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ABSTRACT
Strongly magnetized and fast-rotating neutron stars are known to be efficient particle accelerators within their magnetosphere
and wind. They are suspected to accelerate leptons, protons, and maybe ions to extreme relativistic regimes where the radiation
reaction significantly feeds back to their motion. In the vicinity of neutron stars, magnetic field strengths are close to the critical
value of Bc ∼ 4.4 · 109 T and particle Lorentz factors of the order γ ∼ 109 are expected. In this paper, we investigate the
acceleration and radiation reaction feedback in the pulsar wind zone where a large-amplitude low-frequency electromagnetic
wave is launched starting from the light cylinder. We design a semi-analytical code solving exactly the particle equation of
motion including radiation reaction in the Landau–Lifshits approximation for a null-like electromagnetic wave of arbitrary
strength parameter and elliptical polarization. Under conventional pulsar conditions, asymptotic Lorentz factor as high as
108−109 is reached at large distances from the neutron star. However, we demonstrate that in the wind zone, within the spherical
wave approximation, radiation reaction feedback remains negligible.

Key words: methods: analytical – stars: neutron – stars: rotation – pulsars: general – magnetic fields.

1 IN T RO D U C T I O N

Strong magnetic fields dragged by fast rotation induce huge electric
fields able to accelerate charged particles to ultra-relativistic speeds.
Such conditions are met around strongly magnetized and fast-
spinning neutron stars known as pulsars and magnetars. These
compacts astrophysical objects are indeed suspected to fill the
interstellar and intergalactic medium with the most energetic particles
in the universe and maybe also to produce part of the ultra high-
energy cosmic rays. These ideas were, for instance, explored by
Gunn & Ostriker (1969) by using a vacuum wave and then improved
by Kegel (1971) assuming a refractive index different from vacuum.
These ideas were also revisited by Thielheim (1990). It is still unclear
where and how efficient such acceleration mechanisms are around
neutron stars. However, three main regions have been identified:
the inner magnetosphere, that is the corotating quasi-static zone
(Goldreich & Julian 1969), the wind zone (Coroniti 1990; Michel
1994) where a low-frequency large-amplitude electromagnetic wave
is launched, and the termination shock of the pulsar wind (Pétri &
Lyubarsky 2007). Alternatively, magnetized relativistic outflows can
also produce high-energy particles via the Fermi process, diffusive
shock acceleration, shock drift acceleration, or magnetic reconnec-
tion; see, for instance, the review by Matthews, Bell & Blundell
(2020).

In this work, we focus on particle acceleration by large-amplitude
electromagnetic waves. Relativistic acceleration of charged particles
with mass m and charge q in a plane electromagnetic wave reveals
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efficient when the strength parameter defined by a = ωB/ω becomes
much larger than one. Here, ωB is the particle cyclotron frequency and
ω the wave frequency. The strength parameter a gives a first guess for
the energy gained by a particle starting from rest when accelerating
in the electromagnetic field during one period of the wave. To orders
of magnitude, the particle momentum divided by its mass is γ β ≈ a

where β is the normalized velocity with respect to the speed of light
and γ the associated Lorentz factor. As typical values for this strength
parameter a, we remember that for visible light, taking a wavelength
of λ = 1 μm and a flux of 1 W/m2 corresponding to a magnetic field
of 2 · 10−6 T, it amounts to

a ≈ 10−10 � 1. (1)

Such optical waves are therefore unable to accelerate particles to
even mildly relativistic speeds. For current-state technology with
laser power of 1024 W/m2, it becomes significantly larger than one
and up to values about

a ≈ 103. (2)

Mildly relativistic regimes are reachable by current state-of-the-art
technology. It is even expected to be soon possible to study radiation
reaction effects during electron acceleration phases and to test the
Lorentz–Abraham–Dirac (LAD) prescription for the charged particle
equation of motion subject to radiation reaction. The correction
term brought to the Lorentz force introduced by Abraham (1902)
and Abraham (1904) and reinvestigated by Lorentz (1916) was
eventually formulated in the relativistic regime by Dirac (1938). This
so-called LAD equation is still awaiting for experimental support and
verification. It is known to be subject to run-away solutions that must
be discarded. There exists an extensive literature on this topic; see, for
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instance, Rohrlich (2007) for a summary or also alternative radiation
reaction contributions like the one deduced by Eliezer (1948). In the
astrophysical context of strongly magnetized rotating neutron stars,
for instance, for the archetypal Crab pulsar, the strength parameter
can reach extremely large values as high as

a = 1018 � 1 (3)

at the stellar surface and somewhat lower at the light cylinder
(rL = c/ω), about 109 but still extremely high. Pulsars are therefore
excellent candidates to push particles to ultra-relativistic energies by
producing an electromagnetic kick on a very short time-scale. The
strength parameter at the light cylinder, where the wave emerges, has
decreased by several orders of magnitude but remains significantly
larger than one depending on the period P and its derivative Ṗ

aL ≈ q B

mω

(
R

rL

)3

≈ 4, 5 · 107

(
Ṗ

1015

)1/2 (
P

1 s

)−3/2

(4)

thus still very large, aL � 1. In the present investigation, we study
particle motion starting from this remote region up to very large
distances, r � rL where a plane wave is a very good approximation.
Quantitative accurate results will be derived thanks to exact analytical
solutions of the particle 4-velocity in a plane electromagnetic wave
in the so-called Landau–Lifshits approximation derived by Piazza
(2008) and retrieved by Hadad et al. (2010) in a different form.
However, the Landau–Lifshits approximation being a first-order
expansion of the LAD equation, it is not the only possible choice; see,
for instance, the review by Hammond (2010) and also the exposition
of alternative theories by Burton & Noble (2014).

Gunn & Ostriker (1969) were among the first to recognize the
potential of pulsars to produce high-energy cosmic rays. Following
simple arguments, they found an estimate for the maximum energy
that was refined by Ostriker & Gunn (1969). Laue & Thielheim
(1986) studied the acceleration of protons and electrons for a
perpendicular rotator in the Landau–Lifshits approximation, showing
their orbit and Lorentz factor evolution with time. They also give
detailed maps of maximum energy depending on the initial longitude
of the particle. See also Leinemann (1988) for similar ideas. Kegel
et al. (1995) studied acceleration and radiation of charged particles
in strong electromagnetic waves using exact analytical solutions
for linearly and circularly polarized waves. They also looked for
cold plasma effects. Strongly magnetized rotating neutron stars are
believed to be efficient cosmic ray accelerators (Thielheim 1991),
but a clear picture of what kind of particles and to which energies
they can be accelerated is still lacking. Thielheim (1993) performed
a careful analysis of particle acceleration in a spherical wave field
produced by a rotating dipole. This work was continued by Thielheim
(1994), who also computed some plasma configurations. In the same
vain, Michel & Li (1999) studied particle motion in a plane wave and
in the Deutsch field. Tolan (1992) presented approximated analytical
solutions for a test particle evolving in a rotating magnetic dipole and
around a pulsar. He showed that radiation reaction and gravitation are
negligible compared to the geometrical effect of a decaying spherical
wave in the pulsar wave zone.

