HAL
open science

Observation of New Resonances Decaying to $J / \psi K^{+}+$ and $J / \psi \phi$

Roel Aaij, Carlos Abellán Beteta, Thomas Ackernley, Bernardo Adeva, Marco
Adinolfi, Hossein Afsharnia, Christine Angela Aidala, Salvatore Aiola, Ziad
Ajaltouni, Simon Akar, et al.

To cite this version:

Roel Aaij, Carlos Abellán Beteta, Thomas Ackernley, Bernardo Adeva, Marco Adinolfi, et al.. Observation of New Resonances Decaying to $J / \psi K^{+}+$and $J / \psi \phi$. Phys.Rev.Lett., 2021, 127 (8), pp. 082001. 10.1103/PhysRevLett.127.082001 . hal-03171333

HAL Id: hal-03171333

https://hal.science/hal-03171333

Submitted on 7 Sep 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CERN-EP-2021-025
LHCb-PAPER-2020-044
September 16, 2021

Observation of new resonances decaying to $J / \psi K^{+}$and $J / \psi \phi$

LHCb collaboration ${ }^{\dagger}$

Abstract

The first observation of exotic states with a new quark content $c \bar{c} u \bar{s}$ decaying to the $J / \psi K^{+}$final state is reported with high significance from an amplitude analysis of the $B^{+} \rightarrow J / \psi \phi K^{+}$decay. The analysis is carried out using proton-proton collision data corresponding to a total integrated luminosity of $9 \mathrm{fb}^{-1}$ collected by the LHCb experiment at centre-of-mass energies of 7,8 and 13 TeV . The most significant state, $Z_{c s}(4000)^{+}$, has a mass of $4003 \pm 6{ }_{-14}^{+} \mathrm{MeV}$, a width of $131 \pm 15 \pm 26 \mathrm{MeV}$, and spin-parity $J^{P}=1^{+}$, where the quoted uncertainties are statistical and systematic, respectively. A new $1^{+} X(4685)$ state decaying to the $J / \psi \phi$ final state is also observed with high significance. In addition, the four previously reported $J / \psi \phi$ states are confirmed and two more exotic states, $Z_{c s}(4220)^{+}$and $X(4630)$, are observed with significance exceeding five standard deviations.

Published in Phys. Rev. Lett. 127 (2021) 082001
(C) 2021 CERN for the benefit of the LHCb collaboration. CC BY 4.0 licence.

[^0]Charged states such as $Z_{c}(3900)^{+}[1,2]$ and $Z_{c}(4430)^{+}[3-5]$ provide evidence for exotic states, because light quarks are required to account for the non-zero electric charge in addition to the heavy quarkonium. ${ }^{1}$ Previously, only the u or d quarks were observed to constitute the light quark content of such charged exotic states, even though the existence of a $Z_{c s}$ state as a strangeness-flavour partner of the $Z_{c}^{+}(3900)$ state had been predicted [6-10]. Recently, the BESIII experiment reported a 5.3 standard deviation (σ hereafter) observation of a threshold structure in the mass distribution of $D_{s}^{-} D^{* 0}+D_{s}^{*-} D^{0}$ pairs produced in $e^{+} e^{-}$annihilation as recoil against a K^{+}meson [11].

In this Letter, the first observation of two charged $Z_{c s}^{+} \rightarrow J / \psi K^{+}$states is reported from an updated amplitude analysis of the $B^{+} \rightarrow J / \psi \phi K^{+}$decay, as well as the observation of two more $X \rightarrow J / \psi \phi$ states. The analysis is based on the combined proton-proton ($p p$) collision data collected using the LHCb detector in Run 1 at centre-of-mass energies \sqrt{s} of 7 and 8 TeV , corresponding to a total integrated luminosity of $3 \mathrm{fb}^{-1}$, and in Run 2 at $\sqrt{s}=13 \mathrm{TeV}$ corresponding to an integrated luminosity of $6 \mathrm{fb}^{-1}$.

With Run 1 data, LHCb performed the first amplitude analysis of the $B^{+} \rightarrow J / \psi \phi K^{+}$ decay, investigating the $J / \psi \phi$ structure 12,13 in addition to the kaon excitations (hereafter indicated as K^{*+}). The data were described with seven $K^{*+} \rightarrow \phi K^{+}$resonances, four $X \rightarrow J / \psi \phi$ structures, and non-resonant (NR) ϕK^{+}and $J / \psi \phi$ contributions. Four X structures, i.e. the $X(4140), X(4274), X(4500)$ and $X(4700)$ states were observed (the recent PDG convention labels these states as $\left.\chi_{c J}[14]\right)$. Notably, the $X(4140)$ width was substantially larger than previously determined [15-17]. Only 3σ evidence for a $Z_{c s}^{+} \rightarrow J / \psi K^{+}$contribution was found [12, 13].

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range $2<\eta<5$, described in detail in Refs. [18, 19]. Simulation is produced with software packages described in Refs. $20-23$. The $\bar{B}^{+} \rightarrow J / \psi\left(\rightarrow \mu^{+} \mu^{-}\right) \phi\left(\rightarrow K^{+} K^{-}\right) K^{+}$signal candidates are first required to pass an online event selection performed by a trigger [24] dedicated for selecting J / ψ candidates. The signal decay is reconstructed by combining the J / ψ candidate with three kaon candidates with a total charge of one unit. The ϕ candidate is selected by requiring only one of two $K^{+} K^{-}$combinations to be consistent with the known ϕ mass [14] within $\pm 15 \mathrm{MeV} .^{2}$

The offline selection involves a loose preselection, followed by a multivariate classifier based on a Gradient Boosted Decision Tree (BDTG) [25,26]. The preselection is similar to that used in Refs. [12, 13] but the requirement on the χ_{IP}^{2} of kaon candidates is loosened, where χ_{IP}^{2} is defined as the difference in the vertex-fit χ^{2} of the event primary $p p$ collision vertex (PV) candidate, reconstructed with and without the particle considered. The BDTG response is constructed using eight variables exploring decay topology, particle momenta components transverse to the beam direction, and particle identification information (PID). The requirement on the BDTG response is chosen to maximise the signal significance multiplied by the purity [27].

The invariant-mass distribution of the $B^{+} \rightarrow J / \psi \phi K^{+}$candidates is shown in Fig. 1., fitted with the signal modelled by a Hypatia function [28] and the combinatorial background by a second-order polynomial function, yielding 24220 ± 170 signal candidates with a combinatorial-background fraction of 4.0% within a $\pm 15 \mathrm{MeV}$ signal region. The region also includes an additional $\sim 2 \%$ of non- $\phi B^{+} \rightarrow J / \psi K^{+} K^{-} K^{+}$background candidates,

[^1]

Figure 1: Invariant-mass distribution of selected $B^{+} \rightarrow J / \psi \phi K^{+}$candidates with the fit overlaid.

Figure 2: Dalitz plots for $B^{+} \rightarrow J / \psi \phi K^{+}$candidates in a region $\pm 15 \mathrm{MeV}$ around the B^{+}mass peak.
which are neglected in the amplitude model but considered in the evaluation of the systematic uncertainties. The candidates in the signal region are retained for further amplitude analysis. Compared to the previous Run 1 analysis [12, 13], the total signal yield is ~ 6 times larger, owing to a larger dataset and increase of 15% in signal efficiency due to the inclusion of PID in the BDTG classifier. The fraction of combinatorial background is almost a factor of six smaller while that of the non- ϕ background is unchanged.

Figure 2 shows the Dalitz plots for $B^{+} \rightarrow J / \psi \phi K^{+}$candidates in the B^{+}signal region. The most apparent features are four bands in the $J / \psi \phi$ mass distribution, corresponding to the previously reported $X(4140), X(4274), X(4500)$ and $X(4700)$ states. There is also a distinct band near $16 \mathrm{GeV}^{2}$ of the $J / \psi K^{+}$mass squared.

To investigate the resonant structures, a full amplitude fit is performed using an unbinned maximum-likelihood method. The likelihood definition and the total probability density function (PDF), which includes a signal and a background component, are described in the previous publication (13]. Resonance lineshapes are parametrised using the BreitWigner approximation. The signal B^{+}decay is described in the helicity formalism by three decay chains: $K^{*+}\left(\rightarrow \phi K^{+}\right) J / \psi, X(\rightarrow J / \psi \phi) K^{+}$and $Z_{c s}^{+}\left(\rightarrow J / \psi K^{+}\right) \phi$. Each chain

Figure 3: Distributions of ϕK^{+}(left), $J / \psi \phi$ (middle) and $J / \psi K^{+}$(right) invariant masses for the $B^{+} \rightarrow J / \psi \phi K^{+}$candidates (black data points) compared with the fit results (red solid lines) of the default model (top row) and the Run 1 model (bottom row).
is fully described by one mass and five angular observables. For example, the conventional K^{*+} chain has the following six observables $\Phi \equiv\left(m_{\phi K}, \theta_{K^{*}}, \theta_{J / \psi}, \theta_{\phi}, \Delta \varphi_{K^{*}, J / \psi}, \Delta \varphi_{K^{*}, \phi}\right)$, where θ denotes the helicity angles, and $\Delta \varphi$ the angles between two decay planes. Due to the non-scalar final-state particles (μ^{+}and μ^{-}), an azimuthal angle α_{μ}^{i} is required to align the helicity frames of μ^{+}and μ^{-}between the chain i and the reference K^{*+} chain [4,5,29.

