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1Departamento de F́ısica, Instituto Tecnológico de Aeronáutica,
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In this work we have analyzed several features of symmetric nuclear matter (SNM) at finite
temperature described by different zero- and finite-range nonrelativistic families of models, namely,
Skyrme, Gogny, Momentum-dependent interaction (MDI), Michigan three-range Yukawa (M3Y)
and Simple Effective Interaction (SEI). We have calculated the critical parameters (CP) associated
to the liquid-gas phase coexistence for nuclear matter from these parametrizations and show that
they are in agreement with their experimental and theoretical values obtained in the literature. Our
study also points out to a strong evidence of universality presented by the hadronic models, namely,
model independence in the gaseous phase and distinguishability among different interactions in the
liquid phase. We have performed a correlation study among different CP and SNM properties. Such
studies involving different finite range interactions are scarce in literature. The analyzed models
show an overall increasing trend of the critical temperature as a function of critical pressure.

I. INTRODUCTION

Hadronic models show very interesting features when
they are used to describe warm nuclear matter at non-
vanishing temperatures. Due to nucleon-nucleon interac-
tion, thermodynamical liquid and gas phases coexist be-
low a certain temperature, named critical temperature,
exhibiting a van der Waals pattern. The different ther-
modynamical quantities such as the pressure (Pc) or the
density (ρc) at this junction point along with the tem-
perature Tc are denoted together as critical parameters.
The analysis of such phase structure can lead to a deeper
understanding of the nuclear interaction in different en-
vironments such as heavy-ion collisions [1, 2] and finite
nuclei [3–5], for instance. In non-accreting neutron stars,
finite temperature calculations might also play some cru-
cial roles to determine the structure and composition of
their crusts [6, 7]. Furthermore, a suitable knowledge
of the hadronic equations of state at T > 0 is crucial
to describe correctly different astrophysical phenomena
such as the core-collapse supernovae or the neutron star
mergers [8, 9]. Correlation studies among the nuclear
matter properties (at T = 0) and critical parameters
(T > 0) also carry vital information regarding the nu-
clear equation of state and in turn the basic nature of
the nucleon-nucleon interaction in medium [10]. In other
words, if strong enough correlations are established be-
tween Tc, Pc and ρc with the bulk parameters of hadronic
models, any direct or indirect experimental constraints
established in a particular set of these quantities might
be useful to pin down the other ones.
Equations of state are obtained by using nuclear mod-

els of different degrees of sophistication. Explaining nu-
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clear phenomena based on a theory starting from funda-
mental nucleon-nucleon interaction is yet to be achieved.
The nonperturbative nature of the nuclear force makes
it very difficult to be described starting from the strong
interaction between quarks and gluons. Over the years,
developing effective theories by optimizing few parame-
ters fitted to certain experimental data has been a hall-
mark of the development of the nuclear theory. As an
example, the ground state energy of a nucleus, which
is defined as the negative of its binding energy B(A,Z),
was proposed long time ago by Weizsäcker [11] in a model
(semi-empirical mass formula) that considers the nucleus
as a droplet of incompressible matter with B(A,Z) con-
taining terms proportional to its volume, surface, etc [12].
Many sophisticated models have been constructed since
then, successfully describing different features of finite
nuclei and infinite nuclear matter. Some of them, not
necessarily in the chronological order of appearing, are
described in the following.

In Chiral effective field theory (EFT) models (see
Ref. [13] and references therein), the most general La-
grangian density is proposed with the basic symmetries of
quantum chromodynamics, in particular the chiral sym-
metry. The low-energy regime of this theory is obtained
with the quarks confined into the colorless hadrons giv-
ing rise to the more suitable degrees of freedom for this
energy scale [13]. However, nuclear forces based on chiral
EFT also pose some major challenges to be applied in nu-
clear structure [14] and reactions (see [15] and references
therein).

In its effective finite range version, the Relativistic
mean-field (RMF) models explicitly describe the attrac-
tive and repulsive nuclear interactions by including in
the Lagrangian density the fermion field ψ coupled to
the scalar and vector mesons fields σ and ωµ, respec-
tively. The structure of the model also generates scalar
and vector potentials that largely cancel each other at a
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particular density, giving rise to a relativistic mechanism
for the nuclear matter saturation. In its point-coupling
version, the RMF models consider a zero range inter-
action between the nucleons, and ψ is the only field in
this case. For the finite, zero range, and even improved
versions of this model, see Refs. [16–18]. The density
dependent meson exchange (DDME) version of the RMF
models also describe several ground state finite nuclear
properties satisfactorily [19].

The nonrelativistic Skyrme model considers nucleons
interacting each other through two and three-body point-
like interactions [20–24]. Its two-body potential is writ-
ten as a contact term times a low-momentum expansion
function, taken up to quadratic order in the momenta.
The three-body interaction is given by the product of two
delta functions, which can be also interpreted as a two-
body density dependent interaction. Different thermody-
namical quantities in Skyrme models can be obtained in
a relatively simple way, as they can be expressed as func-
tions of the nuclear density and the proton fraction (zero
temperature regime). Such ease in implementation has
made Skyrme models so popular over the years. It has
also been successfully applied to finite nuclei reproduc-
ing with very good accuracy the ground states energies,
giant resonances and other physical properties [25].

The standard Gogny models of the D1 family consist
of two finite-range terms of Gaussian type, which include
all the possible spin-isospin exchange operators with dif-
ferent weights, plus a zero-range density-dependent con-
tribution [26]. The main property of Gogny interaction is
that it can describe simultaneously the mean field and the
pairing field. The Gogny interactions correctly describe
many features of finite nuclei, in particular their pairing
and deformation properties, along the whole periodic ta-
ble [27–29]. Although Gogny forces of D1 family do not
describe properly the properties of neutron stars [30, 31],
recent progress has been made in this direction [32, 33].