The propagation of strong electromagnetic waves in dense plas-
mas, being uniform or showing gradients, was performed back to the
70s by Max & Perkins (1971) where conditions for the transmission
of a plane wave are given. The radiation damping of a strong linearly
polarized wave launched by a pulsar and due to electron–positron
pair synchro-Compton radiation was explored by Asseo, Kennel &
Pellat (1978). They showed that for conditions prevailing in the Crab
pulsar, the wave fades away within only several wavelengths.

All these works focused on the large-scale acceleration. On
the opposite side, Ferrari & Trussoni (1974) computed particle
acceleration and radiation in the near-field region, very close to the
neutron star surface, showing significant radiation reaction braking
in this near zone. However, as the strength parameter a decreases due
to the dipolar nature of the magnetic field, acceleration and radiation
reaction become less and less effective at larger and larger distances.

Earlier works already worried about the effect of radiation reaction
on particle acceleration. For instance, Heintzmann & Grewing
(1972) studied particle acceleration and radiation reaction in plane
and spherical waves; see also Grewing, Schrüfer & Heintzmann
(1975) for radiation effects in pulsar fields. Grewing, Schrüfer &
Heintzmann (1973) then showed that the presence of a longitudinal
magnetic field significantly reduces the maximum Lorentz factor
of the accelerated particles. Surprisingly, radiation reaction is able
to increase the asymptotic Lorentz factor of the charged particle
when interacting, for instance, with an intense laser pulse as shown
by Fradkin (1979). Synchrotron radiation spectra are also modified
because of the decaying orbit of electrons in an uniform magnetic
field as shown by Nelson & Wasserman (1991).

Radiation reaction is usually treated as a perturbation of the
Lorentz force and called the Landau–Lifshits approximation. There-
fore, Finkbeiner, Herold & Ruder (1990) checked the validity of this
approximation in pulsar vacuum fields, which requires a classical
description of the emitting particles, the radiation field, and the
smallness of the radiation reaction force compared to the Lorentz
force in the particle instantaneous rest frame. This justifies the
approach of integrating the particle equation of motion in the
Landau–Lifshits limit for highly relativistic particles as performed
by Finkbeiner et al. (1989) starting from the neutron star surface.
In strong electromagnetic fields, the quantum nature of the particles
also emerges, leading to an additional equation for the evolution of
the particle spin as implemented numerically by Li et al. (2020).

Finding accurate and exact analytical solutions to the particle
equation of motion is crucial in ultra-strong electromagnetic fields as
shown by Pétri (2020b) in the Lorentz force limit. Some applications
to neutron stars have been explored by Tomczak & Pétri (2020).
Different approaches exist to tackle the problem of finding exact
and efficient implementations of the Lorentz force equation; see,
for instance, Gordon, Hafizi & Palastro (2017) and Gordon &
Hafizi (2021), who also discuss the possibility to add radiation
reaction.

In this paper, we study particle acceleration and radiation reaction
in the wind zone, approximating the field locally by a plane wave
with decreasing amplitude in order to mimic a spherical wave. Our
integration of the test particle equation of motion relies on exact
analytical solutions of the Landau–Lifshits equation for either time-
dependent elliptically polarized plane waves or constant null-like
electromagnetic fields. These solutions are recalled in Section 2
and serve as a building block for our algorithm. As a first step
towards a more general algorithm able to integrate semi-analytically
any field configuration, we also try an algorithm based on locally
constant electromagnetic field solutions. Both numerical schemes
are then tested in polarized plane waves for the Lorentz force in
Section 3 and with radiation reaction in the Landau–Lifshits limit
in Section 4, showing the good agreement of the locally constant
approximation with the analytical solution. We then discuss our
new results about acceleration efficiency and final Lorentz factor
of particles in spherical waves in Section 5 including radiation
reaction. The limitation of our present study focusing on null-like
electromagnetic fields is discussed in Section 6. Conclusions are
drawn in Section 7.
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Particle acceleration and radiation reaction 2125

2 EX AC T S O L U T I O N S

Our aim is to solve the particle acceleration and radiation damping
problem by time-dependent numerical simulations, sticking as close
as possible to known exact analytical solutions. We start from the
linearized Lorentz–Abraham–Dirac equation leading to first order
to the Landau–Lifshits prescription (Landau & Lifchitz 1989) such
that

dui

dτ
= q

m
F ik uk + q τ0

m
∂	F

ik uk u	 +
q2 τ0

m2

(
F ik Fk	 u	 + (F	m um) (F	k uk)

ui

c2

)
. (5)

q and m are the particle charge and rest mass, ui its 4-velocity, τ its
proper time, Fik the electromagnetic or Faraday tensor, c the speed
of light, and τ 0 the light crossing time across the electron classical
radius re (within a factor unity)

τ0 = q2

6 π ε0 mc3
= 2

3

re

c
≈ 6, 26 · 10−24 s. (6)

Fortunately, there exist some exact analytical solutions to this
equation (5) in either a constant electromagnetic field or for an ellip-
tically polarized plane wave depending on the two electromagnetic
invariants

I1 = E2/c2 − B2 (7a)

I2 = E · B/c, (7b)

where E and B are the electric and magnetic fields, respectively, as
measured by some inertial observer. The two important parameters
defining the family of solutions are the strength parameter a and
the radiation reaction efficiency ω τ0 according to the following
definitions

a = ωB

ω
(8a)

b = ω τ0 (8b)

ωB = q B

m
= q E

mc
. (8c)

Introducing the weighted and normalized electromagnetic field
tensor by F̃ ik = q F ik/m ω ∝ a and a normalized time τ̃ = ω τ ,
the Landau–Lifshits equation (5) is rewritten without dimensions as

dũi

dτ̃
= F̃ ik ũk + b ∂̃	F̃

ik ũk ũ	 +
b
(
F̃ ik F̃k	 ũ	 + (F̃ 	m ũm) (F̃	k ũk) ũi

)
. (9)

The ordering of the right-hand side terms is
γ a, γ 2 a b, γ a2 b, γ 3 a2 b, γ being the particle Lorentz factor.
For our application to neutron stars, a � 1 and γ � 1; therefore,
the last term dominates the radiation reaction. This last term is
γ 2 a b = γ 2 ωB τ0 times the Lorentz force. Therefore, radiation
reaction force becomes dominant in the regime where γ 2 ωB τ0 � 1;
thus,

γ � 9, 5 · 105

(
B

1 T

)−1/2

. (10)

For the remainder of this paper, we use a Cartesian coordinate
system labelled by (x, y, z) and the corresponding Cartesian basis
(ex, ey, ez). Moreover, the plane wave propagates in the x direction,
with a frequency ω, has a wave-vector k, and a polarization electric
vector E in the yOz plane. Thus, by construction Bx = Ex = 0,
E · B = 0, and E = c B. As we remind in the next section, exact
analytical solutions have been found for those waves.

2.1 Elliptically polarized plane waves

An exact analytical solution of the Landau–Lifshits equation has been
given by Piazza (2008) and Hadad et al. (2010). For completeness, as
our algorithm heavily relies on this solution, we recall it by adopting
slightly different notations compared to Hadad et al. (2010).