The model used in the previous study (Run 1 model) is first tested. Due to the increased sample size, the model requires improvements (see Fig. 3 bottom row). Additional K^{*+}, X and possible $Z_{c s}^{+}$states are added until no further state with a significance larger than 5σ improves the overall fit. In total, nine K^{*+}, seven X, two $Z_{c s}^{+}$, and one $J / \psi \phi$ NR components are taken as the default model, as listed in Table 1. The nine K^{*+} states are all those with spin-parity $J \leq 2$ and mass below 2 GeV , which are predicted by the relativistic potential model [30], and kinematically allowed, including three resonances with poles just below the ϕK^{+}mass threshold. All components previously used in the Run 1 model are included, but the $J^{P}=1^{+} \mathrm{NR} \phi K^{+}$, and the broad 0^{-}state, are replaced by the upper tails of $K_{1}(1400)$ and $K(1460)$ resonances, respectively. The newly added components are: the upper tail of $1^{-} K^{*}(1410)$ resonance, $2^{-} X(4150), 1^{+} X(4685), 1^{-}$ $X(4630), 1^{+} Z_{c s}(4000)^{+}$and $Z_{c s}(4220)^{+}$states.

Figure 3 shows the invariant mass distributions for all pairs of final state particles of the $B^{+} \rightarrow J / \psi \phi K^{+}$decay with fit projections from the amplitude analysis overlaid, for both the default model and the Run 1 model. The fit results are summarised in Table 1 , including mass, width, fit fraction (FF), and significance of each component. The masses and widths of the four X states studied using the LHCb Run 1 sample only are consistent with the previous measurements [12, 13]. The significance of each component is evaluated by assuming that the change of twice the log-likelihood between the default fit and the fit

Figure 4: Projections of the fits with the default model, performed in the full phase-space, onto $m_{J / \psi K^{+}}$in two slices of $m_{J / \psi \phi}$ with and without the $1^{+} Z_{c s}^{+}$states. The narrow $Z_{c s}^{+}$state at 4 GeV is evident.

Table 1: Fit results from the default amplitude model. The significances are evaluated accounting for total (statistical) uncertainties. The listed masses and widths without uncertainties are taken from PDG [14] and are fixed in the fit. The listed world averages of the two K_{2} and $K^{*}(1680)$ resonances do not contain the contributions from the previous LHCb Run 1 results.

J^{P}	Contribution		Significance $[\times \sigma]$	$M_{0}[\mathrm{MeV}]$	$\Gamma_{0}[\mathrm{MeV}]$	FF [\%]
1^{+}	$2^{1} \mathrm{P}_{1}$	$K\left(1^{+}\right)$	4.5 (4.5)	$1861 \pm 10_{-46}^{+16}$	$149 \pm 41_{-23}^{+231}$	$15 \pm 3_{-11}^{+}$
	$2^{3} \mathrm{P}_{1}$	$K^{\prime}\left(1^{+}\right)$	4.5 (4.5)	$1911 \pm 37_{-48}^{+124}$	$276 \pm 50_{-159}^{+319}$	
	$1^{3} \mathrm{P}_{1}$	$K_{1}(1400)$	9.2 (11)	1403	174	
2^{-}	$1^{1} \mathrm{D}_{2}$	$K_{2}(1770)$	7.9 (8.0)	1773	186	
	$1^{3} \mathrm{D}_{2}$	$K_{2}(1820)$	5.8 (5.8)	1816	276	
1^{-}	$1^{3} \mathrm{D}_{1}$	$K^{*}(1680)$	4.7 (13)	1717	322	$14 \pm 2_{-8}^{+35}$
	$2^{3} \mathrm{~S}_{1}$	$K^{*}(1410)$	7.7 (15)	1414	232	$38 \pm 5_{-17}^{+11}$
2^{-}	$2^{3} \mathrm{P}_{2}$	$K_{2}^{*}(1980)$	1.6 (7.4)	$1988 \pm 22_{-31}^{+194}$	$318 \pm 82_{-101}^{+481}$	$2.3 \pm 0.5 \pm 0.7$
0^{-}	$2^{1} \mathrm{~S}_{0}$	$K(1460)$	12 (13)	1483	336	$10.2 \pm 1.2_{-3.8}^{+1.0}$
2^{-}		$X(4150)$	4.8 (8.7)	$4146 \pm 18 \pm 33$	$135 \pm 28_{-30}^{+59}$	$2.0 \pm 0.5_{-1.0}^{+0.8}$
1^{-}		$X(4630)$	5.5 (5.7)	$4626 \pm 16_{-110}^{+18}$	$174 \pm 27_{-73}^{+134}$	$2.6 \pm 0.5_{-1.5}^{+2.9}$
0^{+}		$X(4500)$	20 (20)	$4474 \pm 3 \pm 3$	$77 \pm 6_{-8}^{+10}$	$5.6 \pm 0.7_{-0.6}^{+2.4}$
		$X(4700)$	17 (18)	$4694 \pm 4_{-3}^{+16}$	$87 \pm 8_{-6}^{+16}$	$8.9 \pm 1.2_{-1.4}^{+4.9}$
		$\mathrm{NR}_{J / \psi \phi}$	4.8 (5.7)		$28 \pm 8_{-11}^{+19}$	
1^{+}		$X(4140)$	13 (16)	$4118 \pm 11_{-36}^{+19}$	$162 \pm 21_{-49}^{+24}$	$17 \pm 3_{-6}^{+19}$
		$X(4274)$	18 (18)	$4294 \pm 4_{-6}^{+3}$	$53 \pm 5 \pm 5$	$2.8 \pm 0.5_{-0.4}^{+0.8}$
		$X(4685)$	15 (15)	$4684 \pm 7_{-16}^{+13}$	$126 \pm 15_{-41}^{+37}$	$7.2 \pm 1.0_{-2.0}^{+4.0}$
1^{+}		$Z_{c s}(4000)$	15 (16)	$4003 \pm 6_{-14}^{+4}$	$131 \pm 15 \pm 26$	$9.4 \pm 2.1 \pm 3.4$
		$Z_{\text {cs }}(4220)$	5.9 (8.4)	$4216 \pm 24_{-30}^{+43}$	$233 \pm 52_{-73}^{+97}$	$10 \pm 4{ }_{-7}^{+10}$

without this component follows a χ^{2} distribution. The corresponding number of degrees of freedom is equal to the reduction in the number of free parameters multiplied by a factor of two (one) when the mass and width of the component are floated (fixed) in the fit, which accounts for the look-elsewhere effect [13, 31], as validated by pseudoexperiments. Figure 4 shows the $m_{J / \psi K^{+}}$distributions in two slices of $m_{J / \psi \phi}$, which demonstrate the need for the narrower $Z_{c s}(4000)^{+}$state. Including the $1^{+} Z_{c s}^{+}$states improves the χ^{2} / nbin from $84 / 35$ to $43 / 35$ (left slice), and from $79 / 37$ to $32 / 37$ (right slice), where nbin is the number of non-zero bins.

The spin and parity of each exotic state is probed by testing alternative J^{P} hypotheses and comparing the fit likelihood values [13]. The J^{P} assignments for the previously reported four X states are confirmed with high significance. A 1^{+}assignment is favoured for the new $X(4685)$ state with also high significance, but the quantum numbers of the $X(4150)$ and $X(4630)$ are less well determined. The best hypothesis for the $X(4630)$ state is 1^{-}over 2^{-}at a 3σ level. The other hypotheses are ruled out by more than 5σ. The fit prefers 2^{-}for the $X(4150)$ state by more than 4σ. The narrower $Z_{c s}(4000)^{+}$state is determined to be 1^{+}with high significance. The broader $Z_{c s}(4220)^{+}$state could be 1^{+}or 1^{-}, with a 2σ difference in favour of the first hypothesis. Other spin-parity assignments are ruled out at 4.9σ level.

Systematic uncertainties are estimated for the masses, widths, and fit fractions of all states. To probe the effects from the neglected $B^{+} \rightarrow J / \psi K^{+} K^{-} K^{+}$non- ϕ contributions, the ϕ mass window is changed from $\pm 15 \mathrm{MeV}$ to $\pm 7 \mathrm{MeV}$, and alternatively this background is subtracted using the sPlot technique [32. The Blatt-Weisskopf barrier [13] hadron size is varied between 1.5 and $4.5 \mathrm{GeV}^{-1}$. The default NR $0^{+} J / \psi \phi$ representation is changed from a constant to a linear polynomial. Additional 1^{+}or $2^{+} \mathrm{NR} J / \psi \phi$ contributions are also included. The smallest allowed orbital angular momentum in the resonance function is varied. For the $X(4140)$, which peaks near the $J / \psi \phi$ threshold, the Flatté model [33] is used instead of the Breit-Wigner amplitude. A simplified one-channel K-matrix model [14] is used to describe various K^{*} resonances instead of the sum of Breit-Wigner amplitudes. Two-channel K-matrix models have also been tried for the $2^{1} \mathrm{P}_{1}$ and $2^{3} \mathrm{P}_{1} K^{*}$ states with the coupled-channel thresholds opening up near 1.75 GeV , with an insignificant improvement to the description of the $m_{\phi K}$ distribution. To cover the full range of K^{*+} resonances predicted in the allowed ϕK^{+}mass range, an extended model is tested by adding five more K^{*+} resonances with mass above 2 GeV [30]. The presence of an extra X state contribution, with J from 0 to 2 , to the extended model is also checked. The difference between the results obtained from assigning 1^{+}or 1^{-}hypotheses to the $Z_{c s}(4220)^{+}$is taken as a systematic uncertainty. The mass-dependent width in the denominator of the Breit-Wigner function for the K^{*+} resonances is calculated with the lightest allowed channel (πK for natural spin-parity resonances and ωK for others) instead of ϕK.