The Momentum-dependent interaction (MDI) was pri-
marily designed to be used in heavy ion collisions [34].
Similar to the Gogny forces, the MDI can be written as a
single finite-range term of Yukawa type, along with two
zero-range contributions. Although the first versions of
the MDIs were adequate to describe collisions of sym-
metric nuclei, more recent versions of this force are able
to describe collisions of neutron-rich nuclei at intermedi-
ate energies [35, 36]. The MDI is constructed in such a
way that it is possible to obtain a family of forces with
the same properties of symmetric matter but with vari-
ation in the isovector sector of the force [35, 36], which
makes these interactions very appealing to be used in the
calculations of neutron star properties [37].

The so-called M3Y models (Michigan three-range
Yukawa) [38] were derived from a bare nucleon-nucleon
interaction (Paris, Reid) by fitting the microscopic G-
matrix to the sum of three Yukawa form-factor of differ-
ent ranges acting on the different spin-isospin states. It
should be pointed out that the original M3Y force was
unable to reproduce the saturation and spin-orbit split-

ting at mean field level. To solve this problem, zero-range
terms were added and some strengths were modified [39].
The tensor force, which is important for describing the
shell structure in finite nuclei, has been included in the
different M3Y parametrizations [39–42]. In order to de-
scribe open-shell nuclei, pairing correlations have been
taken into account using the M3Y force in the particle-
particle channel together with a cutoff in momentum
space [40]. It is also important to mention that the inter-
actions of the M3Y type have been applied successfully
to describe different nuclear reactions [43].

The Simple Effective Interaction (SEI) was con-
structed in 1998 by Behera and collaborators [44] aimed
to describe nuclear and neutron star matter at zero and
finite temperatures. The SEI consists of a single finite-
range term with a form-factor of Gauss or Yukawa type,
a pure contact term and a zero-range density-dependent
contribution, which contains an additional parameter
to avoid the supraluminous behavior at any tempera-
ture [44]. At variance with other effective interactions
like Skyrme, Gogny or M3Y type, nine out of the eleven
parameters of SEI are fitted to empirical constraints and
microscopic results obtained with realistic interactions in
nuclear matter. In this way SEI predicts the correct be-
havior of the momentum dependence of the mean field
as extracted from heavy-ion collisions at intermediate
energies. SEI also predicts trends of Dirac-Brueckner-
Hartree-Fock and variational calculations in nuclear and
neutron matter. One of the remaining two parameters
is fixed from the microscopic spin-up spin-down splitting
of the effective mass in polarized neutron matter [45].
The last parameter, together with the strength of the
spin-orbit contribution, are determined from Hartree-
Fock calculations in finite nuclei [46, 47]. It is worth-
while to point out that, in spite of the fact that almost all
the parameters of SEI are determined in nuclear matter,
its finite nuclei description has a quality similar to that
found using successful effective interactions like Skyrme,
Gogny or M3Y.

In a previous investigation, we have used RMF models
to calculate different characteristics of nuclear matter at
finite temperature [10]. In the present work, we intend to
complement that study with calculations performed for
different nonrelativistic models. To this end, we study
the nonrelativistic Skyrme, Gogny, MDI, M3Y and SEI
models at finite temperature regime in order to compute
different critical parameters and compare them with ex-
perimental and theoretical results. We also investigate
the connection between these quantities with some bulk
parameters, namely, incompressibility and nucleon effec-
tive mass, both calculated for symmetric nuclear matter
at zero temperature. In Sec. II we outline the main the-
oretical quantities regarding the nonrelativistic models
studied in this work (expressions at finite temperature).
The outcomes of the finite temperature calculations are
shown in Sec. III and in Sec. IV, a short summary and
our concluding remarks are presented.
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II. NONRELATIVISTIC MODELS AT FINITE

TEMPERATURE

A. Skyrme model

An advantage of the Skyrme model is that its point-
like nucleon-nucleon interaction implies a Hamiltonian
as a function only of the nuclear density ρ for symmetric
systems. In the mean-field approach, the single parti-
cle state of the nucleon in a uniform medium is written
in terms of a plane-waves [48]. As a consequence, it is
straightforward to construct, at zero temperature, the
energy density of the system and therefore to derive all
the other thermodynamical quantities needed to describe
nuclear matter, see, for instance, Ref. [49] for such calcu-
lations.
At finite temperature regime the Heaviside step func-

tion (θ(kF − k) with kF being the Fermi momentum in
units of fm−1) present in all the momentum integrals at
zero temperature, is replaced by the Fermi-Dirac func-
tion (momentum distribution), depending on momentum
k, temperature T and an effective chemical potential µ,
which is given by

nsky(k) =
1

e[ε∗(k)−µ]/T + 1
, (1)

where ε∗(k) = ~
2k2/2M∗ is the single-particle energy

with M∗ being the effective mass. As a consequence, for
warm nuclear matter the nuclear density becomes [50, 51]

ρ =
γ

(2π)3

∫

dknsky(k), (2)

where γ is the degeneracy factor (γ=4 for symmetric nu-
clear matter). For the Skyrme model, the nucleon effec-
tive mass in the single-particle energy ε∗ is defined from
the energy density as its variation with respect to the
kinetic energy density. It is given by

M∗ =M

[

1 +
1

8

M

~2
ρ (3t1 + 5t2 + 4t2x2)

]−1

, (3)

in which M = 939 MeV is the free nucleon mass. Notice
that in Eq. (2) the momentum distribution depends on
M∗ instead ofM . For the numerical calculations, the van
der Waals-like isotherms are obtained for a fixed temper-
ature and run over the density. For a particular ρ, we
invert Eq. (2) in order to find the value of the chemical
potential µ. Then, for each ρ we can compute the mo-
mentum distribution, which enters in all the other ther-
modynamical quantities, since the corresponding value
of µ is determined. As we are interested in the critical
parameters of the model, obtained through the following
conditions

Pc = P (ρc, Tc),
∂P

∂ρ

∣

∣

∣

∣

ρc,Tc

= 0,
∂2P

∂ρ2

∣

∣

∣

∣

ρc,Tc

= 0, (4)

it is only needed to construct the pressure of the system,
since it is the most relevant thermodynamical quantity

for this purpose. For the Skyrme model it reads

Psky(ρ, T ) =
3t0
8
ρ2 +

1

16

3
∑

i=1

t3i(σi + 1)ρσi+2

+
γ~2

6π2M∗

(

1− 3

2

ρ

M∗

dM∗

dρ

)
∫ ∞

0

dk k4nsky(k).