Let us assume a plane electromagnetic wave in vacuum with
wavenumber k and frequency (more properly called pulsation) ω

such that the vector potential Ai is given by the real part R of a
complex potential f (ξ ) εi

Ai = A0 �[f (ξ ) εi] (11)

with A0 the potential amplitude. f(ξ ) is an arbitrary function of the
phase given by ξ = ki xi = ω t − k x, the four-position vector is xi =
(c t, x, y, z), the four-wavenumber ki = (ω/c, k, 0, 0), and the space-
like polarization vector εi. The strength of the wave is given in terms
of the parameter a0 defined by

a0 = q A0

mc
. (12)

Note that it can be positive or negative depending on the particle
charge. The solution for the 4-velocity is then expressed by introduc-
ing several functions as

ψ(ξ ) = ∫ ξ

0 Â′(y) · Â′(y) dy (13a)

τ (ξ ) = ξ

k·u0
− τ0 a2

0

∫ ξ

0 ψ(y) dy (13b)

χi =
∫ ξ

0
Â′i(y) ψ(y) dy (13c)

k · u0 = γ ω (1 − β0
x ), (13d)

where the prime in Â′i(y) denotes the derivative with respect to the
argument y. Therefore, the full solution for an arbitrary wave is

ui

k · u
= ui

0

k · u0
+ a0 c

k · u0

[−(Â − Â0)i

+ ki

k · u0

(
(Â − Â0) · u0 − a0 c

(Â − Â0)2

2

)]

+τ0 c
[−a0 (Â′ − Â′

0)i + a3
0 χi

+ ki

k · u0

(
a0 (Â′ − Â′

0) · u0 − a2
0 c ψ

−a2
0 c (Â − Â0) · (Â′ − Â′

0) − a3
0 χ · u0 + a4

0 c (Â − Â0) · χ
)]

+τ 2
0 c2 ki[

−a2
0

(Â′ − Â′
0)2

2
+ a4

0 (Â′ − Â′
0) · χ + a4

0

ψ2

2
− a6

0

χ2

2

]
. (14)

For charged particles immersed in the neutron star electromagnetic
field, outside the light cylinder, the field converges to a elliptically
polarized plane wave depending on the colatitude θ . It is linearly
polarized at the equator θ = π/2 and circularly polarized at the poles
θ = 0 and θ = π, showing any kind of elliptic polarization between
the poles and the equator. Therefore, in order to keep the discussion
as general as possible, we focus on elliptically polarized waves with
a wave vector k = (ω/c, k, 0, 0) and being a linear superposition
of a left-handed and right-handed elliptically polarized wave with
characteristics

εc = (0, 0, 1, −i)/
√

2 (15a)

f±(ξ ) = √
2 e±i (ξ−ξ0) (15b)

MNRAS 503, 2123–2136 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/2/2123/6158398 by C
N

R
S user on 04 M

ay 2023



2126 J. Pétri

A± = A0 (0, 0, cos(ξ − ξ0),± sin(ξ − ξ0)) (15c)

E± = −ω A0 (0, 0,− sin(ξ − ξ0), ± cos(ξ − ξ0)) (15d)

B± = k A0 (0, 0, cos(ξ − ξ0),± sin(ξ − ξ0)) = k A±. (15e)

ξ 0 is the initial phase of the wave and the sign ± refers to a left-
or right-handed elliptical polarization. The full vector potential is a
sum of left- and right-handed elliptically polarized waves such that

A = α A+ + (1 − α) A− = (0, 0, cos(ξ − ξ0), (2 α − 1) sin(ξ − ξ0))

(16)

where α ∈ [0, 1] with α = 1/2 for linearly and α = 0 or α = 1 for
circularly polarized waves with opposite handedness.

For spatially varying waves like spherical waves emitted by
rotating neutron stars, we need to integrate the 4-velocity ui to deduce
the phase dependence of the 4-position. Noting that ui = dxi/dτ =
(k · u) dxi/dξ , we find that

dxi

dξ
= ui

k · u
, (17)

which can also be integrating analytically for elliptically polarized
waves starting from the expression (14).

In the special case of particle propagation in an elliptically
polarized wave, deviation from the Lorentz force motion sets in
when a2 b � 1 (Hadad et al. 2010). We will indeed check in our
simulations that this condition is required for significant radiation
feedback.

2.2 Constant fields

Unfortunately, the most general electromagnetic field is not null-
like (meaning I1 = I2 = 0). The simplest generalization leading
to a tractable analytical solution is for constant fields. Following
the procedure described by Heintzmann & Schrüfer (1973), we
introduce the electromagnetic tensor eigensystem solution such that
eigenvalues λi (possibly complex values) satisfy

λ2
i = I1 ±

√
I 2

1 + 4 I 2
2

2
. (18)

If I2 = 0, then at least two eigenvalues vanish. For a null-like field
meaning I1 = I2 = 0, all eigenvalues vanish and solutions are given
in the previous paragraph. If all eigenvalues λi are non-zero, then
the associated eigenvectors ψ i are null-like, ψ i · ψ i = 0because of
the antisymmetry of the electromagnetic tensor. Moreover, they are
explicitly given by

ψ i =
(

λ2
i E2 + c2 I 2

2

λi c
, λ2

i E + c I2 B + λi E ∧ B
)

. (19)

These eigenstates form a complete basis for the four-dimensional
velocity space. The 4-velocity is then adequately projected on to this
basis according to

u(τ ) =
4∑

i=1

k(τ ) fi ψ i eλi τ . (20)

The fi are the components of the 4-velocity in the ψ i basis. They
are deduced from the initial conditions u(0) = ∑4

i=1 fi ψ i and the
damping factor is

k(τ ) =
⎛
⎝∑

i =j

fi fj (ψ i · ψ j ) e(λi+λj ) τ

⎞
⎠

−1/2

. (21)

In the absence of radiation reaction, this damping factor equals
unity. In the most general electromagnetic field configuration, both
invariants are non-vanishing, there are four distinct eigenvalues, two
real and two complex conjugated, and the eigenvectors form a full
basis for the velocity space justifying the above projection scheme.
Such configurations are met around rotating magnetized neutron
stars, from the magnetosphere, inside the light cylinder (the static
zone) through the light cylinder, the transition zone down to the
wave zone, and outside the light cylinder. Therefore, the solution
(equation 20) is the most appropriate building block to construct
numerical schemes integrating particle trajectories around strongly
magnetized neutron stars. However, in the present study, we focus
only on plane waves for which analytical solutions exist, allowing
detailed quantitative comparisons and error estimates between the
algorithm proposed here and the expected values.

If some eigenvalues vanish, expression (19) cannot be applied
straightforwardly. Special care is required in these limiting cases.
Of particular interest is the case when I1 = I2 = 0. Then all
the eigenvalues vanish, the field is null- (or light-like), and the
eigensystem must be solved separately as shown in the previous
paragraph.

If I1 = 0 and I2 = 0, two eigenvalues vanish and the other two are
either real and opposite or purely complex and opposite depending on
the sign of I1. If I1 > 0, the electric field E dominates, the solutions
being real and given by λ1,2 = ±√

I1 representing a pure electric
accelerating solution. If I1 < 0, the magnetic field B dominates
and λ1,2 = ±i

√−I1 representing oscillatory solutions, a simple
magnetic gyration in the appropriate electric drift frame. In this case
of perpendicular electric and magnetic fields, two eigenvalues vanish
and for a non-vanishing magnetic field B = 0, the eigenvectors of
the two-dimensional null space are(

ω

c
,

ω

c2

E ∧ B
B2

+ μ B
)

(22)

with (ω,μ) ∈ R2 two arbitrary and uncorrelated reals generating the
two-dimensional null space.