The maximum deviation among the modelling uncertainties discussed above is summed in quadrature with the additional sources, including the uncertainties due to the fixed masses and widths of the known K^{*+} resonances, mismodelling of χ_{IP}^{2} of the B^{+}candidate, background PDF model shape and fractions, and the finite size of the simulation samples. For the $Z_{c s}(4000)^{+}$state, the largest systematic contribution is due to the J^{P} hypotheses of the $Z_{c s}(4220)^{+}$state. The summary of fit results, including the systematic uncertainties, is listed in Table 1. The smallest significance found when varying each of sources is taken as the significance accounting for systematic uncertainty.

Figure 5: Fitted values of the $Z_{c s}(4000)^{+}$amplitude in eight $m_{J / \psi K^{+}}$intervals, shown on an Argand diagram (black points). The red curve represents the expected Breit-Wigner behaviour between $-1.4 \Gamma_{0}$ to $1.4 \Gamma_{0}$ around the $Z_{c s}(4000)^{+}$mass.

Further evidence for the resonant character of $Z_{c s}(4000)^{+}$is observed in Fig. 5 , showing the evolution of the complex amplitude on the Argand diagram, obtained with the same method as previously reported for the $Z_{c}(4430)^{-}$state [5]. The magnitude and phase have approximately circular evolution with $m_{J / \psi K^{+}}$in the counter-clockwise direction, as expected for a resonance.

The BESIII experiment reported observation of a $Z_{c s}(3985)^{-}$resonance. Its mass $3982.5_{-2.6}^{+1.8}$ (stat) ± 2.1 (syst) MeV is consistent with the $1^{+} Z_{c s}(4000)^{+}$state observed in this analysis, but with significantly narrower width $12.8_{-4.4}^{+5.3}$ (stat) ± 3.0 (syst) MeV. When fixing the mass and width of this state to the nominal BESIII result in the amplitude fit to our data, twice the log-likelihood is worse by 160 units. The narrower width is also not supported by an alternative Flatté model with parameters obtained from our data. Therefore, there is no evidence that the $Z_{c s}(4000)^{+}$state observed here is the same as the $Z_{c s}(3985)^{-}$state observed by BESIII.

In conclusion, an improved full amplitude analysis of the $B^{+} \rightarrow J / \psi \phi K^{+}$decay is performed using 6 times larger signal yield than previously analyzed [12. A relatively narrow $Z_{c s}(4000)^{+}$state decaying to $J / \psi K^{+}$with mass 4003 ± 6 (stat) ${ }_{-14}^{+4}$ (syst) MeV and width 131 ± 15 (stat) ± 26 (syst) MeV is observed with large significance. Its spin-parity is determined to be 1^{+}also with high significance. A quasi-model-independent representation of the $Z_{c s}(4000)^{+}$contribution in the fit shows a phase change in the amplitude consistent with that of a resonance. A broader 1^{+}or $1^{-} Z_{c s}(4220)^{+}$state is also required at 5.9σ. This is the first observation of states with hidden charm and strangeness that decay to the $J / \psi K^{+}$final state. The four X states decaying to $J / \psi \phi$ observed in the Run 1 analysis [12] are confirmed with higher significance, together with their quantum number assignments. An additional $1^{+} X(4685)$ state is observed with relatively narrow width (about 125 MeV) with high significance. A new $X(4630)$ state is observed with a 5.5σ significance, with preferred 1^{-}over 2^{-}spin-parity assignment at 3σ level, and the other J^{P} hypotheses rejected at 5σ. This constitutes the first observation of exotic states with a new quark content $\bar{c} \bar{u} \bar{s}$ decaying to the $J / \psi K^{+}$final state.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MICINN (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and NERSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from ARC and ARDC (Australia); AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); A*MIDEX, ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, CAS CCEPP, Fundamental Research Funds for the Central Universities, and Sci. \& Tech. Program of Guangzhou (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Leverhulme Trust, the Royal Society and UKRI (United Kingdom).

References

[1] BESIII collaboration, M. Ablikim et al., Observation of a charged charmoniumlike structure in $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$ at $\sqrt{s}=4.26 \mathrm{GeV}$, Phys. Rev. Lett. 110 (2013) 252001, arXiv:1303.5949.
[2] Belle collaboration, Z. Q. Liu et al., Study of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$ and observation of a charged charmoniumlike state at Belle, Phys. Rev. Lett. 110 (2013) 252002, arXiv:1304.0121.
[3] Belle collaboration, S. K. Choi et al., Observation of a resonance-like structure in the $\pi^{ \pm} \psi^{\prime}$ mass distribution in exclusive $B \rightarrow K \pi^{ \pm} \psi^{\prime}$ decays, Phys. Rev. Lett. 100 (2008) 142001, arXiv:0708.1790.
[4] Belle collaboration, K. Chilikin et al., Experimental constraints on the spin and parity of the $Z(4430)^{+}$, Phys. Rev. D88 (2013) 074026, arXiv:1306.4894.
[5] LHCb collaboration, R. Aaij et al., Observation of the resonant character of the $Z(4430)^{-}$state, Phys. Rev. Lett. 112 (2014) 222002, arXiv:1404.1903.
[6] M. B. Voloshin, Strange hadrocharmonium, Phys. Lett. B798 (2019) 135022 , arXiv:1901.01936.
[7] J. M. Dias, X. Liu, and M. Nielsen, Prediction for the decay width of a charged state near the $D_{s} \bar{D}^{*} / D_{s}^{*} \bar{D}$ threshold, Phys. Rev. D88 (2013) 096014, arXiv:1307.7100.
[8] D.-Y. Chen, X. Liu, and T. Matsuki, Predictions of charged charmoniumlike structures with hidden-charm and open-strange channels, Phys. Rev. Lett. 110 (2013) 232001, arXiv:1303.6842.
[9] J. Ferretti and E. Santopinto, Hidden-charm and bottom tetra- and pentaquarks with strangeness in the hadro-quarkonium and compact tetraquark models, JHEP 04 (2020) 119, arXiv:2001.01067.
[10] S. H. Lee, M. Nielsen, and U. Wiedner, $D(s) D^{*}$ molecule as an axial meson, J. Korean Phys. Soc. 55 (2009) 424, arXiv:0803.1168.
[11] BESIII, M. Ablikim et al., Observation of a Near-Threshold Structure in the K^{+} Recoil-Mass Spectra in $e^{+} e^{-} \rightarrow K^{+}\left(D_{s}^{-} D^{* 0}+D_{s}^{*-} D^{0}\right)$, Phys. Rev. Lett. 126 (2021) 102001, arXiv: 2011.07855.
[12] LHCb collaboration, R. Aaij et al., Observation of exotic $J / \psi \phi$ structures from amplitude analysis of $B^{+} \rightarrow J / \psi \phi K^{+}$decays, Phys. Rev. Lett. 118 (2017) 022003, arXiv:1606.07895,
[13] LHCb collaboration, R. Aaij et al., Amplitude analysis of $B^{+} \rightarrow J / \psi \phi K^{+}$decays, Phys. Rev. D95 (2017) 012002, arXiv:1606.07898.
[14] Particle Data Group, P. A. Zyla et al., Review of particle physics, Prog. Theor. Exp. Phys. 6 (2020) 083C01.
[15] CDF collaboration, T. Aaltonen et al., Evidence for a narrow near-threshold structure in the $J / \psi \phi$ mass spectrum in $B^{+} \rightarrow J / \psi \phi K^{+}$decays, Phys. Rev. Lett. 102 (2009) 242002, arXiv:0903.2229.
[16] CDF, T. Aaltonen et al., Observation of the $Y(4140)$ structure in the $J / \psi \phi$ mass spectrum in $B^{ \pm} \rightarrow J / \psi \phi K^{ \pm}$decays, Mod. Phys. Lett. A32 (2017) 1750139, arXiv:1101.6058
[17] CMS collaboration, S. Chatrchyan et al., Observation of a peaking structure in the $J / \psi \phi$ mass spectrum from $B^{ \pm} \rightarrow J / \psi \phi K^{ \pm}$decays, Phys. Lett. B734 (2014) 261, arXiv:1309.6920.
[18] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.
[19] LHCb collaboration, R. Aaij et al., LHCb detector performance, Int. J. Mod. Phys. A30 (2015) 1530022, arXiv:1412.6352.
[20] T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820.
[21] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047.
[22] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A462 (2001) 152 .
[23] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270; Geant4 collaboration, S. Agostinelli et al., Geant4: A simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.
[24] R. Aaij et al., The LHCb trigger and its performance in 2011, JINST 8 (2013) P04022, arXiv:1211.3055
[25] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and regression trees, Wadsworth international group, Belmont, California, USA, 1984; H. Voss, A. Hoecker, J. Stelzer, and F. Tegenfeldt, TMVA - Toolkit for Multivariate Data Analysis with ROOT, PoS ACAT (2007) 040.
[26] A. Hoecker et al., TMVA 4 - Toolkit for Multivariate Data Analysis with ROOT. Users Guide., arXiv: physics/0703039.
[27] LHCb collaboration, R. Aaij et al., Amplitude analysis of $B_{s}^{0} \rightarrow K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$ decays, JHEP 06 (2019) 114, arXiv:1902.07955.
[28] D. Martínez Santos and F. Dupertuis, Mass distributions marginalized over per-event errors, Nucl. Instrum. Meth. A764 (2014) 150, arXiv:1312.5000.
[29] Belle collaboration, R. Mizuk et al., Observation of two resonance-like structures in the $\pi^{+} \chi_{c 1}$ mass distribution in exclusive $\bar{B}^{0} \rightarrow K^{-} \pi^{+} \chi_{c 1}$ decays, Phys. Rev. D78 (2008) 072004, arXiv:0806.4098.
[30] S. Godfrey and N. Isgur, Mesons in a relativized quark model with chromodynamics, Phys. Rev. D32 (1985) 189.
[31] L. Lyons, Open statistical issues in Particle Physics, Ann. Appl. Stat. 2 (2008) 887, arXiv:0811.1663
[32] M. Pivk and F. R. Le Diberder, sPlot: A statistical tool to unfold data distributions, Nucl. Instrum. Meth. A555 (2005) 356, arXiv: physics/0402083.
[33] S. M. Flatté, Coupled-channel analysis of the $\pi \eta$ and $K \bar{K}$ systems near $K \bar{K}$ threshold, Phys. Lett. B63 (1976) 224.

