η0), (4.21)

which satisfies Eq. (4.19).5

It is worth pointing out that the search for the two inde-
pendent solutions is a simple task because of the following
remark. The first-order equation dX/dη = A(η)X can be
cast in terms of a single, second-order equation for v̄

s (i)
k ,

namely (v̄
s (i)
k )′′ +μ2v̄

s (i)
k = 0, where μ2 = −(A′

11 + A21 +
A2

11), where we have used that A11 = −A22 and where a
prime denotes derivation with respect to time η. Making use
of Eq. (4.7) to evaluate A′

11, all terms involving γ cancel out,
and one obtains μ2 = ω2, hence(

v̄
s (1)
k

)′′ + ω2(k, η)v̄
s (1)
k = 0. (4.22)

This is nothing but the standard, classical equation of motion
for vsk, and is a particular case of Eq. (4.12) when γ = 0.

5 One can also note that d det[U(η)]/dη = Tr [A(η)] det[U(η)] with
“Tr” being the trace operation. The coefficients matrix A, defined in
Eq. (4.16), is traceless and det[U(η)] is thus a conserved quantity. It is
therefore sufficient to find two solutions such as det[U(η0)] �= 0, and
this ensures the Green’s matrix to be properly defined throughout the
evolution.

Analytical solutions to Eq. (4.22) are known in most cosmo-
logical backgrounds (for instance when the equation-of-state
parameter is constant, or when inflation proceeds in the slow-
roll regime). Once v̄

s (i)
k is obtained, one can readily derive

χ
s (i)
k from the relation χ

s (i)
k = (v̄

s (i)
k )′ + 2�m �kv̄

s (i)
k .

Having determined the Green function, solutions to the
Fokker–Planck equation (4.18) can be written formally by
means of the kernel function W(X, η|X0, η0),

P (X, η) =
∫

dX0W(X, η|X0, η0)P (X0, η0) , (4.23)

where the kernel function has the Gaussian form

W (X, η|X0, η0) = 1√
2π2 det [�(τ )]

× exp

{
−1

2
[X − Xdet(η)]† �−1(η) [X − Xdet(η)]

}
.

(4.24)

In this expression, † denotes the conjugate-transpose, and
Xdet(η) = G(η, η0)X0 is the deterministic trajectory that
would be obtained in the absence of the noise term and start-
ing from X(η0) = X0. From Eq. (4.24), assuming initially
a distribution given by a Dirac function, one can check that
E [X(η)] = ∫

dX XW(X, η|X0, η0) = Xdet, which means
that the deterministic trajectory is also the averaged trajec-
tory. Finally, � is the covariance matrix, which is obtained
as the forward propagation of the diffusion matrix,

�(η) =
∫ η

η0

ds G(η, s)Y(s)G†(η, s), where Yi j = YiY j .

(4.25)

It is related to the two-point (statistical, not quantum) corre-
lation function of X through the following expression

E

(
{X(η) − E [X(η)]} {X(η) − E [X(η)]}†

)
= �(η).

(4.26)

Therefore, we reach the conclusion that X follows a Gaussian
statistics. In particular, v̄sk, which, as argued in Sect. 3.1, cor-
responds to the quantity of observational interest, has Gaus-
sian statistics.

Therefore, the above result answers the question asked at
the beginning of this section. If the collapse operator is taken
to be the energy density (in particular, the energy density in
the flat threading since we saw that this is the only remaining
possibility), then the corresponding observable predictions
are Gaussian, in agreement with CMB measurements [27]. In
that case, non-Gaussianities only arise through higher-order
terms in cosmological perturbation theory, as in the standard
calculation. This is an important result that confirms that the
energy density in the flat threading is a consistent candidate.
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What about the other (non-linear) odd collapse operators?
Given the previous considerations, it is clear that the Gaussian
statistics of v̄sk arises because the collapse operator is linear.
If the collapse operator is odd but not linear, the statistics
of v̄sk will not be Gaussian, and mode coupling will become
important too, for a similar argument as the one given around
Eq. (2.13). Then, given the non-perturbative nature of the col-
lapse process, it seems likely that this extra source of non-
Gaussianity will be in conflict with the current astrophysical
data. This constitutes a fundamental difference between lin-
ear and non-linear collapse operators, which allows us to
discard the later possibility.

5 Conclusion

In this work we have discussed the conditions a collapse oper-
ator must satisfy in order to properly describe the emergence
of cosmological structures in the early universe. We have
found that if the collapse operator is even in the field vari-
ables, it is invariant under their sign flipping, hence the col-
lapse theory is endowed with the same symmetry and all the
realisations of the wavefunctional remain centred around a
vanishing configuration. In this case, collapse does not occur,
neither in the early universe nor later, and the theory is ruled
out.

This is the case of the proposal made in Ref. [18] where the
collapse operator is taken as the free Hamiltonian, which is
quadratic in field variables, hence unsuitable for cosmology.
One may argue that, at higher order in cosmological per-
turbation theory, the free Hamiltonian also contains Planck-
suppressed cubic (and higher-order) powers of the fields.
However, even if the amplitude of those suppressed terms
were large enough to lead to the collapse of the wavefunc-
tion, we have argued that they would lead to non-Gaussian
outcomes, with substantial mode coupling, likely in contra-
diction with observations.

In contrast, we have found that if the collapse operator is
linear in the field variables, not only does it have the potential
to make the wavefunction collapse (since it is odd), but it also
leads to outcomes that are distributed according to a Gaussian
law. The main conclusion of this work is therefore that, in
cosmology, the collapse operator must be linear (at leading
order) in the field variables.

Having said this, the next question is of course which lin-
ear collapse operator should we take, and how is it connected
to the non-relativistic limit of the theory, where the collapse
operator is the mass-density operator. In Ref. [15], we have
proposed the energy density as a natural extension of the
notion of mass density. It is linear in the field variables at
leading order so it is a priori a good candidate, according to
the considerations presented in this work. However, unless it
is evaluated in the flat threading, we have shown in Ref. [15]

that, although it is very efficient at collapsing the wavefunc-
tion, it does not produce a quasi scale-invariant power spec-
trum as observed in CMB measurements. In Ref. [15], we
have generalised those results to the case where the collapse
operator is built from contractions of the stress-energy tensor,
as proposed in Refs. [19,20].

At this stage, two possibilities therefore remain. Either the
collapse operator is the energy density in the flat threading,
either it is another linear combination of the field variables,
that has the same dimension as the energy density but that
cannot be interpreted as such. This important conclusion may
serve as a useful guide in the attempt to extend collapse theo-
ries to the relativistic frameworks, since it imposes properties
of the collapse operator in the cosmological setup.
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