In the special case of a zero magnetic field, the above expres-
sion (22) fails and a separate treatment is required. The eigenvalues
are real and given by

λi = (0, 0, −E/c, +E/c). (23)

The associated eigenvectors are

(ψ1)k = (0, k1) (24a)

(ψ2)k = (0, k2) (24b)

(ψ3)k = (−E, E) (24c)

(ψ4)k = (+E, E) (24d)

with k1 · E = k2 · E = 0 and k1 ∧ k2 ∝ E. The spatial vectors k1

and k2 span the spatial plan orthogonal to the electric field E.
In this paper, we are interested in null-like fields with I1 = I2 =

0, corresponding to electromagnetic waves launched by a rotating
magnetic dipole, as seen at large distances r � rL, well outside the
light cylinder. In this special case, all eigenvalues vanish λi = 0 and
the solution for elliptically polarized waves applies.

2.3 Initial conditions

The aforementioned formal solutions depend on several physical
parameters that have been reduced to two normalized quantities,
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Particle acceleration and radiation reaction 2127

namely the strength a and the damping b parameters. In order to
quantitatively find the exact solution, we need to impose the initial
conditions given by the initial phase of the wave ξ 0 and the initial
velocity of the particle u0 injected at phase ξ 0. We will consider only
initial velocities aligned with the wave propagation direction such
that ui

0 = γ0 c (1, β0, 0, 0) where γ 0 is the initial Lorentz factor and
β0 the normalized spatial velocity.

Note that the strength parameter is a Lorentz invariant because
the electromagnetic field F (meaning E or B) between two frames
of relative velocity β0 transforms according to F = D F′ with the
Doppler factor D = 1/γ0 (1 − ex · β0). The frequency is Doppler
shifted based on

ω = Dω′ (25)

rendering the ratio B/ω constant and equal to B
′
/ω

′
for frame

velocities aligned with the wave propagation direction. Therefore,
a = a

′
is indeed a relativistic invariant. When the particle has an

initial velocity such as u0, it suffices to transform to the instantaneous
particle rest frame at the initial time to compute the solution in this
frame with a particle at rest and finally to transform position and
velocity back to the observer frame. The Lorentz factor γ

′
in the rest

frame is related to the Lorentz factor γ measured by the observer
by

γ ′ = γ γ0 (1 − β · β0), (26)

which simplifies for ultra-relativistic particles and β aligned with
β0 to

γ ′ ≈ γ

√
1 − β0

1 + β0
. (27)

The period as measured by the observer also suffers from the time
dilation effect. The Doppler effect for the wave frequency combined
with the Lorentz transform for the time interval between two periods

c �t = γ (c �t ′ + β �x ′) (28)

corresponding to ξ = 2π shows that the period is changed to

ω Tcirc = 2πD γ0 [1 + (β0 + 1) a2] (29)

for a circularly polarized wave and to

ω Tlin = 2πD γ0 [1 + 3

4
(β0 + 1) a2] (30)

for a linearly polarized wave [to be compared with particles starting
at rest, see Pétri (2020b)]. We will check this point of view in the
numerical tests discussed in Section 3.

If the initial phase ξ 0 of the wave at the particle injection point
does not vanish, the acceleration process is not optimal in the sense
that the highest Lorentz factor γ will be less than γmax = 1 + 2 a2.
For instance, for the motion without radiation reaction, the particle
is insensitive to the initial phase of a circularly polarized wave but
sensitive to an elliptically polarized wave, the worst case being a
linearly polarized wave with α = 1/2. For those waves, the maximum
Lorentz factor is γmax(ξ0) = 1 + 1

2 a2 (1 + ‖ cos ξ0‖)2, therefore, a
factor of 4 less for ξ0 = π/2 compared to the optimal case ξ 0 = 0
when a � 1. This will also be checked in our subsequent tests.

3 PL A N E WAV E T E S T S W I T H O U T R A D I AT I O N
R E AC T I O N

In this section, we perform some tests of the constant field approx-
imation for plane waves and compare our results with the exact

Figure 1. Evolution of the Lorentz factor of a particle initially at rest and for
a circularly polarized wave with log a = {3, 6, 9, 12}. Solid lines represent the
exact analytical solutions and dotted points the constant field approximation.

analytical solutions detailed in the previous section. We distinguish
cases with particles initially at rest from cases with particles initially
moving at relativistic speed catching up the wave or moving in
opposite direction to the wave. We then close the test section by
a discussion of the impact of the initial phase of the wave on
the acceleration efficiency. The phase is indeed another important
parameter controlling the maximum energy reached by the particle.

3.1 Particle starting at rest

Let us assume that particles are injected at rest in an electromagnetic
wave with an initial phase equal to zero ξ 0 = 0 at the particle
location. The maximum Lorentz factor is then always given by
γmax = 1 + 2 a2 whatever the polarization of the wave. In order to
check the integration of the particle equation of motion in a constant
electromagnetic field, we compare the exact analytical solution with
the constant field integrator. Several examples are shown without
radiation reaction, a strength parameter up to a = 1012, and circular
or linear polarization modes such that α = {0, 0.5}.

Fig. 1 shows the periodic variation of the Lorentz factor for a
circularly polarized wave and a strength parameter log a = {3, 6,
9, 12}. The time is normalized with respect to the period for a
circularly polarized wave Tcirc given by equation (29) with β0 = 0.
The numerical solution marked as symbols perfectly overlaps with
the analytical solution in solid line.

Fig. 2 shows the equivalent results for a linearly polarized wave
and time normalization according to Tlin given by equation (30) with
β0 = 0. Here also, the match is perfect.

In this section, we saw that the particle gained energy from the
wave but at the end of a cycle, i.e. after a phase variation ξ of 2π, the
particle returned to a state at rest, losing its kinetic energy due to the
‘braking’ of the wave. The process is fully reversible in time for the
Lorentz force. This is typical of a wave–particle interaction. We will
see that when dissipation is added to the equation of motion, like, for
instance, radiation reaction, the particle does not return to rest but
keeps a minimal kinetic energy. The process is no longer fully time
reversible.

3.2 Particle starting at relativistic speed

If the particle enters the wave with an initial relativistic velocity, the
situation changes from the evolution found previously. A Lorentz
boost in the rest frame of the particle does not affect the nature
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2128 J. Pétri

Figure 2. Same as Fig. 1 but for a linearly polarized wave.

Figure 3. Evolution of the Lorentz factor of a particle injected with a
relativistic speed and for a circularly polarized wave with a = 109. The
legend shows log (γ 0) with the convention that a negative value means a
velocity vector pointing in a direction opposite to the wave propagation.

Figure 4. Same as Fig. 3 but for a linearly polarized wave.

of the wave and it remains null-like, but the wave frequency is
Doppler shifted to a new frequency ω

′
according to equation (25). The

periodicity in the particle Lorentz factor also changes to equation (29)
or to equation (30) depending on the wave polarization. Some
examples for a circularly polarized wave are shown in Fig. 3 and for
a linearly polarized wave in Fig. 4. The initial Lorentz factor is γ 0

and shown in the legends as a logarithmic log γ 0 with the convention

Figure 5. Evolution of the Lorentz factor of a particle injected at different
initial phases for a circularly polarized wave with a = 109.