LHCb collaboration

R. Aaij ${ }^{32}$, C. Abellán Beteta ${ }^{50}$, T. Ackernley ${ }^{60}$, B. Adeva ${ }^{46}$, M. Adinolf ${ }^{54}$, H. Afsharnia ${ }^{9}$, C.A. Aidala ${ }^{85}$, S. Aiola ${ }^{25}$, Z. Ajaltouni ${ }^{9}$, S. Akar ${ }^{65}$, J. Albrecht ${ }^{15}$, F. Alessio ${ }^{48}$, M. Alexander ${ }^{59}$, A. Alfonso Albero ${ }^{45}$, Z. Aliouche ${ }^{62}$, G. Alkhazov ${ }^{38}$, P. Alvarez Cartelle ${ }^{55}$, S. Amato ${ }^{2}$, Y. Amhis ${ }^{11}$, L. An ${ }^{48}$, L. Anderlini ${ }^{22}$, A. Andreianov ${ }^{38}$, M. Andreotti ${ }^{21}$, F. Archilli ${ }^{17}$, A. Artamonov ${ }^{44}$, M. Artuso ${ }^{68}$, K. Arzymatov ${ }^{42}$, E. Aslanides ${ }^{10}$, M. Atzeni ${ }^{50}$, B. Audurier ${ }^{12}$, S. Bachmann ${ }^{17}$, M. Bachmayer ${ }^{49}$, J.J. Back ${ }^{56}$, S. Baker ${ }^{61}$, P. Baladron Rodriguez ${ }^{46}$, V. Balagura ${ }^{12}$, W. Baldini ${ }^{21,48}$, J. Baptista Leite ${ }^{1}$, R.J. Barlow ${ }^{62}$, S. Barsuk ${ }^{11}$, W. Barter ${ }^{61}$, M. Bartolini ${ }^{24}$, F. Baryshnikov ${ }^{82}$, J.M. Basels ${ }^{14}$, G. Bassi ${ }^{29}$, B. Batsukh ${ }^{68}$, A. Battig ${ }^{15}$,
A. Bay ${ }^{49}$, M. Becker ${ }^{15}$, F. Bedeschi ${ }^{29}$, I. Bediaga ${ }^{1}$, A. Beiter ${ }^{68}$, V. Belavin ${ }^{42}$, S. Belin ${ }^{27}$, V. Bellee ${ }^{49}$, K. Belous ${ }^{44}$, I. Belov ${ }^{40}$, I. Belyaev ${ }^{41}$, G. Bencivenni ${ }^{23}$, E. Ben-Haim ${ }^{13}$,
A. Berezhnoy ${ }^{40}$, R. Bernet ${ }^{50}$, D. Berninghoff ${ }^{17}$, H.C. Bernstein ${ }^{68}$, C. Bertella ${ }^{48}$, A. Bertolin ${ }^{28}$, C. Betancourt ${ }^{50}$, F. Betti ${ }^{20, d}$, Ia. Bezshyiko ${ }^{50}$, S. Bhasin ${ }^{54}$, J. Bhom ${ }^{35}$, L. Bian ${ }^{73}$, M.S. Bieker ${ }^{15}$, S. Bifani ${ }^{53}$, P. Billoir ${ }^{13}$, M. Birch ${ }^{61}$, F.C.R. Bishop ${ }^{55}$, A. Bitadz ${ }^{62}$, A. Bizzeti ${ }^{22, k}$, M. Bjørn ${ }^{63}$, M.P. Blago ${ }^{48}$, T. Blake ${ }^{56}$, F. Blanc ${ }^{49}$, S. Blusk ${ }^{68}$, D. Bobulska ${ }^{59}$, J.A. Boelhauve ${ }^{15}$, O. Boente Garcia ${ }^{46}$, T. Boettcher ${ }^{64}$, A. Boldyrev ${ }^{81}$, A. Bondar ${ }^{43}$, N. Bondar ${ }^{38,48}$, S. Borghi ${ }^{62}$, M. Borisyak ${ }^{42}$, M. Borsato ${ }^{17}$, J.T. Borsuk ${ }^{35}$, S.A. Bouchiba ${ }^{49}$, T.J.V. Bowcock ${ }^{60}$, A. Boyer ${ }^{48}$, C. Bozzi ${ }^{21}$, M.J. Bradley ${ }^{61}$, S. Braun ${ }^{66}$, A. Brea Rodriguez ${ }^{46}$, M. Brodski ${ }^{48}$, J. Brodzicka ${ }^{35}$, A. Brossa Gonzalo ${ }^{56}$, D. Brundu ${ }^{27}$, A. Buonaura ${ }^{50}$, C. Burr ${ }^{48}$, A. Bursche ${ }^{27}$, A. Butkevich ${ }^{39}$, J.S. Butter ${ }^{32}$, J. Buytaert ${ }^{48}$, W. Byczynski ${ }^{48}$, S. Cadeddu ${ }^{27}$, H. Cai ${ }^{73}$, R. Calabrese ${ }^{21, f}$, L. Calefice ${ }^{15,13}$, L. Calero Diaz 23, S. Cali ${ }^{23}$, R. Calladine ${ }^{53}$, M. Calvi ${ }^{26, j}$, M. Calvo Gomez ${ }^{84}$, P. Camargo Magalhaes ${ }^{54}$, A. Camboni ${ }^{45,84}$, P. Campana ${ }^{23}$, A.F. Campoverde Quezada ${ }^{6}$, S. Capelli ${ }^{26, j}$, L. Capriotti ${ }^{20, d}$, A. Carbone ${ }^{20, d}$, G. Carboni ${ }^{31}$, R. Cardinale ${ }^{24, h}$, A. Cardini ${ }^{27}$, I. Carli ${ }^{4}$, P. Carniti ${ }^{26, j}$, L. Carus ${ }^{14}$, K. Carvalho Akiba ${ }^{32}$, A. Casais Vidal ${ }^{46}$, G. Casse ${ }^{60}$, M. Cattaneo ${ }^{48}$, G. Cavallero ${ }^{48}$, S. Celani ${ }^{49}$, J. Cerasoli ${ }^{10}$, A.J. Chadwick ${ }^{60}$, M.G. Chapman ${ }^{54}$, M. Charles ${ }^{13}$, Ph. Charpentier ${ }^{48}$, G. Chatzikonstantinidis ${ }^{53}$, C.A. Chavez Barajas ${ }^{60}$,
M. Chefdeville ${ }^{8}$, C. Chen ${ }^{3}$, S. Chen ${ }^{27}$, A. Chernov ${ }^{35}$, V. Chobanova ${ }^{46}$, S. Cholak ${ }^{49}$,
M. Chrzaszcz ${ }^{35}$, A. Chubykin ${ }^{38}$, V. Chulikov ${ }^{38}$, P. Ciambrone ${ }^{23}$, M.F. Cicala ${ }^{56}$, X. Cid Vidal ${ }^{46}$, G. Ciezarek ${ }^{48}$, P.E.L. Clarke ${ }^{58}$, M. Clemencic ${ }^{48}$, H.V. Cliff ${ }^{55}$, J. Closier ${ }^{48}$, J.L. Cobbledick ${ }^{62}$, V. Coco ${ }^{48}$, J.A.B. Coelho ${ }^{11}$, J. Cogan ${ }^{10}$, E. Cogneras ${ }^{9}$, L. Cojocariu ${ }^{37}$, P. Collins ${ }^{48}$, T. Colombo ${ }^{48}$, L. Congedo ${ }^{19, c}$, A. Contu ${ }^{27}$, N. Cooke ${ }^{53}$, G. Coombs ${ }^{59}$, G. Corti ${ }^{48}$, C.M. Costa Sobral ${ }^{56}$, B. Couturier ${ }^{48}$, D.C. Craik ${ }^{64}$, J. Crkovská ${ }^{67}$, M. Cruz Torres ${ }^{1}$, R. Currie ${ }^{58}$, C.L. Da Silva ${ }^{67}$, E. Dall'Occo ${ }^{15}$, J. Dalseno ${ }^{46}$, C. D'Ambrosio ${ }^{48}$, A. Danilina ${ }^{41}$, P. d'Argent ${ }^{48}$, A. Davis ${ }^{62}$, O. De Aguiar Francisco ${ }^{62}$, K. De Bruyn ${ }^{78}$, S. De Capua ${ }^{62}$, M. De Cian ${ }^{49}$, J.M. De Miranda ${ }^{1}$, L. De Paula ${ }^{2}$, M. De Serio ${ }^{19, c}$, D. De Simone ${ }^{50}$, P. De Simone ${ }^{23}$, J.A. de Vries ${ }^{79}$, C.T. Dean ${ }^{67}$, D. Decamp ${ }^{8}$, L. Del Buono ${ }^{13}$, B. Delaney ${ }^{55}$, H.-P. Dembinski ${ }^{15}$, A. Dendek ${ }^{34}$, V. Denysenko ${ }^{50}$, D. Derkach ${ }^{81}$, O. Deschamps ${ }^{9}$, F. Desse ${ }^{11}$, F. Dettori ${ }^{27, e}$, B. Dey ${ }^{73}$, P. Di Nezza 23, S. Didenko ${ }^{82}$, L. Dieste Maronas ${ }^{46}$, H. Dijkstra ${ }^{48}$, V. Dobishuk ${ }^{52}$, A.M. Donohoe ${ }^{18}$, F. Dordei ${ }^{27}$, A.C. dos Reis ${ }^{1}$, L. Douglas ${ }^{59}$, A. Dovbnya ${ }^{51}$, A.G. Downes ${ }^{8}$, K. Dreimanis ${ }^{60}$, M.W. Dudek ${ }^{35}$, L. Dufour ${ }^{48}$, V. Duk ${ }^{77}$, P. Durante ${ }^{48}$, J.M. Durham ${ }^{67}$, D. Dutta ${ }^{62}$, M. Dziewiecki ${ }^{17}$, A. Dziurda ${ }^{35}$, A. Dzyuba ${ }^{38}$, S. Easo ${ }^{57}$, U. Egede ${ }^{69}$, V. Egorychev ${ }^{41}$, S. Eidelman ${ }^{43, v}$, S. Eisenhardt ${ }^{58}$, S. Ek-In ${ }^{49}$, L. Eklund ${ }^{59, w}$, S. Ely ${ }^{68}$, A. Ene ${ }^{37}$, E. Epple ${ }^{67}$, S. Escher ${ }^{14}$, J. Eschle ${ }^{50}$, S. Esen ${ }^{32}$, T. Evans ${ }^{48}$, A. Falabella ${ }^{20}$, J. Fan ${ }^{3}$, Y. Fan ${ }^{6}$, B. Fang ${ }^{73}$, S. Farry ${ }^{60}$, D. Fazzini ${ }^{26, j}$, P. Fedin ${ }^{41}$, M. Féo ${ }^{48}$, P. Fernandez Declara ${ }^{48}$, A. Fernandez Prieto ${ }^{46}$, J.M. Fernandez-tenllado Arribas ${ }^{45}$, F. Ferrari ${ }^{20, d}$, L. Ferreira Lopes ${ }^{49}$, F. Ferreira Rodrigues ${ }^{2}$, S. Ferreres Sole ${ }^{32}$, M. Ferrillo ${ }^{50}$, M. Ferro-Luzzi ${ }^{48}$, S. Filippov ${ }^{39}$, R.A. Fini ${ }^{19}$, M. Fiorini ${ }^{21, f}$, M. Firlej ${ }^{34}$, K.M. Fischer ${ }^{63}$, C. Fitzpatrick ${ }^{62}$, T. Fiutowski ${ }^{34}$, F. Fleuret ${ }^{12}$, M. Fontana ${ }^{13}$, F. Fontanelli ${ }^{24, h}$, R. Forty ${ }^{48}$, V. Franco Lima ${ }^{60}$, M. Franco Sevilla ${ }^{66}$, M. Frank ${ }^{48}$, E. Franzoso ${ }^{21}$, G. Frau ${ }^{17}$, C. Frei ${ }^{48}$, D.A. Friday ${ }^{59}$, J. Fu ${ }^{25}$, Q. Fuehring ${ }^{15}$, W. Funk ${ }^{48}$, E. Gabriel ${ }^{32}$,