(5)

For the symmetric system, a particular parametriza-
tion of the Skyrme model is defined by a specific set
of the following free parameters: x2, t0 [MeV.fm3],
t1 [MeV.fm5], t2 [MeV.fm5], t3i [MeV.fm3(σi+1)], and σi.
Here, we mainly focus on the Consistent Skyrme
parametrizations (CSkP) selected in Ref [49]. In that
work, the authors select 16 Skyrme parametrizations that
satisfies the 11 constraints coming from nuclear mat-
ter, pure neutron matter, analysis of symmetry energy
and its derivatives. They are: GSkI [52], GSkII [52],
KDE0v1 [53], LNS [54], MSL0 [55], NRAPR [56],
Ska25s20 [57], Ska35s20 [57], SKRA [58], Skxs20 [59],
SQMC650 [60], SQMC700 [60], SkT1 [61], SkT2 [61],
SkT3 [61] and SV-sym32 [62]. Among these parametriza-
tions, only two are “nonstandard”, namely, GSkI and
GSkII. The term nonstandard refers here to those
parametrizations for which i is not equal to 1 in Eq. (5).
In particular, GSkI and GSkII were shown to fit con-
sistently the masses of some spherical nuclei, namely,
16O, 24O, 14Ca, 48Ca, 48Ni, 56Ni, 68Ni, 78Ni, 88Sr, 90Zr,
100Sn, 132Sn, and 208Pb. The CSkP was also shown to
be consistent [63] with the constraints extracted from
the LIGO and Virgo Collaboration analysis, related to
the detection of gravitational waves coming from the
neutron star merger GW170817 event [64–66]. For the
sake of completeness, we also add to our analysis 4
more Skyrme parametrizations. Three of them are con-
strained by chiral effective field theory [67], namely,
Skχ414, Skχ450 and Skχ500, and another one taken
from Ref. [68], SkΛ267. For the latter one, the dimen-
sionless tidal deformability of the 1.4M⊙ neutron star is
given by Λ1.4 = 267, with the corresponding radius of
R1.4 = 11.6 km.

B. Finite-range interactions

The finite-range (FR) interactions that we study in this
work, namely Gogny, MDI, M3Y and SEI have a similar
structure, which can be written as

V (r1, r2) =
N
∑

i=1

(Wi +BiPσ −HiPτ −MiPσPτ )f(r, µi)

+ t0(1 + x0P
σ)ρα0(R)δ(r) + t3(1 + x3P

σ)ρα3(R)δ(r),
(6)

where r = r1 − r2 and R = (r1 + r2)/2 are the relative
and the center of mass coordinates. Wi, Bi, Hi and Mi

are the strengths of all the possible combinations of the
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spin (P σ) and isospin exchange (P τ ) operators, respec-
tively. µi are the ranges of the N form-factor (Gaussian
for Gogny and Yukawian for MDI or M3Y and can be
both for SEI) that describe the finite-range part of the
force (N=1 for MDI or SEI, N=2 for Gogny and N=3
for M3Y). In Eq.(6) we have neglected the spin-orbit and
tensor parts of the interaction owing to the fact that they
do not contribute to the infinite nuclear matter.
In the case of warm symmetric nuclear matter de-

scribed by a finite-range interaction given in Eq. (6),
the single-particle energy is given by (see for instance
Ref. [69])

ε(k) =
~
2k2

2M
+

3

8
t0α0t0ρ

α0−1 +
3

8
α3t3ρ

α3−1

+

N
∑

i=1

g(0, µi)

[

Wi +
Bi

2
− Hi

2
− Mi

4

]

ρ

+
N
∑

i=1

[

Mi +
Hi

2
− Bi

2
− Wi

4

]

×

γ

(2π)3

∫

dk′n(k′)g̃(k, k′, µi), (7)

where g̃(k, k′, µi) is the angular averaged Fourier trans-
form of the finite-range form factor f(r− r

′, µi) [69] (see
Appendix for more details) and γ the degeneracy factor
introduced before. The momentum distribution n(k) in
Eq. (7) is given by

n(k) =
1

e[ε(k)−µ]/T + 1
. (8)

At difference with the case of zero-range forces in which
the integral of the momentum distribution n(k) in Eq. (2)
determines the effective chemical potential, in the case of
finite-range forces one needs to solve the coupled system
of Eqs. (7) and (8) with the constraint of Eq. (2), which
for a given density allows to obtain the chemical poten-
tial µ. Once the Fermi-Dirac occupation number n(k) is
determined by this procedure, one can easily determine
the energy density as

H =
γ

(2π)3

∫

dk
~
2k2

2M
+

3

8
t0ρ

α0 +
3

8
t3ρ

α3

+
1

2

N
∑

i=1

g(0, µi)

[

Wi +
Bi

2
− Hi

2
− Mi

4

]

ρ2

+

N
∑

i=1

[

Mi +
Hi

2
− Bi

2
− Wi

4

]

×

γ2

2

∫

dk

(2π)3
n(k)

∫

dk′

(2π)3
n(k′)g̃(k, k′, µi), (9)

and the entropy density as

S = γ

∫

dk

(2π)3
{n(k) ln[n(k)] + [1− n(k)] ln[1− n(k)]}

=
1

T

∫

dk

(2π)3
n(k)

[

ε(k) +
k

3

dε(k)

dk

]

. (10)

Finally, the pressure at a given temperature T is given
by the standard thermodynamical relation

PFR(ρ, T ) = µρ−F = µρ−H + ST, (11)

where F is the free energy density.
It is important to mention here that in the case of

SEI, the second density-dependent term in Eq. (9) is di-
vided by a factor (1+bρ)α3−2 and the contribution to the
corresponding single-particle energy (7) is also modified
accordingly. We label the SEI parametrizations used in
this work by G or Y to indicate if the form factor is of
the Gauss or Yukawa type and by the value of the corre-
sponding incompressibility modulus. More details about
these parametrizations can be found in Refs. [45, 70].