Figure 6. Same as Fig. 5 but for a linearly polarized wave.

that a negative value means a velocity vector pointing in a direction
opposite to the wave propagation. The constant field approximation,
in dotted points, agrees with the exact analytical solution in solid
lines.

3.3 Initial phase of the wave

The phase ξ 0 when the particle enters the wave also affects its
subsequent trajectory. The impact of this initial phase is scrutinized
by varying ξ 0 in multiples ofπ/4 in the set ξ0 ∈ {0,π/4,π/2, 3π/4}.
Some results are shown for a circularly polarized wave in Fig. 5 by
fixing the strength parameter to a = 109. As expected, for such
waves, the trajectory is independent of the initial phase because only
the (E, k) plane rotates without varying the strength of E or B with ξ .
The maximum Lorentz factor is always γmax = 1 + 2 a2 ≈ 2 · 1018.

For linearly or elliptically polarized waves, the initial phase
impacts the trajectory and the maximum Lorentz factor as shown,
for instance, in Fig. 6 for a linearly polarized wave with a = 109.
Acceleration is most effective when injection happens at ξ 0 = 0 and
a factor of 4 less efficient if injection occurs at ξ0 = π/2.

This section demonstrated that the constant field approximation
algorithm for null-like electromagnetic fields retrieves accurately
the exact analytical motion of an ultra-relativistic particle in an
elliptically polarized plane wave due to the Lorentz force, neglecting
radiation reaction. Next, we add the radiation feedback.
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Particle acceleration and radiation reaction 2129

Figure 7. Evolution of the Lorentz factor of a particle initially at rest with
radiation reaction set to log b = −20 and for a circularly polarized wave with
log a = {3, 6, 9, 12}.

4 PLANE WAV E TESTS WITH RADIATION
R E AC T I O N

In conditions prevailing around rotating magnetized neutron stars,
the electromagnetic field strength and the particle Lorentz factors
are so large that radiation reaction efficiently slows down the particle
by lowering its kinetic energy, converting it into radiation. In this
section, we redo the same analysis as in the previous section except
that we add the radiation reaction without removing any term in the
Landau–Lifshits approximation.

The strength of radiation damping is controlled by the normalized
parameter b defined in equation (8). Typical values for neutron stars
are

b = 4 · 10−23

(
P

1 s

)−1

, (31)

where P = 2π/ω is the pulsar period in second. It is strongest for
millisecond pulsars reaching values of b ≈ 2 · 10−20 for a 2-ms
pulsar. For the simulations presented below, we use log b = −20.
The perturbation in the Lorentz force also includes terms involving
γ and a as explained in the paragraph after equation (9).

4.1 Particle starting at rest

When the particle starts at rest, the radiation reaction vanishes. What-
ever the strength and damping parameters a and b, the particle evolves
initially only according to the Lorentz force. The trajectories are
therefore identical to the previous cases without radiation reaction.
Only when the Lorentz factor reaches high enough values for the
perturbation to become to the same order of magnitude as the Lorentz
part will the particle deviate from its dissipationless motion. This is
seen in Fig. 7 showing the particle Lorentz factor evolving in a
circularly polarized wave for log a = {3, 6, 9, 12}. By inspection
of Fig. 8, we deduce that the behaviour in a linearly polarized wave
is very similar; only the largest strength parameters leading to the
largest Lorentz factors will perturb the Lorentz force. Indeed, only
the case a = 1012 leads to the radiation-dominated motion in the
regime a2 b = 104 � 1. All other cases are well approximated by
the Lorentz force motion, except for a = 109 where we observe a
slight increase in the periodic variation in γ with time; see the plots
in green point in Figs 7 and 8.

Radiation reaction drastically inflates the typical time-scale of
Lorentz factor variation as can be checked in Fig. 9 showing an

Figure 8. Same as Fig. 7 but for a linearly polarized wave.

Figure 9. Phase evolution of the inertial frame clock normalized time ω t of
a particle initially at rest with and without radiation reaction (resp. LL and
LF) for a circularly (solid line) and linearly (dashed line) polarized wave with
log a = 3 and log b = −4.

Figure 10. Same as Fig. 9 but for the phase evolution of the Lorentz factor.

increase by 5 orders of magnitude in the case of a = 103 and b = 10−4

for circularly as well as for linearly polarized waves, respectively,
in solid lines and dashed lines with and without radiation reaction
(resp. LL in blue and LF in orange). The maximum Lorentz factor
also increases significantly when radiation reaction is included, see
Fig. 10. In the aforementioned case, there is an increase by 2–3 orders
of magnitude. Finally, Fig. 11 summarizes the spatial evolution of
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2130 J. Pétri

Figure 11. Evolution of the Lorentz factor with distance according to Figs 9
and 10.

this Lorentz factor, demonstrating the stretching effect of radiation
reaction. The achievable energy is much higher but it requires more
time or space to attain its asymptotic value.

We conclude that when the radiation reaction is taken into account,
i.e. in the presence of deceleration induced by radiative friction, the
particle energy becomes greater than without taking it into account.
This statement appears counter-intuitive but it is not related to the
well-known runaway solutions of the LAD equation because these
motions do not show any exponential grow of the Lorentz factor as
would be the case for a runaway solution. Indeed, the Landau &
Lifshits prescription is free of these parasitic solutions because it
is a second order in time equation of motion. Therefore, the non-
physical self-accelerating solutions are absent in the Landau–Lifshits
equation. The reason leading to more efficient acceleration in case
of radiation reaction is related to the precise time evolution of the
particle in the electromagnetic wave.

Gunn & Ostriker (1971) showed indeed that, for any initial
conditions, a particle evolving in a plane electromagnetic wave
with radiation reaction (in the Landau–Lifshits prescription) slowly
increases its energy with time, a kind of ‘radiative pumping’ as they
said. The radiation reaction can be interpreted as a friction causing a
delay in the particle response to the field, inducing a lag between its
velocity and the accelerating electric field, causing the slowly in time
increase in kinetic energy, typically γ ∝ t1/3 as they showed. The fact
that radiation reaction can decrease or increase the Lorentz factor in
plane waves has also been noticed by Heintzmann & Grewing (1972).
Such pumping is not effective in spherical waves because the kinetic
energy increase occurs mainly during the phase locked motion at
the beginning of the acceleration process and requires many cycles
with constant strength parameter, which is not the case in a spherical
wave.

4.2 Particle starting at relativistic speed

When the particle starts at a relativistic speed, for the same simulation
runs as in the previous section, the maximum Lorentz factor reached
by the particle is not sufficient to significantly perturb the Lorentz
force if the particle catches up the wave. We therefore do not observe
any difference between radiation reaction and solely Lorentz force
evolution when inspecting Fig. 12 for a circularly polarized wave
or Fig. 13 for a linearly polarized wave, in the cases marked with
a positive log γ 0, meaning particles moving in the same direction
as the wave. This is due to the fact that the effective damping

Figure 12. Evolution of the Lorentz factor of a particle injected with a
relativistic speed and for a circularly polarized wave with a = 109.