T. Gaintseva ${ }^{42}$, A. Gallas Torreira ${ }^{46}$, D. Galli ${ }^{20, d}$, S. Gambetta ${ }^{58,48}$, Y. Gan ${ }^{3}$, M. Gandelman ${ }^{2}$, P. Gandini ${ }^{25}$, Y. Gao ${ }^{5}$, M. Garau ${ }^{27}$, L.M. Garcia Martin ${ }^{56}$, P. Garcia Moreno ${ }^{45}$, J. García Pardiñas ${ }^{26, j}$, B. Garcia Plana ${ }^{46}$, F.A. Garcia Rosales ${ }^{12}$, L. Garrido ${ }^{45}$, C. Gaspar ${ }^{48}$, R.E. Geertsema ${ }^{32}$, D. Gerick ${ }^{17}$, L.L. Gerken ${ }^{15}$, E. Gersabeck ${ }^{62}$, M. Gersabeck ${ }^{62}$, T. Gershon ${ }^{56}$, D. Gerstel ${ }^{10}$, Ph. Ghez ${ }^{8}$, V. Gibson ${ }^{55}$, H.K. Giemza ${ }^{36}$, M. Giovannetti ${ }^{23, p}$, A. Gioventù ${ }^{46}$, P. Gironella Gironell ${ }^{45}$, L. Giubega ${ }^{37}$, C. Giugliano ${ }^{21, f, 48}$, K. Gizdov ${ }^{58}$, E.L. Gkougkousis ${ }^{48}$, V.V. Gligorov ${ }^{13}$, C. Göbel ${ }^{70}$, E. Golobardes ${ }^{84}$, D. Golubkov ${ }^{41}$, A. Golutvin ${ }^{61,82}$, A. Gomes ${ }^{1, a}$, S. Gomez Fernandez ${ }^{45}$, F. Goncalves Abrantes ${ }^{63}$, M. Goncerz ${ }^{35}$, G. Gong ${ }^{3}$, P. Gorbounov ${ }^{41}$, I.V. Gorelov ${ }^{40}$, C. Gotti ${ }^{26}$, E. Govorkova ${ }^{48}$, J.P. Grabowski ${ }^{17}$, R. Graciani Diaz ${ }^{45}$, T. Grammatico ${ }^{13}$, L.A. Granado Cardoso ${ }^{48}$, E. Graugés ${ }^{45}$, E. Graverini ${ }^{49}$, G. Graziani ${ }^{22}$, A. Grecu ${ }^{37}$, L.M. Greeven ${ }^{32}$, P. Griffith ${ }^{21, f}$, L. Grillo ${ }^{62}$, S. Gromov ${ }^{82}$, B.R. Gruberg Cazon ${ }^{63}$, C. Gu^{3}, M. Guarise ${ }^{21}$, P. A. Günther ${ }^{17}$, E. Gushchin ${ }^{39}$, A. Guth ${ }^{14}$, Y. Guz ${ }^{44,48}$, T. Gys ${ }^{48}$, T. Hadavizadeh ${ }^{69}$, G. Haefeli ${ }^{49}$, C. Haen ${ }^{48}$, J. Haimberger ${ }^{48}$, T. Halewood-leagas ${ }^{60}$, P.M. Hamilton ${ }^{66}$, Q. Han^{7}, X. Han 17, T.H. Hancock ${ }^{63}$, S. Hansmann-Menzemer ${ }^{17}$, N. Harnew ${ }^{63}$, T. Harrison ${ }^{60}$, C. Hasse ${ }^{48}$, M. Hatch ${ }^{48}$, J. He ${ }^{6, b}$, M. Hecker ${ }^{61}$, K. Heijhoff ${ }^{32}$, K. Heinicke ${ }^{15}$, A.M. Hennequin ${ }^{48}$, K. Hennessy ${ }^{60}$, L. Henry ${ }^{25,47}$, J. Heuel ${ }^{14}$, A. Hicheur ${ }^{2}$, D. Hill ${ }^{49}$, M. Hilton ${ }^{62}$, S.E. Hollitt ${ }^{15}$, J. Hu^{17}, J. Hu^{72}, W. Hu ${ }^{7}$, W. Huang ${ }^{6}$, X. Huang ${ }^{73}$, W. Hulsbergen ${ }^{32}$, R.J. Hunter ${ }^{56}$, M. Hushchyn ${ }^{81}$, D. Hutchcroft ${ }^{60}$, D. Hynds 32, P. Ibis ${ }^{15}$, M. Idzik ${ }^{34}$, D. Ilin 38, P. Ilten ${ }^{65}$, A. Inglessi ${ }^{38}$, A. Ishteev ${ }^{82}$, K. Ivshin ${ }^{38}$, R. Jacobsson ${ }^{48}$, S. Jakobsen ${ }^{48}$, E. Jans ${ }^{32}$, B.K. Jashal ${ }^{47}$, A. Jawahery ${ }^{66}$, V. Jevtic ${ }^{15}$, M. Jezabek ${ }^{35}$, F. Jiang ${ }^{3}$, M. John ${ }^{63}$, D. Johnson ${ }^{48}$, C.R. Jones ${ }^{55}$, T.P. Jones ${ }^{56}$, B. Jost ${ }^{48}$, N. Jurik ${ }^{48}$, S. Kandybei ${ }^{51}$, Y. Kang 3, M. Karacson ${ }^{48}$, M. Karpov ${ }^{81}$, N. Kazeev ${ }^{81}$, F. Keizer ${ }^{55,48}$, M. Kenzie ${ }^{56}$, T. Ketel ${ }^{33}$, B. Khanji ${ }^{15}$, A. Kharisova ${ }^{83}$, S. Kholodenko ${ }^{44}$, K.E. Kim 68, T. Kirn ${ }^{14}$, V.S. Kirsebom ${ }^{49}$, O. Kitouni ${ }^{64}$, S. Klaver ${ }^{32}$,
K. Klimaszewski ${ }^{36}$, S. Koliiev ${ }^{52}$, A. Kondybayeva ${ }^{82}$, A. Konoplyannikov ${ }^{41}$, P. Kopciewicz ${ }^{34}$,
R. Kopecna ${ }^{17}$, P. Koppenburg ${ }^{32}$, M. Korolev ${ }^{40}$, I. Kostiuk ${ }^{32,52}$, O. Kot 52, S. Kotriakhova ${ }^{38,30}$,
P. Kravchenko ${ }^{38}$, L. Kravchuk ${ }^{39}$, R.D. Krawczyk ${ }^{48}$, M. Kreps ${ }^{56}$, F. Kress ${ }^{61}$, S. Kretzschmar ${ }^{14}$,
P. Krokovny ${ }^{43, v}$, W. Krupa ${ }^{34}$, W. Krzemien ${ }^{36}$, W. Kucewicz ${ }^{35, t}$, M. Kucharczyk ${ }^{35}$,
V. Kudryavtsev ${ }^{43, v}$, H.S. Kuindersma ${ }^{32}$, G.J. Kunde ${ }^{67}$, T. Kvaratskheliya ${ }^{41}$, D. Lacarrere ${ }^{48}$, G. Lafferty ${ }^{62}$, A. Lai ${ }^{27}$, A. Lampis ${ }^{27}$, D. Lancierini ${ }^{50}$, J.J. Lane ${ }^{62}$, R. Lane ${ }^{54}$, G. Lanfranchi ${ }^{23}$, C. Langenbruch ${ }^{14}$, J. Langer ${ }^{15}$, O. Lantwin ${ }^{50,82}$, T. Latham ${ }^{56}$, F. Lazzari ${ }^{29, q}$, R. Le Gac ${ }^{10}$, S.H. Lee ${ }^{85}$, R. Lefèvre ${ }^{9}$, A. Leflat ${ }^{40}$, S. Legotin ${ }^{82}$, O. Leroy ${ }^{10}$, T. Lesiak ${ }^{35}$, B. Leverington ${ }^{17}$, H. Li ${ }^{72}$, L. Li^{63}, P. Li^{17}, Y. Li^{4}, Y. Li^{4}, Z. Li ${ }^{68}$, X. Liang ${ }^{68}$, T. Lin ${ }^{61}$, R. Lindner ${ }^{48}$, V. Lisovskyi ${ }^{15}$, R. Litvinov ${ }^{27}$, G. Liu ${ }^{72}$, H. Liu ${ }^{6}$, S. Liu ${ }^{4}$, X. Liu ${ }^{3}$, A. Loi ${ }^{27}$, J. Lomba Castro ${ }^{46}$, I. Longstaff ${ }^{59}$, J.H. Lopes ${ }^{2}$, G.H. Lovell ${ }^{55}$, Y. Lu 4, D. Lucchesi ${ }^{28, l}$, S. Luchuk ${ }^{39}$, M. Lucio Martinez ${ }^{32}$, V. Lukashenko ${ }^{32}$, Y. Luo ${ }^{3}$, A. Lupato ${ }^{62}$, E. Luppi ${ }^{21, f}$, O. Lupton 56, A. Lusiani ${ }^{29, m}$, X. Lyu^{6}, L. Ma^{4}, S. Maccolini ${ }^{20, d}$, F. Machefert ${ }^{11}$, F. Maciuc ${ }^{37}$, V. Macko ${ }^{49}$, P. Mackowiak ${ }^{15}$, S. Maddrell-Mander ${ }^{54}$, O. Madejczyk ${ }^{34}$, L.R. Madhan Mohan ${ }^{54}$, O. Maev ${ }^{38}$, A. Maevskiy ${ }^{81}$, D. Maisuzenko ${ }^{38}$, M.W. Majewski ${ }^{34}$, J.J. Malczewski ${ }^{35}$, S. Malde ${ }^{63}$, B. Malecki ${ }^{48}$, A. Malinin ${ }^{80}$, T. Maltsev ${ }^{43, v}$, H. Malygina ${ }^{17}$, G. Manca ${ }^{27, e}$, G. Mancinelli ${ }^{10}$, R. Manera Escalero ${ }^{45}$, D. Manuzzi ${ }^{20, d}$, D. Marangotto ${ }^{25, i}$, J. Maratas ${ }^{9, s}$, J.F. Marchand ${ }^{8}$, U. Marconi ${ }^{20}$, S. Mariani ${ }^{22, g, 48}$, C. Marin Benito ${ }^{11}$, M. Marinangeli ${ }^{49}$, P. Marino ${ }^{49, m}$, J. Marks ${ }^{17}$, P.J. Marshall ${ }^{60}$, G. Martellotti ${ }^{30}$, L. Martinazzoli ${ }^{48, j}$, M. Martinelli ${ }^{26, j}$, D. Martinez Santos ${ }^{46}$, F. Martinez Vidal ${ }^{47}$, A. Massafferri ${ }^{1}$, M. Materok ${ }^{14}$, R. Matev ${ }^{48}$, A. Mathad ${ }^{50}$, Z. Mathe ${ }^{48}$, V. Matiunin ${ }^{41}$, C. Matteuzzi ${ }^{26}$, K.R. Mattioli ${ }^{85}$, A. Mauri ${ }^{32}$, E. Maurice ${ }^{12}$, J. Mauricio ${ }^{45}$, M. Mazurek ${ }^{36}$, M. McCann ${ }^{61}$, L. Mcconnell ${ }^{18}$, T.H. Mcgrath ${ }^{62}$, A. McNab^{62}, R. McNulty ${ }^{18}$, J.V. Mead ${ }^{60}$, B. Meadows ${ }^{65}$, C. Meaux ${ }^{10}$, G. Meier ${ }^{15}$, N. Meinert ${ }^{76}$, D. Melnychuk ${ }^{36}$, S. Meloni ${ }^{26, j}$, M. Merk ${ }^{32,79}$, A. Merli ${ }^{25}$, L. Meyer Garcia ${ }^{2}$, M. Mikhasenko ${ }^{48}$, D.A. Milanes ${ }^{74}$, E. Millard ${ }^{56}$, M. Milovanovic ${ }^{48}$, M.-N. Minard ${ }^{8}$, L. Minzoni ${ }^{21, f}$, S.E. Mitchell ${ }^{58}$, B. Mitreska ${ }^{62}$, D.S. Mitzel ${ }^{48}$, A. Mödden ${ }^{15}$, R.A. Mohammed ${ }^{63}$, R.D. Moise ${ }^{61}$, T. Mombächer ${ }^{15}$, I.A. Monroy ${ }^{74}$, S. Monteil ${ }^{9}$, M. Morandin ${ }^{28}$, G. Morello ${ }^{23}$, M.J. Morello ${ }^{29, m}$, J. Moron ${ }^{34}$,
A.B. Morris ${ }^{75}$, A.G. Morris ${ }^{56}$, R. Mountain ${ }^{68}$, H. Mu ${ }^{3}$, F. Muheim ${ }^{58,48}$, M. Mukherjee ${ }^{7}$, M. Mulder ${ }^{48}$, D. Müller ${ }^{48}$, K. Müller ${ }^{50}$, C.H. Murphy ${ }^{63}$, D. Murray ${ }^{62}$, P. Muzzetto ${ }^{27,48 \text {, }}$ P. Naik ${ }^{54}$, T. Nakada ${ }^{49}$, R. Nandakumar ${ }^{57}$, T. Nanut ${ }^{49}$, I. Nasteva ${ }^{2}$, M. Needham ${ }^{58}$, I. Neri ${ }^{21}$, N. Neri ${ }^{25, i}$, S. Neubert ${ }^{75}$, N. Neufeld ${ }^{48}$, R. Newcombe ${ }^{61}$, T.D. Nguyen ${ }^{49}$, C. Nguyen-Mau ${ }^{49, x}$, E.M. Niel ${ }^{11}$, S. Nieswand ${ }^{14}$, N. Nikitin ${ }^{40}$, N.S. Nolte ${ }^{48}$, C. Nunez ${ }^{85}$, A. Oblakowska-Mucha ${ }^{34}$, V. Obraztsov ${ }^{44}$, D.P. O'Hanlon ${ }^{54}$, R. Oldeman ${ }^{27, e}$, M.E. Olivares ${ }^{68}$, C.J.G. Onderwater ${ }^{78}$, A. Ossowska ${ }^{35}$, J.M. Otalora Goicochea ${ }^{2}$, T. Ovsiannikova ${ }^{41}$, P. Owen ${ }^{50}$, A. Oyanguren ${ }^{47}$, B. Pagare ${ }^{56}$, P.R. Pais ${ }^{48}$, T. Pajero ${ }^{29, m, 48}$, A. Palano ${ }^{19}$, M. Palutan ${ }^{23}$, Y. Pan ${ }^{62}$, G. Panshin ${ }^{83}$, A. Papanestis ${ }^{57}$, M. Pappagallo ${ }^{19, c}$, L.L. Pappalardo ${ }^{21, f}$, C. Pappenheimer ${ }^{65}$, W. Parker ${ }^{66}$, C. Parkes ${ }^{62}$, C.J. Parkinson ${ }^{46}$, B. Passalacqua ${ }^{21}$, G. Passaleva ${ }^{22}$, A. Pastore ${ }^{19}$, M. Patel ${ }^{61}$, C. Patrignani ${ }^{20, d}$, C.J. Pawley ${ }^{79}$, A. Pearce ${ }^{48}$, A. Pellegrino ${ }^{32}$, M. Pepe Altarelli ${ }^{48}$, S. Perazzini ${ }^{20}$, D. Pereima ${ }^{41}$, P. Perret ${ }^{9}$, K. Petridis ${ }^{54}$, A. Petrolini ${ }^{24, h}$, A. Petrov ${ }^{80}$, S. Petrucci ${ }^{58}$, M. Petruzzo ${ }^{25}$, T.T.H. Pham ${ }^{68}$, A. Philippov ${ }^{42}$, L. Pica ${ }^{29, n}$, M. Piccini ${ }^{77}$, B. Pietrzyk ${ }^{8}$, G. Pietrzyk ${ }^{49}$, M. Pili ${ }^{63}$, D. Pinci ${ }^{30}$, F. Pisani ${ }^{48}$, A. Piucci ${ }^{17}$, Resmi P.K ${ }^{10}$, V. Placinta ${ }^{37}$, J. Plews ${ }^{53}$, M. Plo Casasus ${ }^{46}$, F. Polci ${ }^{13}$, M. Poli Lener ${ }^{23}$, M. Poliakova ${ }^{68}$, A. Poluektov ${ }^{10}$, N. Polukhina ${ }^{82, u}$, I. Polyakov ${ }^{68}$, E. Polycarpo ${ }^{2}$, G.J. Pomery ${ }^{54}$, S. Ponce ${ }^{48}$, D. Popov ${ }^{6,48}$, S. Popov ${ }^{42}$, S. Poslavskii ${ }^{44}$, K. Prasanth ${ }^{35}$, L. Promberger ${ }^{48}$, C. Prouve ${ }^{46}$, V. Pugatch ${ }^{52}$, H. Pullen ${ }^{63}$, G. Punzi ${ }^{29, n}$, W. Qian ${ }^{6}$, J. Qin ${ }^{6}$, R. Quagliani ${ }^{13}$, B. Quintana ${ }^{8}$, N.V. Raab ${ }^{18}$, R.I. Rabadan Trejo ${ }^{10}$, B. Rachwal ${ }^{34}$, J.H. Rademacker ${ }^{54}$, M. Rama ${ }^{29}$, M. Ramos Pernas ${ }^{56}$, M.S. Rangel ${ }^{2}$, F. Ratnikov ${ }^{42,81}$, G. Raven ${ }^{33}$, M. Reboud ${ }^{8}$, F. Redi ${ }^{49}$, F. Reiss ${ }^{13}$, C. Remon Alepuz ${ }^{47}$, Z. Ren ${ }^{3}$, V. Renaudin ${ }^{63}$, R. Ribatti ${ }^{29}$, S. Ricciardi ${ }^{57}$, K. Rinnert ${ }^{60}$, P. Robbe ${ }^{11}$, A. Robert ${ }^{13}$, G. Robertson ${ }^{58}$, A.B. Rodrigues ${ }^{49}$, E. Rodrigues ${ }^{60}$, J.A. Rodriguez Lopez ${ }^{74}$, A. Rollings ${ }^{63}$, P. Roloff ${ }^{48}$, V. Romanovskiy ${ }^{44}$, M. Romero Lamas ${ }^{46}$, A. Romero Vidal ${ }^{46}$, J.D. Roth ${ }^{85}$, M. Rotondo ${ }^{23}$, M.S. Rudolph ${ }^{68}$, T. Ruf ${ }^{48}$, J. Ruiz Vidal ${ }^{47}$, A. Ryzhikov ${ }^{81}$, J. Ryzka ${ }^{34}$, J.J. Saborido Silva ${ }^{46}$, N. Sagidova ${ }^{38}$, N. Sahoo ${ }^{56}$, B. Saitta ${ }^{27, e}$, D. Sanchez Gonzalo ${ }^{45}$, C. Sanchez Gras ${ }^{32}$, R. Santacesaria ${ }^{30}$, C. Santamarina Rios ${ }^{46}$, M. Santimaria ${ }^{23}$, E. Santovetti ${ }^{31, p}$, D. Saranin ${ }^{82}$, G. Sarpis ${ }^{59}$, M. Sarpis ${ }^{75}$, A. Sarti ${ }^{30}$, C. Satriano ${ }^{30, o}$, A. Satta ${ }^{31}$, M. Saur ${ }^{15}$, D. Savrina ${ }^{41,40}$, H. Sazak ${ }^{9}$, L.G. Scantlebury Smead ${ }^{63}$, S. Schael ${ }^{14}$, M. Schellenberg ${ }^{15}$, M. Schiller ${ }^{59}$, H. Schindler ${ }^{48}$, M. Schmelling ${ }^{16}$, B. Schmidt ${ }^{48}$, O. Schneider ${ }^{49}$, A. Schopper ${ }^{48}$, M. Schubiger ${ }^{32}$, S. Schulte ${ }^{49}$, M.H. Schune ${ }^{11}$, R. Schwemmer ${ }^{48}$, B. Sciascia ${ }^{23}$, A. Sciubba ${ }^{23}$, S. Sellam ${ }^{46}$, A. Semennikov ${ }^{41}$, M. Senghi Soares ${ }^{33}$, A. Sergi ${ }^{24,48, ~}$ N. Serra ${ }^{50}$, L. Sestini ${ }^{28}$, A. Seuthe ${ }^{15}$, P. Seyfert ${ }^{48}$, D.M. Shangase ${ }^{85}$, M. Shapkin ${ }^{44}$, I. Shchemerov ${ }^{82}$, L. Shchutska ${ }^{49}$, T. Shears ${ }^{60}$, L. Shekhtman ${ }^{43, v}$, Z. Shen ${ }^{5}$, V. Shevchenko ${ }^{80}$, E.B. Shields ${ }^{26, j}$, E. Shmanin ${ }^{82}$, J.D. Shupperd ${ }^{68}$, B.G. Siddi ${ }^{21}$, R. Silva Coutinho ${ }^{50}$, G. Simi 28, S. Simone ${ }^{19, c}$, N. Skidmore ${ }^{62}$, T. Skwarnicki ${ }^{68}$, M.W. Slater ${ }^{53}$, I. Slazyk ${ }^{21, f}$, J.C. Smallwood ${ }^{63}$, J.G. Smeaton ${ }^{55}$, A. Smetkina ${ }^{41}$, E. Smith ${ }^{14}$, M. Smith ${ }^{61}$, A. Snoch ${ }^{32}$, M. Soares ${ }^{20}$, L. Soares Lavra ${ }^{9}$, M.D. Sokoloff ${ }^{65}$, F.J.P. Soler ${ }^{59}$, A. Solovev ${ }^{38}$, I. Solovyev ${ }^{38}$, F.L. Souza De Almeida ${ }^{2}$, B. Souza De Paula ${ }^{2}$, B. Spaan ${ }^{15}$, E. Spadaro Norella ${ }^{25, i}$, P. Spradlin ${ }^{59}$, F. Stagni ${ }^{48}$, M. Stahl ${ }^{65}$, S. Stahl ${ }^{48}$, P. Stefko ${ }^{49}$, O. Steinkamp ${ }^{50,82}$, S. Stemmle ${ }^{17}$, O. Stenyakin ${ }^{44}$, H. Stevens ${ }^{15}$, S. Stone ${ }^{68}$, M.E. Stramaglia ${ }^{49}$, M. Straticiuc ${ }^{37}$, D. Strekalina ${ }^{82}$, F. Suljik ${ }^{63}$, J. Sun ${ }^{27}$, L. Sun ${ }^{73}$, Y. Sun ${ }^{66}$, P. Svihra ${ }^{62}$, P.N. Swallow ${ }^{53}$, K. Swientek ${ }^{34}$, A. Szabelski ${ }^{36}$, T. Szumlak ${ }^{34}$, M. Szymanski ${ }^{48}$, S. Taneja ${ }^{62}$, F. Teubert ${ }^{48}$, E. Thomas ${ }^{48}$, K.A. Thomson ${ }^{60}$, M.J. Tilley ${ }^{61}$, V. Tisserand ${ }^{9}$, S. T'Jampens ${ }^{8}$, M. Tobin ${ }^{4}$, S. Tolk ${ }^{48}$, L. Tomassetti ${ }^{21, f}$, D. Torres Machado ${ }^{1}$, D.Y. Tou ${ }^{13}$, M. Traill ${ }^{59}$, M.T. Tran ${ }^{49}$, E. Trifonova ${ }^{82}$, C. Trippl ${ }^{49}$, G. Tuci ${ }^{29, n}$, A. Tully ${ }^{49}$, N. Tuning ${ }^{32}$, A. Ukleja ${ }^{36}$, D.J. Unverzagt ${ }^{17}$, E. Ursov ${ }^{82}$, A. Usachov ${ }^{32}$, A. Ustyuzhanin ${ }^{42,81}$, U. Uwer ${ }^{17}$, A. Vagner ${ }^{83}$, V. Vagnoni ${ }^{20}$, A. Valassi ${ }^{48}$, G. Valenti ${ }^{20}$, N. Valls Canudas ${ }^{45}$, M. van Beuzekom ${ }^{32}$, M. Van Dijk ${ }^{49}$, E. van Herwijnen ${ }^{82}$, C.B. Van Hulse ${ }^{18}$, M. van Veghel ${ }^{78}$, R. Vazquez Gomez ${ }^{46}$, P. Vazquez Regueiro ${ }^{46}$, C. Vázquez Sierra ${ }^{48}$, S. Vecchi ${ }^{21}$, J.J. Velthuis ${ }^{54}$, M. Veltri ${ }^{22, r}$, A. Venkateswaran ${ }^{68}$, M. Veronesi ${ }^{32}$, M. Vesterinen ${ }^{56}$, D. Vieira ${ }^{65}$, M. Vieites Diaz ${ }^{49}$, H. Viemann ${ }^{76}$, X. Vilasis-Cardona ${ }^{84}$, E. Vilella Figueras ${ }^{60}$, P. Vincent ${ }^{13}$,
G. Vitali ${ }^{29}$, A. Vollhardt ${ }^{50}$, D. Vom Bruch ${ }^{10}$, A. Vorobyev ${ }^{38}$, V. Vorobyev ${ }^{43, v}$, N. Voropaev ${ }^{38}$, R. Waldi ${ }^{76}$, J. Walsh ${ }^{29}$, C. Wang ${ }^{17}$, J. Wang ${ }^{5}$, J. Wang ${ }^{4}$, J. Wang ${ }^{3}$, J. Wang ${ }^{73}$, M. Wang ${ }^{3}$,
R. Wang ${ }^{54}$, Y. Wang ${ }^{7}$, Z. Wang ${ }^{50}$, H.M. Wark ${ }^{60}$, N.K. Watson ${ }^{53}$, S.G. Weber ${ }^{13}$, D. Websdale ${ }^{61}$,
C. Weisser ${ }^{64}$, B.D.C. Westhenry ${ }^{54}$, D.J. White ${ }^{62}$, M. Whitehead ${ }^{54}$, D. Wiedner ${ }^{15}$,
G. Wilkinson ${ }^{63}$, M. Wilkinson ${ }^{68}$, I. Williams ${ }^{55}$, M. Williams ${ }^{64,69}$, M.R.J. Williams ${ }^{58}$,
F.F. Wilson ${ }^{57}$, W. Wislicki ${ }^{36}$, M. Witek ${ }^{35}$, L. Witola ${ }^{17}$, G. Wormser ${ }^{11}$, S.A. Wotton ${ }^{55}$, H. Wu ${ }^{68}$, K. Wyllie ${ }^{48}$, Z. Xiang ${ }^{6}$, D. Xiao ${ }^{7}$, Y. Xie ${ }^{7}$, A. Xu^{5}, J. Xu ${ }^{6}$, L. Xu^{3}, M. Xu ${ }^{7}$, Q. Xu ${ }^{6}$, Z. Xu ${ }^{5}$,
Z. Xu ${ }^{6}$, D. Yang ${ }^{3}$, Y. Yang ${ }^{6}$, Z. Yang ${ }^{3}$, Z. Yang ${ }^{66}$, Y. Yao ${ }^{68}$, L.E. Yeomans ${ }^{60}$, H. Yin ${ }^{7}$, J. Yu ${ }^{71}$,
X. Yuan ${ }^{68}$, O. Yushchenko ${ }^{44}$, E. Zaffaroni ${ }^{49}$, K.A. Zarebski ${ }^{53}$, M. Zavertyaev ${ }^{16, u}$, M. Zdybal ${ }^{35}$,
O. Zenaiev ${ }^{48}$, M. Zeng ${ }^{3}$, D. Zhang ${ }^{7}$, L. Zhang ${ }^{3}$, S. Zhang ${ }^{5}$, Y. Zhang ${ }^{5}$, Y. Zhang ${ }^{63}$,
A. Zhelezov ${ }^{17}$, Y. Zheng ${ }^{6}$, X. Zhou ${ }^{6}$, Y. Zhou ${ }^{6}$, X. Zhu ${ }^{3}$, V. Zhukov ${ }^{14,40}$, J.B. Zonneveld ${ }^{58}$, S. Zucchelli ${ }^{20, d}$, D. Zuliani ${ }^{28}$, G. Zunica ${ }^{62}$.
${ }^{1}$ Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
${ }^{2}$ Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
${ }^{3}$ Center for High Energy Physics, Tsinghua University, Beijing, China
${ }^{4}$ Institute Of High Energy Physics (IHEP), Beijing, China
${ }^{5}$ School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
${ }^{6}$ University of Chinese Academy of Sciences, Beijing, China
${ }^{7}$ Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
${ }^{8}$ Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
${ }^{9}$ Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
${ }^{10}$ Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
${ }^{11}$ Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
${ }^{12}$ Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
${ }^{13}$ LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
${ }^{14}$ I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
${ }^{15}$ Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
${ }^{16}$ Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
${ }^{17}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
${ }^{18}$ School of Physics, University College Dublin, Dublin, Ireland
${ }^{19}$ INFN Sezione di Bari, Bari, Italy
${ }^{20}$ INFN Sezione di Bologna, Bologna, Italy
${ }^{21}$ INFN Sezione di Ferrara, Ferrara, Italy
${ }^{22}$ INFN Sezione di Firenze, Firenze, Italy
${ }^{23}$ INFN Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{24}$ INFN Sezione di Genova, Genova, Italy