III. ANALYSIS OF THE FINITE

TEMPERATURE CALCULATIONS

Before discussing the results in details, we make some
general remarks about the nuclear matter properties of
the models chosen for our study. The zero-range and
finite-range mean-field models used in this study, in
general, reproduce reasonably well binding energies and
charge radii of finite nuclei and predict nuclear matter
properties usually within the window of the empirical val-
ues, namely, energy per nucleon e0 = −15.8± 0.5 MeV,
saturation density ρ0 = 0.16± 0.01 fm−3, isoscalar effec-
tive mass ratio m∗ =M∗(ρ0)/M = 0.6− 1.0 and incom-
pressibility modulus K0 = 240±30 MeV (see for instance
Ref. [68]). We emphasize here the importance of the sat-
uration density ρ0, since it is directly related to the short
range nature of the nuclear force. Because of this fea-
ture, protons and neutrons only interact with their near
surrounding nucleons and this mechanism leads to ap-
proximately constant value of ρ0. Regarding the Gogny
interactions considered in this work, we see that there
are some parametrization with incompressibility modu-
lus outside the window of the empirical values (see Table
I). Among these the D1S interaction was fabricated to
build up an accurate mass table [71]. The rest of the
parametrizations with high K0 values were built up in
Ref. [72] in order to study the correlation between the
incompressibility modulus in nuclear matter and the en-
ergy of the monopole vibrations. The isoscalar effective
mass ratio m∗ of the finite-range models considered in
this work lie in the range of 0.6 − 0.7, which reproduce
the excitation energy of the isoscalar giant quadrupole
resonance [73]. This value of the isoscalar effective mass
is in agreement with the value extracted from the opti-
cal model analysis of the nucleon-nucleus scattering [74].
Some of the Skyrme models which we have considered,
predict an effective mass close to the bare mass. Mod-
els with an effective mass ratio equal or slightly larger
than unity predict a single-particle level density close to
the Fermi surface, which is in good agreement with the
experiment without considering an additional particle-
vibration coupling [75]. However, these models with ef-
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fective mass close to the bare mass are prone to predict
maximum masses of neutron stars below the lower limit
of the observed value of 2.01±0.04M⊙ [68].

Since the pressure as a function of ρ and T of zero
and finite range interactions is determined, as shown in
Eqs. (5) and (11), it is now possible to analyze the crit-
ical parameters and the main features of the thermal
symmetric nuclear matter for the different nonrelativistic
models introduced in the previous section. Nevertheless,
before that, a comment regarding the phase transition
in nuclear systems is needed at this point. Conjectures
concerning the existence of a liquid-gas phase transition
in strongly interacting matter have been corroborated
through indirect evidences, since the critical point it-
self can not be directly observed in nuclear experiments.
One of such evidences involves the distribution of the
intermediate mass fragments produced, for instance, in
the following reactions: 84Kr +197 Au [76], Au + C [77],
Au+Al [77], Au+Cu [77], 197Au+197Au [78], p+Xe [79]
and p + Kr [79]. Another possible signature of the nu-
clear phase transition is identified from the analysis of the
so called “caloric curve”, or in other words, the depen-
dence of temperature on the excitation energy per parti-
cle in finite nuclei. It was first predicted theoretically in
Ref. [80] and later discovered by the ALADIN collabora-
tion [81], from a fragment distributions study produced
in Au + Au collisions at incident energy of 600 MeV per
nucleon. The plateau exhibited by this curve is char-
acteristic of systems presenting phase transitions, thus
supporting the existence of such thermodynamical phe-
nomenology in nuclear systems [82].

We start by showing in Table I the critical parame-
ters Pc, ρc and Tc along with ρc/ρ0, the compressibility
factor Zc = Pc/ρcTc, and some bulk parameters, namely,
incompressibilityK0, isoscalar effective mass ratiom∗ (at
ρ = ρ0), and the saturation density itself (ρ0). Concern-
ing the ratio Zc, one can verify that all parametrizations
present Zc smaller than the respective value related to
the van der Waals model, namely, 0.375. This is a fea-
ture also observed for relativistic models, as pointed out,
for instance, in Refs. [10, 83]. Notice that Table I en-
lists, for the first time, to the best of our knowledge,
the critical parameters Tc, Pc and ρc for almost all the
non-relativistic finite range effective nucleon-nucleon in-
teractions available in the literature.

In Fig. 1 we present the critical isotherms i.e. pressure
as a function of density scaled by their critical values at
T = Tc for different type of parametrizations considered
in this work. It is clear that such scaled curves are in-
distinguishable in the gaseous phase (ρ < ρc), and model
dependent for the liquid phase (ρ > ρc), where the inter-
actions become more important due to the closer proxim-
ity between the nucleons. Previously, this finding was ob-
served only for those parametrizations of the relativistic
mean field models which contain self-interactions in the
scalar field σ (Boguta-Bodmer model) [83]. Later on, in
Ref. [10], it was investigated in a more sophisticated ver-
sion of the RMF model including quartic self-interaction

TABLE I. Critical parameters Tc (MeV), ρc (fm−3) and
Pc (MeV/fm3), along with the quantities, namely, ρc/ρ0,
Zc = Pc/ρcTc, and the bulk parameters K0 (MeV),
m∗ = M∗(ρ0)/M , and ρ0 (fm−3) for different nonrelativis-
tic parametrizations used in this work.