Figure 13. Same as Fig. 12 but for a linearly polarized wave.

parameter b′ = ω′ τ0 as measured in the particle rest frame decreases
by several orders of magnitude due to Doppler shifting of the wave
frequency ω = Dω′ � ω′. To the contrary, for a head-on collision
between the particle and the wave, the apparent wave frequency is
blue shifted due to the Doppler effect, and the effective damping
parameter b

′
increases by several orders of magnitude. Radiation

reaction becomes significant and the particle trajectory is affected by
the perturbing force. This is clearly seen for negative log γ 0 (meaning
particle moving in opposite direction to the wave propagation i.e. a
head-on collision) in Figs 12 and 13 where the Lorentz factor slowly
drifts to larger and larger values. We retrieve similar Lorentz factors,
drifting in time as in the previous section.

4.3 Initial phase of the wave

We already saw that a circularly polarized wave is insensitive to
the initial phase due to its symmetry of rotation about an axis
parallel to the wave vector k. This holds true for radiation reaction
as demonstrated in Fig. 14 and as expected due to this symmetry
property. However, as for the Lorentz force, the Landau–Lifshits
equation remains also sensitive to the initial phase for the linearly
polarized wave as seen in Fig. 15.

We recall that in all the above exposed examples, the exact
analytical solutions for the 4-velocity are known and served as a
check for our algorithm. We found that exact analytical solutions
for the constant field approximation give sensibly the same results.

MNRAS 503, 2123–2136 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/2/2123/6158398 by C
N

R
S user on 04 M

ay 2023



Particle acceleration and radiation reaction 2131

Figure 14. Evolution of the Lorentz factor of a particle injected at different
initial phases for a circularly polarized wave with a = 109.

Figure 15. Same as Fig. 14 but for a linearly polarized wave.

Therefore, it demonstrates that the constant field approximation can
serve as a building block for very general null-like electromagnetic
fields.

After these extensive tests of our numerical algorithm for null-
like electromagnetic fields, we apply it in the context of neutron star
vacuum magnetospheres outside the light cylinder where spherical
waves are launched, described locally as plane waves to a good
approximation.

5 SP H E R I C A L WAV E R E S U LTS

Since the work of Deutsch (1955), we know that a rotating magnetic
dipole launches a large-amplitude low-frequency electromagnetic
wave at large distances r � rL, that is approximated by a spherical
wave of definite polarization depending on the colatitude θ and
decreasing with distance like rL/r. Indeed, along, the rotation axis,
the wave is a circularly polarized wave whereas along the equator,
it is completely linearly polarized. In between these two limits, the
wave shows any degree of elliptical polarization, left handed or right
handed.

In this last section, we apply our algorithm to a real astrophysical
context of particle acceleration and radiation in the wave zone outside
the light cylinder of a neutron star. As a typical value of the magnetic
field strength at this light cylinder, we choose BL ≈ 1 T. The light
cylinder is also the place where the quasi-static regime transits to
the wave zone. By default, we assume that particles enter the wave
at a radius r0 equal to the light cylinder if not otherwise specified,

Figure 16. Evolution of the Lorentz factor for a circularly polarized wave
(α = 0) in solid line, an elliptically polarized wave (α = 0.2) in dotted line,
and linearly polarized wave (α = 0.5) in dashed line. The strength parameter
is log a = {3, 6, 9, 12}.

Figure 17. Final Lorentz factor for a circularly (α = 0), elliptically (α =
0.2), and linearly (α = 0.5) polarized wave. The law in equation (32) is shown
in red solid line.

r0 = rL. Moreover, we employ the spherical wave approximation
meaning a decrease in the field amplitude like (E, B) ∝ rL/r and
where the wave field components E, B, and propagation direction n
are mutually orthogonal. Any kind of polarization can be considered,
linear, left/right circular, and elliptical polarization.

5.1 Particle starting at rest

Let us assume that particles are injected at rest at a distance
r0 = rL from the neutron star centre and an arbitrary colatitude θ with
respect to the rotation axis. Because the wave amplitude decreases
with distance, particles do not reach the maximum energy γ max of a
plane wave. The actual maximum energy is much less and does not
scale as (1 + 2 a2) any more as we will prove.

Indeed, Fig. 16 shows the acceleration efficiency for circularly,
elliptically, and linearly polarized waves, respectively, in solid,
dotted, and dashed lines, with α = {0, 0.2, 0.5} without radiation
reaction and strength parameter log a = {3, 6, 9, 12}. The maximum
Lorentz factor found from these runs scales roughly as a0.7 in all
cases, the weakest values being obtained for a linear polarization
(Fig. 17). Following the arguments exposed by Michel & Li (1999),
the particle reaches its maximum energy after travelling a distance
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2132 J. Pétri

Figure 18. Same as Fig. 16 but with radiation reaction fixed to log b = −20.

Figure 19. Evolution of the Lorentz factor with distance for a circularly (α =
0), elliptically, (α = 0.2) and linearly (α = 0.5) polarized wave, respectively,
in solid, dotted, and dashed line for different initial positions r0/rL = {1, 10,
100, 1000} and with a = 109.

rc ≈ π a2
c where ac is the strength parameter at the distance rc. But

at these distances, the strength parameter has decreased to a value
ac = a rL/rc. Solving for the distance, we get rc ≈ π1/3 a2/3 rL. A
good guess of this final Lorentz factor is given by

γfin ≈ 2 a2
c ≈ 2 (a/π)2/3, (32)

which is in agreement with the fitted exponent of 0.7 ≈ 2/3. The law
in equation (32) is shown in red solid line in Fig. 17. The distance
required to attain this asymptotic value is, however, much larger for
the linear polarization (α = 0.5) compared to the circular or elliptic
polarization with α = {0, 0.2}. Therefore, around a rotating magnet,
acceleration is most effective along the rotation axis and weakest
around the rotational equator.

Fig. 18 shows the same results as in Fig. 16 but with radiation
reaction fixed to log b = −20. Because the perturbation scales as
a2 b and a decreases with distance, radiation feedback does not
produce any significant perturbation to the particle motion, except
in the efficient acceleration zone around the light cylinder for the
case a = 1012. We conclude that radiation reaction does not impact
the particle motion in the wave zone of a pulsar in this vacuum case.

The final Lorentz factor is also relatively insensitive to the initial
position r0 of the particle at rest. Fig. 19 indeed shows the Lorentz
factor dependence on distance for particles evolving in a spherical
wave with a = 109 for several polarization states and several initial

Figure 20. Maximum Lorentz factor, extracted from Fig. 19, for a circularly
(α = 0), elliptically (α = 0.2), and linearly (α = 0.5) polarized wave,
respectively, in blue, orange, and green lines for different initial positions
log (r0/rL) = {0, 1, 2, 3} and a = 109.

positions log (r0/rL) = {0, 1, 2, 3}. For linear polarization as long
as particles are injected at radii shorter than the distance where the
asymptotic energy is attained, in the example about rc/rL ≈ 107,
the maximum Lorentz factor is noticeably the same. For circular
polarization and elliptic polarization, this maximum γ slightly
decreases with r0, not even by a factor of 2 for a distance increase
of three orders of magnitude, see Fig. 20. The energy acquired by
a particle therefore depends only on the wave characteristic, that is
its polarization α and strength parameter a for injections at distances
r < rc. At distance r > rc, particle acceleration efficiency sharply
decreases.

