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Abstract

The first observation of exotic states with a new quark content ccus decaying to the
J/ψK+ final state is reported with high significance from an amplitude analysis of
the B+ → J/ψφK+ decay. The analysis is carried out using proton-proton collision
data corresponding to a total integrated luminosity of 9 fb−1 collected by the LHCb
experiment at centre-of-mass energies of 7, 8 and 13 TeV. The most significant state,
Zcs(4000)+, has a mass of 4003 ± 6 + 4

− 14 MeV, a width of 131 ± 15 ± 26 MeV, and
spin-parity JP = 1+, where the quoted uncertainties are statistical and systematic,
respectively. A new 1+ X(4685) state decaying to the J/ψφ final state is also
observed with high significance. In addition, the four previously reported J/ψφ
states are confirmed and two more exotic states, Zcs(4220)+ and X(4630), are
observed with significance exceeding five standard deviations.
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Charged states such as Zc(3900)+ [1,2] and Zc(4430)+ [3–5] provide evidence for exotic
states, because light quarks are required to account for the non-zero electric charge in
addition to the heavy quarkonium.1 Previously, only the u or d quarks were observed
to constitute the light quark content of such charged exotic states, even though the
existence of a Zcs state as a strangeness-flavour partner of the Z+

c (3900) state had been
predicted [6–10]. Recently, the BESIII experiment reported a 5.3 standard deviation (σ
hereafter) observation of a threshold structure in the mass distribution of D−s D

∗0 +D∗−s D0

pairs produced in e+e− annihilation as recoil against a K+ meson [11].
In this Letter, the first observation of two charged Z+

cs → J/ψK+ states is reported from
an updated amplitude analysis of the B+ → J/ψφK+ decay, as well as the observation of
two more X → J/ψφ states. The analysis is based on the combined proton-proton (pp)
collision data collected using the LHCb detector in Run 1 at centre-of-mass energies

√
s

of 7 and 8 TeV, corresponding to a total integrated luminosity of 3 fb−1, and in Run 2 at√
s = 13 TeV corresponding to an integrated luminosity of 6 fb−1.

With Run 1 data, LHCb performed the first amplitude analysis of the B+ → J/ψφK+

decay, investigating the J/ψφ structure [12,13] in addition to the kaon excitations (hereafter
indicated as K∗+). The data were described with seven K∗+ → φK+ resonances, four
X → J/ψφ structures, and non-resonant (NR) φK+ and J/ψφ contributions. Four X
structures, i.e. the X(4140), X(4274), X(4500) and X(4700) states were observed (the
recent PDG convention labels these states as χcJ [14]). Notably, the X(4140) width
was substantially larger than previously determined [15–17]. Only 3σ evidence for a
Z+
cs → J/ψK+ contribution was found [12,13].

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, described in detail in Refs. [18,19]. Simulation is produced with software
packages described in Refs. [20–23]. The B+ → J/ψ(→ µ+µ−)φ(→ K+K−)K+ signal
candidates are first required to pass an online event selection performed by a trigger [24]
dedicated for selecting J/ψ candidates. The signal decay is reconstructed by combining
the J/ψ candidate with three kaon candidates with a total charge of one unit. The φ
candidate is selected by requiring only one of two K+K− combinations to be consistent
with the known φ mass [14] within ±15 MeV.2

The offline selection involves a loose preselection, followed by a multivariate classifier
based on a Gradient Boosted Decision Tree (BDTG) [25,26]. The preselection is similar to
that used in Refs. [12,13] but the requirement on the χ2

IP of kaon candidates is loosened,
where χ2

IP is defined as the difference in the vertex-fit χ2 of the event primary pp collision
vertex (PV) candidate, reconstructed with and without the particle considered. The BDTG
response is constructed using eight variables exploring decay topology, particle momenta
components transverse to the beam direction, and particle identification information (PID).
The requirement on the BDTG response is chosen to maximise the signal significance
multiplied by the purity [27].