Model Tc ρc Pc
ρc
ρ0

Zc K0 m∗ ρ0

GSkI 15.09 0.052 0.223 0.328 0.284 230.21 0.776 0.159
GSkII 15.27 0.052 0.226 0.328 0.284 233.40 0.790 0.159
KDE0v1 14.86 0.054 0.225 0.330 0.279 227.54 0.744 0.165
LNS 14.93 0.057 0.235 0.328 0.275 210.78 0.826 0.175
MSL0 15.17 0.053 0.226 0.330 0.282 230.00 0.800 0.160
NRAPR 14.39 0.054 0.218 0.337 0.280 225.65 0.694 0.161
Ska25s20 16.27 0.053 0.239 0.329 0.278 220.75 0.980 0.161
Ska35s20 17.16 0.054 0.264 0.339 0.287 240.27 1.000 0.158
SKRA 14.36 0.052 0.208 0.329 0.276 216.98 0.748 0.159
SkT1 17.06 0.055 0.266 0.339 0.286 236.16 1.000 0.161
SkT2 17.04 0.055 0.265 0.339 0.286 235.73 1.000 0.161
SkT3 17.04 0.055 0.265 0.339 0.286 235.74 1.000 0.161
Skxs20 15.38 0.052 0.216 0.321 0.270 201.95 0.964 0.162
SQMC650 14.85 0.057 0.234 0.331 0.277 218.11 0.779 0.172
SQMC700 14.73 0.057 0.233 0.332 0.278 222.20 0.755 0.171
SV-sym32 16.03 0.053 0.242 0.332 0.285 233.81 0.900 0.159
Skχ414 18.33 0.059 0.311 0.349 0.286 243.18 1.075 0.170
Skχ450 17.08 0.053 0.261 0.341 0.287 239.54 1.006 0.156
Skχ500 18.20 0.059 0.305 0.349 0.285 238.16 1.087 0.168
SkΛ267 14.63 0.054 0.224 0.337 0.281 230.08 0.702 0.162

D1S 15.89 0.060 0.281 0.368 0.295 202.88 0.697 0.163
D1M 15.95 0.058 0.272 0.352 0.294 224.98 0.746 0.165
D1N 15.76 0.056 0.261 0.348 0.296 225.65 0.747 0.161
D250 17.16 0.061 0.332 0.386 0.318 249.54 0.702 0.158
D260 15.48 0.059 0.273 0.369 0.299 259.49 0.615 0.160
D280 15.21 0.058 0.263 0.379 0.298 285.19 0.575 0.153
D300 16.80 0.058 0.310 0.372 0.318 299.14 0.681 0.156

MDI 15.62 0.058 0.268 0.363 0.296 210.98 0.673 0.160

M3Y-P1 15.78 0.062 0.294 0.367 0.301 225.70 0.641 0.169
M3Y-P2 15.66 0.059 0.277 0.363 0.300 220.40 0.652 0.163
M3Y-P3 16.12 0.060 0.290 0.369 0.300 245.80 0.658 0.163
M3Y-P4 16.08 0.060 0.294 0.369 0.304 235.30 0.665 0.163
M3Y-P5 15.78 0.060 0.289 0.369 0.305 235.60 0.629 0.163
M3Y-P4’ 15.91 0.060 0.290 0.369 0.304 230.40 0.653 0.163
M3Y-P5’ 15.88 0.060 0.291 0.369 0.306 239.10 0.637 0.163
M3Y-P6 15.97 0.061 0.306 0.375 0.314 239.70 0.596 0.163
M3Y-P7 16.33 0.062 0.326 0.381 0.322 254.70 0.589 0.163

SEIG263 16.30 0.056 0.278 0.361 0.305 262.52 0.712 0.155
SEIG245 15.79 0.055 0.260 0.350 0.300 245.62 0.711 0.157
SEIG227 15.23 0.055 0.242 0.344 0.289 227.64 0.710 0.160
SEIG207 14.55 0.054 0.221 0.333 0.281 207.69 0.709 0.162
SEIY282 17.35 0.061 0.340 0.379 0.321 282.30 0.686 0.161
SEIY254 16.43 0.058 0.298 0.360 0.313 253.68 0.686 0.161
SEIY238 15.88 0.058 0.275 0.360 0.298 237.52 0.686 0.161
SEIY220 15.26 0.055 0.250 0.342 0.298 219.87 0.686 0.161

in the vector field ωµ, interactions between scalar and
vector fields (σ and ωµ), and interactions between scalar
and isovector fields (σ and ~ρµ). The same pattern was
observed also for those parametrizations. Here we ob-
serve similar findings once again for the nonrelativistic
models. This strongly suggests towards a universality in
the isotherms of symmetric nuclear matter for hadronic
models , i.e., model independence in the gaseous region
and distinguishability among the different interactions in
the liquid phase.

Concerning the critical parameters calculated for the
different nonrelativistic parametrizations explored here,
we compare our results with experimental and theoret-
ical predictions available in the literature. An experi-
mental study given in Ref. [84] provides values for all
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FIG. 1. P/Pc as a function of ρ/ρc for the nonrelativistic
parametrizations. All isotherms are calculated at T = Tc.

three quantities, namely, Tc = (17.9 ± 0.4) MeV, Pc =
(0.31±0.07) MeV/fm3, and ρc = (0.06±0.01) fm−3. For
this purpose, the authors analyzed data from compound-
nucleus and nuclear multifragmentation [85, 86]. In Fig. 2
we display the outcomes related to Pc and ρc obtained
for all nonrelativistic parametrizations used in this work.
As one can see, all the finite-range parametrizations of
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FIG. 2. Values of (a) Pc and (b) ρc for the parametrizations of
the Skyrme, Gogny, MDI, M3Y and SEI models in comparison
with the corresponding experimental values extracted from
Ref. [84] (ranges limited by the horizontal dashed lines).

the Gogny, MDI, M3Y and SEI type are in full agree-
ment with the experimental ranges of Ref. [84] for Pc

and ρc. On the other hand, the Skyrme parametriza-
tions are also inside the range of ρc but not all of them
are compatible with the Pc values. Ten out of twenty,
namely, GSkI, GSkII, KDE0v1, MSL0, NRAPR, SKRA,
Skxs20, SQMC650, SQMC700, and SkΛ267 lie below the
lower experimental limit for this quantity. It is impor-
tant to mention that the effective mass seems to play an
important role in this case. Notice that with exception
of Skxs20, all the remaining parametrizations mentioned
just above present m∗ 6 0.80.
In Fig. 3 we display the values of Tc calculated from

the models analyzed in this work along with their dif-
ferent experimental values for comparison. As one can

Karnaukhov
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 et al. 2018
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FIG. 3. Values of Tc for the nonrelativistic parametrizations
compared with experimental/theoretical data (circles) col-
lected from: Karnaukhov 1997 [87], Natowitz et al. 2002 [4],
Karnaukhov et al. 2003 [88], Karnaukhov et al. 2004 [89],
Karnaukhov et al. 2006 [90], Karnaukhov 2008 [91], Elliott
et al. 2013 [84], Lourenço et al. 2017 [10], and Carbone et al.
2018 [92].