5.2 Particle starting at relativistic speed

Around a neutron star, particles entering the waves are injected
already at high Lorentz factors from the magnetosphere, within the
light cylinder. We do not expect them to be picked up at rest by the
wave; see the discussion below in Section 6. Therefore, we imposed
initial conditions where particles catch up the wave at relativistic
speed. We already saw that particles reach Lorentz factors well above
γ max imposed by the strength parameter a if the particle catches up
the wave without radiation reaction. This scaling with a2 is typical
of a coherent wave/particle interaction in the phase-locking stage.

Fig. 21 shows an example of linear polarization with a = 109,
injection factors log γ 0 = {0, 1, 2, 3}, and varying initial phase ξ 0,
ξ 0 = 0 in dashed lines, ξ0 = π/4 in dotted lines, and ξ0 = π/2 in
solid lines. Contrary to a plane wave, injection at high speed reduces
the asymptotic Lorentz factor compared to a particle injected at rest.
This effect is particularly visible for the linear polarization and ξ 0 =
0. Indeed, at initial high Lorentz factors, the particle does not feel
any electromagnetic field because it almost exactly catches up the
wave in its node where B = E = 0. For γ 0 = 103, only after having
travelled a distance 103 rL will the particle start to accelerate. If the
initial phase differs from zero like, for instance, ξ 0 = π /4 or ξ 0 = π /2,
then the linear polarization results resemble the circular polarization
evolution shown in Fig. 22 because the particle accelerates right at
the injection place r = rL. For circular polarization, because of the
symmetry of the field, the motion remains insensitive to the initial
phase of the wave; only the initial Lorentz factor matters.

Simulations including radiation reaction terms in the equation of
motion according to the Landau–Lifshits prescription do not alleviate
the conclusions drawn above. We indeed checked by inspection of
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Particle acceleration and radiation reaction 2133

Figure 21. Evolution of the Lorentz factor for a linearly polarized wave (α =
0.5) with a = 109, initial Lorentz factor log γ 0 = {0, 1, 2, 3}, and varying
initial phases, ξ0 = 0 in dashed lines, ξ0 = π/4 in dotted lines, and ξ0 = π/2
in solid lines.

Figure 22. Evolution of the Lorentz factor for a circularly polarized wave
with a = 109, initial Lorentz factor log γ 0 = {0, 1, 2, 3}. The curves are
insensitive to the initial phase ξ0.

the linear and circular polarization results that the discrepancies are
irrelevant.

5.3 Initial phase of the wave

The phase at which the particle enters the wave is also arbitrary.
Its value ξ 0 can vary from injection points to injection points. We
already showed some examples in the previous paragraphs. Let us
summarize our findings for particles starting at rest at r0 = rL and
different polarization states.

Fig. 23 shows a particle entering the wave with a = 109 and
different initial phases ξ0 = {0,π/4,π/2, 3π/4} for circularly, ellip-
tically, and linearly polarized waves, respectively, in solid, dotted, and
dashed lines. All things being equal, linear polarization is always the
least efficient configuration to energize charged particles. If radiation
reaction is included, we checked that nothing changes significantly
again.

The radiation feedback never perturbs the motion of a charged
particle in a spherical wave on the pulsar wind zone. To a very good
approximation, this perturbation as implemented in the Landau–
Lifshits prescription is irrelevant in such a case. A last configura-
tion of interest concerns the ‘collision’ between the pulsar large-

Figure 23. Evolution of the Lorentz factor for circularly, elliptically, and
linearly polarized waves, respectively, in solid, dotted, and dashed lines, with
a = 109 and several initial phases ξ0.

Figure 24. Evolution of the Lorentz factor for a linearly polarized wave with
a = 109, initial Lorentz factor log γ 0 = i with i ∈ [1..8], and varying initial
phases, ξ0 = 0 in dashed lines, ξ0 = π/4 in dotted lines, and ξ0 = π/2 in
solid lines.

amplitude low-frequency vacuum wave with an incoming charged
particle. We refer to this process as a head-on collision and investigate
it in the following closing paragraph.

5.4 Head-on collision

Particles catching up the spherical wave is less efficient than
particles hitting this wave in head-on ‘collision’. We therefore
also investigated the propagation of particles travelling towards the
neutron star, permeating its electromagnetic field. So let us consider a
particle coming from infinity. In our runs, it means particles starting
at sufficiently large distances where the electromagnetic field has
sufficiently decreased to become negligible for the particles to follow
straight lines. The particle moves at a relativistic speed with initial
Lorentz factor γ 0 in the negative ex direction. Concretely, we also
fixed the large distance to r/rL = 1012 at time t = 0. The particle
travels towards the star, feeling an outgoing wave with an increasing
strength parameter a. At some distance rmin, the electromagnetic field
overcomes the particle inertia and turns it back into the positive ex

direction. The minimal distance of approach rmin depends on the
initial particle energy.

As an example, we injected particles with initial Lorentz factors
log γ 0 = i with i ∈ [1..8] in a wave of strength a = 109. Fig. 24 shows
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2134 J. Pétri

Figure 25. Same as Fig. 24 but for circular polarization.

Figure 26. Minimal distance of approach and Lorentz factor for a circularly
and linearly polarized wave with a = 109 and initial Lorentz factor log γ 0 =
i with i ∈ [1..8]. The curves are slightly sensitive to the initial phase ξ0 for
linear polarization.

the evolution of the Lorentz factor for counter-propagating particles
and several initial phases ξ 0 for linear polarization. Fig. 25 shows
the equivalent evolution for circular polarization. The gain in energy
after bouncing back is irrelevant and independent of the initial phase
when entering the wave. It is about a factor of 2.5 for all runs.

A simple picture helps to understand the small gain in energy.
Let us assume a particle moving in vacuum in the negative ex

direction with Lorentz factor γ 0. At x = 0, it enters a region x < 0
of constant electromagnetic field with E directed along the positive
ey direction and B directed along the positive ez direction. For such
constant fields, exact analytical solutions are known and given, for
instance, by Pétri (2020b). The particle is deflected by the magnetic
part meanwhile accelerated by the electric part. The particle comes
out of the electromagnetic field back to the vacuum region x > 0
with a velocity along the positive ex direction. It can be shown that
the final Lorentz factor after escape is related to the initial speed β0

by

γfin = (1 + 3 β0) γ0 = γ0 + 3
√

γ 2
0 − 1 ≈ 4 γ0. (33)

Therefore, we find a factor of 4 not to different from the factor of
2.5 in view of the simple picture we used. This conclusion holds
irrespective of the sign of the charge.

Fig. 26 shows the minimal distance of approach rmin depending
on the initial Lorentz factor γ 0 and polarization state. A good fit is

given by

log

(
rmin

rL

)
≈ (8.7)circ/(8.5)lin − log γ0 (34)

the constant value depends on the polarization state, circular ‘()circ’
or linear ‘()lin’. This minimum distance can be estimated by noting
that the particle turns back whenever its Larmor radius rB = γ0 c/ωB

is comparable to the wavelength of order rL. In such a situation,
the particle performs a half turn in an approximately constant
electromagnetic field. Equalling both values leads to

γ0 ≈ ωB

ω
= a = a0

rL

rmin
. (35)

In other words, the product γ0 rmin remains constant and equal to a0 rL

that is approximately 109. The energy gain in this head-on collision
remains therefore also too weak to account for any acceleration
process.