The invariant-mass distribution of the B+ → J/ψφK+ candidates is shown in Fig. 1,
fitted with the signal modelled by a Hypatia function [28] and the combinatorial background
by a second-order polynomial function, yielding 24 220 ± 170 signal candidates with a
combinatorial-background fraction of 4.0% within a ±15 MeV signal region. The region
also includes an additional ∼ 2% of non-φ B+ → J/ψK+K−K+ background candidates,

1Charge conjugation is implied throughout this Letter.
2Natural units with ~ = c = 1 are used throughout.
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Figure 1: Invariant-mass distribution of selected B+ → J/ψφK+candidates with the fit overlaid.
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Figure 2: Dalitz plots for B+ → J/ψφK+ candidates in a region ±15 MeV around the B+ mass
peak.

which are neglected in the amplitude model but considered in the evaluation of the
systematic uncertainties. The candidates in the signal region are retained for further
amplitude analysis. Compared to the previous Run 1 analysis [12,13], the total signal yield
is ∼ 6 times larger, owing to a larger dataset and increase of 15% in signal efficiency due
to the inclusion of PID in the BDTG classifier. The fraction of combinatorial background
is almost a factor of six smaller while that of the non-φ background is unchanged.

Figure 2 shows the Dalitz plots for B+ → J/ψφK+ candidates in the B+ signal region.
The most apparent features are four bands in the J/ψφ mass distribution, corresponding
to the previously reported X(4140), X(4274), X(4500) and X(4700) states. There is also
a distinct band near 16 GeV2 of the J/ψK+ mass squared.

To investigate the resonant structures, a full amplitude fit is performed using an
unbinned maximum-likelihood method. The likelihood definition and the total probability
density function (PDF), which includes a signal and a background component, are described
in the previous publication [13]. Resonance lineshapes are parametrised using the Breit-
Wigner approximation. The signal B+ decay is described in the helicity formalism by
three decay chains: K∗+(→ φK+)J/ψ, X(→ J/ψφ)K+ and Z+

cs(→ J/ψK+)φ. Each chain

2
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Figure 3: Distributions of φK+ (left), J/ψφ (middle) and J/ψK+ (right) invariant masses for
the B+ → J/ψφK+ candidates (black data points) compared with the fit results (red solid lines)
of the default model (top row) and the Run 1 model (bottom row).

is fully described by one mass and five angular observables. For example, the conventional
K∗+ chain has the following six observables Φ ≡ (mφK , θK∗ , θJ/ψ, θφ,∆ϕK∗,J/ψ,∆ϕK∗,φ),
where θ denotes the helicity angles, and ∆ϕ the angles between two decay planes. Due to
the non-scalar final-state particles (µ+ and µ−), an azimuthal angle αiµ is required to align
the helicity frames of µ+ and µ− between the chain i and the reference K∗+ chain [4,5,29].

The model used in the previous study (Run 1 model) is first tested. Due to the increased
sample size, the model requires improvements (see Fig. 3 bottom row). Additional K∗+,
X and possible Z+

cs states are added until no further state with a significance larger than
5σ improves the overall fit. In total, nine K∗+, seven X, two Z+

cs, and one J/ψφ NR
components are taken as the default model, as listed in Table 1. The nine K∗+ states
are all those with spin-parity J ≤ 2 and mass below 2 GeV, which are predicted by the
relativistic potential model [30], and kinematically allowed, including three resonances
with poles just below the φK+ mass threshold. All components previously used in the Run
1 model are included, but the JP = 1+ NR φK+, and the broad 0− state, are replaced
by the upper tails of K1(1400) and K(1460) resonances, respectively. The newly added
components are: the upper tail of 1− K∗(1410) resonance, 2− X(4150), 1+ X(4685), 1−

X(4630), 1+ Zcs(4000)+ and Zcs(4220)+ states.
Figure 3 shows the invariant mass distributions for all pairs of final state particles of

the B+ → J/ψφK+ decay with fit projections from the amplitude analysis overlaid, for
both the default model and the Run 1 model. The fit results are summarised in Table 1,
including mass, width, fit fraction (FF), and significance of each component. The masses
and widths of the four X states studied using the LHCb Run 1 sample only are consistent
with the previous measurements [12, 13]. The significance of each component is evaluated
by assuming that the change of twice the log-likelihood between the default fit and the fit

3
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cs states. The narrow Z+
cs state at 4
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Table 1: Fit results from the default amplitude model. The significances are evaluated accounting
for total (statistical) uncertainties. The listed masses and widths without uncertainties are taken
from PDG [14] and are fixed in the fit. The listed world averages of the two K2 and K∗(1680)
resonances do not contain the contributions from the previous LHCb Run 1 results.