see from this figure, the nonrelativistic parametriza-
tions predict Tc compatible with experimental values of
Refs. [4, 84, 87–91]. Furthermore, we also observe agree-
ment between the results obtained with different non-
relativistic parametrizations and the ones obtained with
different theoretical models in Refs. [10, 92]. Actually,
the critical temperatures provided by the non-relativistic
interactions analyzed in this work agree better with ex-
perimental values than in those of some RMF models
(see figure 2 of Ref. [10]). In Ref. [10], authors calculate
Tc for a class of RMF models [93] containing nonlinear σ
and ωµ terms and crossing terms involving these fields
(30 parametrizations), and for RMF models in which
couplings are density dependent (4 parametrizations), all
of them are consistent with nuclear matter constraints.
In Ref. [92], calculations were performed by using two-
and three-body nuclear interactions consistently derived
through chiral effective field theory. A van der Waals
pattern was also observed in such models [92].
Another interesting investigation on the warm nuclear

matter is the search for possible correlations between
bulk parameters of SNM, evaluated at ρ = ρ0, and the
critical parameters. This feature can be useful in order to
consolidate the constraints on Tc, Pc and ρc. In Ref. [10],
for instance, it was shown that the consistent RMF mod-
els exhibit a general trend of correlation between the crit-
ical parameters and the incompressibility coefficient K0.
For the nonrelativistic parametrizations used here, we
present Tc as a function of K0 and m∗ in Fig. 4. One can
notice an increasing trend of Tc as a function of both, K0

and m∗, for the Skyrme parametrizations. The correla-
tion coefficients are 0.67 and 0.95, for K0 andm

∗, respec-
tively. The results observed for the Skyrme models are in
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FIG. 4. Tc as a function of (a) K0 and (b) m∗ for the non-
relativistic models used in this work. Full lines in the insets:
fitting curves related to the Skyrme parametrizations, with
correlation coefficients given by c = 0.67 and c = 0.95, re-
spectively for panels (a) and (b) (see text for more details).

line with other studies performed with different hadronic
models. For instance, in Ref. [94] the same correlation
of Fig. 4a is found for a class of real gas models used to
describe symmetric nuclear matter at finite temperature,
after a suitable conversion of these classical models into
quantum ones through the incorporation of the Fermi-
Dirac distribution function in the momentum integrals.
Furthermore, we also observe qualitative agreement with
other theoretical calculations that provide analytical ex-
pressions of Tc as a function of K0, as in Refs. [4, 95–97].
With regard to the Tc as a function of m∗, we remark
that a systematic study was performed with parametriza-
tions of the RMF model with third- and fourth-order
self-interactions in the scalar field σ [98]. For these mod-
els, we remind the reader that m∗ is the Dirac effective
mass, which is slightly different from the quantity defined
in nonrelativistic approach used in the present paper. In
Ref. [98], in which it was also observed that Tc depends on
K0, authors verified a clear relationship between Tc and
m∗. However, in these models only the variation of m∗

was taken into account, i.e., saturation density, binding
energy and incompressibility were kept fixed. Regarding
the finite-range models, we can see that the SEI family of
parametrizations, which have very similar nuclear matter
properties except incompressibility, show a very clear cor-
relation between Tc and K0 with a correlation coefficient
of 0.98 (see Table II). This correlation is also observed
in the M3Y parametrizations where a correlation coeffi-
cient of 0.89 was found. Concerning the relation between
the Tc and m∗, the predictions of the finite-range inter-
actions, in particular SEI and M3Y, and the ones of the
Skyrme forces are clearly different. The SEI interactions,
and to some extent the M3Y ones, have almost the same
effective mass and there is no correlation between Tc and
m∗. This situation is different from the one found with

the Skyrme forces, where a clear linear correlation is ob-
served (see the inset of Figure 4b). However, for Gogny
forces, which have properties in symmetric nuclear mat-
ter quite different among them, do not show any clear
correlation between Tc and K0 or m∗ (see also Ref. [97]
in this respect).

One needs to be careful in a correlation study like the
present one. Some of the finite range interactions used
in the present work were obtained in a systematic way
to satisfy certain constraints. Their merits should not
be tested only with a correlation study. However, most
of the Skyrme parametrizations used in the present work
satisfy several independent constraints imposed by ex-
periments and astronomical observations (see Ref. [49]).
An independent correlation study is quite justified using
only these Skyrme interactions. In the inset of Fig. 4b
one can see a positive linear correlation between Tc and
m∗. If we take a conservative estimate of m∗ of 0.7 -
0.9, it translates into a variation of Tc from 14.225 MeV
to 16.066 MeV, as Tc and m∗ show a high positive cor-
relation between them. These are indicated by the red
parallel lines to the axes in the inset of Fig. 4b.

TABLE II. Correlation coefficients (c) among different pairs
of critical parameters and nuclear matter properties are listed
for four families of non-relativistic interactions considered in
this work along with combining them together in “all”.

c Skyrme Gogny M3Y SEI all
Tc ×K0 0.67 0.13 0.89 0.98 0.44
Tc ×m∗ 0.95 0.45 -0.37 -0.43 0.51
Pc ×K0 0.68 0.26 0.78 0.93 0.58
Pc ×m∗ 0.83 0.16 -0.81 -0.56 -0.20
ρc ×K0 0.17 -0.11 0.42 0.80 0.33
ρc ×m∗ 0.26 -0.16 -0.64 -0.67 0.49
Tc × Pc 0.95 0.94 0.79 0.98 0.72

The influence of K0 on Pc and ρc is analyzed in Fig. 5.
The behavior of Pc and ρc as increasing functions of K0
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FIG. 5. Critical (a) pressure and (b) density as a function
of K0 for the different Skyrme, Gogny, MDI, M3Y and SEI
parametrizations considered in this work (see text for details).
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was also observed for the RMF models investigated in
Refs. [10, 98]. From the Fig. 5 we can still appreciate
the correlations between Pc and K0, in particular for the
SEI and M3Y forces and less clearly for the Skyrme inter-
actions. This is confirmed by the correlation coefficients
reported in Table II. From Fig. 5a and Table II it is again
clear that Gogny forces do not show Pc - K0 correlation.
The results reported in Table II also show that there is
no correlation between K0 or m∗ and ρc.
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FIG. 6. Tc as a function of Pc for the different Skyrme, Gogny,
MDI, M3Y and SEI parametrizations considered in this work
(see text for more details).