${ }^{25}$ INFN Sezione di Milano, Milano, Italy
${ }^{26}$ INFN Sezione di Milano-Bicocca, Milano, Italy
${ }^{27}$ INFN Sezione di Cagliari, Monserrato, Italy
${ }^{28}$ Universita degli Studi di Padova, Universita e INFN, Padova, Padova, Italy
${ }^{29}$ INFN Sezione di Pisa, Pisa, Italy
${ }^{30}$ INFN Sezione di Roma La Sapienza, Roma, Italy
${ }^{31}$ INFN Sezione di Roma Tor Vergata, Roma, Italy
${ }^{32}$ Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
${ }^{33}$ Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
${ }^{34}$ AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
${ }^{35}$ Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
${ }^{36}$ National Center for Nuclear Research (NCBJ), Warsaw, Poland
${ }^{37}$ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
${ }^{38}$ Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia
${ }^{39}$ Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
${ }^{40}$ Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
${ }^{41}$ Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia
${ }^{42}$ Yandex School of Data Analysis, Moscow, Russia
${ }^{43}$ Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
${ }^{44}$ Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Protvino, Russia, Protvino, Russia
${ }^{45}$ ICCUB, Universitat de Barcelona, Barcelona, Spain
${ }^{46}$ Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
${ }^{47}$ Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain
${ }^{48}$ European Organization for Nuclear Research (CERN), Geneva, Switzerland
${ }^{49}$ Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
${ }^{50}$ Physik-Institut, Universität Zürich, Zürich, Switzerland
${ }^{51}$ NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
${ }^{52}$ Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
${ }^{53}$ University of Birmingham, Birmingham, United Kingdom
${ }^{54}$ H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
${ }^{55}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
${ }^{56}$ Department of Physics, University of Warwick, Coventry, United Kingdom
${ }^{57}$ STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
${ }^{58}$ School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
${ }^{59}$ School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
${ }^{60}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
${ }^{61}$ Imperial College London, London, United Kingdom
${ }^{62}$ Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
${ }^{63}$ Department of Physics, University of Oxford, Oxford, United Kingdom
${ }^{64}$ Massachusetts Institute of Technology, Cambridge, MA, United States
${ }^{65}$ University of Cincinnati, Cincinnati, OH, United States
${ }^{66}$ University of Maryland, College Park, MD, United States
${ }^{67}$ Los Alamos National Laboratory (LANL), Los Alamos, United States
${ }^{68}$ Syracuse University, Syracuse, NY, United States
${ }^{69}$ School of Physics and Astronomy, Monash University, Melbourne, Australia, associated to ${ }^{56}$
${ }^{70}$ Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to ${ }^{2}$
${ }^{71}$ Physics and Micro Electronic College, Hunan University, Changsha City, China, associated to ${ }^{7}$
${ }^{72}$ Guangdong Provencial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou, China, associated to ${ }^{3}$
${ }^{73}$ School of Physics and Technology, Wuhan University, Wuhan, China, associated to ${ }^{3}$
${ }^{74}$ Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia, associated to ${ }^{13}$
${ }^{75}$ Universität Bonn - Helmholtz-Institut für Strahlen und Kernphysik, Bonn, Germany, associated to ${ }^{17}$
${ }^{76}$ Institut für Physik, Universität Rostock, Rostock, Germany, associated to ${ }^{17}$
${ }^{77}$ INFN Sezione di Perugia, Perugia, Italy, associated to ${ }^{21}$
${ }^{78}$ Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to ${ }^{32}$
${ }^{79}$ Universiteit Maastricht, Maastricht, Netherlands, associated to ${ }^{32}$
${ }^{80}$ National Research Centre Kurchatov Institute, Moscow, Russia, associated to ${ }^{41}$
${ }^{81}$ National Research University Higher School of Economics, Moscow, Russia, associated to ${ }^{42}$
${ }^{82}$ National University of Science and Technology "MISIS", Moscow, Russia, associated to ${ }^{41}$
${ }^{83}$ National Research Tomsk Polytechnic University, Tomsk, Russia, associated to ${ }^{41}$
${ }^{84}$ DS4DS, La Salle, Universitat Ramon Llull, Barcelona, Spain, associated to ${ }^{45}$
${ }^{85}$ University of Michigan, Ann Arbor, United States, associated to ${ }^{68}$
${ }^{a}$ Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
${ }^{b}$ Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
${ }^{c}$ Università di Bari, Bari, Italy
${ }^{d}$ Università di Bologna, Bologna, Italy
${ }^{e}$ Università di Cagliari, Cagliari, Italy
${ }^{f}$ Università di Ferrara, Ferrara, Italy
${ }^{g}$ Università di Firenze, Firenze, Italy
${ }^{h}$ Università di Genova, Genova, Italy
${ }^{i}$ Università degli Studi di Milano, Milano, Italy
${ }^{j}$ Università di Milano Bicocca, Milano, Italy
${ }^{k}$ Università di Modena e Reggio Emilia, Modena, Italy
${ }^{l}$ Università di Padova, Padova, Italy
${ }^{m}$ Scuola Normale Superiore, Pisa, Italy
${ }^{n}$ Università di Pisa, Pisa, Italy
${ }^{\circ}$ Università della Basilicata, Potenza, Italy
${ }^{p}$ Università di Roma Tor Vergata, Roma, Italy
${ }^{q}$ Università di Siena, Siena, Italy
${ }^{r}$ Università di Urbino, Urbino, Italy
${ }^{s}$ MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines
${ }^{t}$ AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
${ }^{u}$ P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
${ }^{v}$ Novosibirsk State University, Novosibirsk, Russia
${ }^{w}$ Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
${ }^{x}$ Hanoi University of Science, Hanoi, Vietnam

[^0]: ${ }^{\dagger}$ Authors are listed at the end of this paper.

[^1]: ${ }^{1}$ Charge conjugation is implied throughout this Letter.
 ${ }^{2}$ Natural units with $\hbar=c=1$ are used throughout.