JP Contribution Significance [×σ] M0 [MeV] Γ0 [MeV] FF [%]

1+

21P1 K(1+) 4.5 (4.5) 1861± 10 +16
− 46 149± 41 +231

− 23

23P1 K ′(1+) 4.5 (4.5) 1911± 37 +124
− 48 276± 50 +319

− 159

13P1 K1(1400) 9.2 (11) 1403 174 15± 3 + 3
− 11

2−
11D2 K2(1770) 7.9 (8.0) 1773 186

13D2 K2(1820) 5.8 (5.8) 1816 276

1−
13D1 K∗(1680) 4.7 (13) 1717 322 14± 2 +35

− 8

23S1 K∗(1410) 7.7 (15) 1414 232 38± 5 +11
− 17

2− 23P2 K∗2(1980) 1.6 (7.4) 1988± 22 +194
− 31 318± 82 +481

− 101 2.3± 0.5± 0.7

0− 21S0 K(1460) 12 (13) 1483 336 10.2± 1.2 +1.0
− 3.8

2− X(4150) 4.8 (8.7) 4146± 18± 33 135± 28 +59
− 30 2.0± 0.5 +0.8

− 1.0

1− X(4630) 5.5 (5.7) 4626± 16 + 18
− 110 174± 27 +134

− 73 2.6± 0.5 +2.9
− 1.5

0+

X(4500) 20 (20) 4474± 3± 3 77± 6 +10
− 8 5.6± 0.7 +2.4

− 0.6

X(4700) 17 (18) 4694± 4 +16
− 3 87± 8 +16

− 6 8.9± 1.2 +4.9
− 1.4

NRJ/ψφ 4.8 (5.7) 28± 8 +19
− 11

1+

X(4140) 13 (16) 4118± 11 +19
− 36 162± 21 +24

− 49 17± 3 +19
− 6

X(4274) 18 (18) 4294± 4 +3
− 6 53± 5± 5 2.8± 0.5 +0.8

− 0.4

X(4685) 15 (15) 4684± 7 +13
− 16 126± 15 +37

− 41 7.2± 1.0 +4.0
− 2.0

1+ Zcs(4000) 15 (16) 4003± 6 + 4
− 14 131± 15± 26 9.4± 2.1± 3.4

Zcs(4220) 5.9 (8.4) 4216± 24 +43
− 30 233± 52 +97

− 73 10± 4 +10
− 7

4



without this component follows a χ2 distribution. The corresponding number of degrees of
freedom is equal to the reduction in the number of free parameters multiplied by a factor
of two (one) when the mass and width of the component are floated (fixed) in the fit,
which accounts for the look-elsewhere effect [13, 31], as validated by pseudoexperiments.
Figure 4 shows the mJ/ψK+ distributions in two slices of mJ/ψφ, which demonstrate the
need for the narrower Zcs(4000)+ state. Including the 1+ Z+

cs states improves the χ2/nbin
from 84/35 to 43/35 (left slice), and from 79/37 to 32/37 (right slice), where nbin is the
number of non-zero bins.

The spin and parity of each exotic state is probed by testing alternative JP hypotheses
and comparing the fit likelihood values [13]. The JP assignments for the previously
reported four X states are confirmed with high significance. A 1+ assignment is favoured
for the new X(4685) state with also high significance, but the quantum numbers of the
X(4150) and X(4630) are less well determined. The best hypothesis for the X(4630) state
is 1− over 2− at a 3σ level. The other hypotheses are ruled out by more than 5σ. The
fit prefers 2− for the X(4150) state by more than 4σ. The narrower Zcs(4000)+ state is
determined to be 1+ with high significance. The broader Zcs(4220)+ state could be 1+ or
1−, with a 2σ difference in favour of the first hypothesis. Other spin-parity assignments
are ruled out at 4.9σ level.