Finally, we display in Fig. 6 the relationship between
Tc and Pc. For the classical van der Waals model, one
has Tc = 8bPc with b being the excluded volume pa-
rameter (strength of the repulsive interaction), indicat-
ing a clear linear relation. For the nonrelativistic models
studied here, an increment of Tc as a function of Pc is ob-
served with some deviation from the exact linear pattern.
A much more clear linear behavior was observed, for
instance, with the RMF parametrizations and density-
dependent RMF Hartree-Fock models used in Ref. [99].
All the finite-range models follow the Tc - Pc correlation
quite precisely as it can be seen from Fig. 6 and from
the correlation coefficients given in Table II. Regarding
the Skyrme results, we see that the models which pre-
dict a critical pressure below 0.24 MeV.fm−3 and at the
same time have a small effective mass m∗ below 0.8 are
well aligned with the finite-range ones. We also see that
the remaining Skyrme parametrizations, which have an
effective mass close to the bare mass, lie on top with an
other parallel line shifted to higher critical temperature.
As a consequence, our study predicts that the Tc - Pc

correlation is reinforced for models with similar effective
mass. One can notice that, the Skyrme models just men-
tioned above with m∗ greater than 0.8, reproduce better
the experimental constraint on the critical pressure Pc

(see Fig. 2 and corresponding discussion). However, they
follow a different Tc-Pc correlation line compared to the
rest of models considered in this work including the ones
of the Skyrme family (see Fig. 6).

IV. SUMMARY AND CONCLUSIONS

In this work we have analyzed symmetric nuclear mat-
ter at finite temperature for a set of parametrizations of
the Skyrme, Gogny, MDI, M3Y and SEI nonrelativistic
models. For the first one, we have chosen the so called
consistent Skyrme parametrizations (CSkP), namely,
GSkI, GSkII, KDE0v1, LNS, MSL0, NRAPR, Ska25s20,
Ska35s20, SKRA, Skxs20, SQMC650, SQMC700, SkT1,
SkT2, SkT3 and SV-sym32. They satisfy a set of con-
straints related to the nuclear matter and pure neutron
matter [49]. Furthermore, they are also consistent with
the boundaries of the tidal deformabilities determined by
the LIGO and Virgo Collaboration studies, all of them
related to the detection of gravitational waves coming
from the neutron star merger event GW170817 [63]. For
the finite-range models, we have chosen some representa-
tive parametrizations. We also furnished the expressions
for the pressure as a function of temperature and density
for the considered models (see Eqs. (5) and (11)). Once
this thermodynamical quantity was determined, it was
possible to find the critical parameters (CP) of the mod-
els, namely, Tc, Pc and ρc, by imposing the conditions
given in Eq. (4). The respective values of these quanti-
ties are listed in Table I. To the best of our knowledge,
assembly of critical properties of nuclear matter at finite
temperature of this sort are quite scarce in the literature
for finite-range interactions.

One of the results found in our investigation is the
pattern exhibited in Fig. 1, namely, all isotherms col-
lapse in the low density region (gaseous phase), and nu-
clear interactions become important for densities greater
than ρc (liquid phase). Such a feature was also observed
in Ref. [83] in which the calculations were restricted to
the relativistic mean field (RMF) model presenting third-
and fourth-order self-interactions in the scalar field. In
Ref. [10], the same phenomenology was observed for more
sophisticated version of the RMF models including quar-
tic self-interaction in the vector field and other mesonic
interactions. Our finding strongly suggests a kind of uni-
versality for the isotherms of the hadronic models (rel-
ativistic and nonrelativistic) for symmetric nuclear mat-
ter.

With regard to the values of the CP of the studied non-
relativistic parametrizations, we found very good agree-
ment of all the models with the experimental value of
ρc = (0.06 ± 0.01) fm−3 [84]. All the finite-range mod-
els considered here as well as ten out of twenty Skyrme
parametrizations analyzed, lie within the experimental
limit of Pc = (0.31 ± 0.07) MeV/fm3 [84]. Finally, con-
cerning Tc, we have compared our results with both, the-
oretical and experimental data collected from the liter-
ature. Fig. 3 shows that all the models analyzed here
are compatible with the experimental values. We have
also verified that the critical parameters obtained here
are also compatible with previous theoretical results re-
ported in Refs. [10, 92], in which the authors have used
a class of RMF models [10], and with the nuclear models
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derived from chiral effective field theory [92].
Another investigation performed in this work was the

search for possible correlations between bulk parameters,
evaluated at the saturation density, and the CP. In Ta-
ble II we have shown the correlation coefficients obtained
for some possible relationships. The general trend of Tc
as an increasing function of K0 was found for all families
of models individually with the exception of the Gogny
parametrizations. This finding is compatible with studies
using other hadronic models [4, 94–98]. In Fig. 5a and in
Table II, where the correlation coefficient for the Pc×K0

relationship was presented, we observed the same pat-
tern, namely, Pc and K0 are correlated to each other for
all models except for the Gogny ones. This particular cor-
relation was also exhibited for relativistic parametriza-
tions explored in Refs. [10, 98]). With regard to ρc as
a function of K0, we find a good correlation coefficient
only for the parametrizations of the SEI model, namely,
c = 0.80. Concerning the critical parameters as a func-
tion of m∗, we found hints of correlation for Skyrme (Tc
and Pc), M3Y (Pc and ρc) and SEI (ρc) models. Fi-
nally, in Fig. 6 we verified correlation between Tc and Pc

in agreement with other findings [99]. Also our results
seems to point out that this specific correlation is better
fulfilled for models with similar effective mass indepen-
dently of the type of interaction considered.
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V. APPENDIX