6 D ISCUSSION

We considered exclusively waves with zero electromagnetic invari-
ants, which seems far from reality around a neutron star. However,
a plane wave solution represents an excellent approximation to the
electromagnetic field felt by an ultra-relativistic particle in its rest
frame (Ritus 1985). Therefore, the zero electromagnetic invariants
assumption is a useful simple case to compute approximate solutions
in the ultra-relativistic regime. For instance, in low-density laser
plasma simulations, the field is that of a plane wave; therefore, zero
invariants apply to high accuracy if the plasma current feedback is
neglected. Moreover, if particles move at ultra-relativistic speeds, as
in high-intensity laser experiments or around neutron stars, in their
rest frame the two electromagnetic invariants I1 and I2 nearly vanish.
Indeed, their normalized magnitude defined by

E′ · B′

E′2 + c2 B ′2 = E · B
E′2 + c2 B ′2 ∝ 1

γ 2
� 1 (36a)

E′2 − c2 B ′2

E′2 + c2 B ′2 = E2 − c2 B2

E′2 + c2 B ′2 ∝ 1

γ 2
� 1 (36b)

decrease as 1/γ 2 where γ is the particle Lorentz factor in the
observer frame. This approximation breaks down only in very special
configurations, for instance, when particle velocity, electric field, and
magnetic field are all collinear. This approximation called ‘locally
constant crossed field approximation’ is extensively used in the
computation of quantum electrodynamics (QED) effects in laser
experiments.

Nevertheless, we emphasize that in a pulsar magnetohydrody-
namical (MHD) wind, the electromagnetic invariants are not exactly
equal to zero. The solutions given in the previous sections can only
barely represent the more realistic situation for a relativistically
magnetized outflow. For instance, in ideal MHD where the plasma
possesses an infinite conductivity, the electric field vanishes in the
plasma rest frame and the wind structure is well approximated by
the split monopole solution of Bogovalov (1999). More generally
speaking, particle acceleration in relativistic magnetized outflows
is central to the explanation of gamma-ray bursts (GRB). The
composition in neutrons and protons and their dynamics impacts on
the observational appearance of the GRBs are shown by Derishev,
Kocharovsky & Kocharovsky (1999). Moreover, relativistic jets in
blazars can efficiently convert bulk kinetic energy into radiation as
found by Stern & Poutanen (2008). Similar problems and outcomes
are discussed by Beskin (2018), who summarizes the history of pulsar
theory development. He points out the importance of the outflow
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Particle acceleration and radiation reaction 2135

mass load and its particle content made essentially of electrons and
positrons with high pair multiplicities to understand the dynamics of
the pulsar wind. Prokofev, Arzamasskiy & Beskin (2015) showed that
in an MHD wind with non-vanishing invariants, not only acceleration
but also deceleration of particles is possible. Nokhrina & Beskin
(2017) also considered the case of particle injection with arbitrary
energies. These ideas are now also supported by particle in cell
simulations seen by Philippov & Spitkovsky (2018), Sironi & Cerutti
(2017), or Cerutti, Philippov & Dubus (2020). Clearly, the variety
of solutions is much richer for non-null fields and required a deeper
investigation.

Our particle injection scheme from an arbitrary point in the
wave assumes their birth at that point. A more careful analysis
would require an investigation of their entire trajectory, starting from
the vicinity of the stellar surface where the electromagnetic field
resembles more to a quasi-static dipole magnetic field and quadrupole
electric field. Physically, particles are injected via electron/positron
pair creation through magnetic photon absorption (Erber 1966)
or photon–photon interaction through the Breit–Wheeler process
(Breit & Wheeler 1934). This injection mechanism associated with
pair production has been widely discussed in the literature. Magnetic
photon absorption occurs mainly around the polar caps (Sturrock
1971; Ruderman & Sutherland 1975; Al’ber, Krotova & Éidman
1975; Fawley, Arons & Scharlemann 1977) where the magnetic
field is strong enough to disintegrate a high energetic photon. Outer
gaps (Cheng, Ho & Ruderman 1986) are the privileged sites for the
photon–photon interaction although the pulsar striped wind becomes
a serious alternative (Lyubarskii 1996). Cheng & Ruderman (1980)
envisaged even an ion outflow from the polar caps. Traditionally, the
acceleration process starts at the birth place and goes on smoothly up
to the light cylinder or further. Nevertheless, in some circumstances,
Beskin & Rafikov (2000) found an efficient and abrupt acceleration
phase in a narrow band around the light cylinder. The injection
problem is crucial for the outcome of kinetic pulsar magnetosphere
simulations. Particles can be extracted right at the surface (Wada &
Shibata 2011) or everywhere within the light cylinder as done by
Chen & Beloborodov (2014) for an axisymmetric magnetosphere.
Both injection schemes lead to very different stationary states. The
role of the particle injection rate was studied by Kalapotharakos
et al. (2018); see also Brambilla et al. (2018). On a more fundamental
side, Timokhin & Harding (2019) performed a careful analysis of the
pair production efficiency, updating their previous work presented in
Timokhin & Harding (2015).

The places where particles enter the wave and their associated
kinetic energy at injection into this wave determine the large-scale
motion towards the termination shock. The whole story of particle
production, propagation, radiation, and mixing into the interstellar
medium requires a careful bottom-up analysis encompassing the
smallest and the largest time and spatial scales. This preliminary
work was intended only to explore the propagation and radiation
part in the large-amplitude low-frequency electromagnetic wave.

7 C O N C L U S I O N S

Neutron stars are believed to be efficient particle accelerators.
However, this acceleration process must be quantified depending on
the magnetosphere model, being vacuum, force-free, or dissipative,
as well as on radiation feedback. Moreover, realistic physical
parameters are required in order to avoid artificial down-scaling
of the problem. In this paper, we proposed a new approach to
tackle those difficult tasks. First, we designed an algorithm to
solve analytically and semi-analytically for the particle equation of

motion in the Landau–Lifshits approximation checking it on known
solutions. Next, we applied it to spherical waves as those launched
by a rotating neutron star. We found that the acceleration efficiency
depends on the wave polarization state, strength parameter, and
on the particle injection conditions, that is its initial speed when
entering the wave and the wave initial phase. Because the spherical
wave amplitude decreases outside the light cylinder, we found no
evidence of significant radiation damping in the wave zone except in
the immediate vicinity of the light cylinder.

We plan to extend our analysis to waves possessing an electromag-
netic field component along the direction of propagation in order
to apply it to the exact solution of a magnetic dipole rotating in
vacuum and known as Deutsch solution. In such configurations, the
light-like electromagnetic field approximation fails and the constant
electromagnetic field approximation must be used to treat the most
general geometry. The full 3D nature of the problem could then also
be incorporated in order to study particle velocities deviating from
the wave propagation direction.

Last but not least, the plasma content of the magnetosphere must
be taken into account for the most realistic and self-consistent
electromagnetic field/particle/radiation interaction. We plan to study
test particle motion in those dissipative magnetospheres as found, for
instance, by Pétri (2020a).
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