Systematic uncertainties are estimated for the masses, widths, and fit fractions of all
states. To probe the effects from the neglected B+ → J/ψK+K−K+ non-φ contributions,
the φ mass window is changed from ±15 MeV to ±7 MeV, and alternatively this background
is subtracted using the sPlot technique [32]. The Blatt-Weisskopf barrier [13] hadron size
is varied between 1.5 and 4.5 GeV−1. The default NR 0+ J/ψφ representation is changed
from a constant to a linear polynomial. Additional 1+ or 2+ NR J/ψφ contributions
are also included. The smallest allowed orbital angular momentum in the resonance
function is varied. For the X(4140), which peaks near the J/ψφ threshold, the Flatté
model [33] is used instead of the Breit-Wigner amplitude. A simplified one-channel
K-matrix model [14] is used to describe various K∗ resonances instead of the sum of
Breit-Wigner amplitudes. Two-channel K-matrix models have also been tried for the 21P1

and 23P1 K
∗ states with the coupled-channel thresholds opening up near 1.75 GeV, with

an insignificant improvement to the description of the mφK distribution. To cover the full
range of K∗+ resonances predicted in the allowed φK+ mass range, an extended model is
tested by adding five more K∗+ resonances with mass above 2 GeV [30]. The presence
of an extra X state contribution, with J from 0 to 2, to the extended model is also
checked. The difference between the results obtained from assigning 1+ or 1− hypotheses
to the Zcs(4220)+ is taken as a systematic uncertainty. The mass-dependent width in
the denominator of the Breit-Wigner function for the K∗+ resonances is calculated with
the lightest allowed channel (πK for natural spin-parity resonances and ωK for others)
instead of φK.

The maximum deviation among the modelling uncertainties discussed above is summed
in quadrature with the additional sources, including the uncertainties due to the fixed
masses and widths of the known K∗+ resonances, mismodelling of χ2

IP of the B+ candidate,
background PDF model shape and fractions, and the finite size of the simulation samples.
For the Zcs(4000)+ state, the largest systematic contribution is due to the JP hypotheses
of the Zcs(4220)+ state. The summary of fit results, including the systematic uncertainties,
is listed in Table 1. The smallest significance found when varying each of sources is taken
as the significance accounting for systematic uncertainty.
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Figure 5: Fitted values of the Zcs(4000)+ amplitude in eight mJ/ψK+ intervals, shown on an
Argand diagram (black points). The red curve represents the expected Breit-Wigner behaviour
between −1.4Γ0 to 1.4Γ0 around the Zcs(4000)+ mass.

Further evidence for the resonant character of Zcs(4000)+ is observed in Fig. 5, showing
the evolution of the complex amplitude on the Argand diagram, obtained with the same
method as previously reported for the Zc(4430)− state [5]. The magnitude and phase
have approximately circular evolution with mJ/ψK+ in the counter-clockwise direction, as
expected for a resonance.

The BESIII experiment reported observation of a Zcs(3985)− resonance. Its mass
3982.5 +1.8

− 2.6 (stat)± 2.1 (syst) MeV is consistent with the 1+ Zcs(4000)+ state observed in
this analysis, but with significantly narrower width 12.8 +5.3

− 4.4 (stat)±3.0 (syst) MeV. When
fixing the mass and width of this state to the nominal BESIII result in the amplitude fit
to our data, twice the log-likelihood is worse by 160 units. The narrower width is also
not supported by an alternative Flatté model with parameters obtained from our data.
Therefore, there is no evidence that the Zcs(4000)+ state observed here is the same as the
Zcs(3985)− state observed by BESIII.

In conclusion, an improved full amplitude analysis of the B+ → J/ψφK+ decay is
performed using 6 times larger signal yield than previously analyzed [12]. A relatively
narrow Zcs(4000)+ state decaying to J/ψK+ with mass 4003± 6 (stat) + 4

− 14 (syst) MeV and
width 131± 15 (stat)± 26 (syst) MeV is observed with large significance. Its spin-parity is
determined to be 1+ also with high significance. A quasi-model-independent representation
of the Zcs(4000)+ contribution in the fit shows a phase change in the amplitude consistent
with that of a resonance. A broader 1+ or 1− Zcs(4220)+ state is also required at 5.9σ.
This is the first observation of states with hidden charm and strangeness that decay to the
J/ψK+ final state. The four X states decaying to J/ψφ observed in the Run 1 analysis [12]
are confirmed with higher significance, together with their quantum number assignments.
An additional 1+ X(4685) state is observed with relatively narrow width (about 125 MeV)
with high significance. A new X(4630) state is observed with a 5.5σ significance, with
preferred 1− over 2− spin-parity assignment at 3σ level, and the other JP hypotheses
rejected at 5σ. This constitutes the first observation of exotic states with a new quark
content ccus decaying to the J/ψK+ final state.
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eUniversità di Cagliari, Cagliari, Italy

14
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