In momentum space, the finite-range interaction is
given by the Fourier transform of the form factor in co-
ordinate space f(s, µ), where s = |r − r

′| and µ is the
range of the force, and, therefore

g(|k− k
′|, µ) =

∫

dsei(k−k
′)sf(s, µ). (12)

The interaction in momentum space depends on the mod-
ulus of the relative momentum and therefore on the an-
gle between k and k

′. We can finally write the inter-
action with spherical symmetry in momentum space by
performing the angular average:

g̃(k, k′, µ) =
1

4π

∫

dΩg(
√

k2 + k′2 − 2kk′ cos θ). (13)

In this work we use Gaussian fG(s) = e−s2/µ2

and
Yukawian fY (s) = e−µs/µs form-factors. The corre-
sponding Fourier transforms are

gG(|k − k
′|, µ) = (

√
πµ)3e−

µ2(k−k
′)2

4 (14)

and

gY (|k− k
′|, µ) = 4π

µ

1

µ2 + (k − k′)2
. (15)

After the angular average they become

g̃G(k, k
′, µ) =

2π3/2µ

kk′
e−

µ2(k2+k′2)
4 sinh

µkk′

2
(16)

and

g̃Y (k, k
′, µ) =

π

µkk′
ln
µ2 + (k + k′)2

µ2 + (k − k′)2
, (17)

which enter in Eqs. (7) and (9).
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[11] C. F. von Weizsäcker, Z. Phys. 96, 431 (1935).
[12] D. Benzaid, S. Bentridi, A. Kerraci, N. Amrani, Nucl.

Sci. Tech. 31, 9 (2020).
[13] R. Machleidt, and D. R. Entem, Phys. Rep. 503, 1

(2011).
[14] R. Machleidt, and F. Sammarruca, Physica Scripta 91,

083007 (2016).
[15] T. R. Whitehead, Y. Lim and J. W. Holt, Phys. Rev. C

101, 064613 (2020).
[16] P.-G. Reinhard, Rep. Prog. Phys. 52, 439 (1989).
[17] D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, P. Ring,

Phys. Rep. 409, 101 (2005).
[18] Bao-An Li, Lie-Wen Chen, and Che Ming Ko, Phys. Rep.

464, 113 (2008).
[19] D. Vretenar, T. Niksic, and P. Ring, Phys. Rev. C 68,

024310 (2003).
[20] T. H R Skyrme, Phil. Mag. 1, 1043 (1956).
[21] T. H. R. Skyrme, Nucl. Phys. 9, 615 (1959).
[22] J. S. Bell and T. H. R. Skyrme, Phil. Mag. 1, 1055 (1956).
[23] T. H. R. Skyrme, in Proc. Rehovoth Conf. Nucl. Struc-

ture (North Holland Publishing Co., 1958) p. 20.
[24] J. R. Stone and P.-G. Reinhard, Phys. Rep. 58, 587

(2007).
[25] Li Guo-Quiang, Journal of Physics G 17,1 (1991).
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Rios, Phys. Rev. C 96, 065806 (2017).
[32] C. Gonzalez-Boquera, M. Centelles, X. Viñas, and L. M.

Robledo, Phys. Lett. B 779, 195 (2018).
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[47] B. Behera, X. Viñas, T.R. Routry, L.M. Robledo, M.
Centelles and S.P. Pattnaik, J. of Phys. G43, 045115
(2016).

[48] J. M. Lattimer and D. G. Ravenhall, Astrophys. J. 233,
314 (1978).

[49] M. Dutra, O. Lourenço, J. S. Sá Martins, A. Delfino, J.
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Dutra, Phys. Lett. B 664 246, (2008).

[84] J. B. Elliott, P. T. Lake, L. G. Moretto, and L. Phair,
Phys. Rev. C 87, 054622 (2013).

[85] T. S. Fan et al., Nucl. Phys. A 679, 121 (2000).
[86] V. E. Viola et al., Phys. Rep. 434, 1 (2006); K.

Kwiatkowski, Nucl. Instrum. Methods Phys. Res. Sec.
A 360, 571 (1995); T. Lefort, K. Kwiatkowski, W.-c.

Hsi, L. Pienkowski, L. Beaulieu, B. Back, et al., Phys.
Rev. Lett. 83, 4033 (1999); L. Beaulieu, T. Lefort, K.
Kwiatkowski, R. T. de Souza, W.-c. Hsi, L. Pienkowski,
et al., Phys. Rev. Lett. 84, 5971 (2000); L. Beaulieu, T.
Lefort, K. Kwiatkowski, W.-c. Hsi, L. Pienkowski, R. G.
Korteling, et al., Phys. Rev. C 63, 031302(R) (2001).

[87] V. A. Karnaukhov, Phys. At. Nucl. 60, 1625 (1997).
[88] V. A. Karnaukhov, et al., Phys. Rev. C 67, 011601(R)

(2003).
[89] V. A. Karnaukhov, et al., Nucl. Phys. A 734, 520 (2004).
[90] V. A. Karnaukhov, et al., Nucl. Phys. A 780, 91 (2006).
[91] V. A. Karnaukhov, Phys. At. Nucl. 71, 2067 (2008).
[92] A. Carbone, A. Polls, and A. Rios, Phys. Rev. C 98,

025804 (2018).
[93] O. Lourenço, M. Dutra, C. H. Lenzi, C. V. Flores, and

D. P. Menezes, Phys. Rev. C 99, 045202 (2019).
[94] V. Vovchenko, Phys. Rev. C 96, 015206 (2017).
[95] J. Kapusta, Phys. Rev. C 29, 1735 (1984).
[96] J. M. Lattimer and F. D. Swesty, Nucl. Phys. A 535, 331

(1991).
[97] A. Rios, Nucl. Phys. A 845, 58 (2010).
[98] O. Lourenço, B. M. Santos, M. Dutra, and A. Delfino,

Phys. Rev. C 94, 045207 (2016).
[99] S. Yang, B. N. Zhang, and B. Y. Sun, Phys. Rev. C 100,

054314 (2019).


