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TARGETED VACCINATION STRATEGIES FOR AN
INFINITE-DIMENSIONAL SIS MODEL

JEAN-FRANÇOIS DELMAS, DYLAN DRONNIER, AND PIERRE-ANDRÉ ZITT

Abstract. We formalize and study the problem of optimal allocation strategies for a
(perfect) vaccine in the infinite-dimensional SIS model. The question may be viewed as a
bi-objective minimization problem, where one tries to minimize simultaneously the cost of the
vaccination, and a loss that may be either the effective reproduction number, or the overall
proportion of infected individuals in the endemic state. We prove the existence of Pareto
optimal strategies for both loss functions.

We also show that vaccinating according to the profile of the endemic state is a critical
allocation, in the sense that, if the initial reproduction number is larger than 1, then this
vaccination strategy yields an effective reproduction number equal to 1.

1. Introduction

1.1. Motivation. Increasing the prevalence of immunity from contagious disease in a popu-
lation limits the circulation of the infection among the individuals who lack immunity. This
so-called “herd effect” plays a fundamental role in epidemiology as it has had a major impact
in the eradication of smallpox and rinderpest or the near eradication of poliomyelitis; see [19].
Targeted vaccination strategies, based on the heterogeneity of the infection spreading in the
population, are designed to increase the level of immunity of the population with a limited
quantity of vaccine. These strategies rely on identifying groups of individuals that should be
vaccinated in priority in order to slow down or eradicate the disease.

In this article, we establish a theoretical framework to study targeted vaccination strategies
for the deterministic infinite-dimensional SIS model introduced in [7], that encompasses as
particular cases the SIS model on graphs or on stochastic block models. In companion papers,
we provide a series of general and specific examples that complete and illustrate the present
work: see Section 1.5 for more detail.

1.2. Herd immunity and targeted vaccination strategies. Let us start by recalling a few
classical results in mathematical epidemiology; we refer to Keeling and Rohani’s monograph [30]
for an extensive introduction to this field, including details on the various classical models (SIS,
SIR, etc.)

In an homogeneous population, the basic reproduction number of an infection, denoted
by R0, is defined as the number of secondary cases one individual generates on average over
the course of its infectious period, in an otherwise uninfected (susceptible) population. This
number plays a fundamental role in epidemiology as it provides a scale to measure how difficult
an infectious disease is to control. Intuitively, the disease should die out if R0 < 1 and invade
the population if R0 > 1. For many classical mathematical models of epidemiology, such as
SIS or S(E)IR, this intuition can be made rigorous: the quantity R0 may be computed from
the parameters of the model, and the threshold phenomenon occurs.
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Assuming R0 > 1 in an homogeneous population, suppose now that only a proportion ηuni of
the population can catch the disease, the rest being immunized. An infected individual will now
only generate ηuniR0 new cases, since a proportion (1− ηuni) of previously successful infections
will be prevented. Therefore, the new effective reproduction number is equal to Re(ηuni) =
ηuniR0. This fact led to the recognition by Smith in 1970 [42] and Dietz in 1975 [13] of
a simple threshold theorem: the incidence of an infection declines if the proportion of non-
immune individuals is reduced below ηuni

crit = 1/R0. This effect is called herd immunity, and the
corresponding percentage 1− ηuni

crit of people that have to be vaccinated is called herd immunity
threshold ; see for instance [43, 44].

It is of course unrealistic to depict human populations as homogeneous, and many general-
izations of the homogeneous model have been studied; see [30, Chapter 3] for examples and
further references. For most of these generalizations, it is still possible to define a meaningful
reproduction number R0, as the number of secondary cases generated by a typical infectious
individual when all other individuals are uninfected; see [12]. After a vaccination campaign,
let the vaccination strategy η denote the (non necessarily homogeneous) proportion of the
non-vaccinated population, and let the effective reproduction number Re(η) denote the cor-
responding reproduction number of the non-vaccinated population. The vaccination strategy
η is critical if Re(η) = 1. The possible choices of η naturally raises a question that may be
expressed as the following informal optimization problem:

(1)

{
Minimize: the quantity of vaccine to administrate
subject to: herd immunity is reached, that is, Re ≤ 1.

If the quantity of available vaccine is limited, then one is also interested in:

(2)

{
Minimize: the effective reproduction number Re
subject to: a given quantity of available vaccine.

Interestingly enough, the strategy ηuni
crit, which consists in delivering the vaccine uniformly to

the population, without taking inhomogeneity into account, leaves a proportion ηuni
crit = 1/R0

of the population unprotected, and is therefore critical since Re(ηuni
crit) = 1. In particular it is

admissible for the optimization problem (1).
However, herd immunity may be achieved even if the proportion of unprotected people is

greater than 1/R0, by targeting certain group(s) within the population; see Figure 3.3 in [30].
For example, the discussion of vaccination control of gonorrhea in [24, Section 4.5] suggests that
it may be better to prioritize the vaccination of people that have already caught the disease:
this lead us to consider a vaccination strategy guided by the equilibrium state. This strategy
denoted by ηequi will be defined formally below. Let us mention here an observation in the same
vein made by Britton, Ball and Trapman in [4]. Recall that in the S(E)IR model, immunity can
be obtained through infection. Using parameters from real-world data, these authors noticed
that the disease-induced herd immunity level can, for some models, be substantially lower
than the classical herd immunity threshold 1 − 1/R0. This can be reformulated in term of
targeted vaccination strategies: prioritizing the individuals that are more likely to get infected
in a S(E)IR epidemic may be more efficient than distributing uniformly the vaccine in the
population.

The main goal of this paper is two-fold: formalize the optimization problems (1) and (2) for
a particular infinite dimensional SIS model, recasting them more generally as a bi-objective
optimization problem; and give existence and properties of solutions to this bi-objective problem.
We will also consider a closely related problem, where one wishes to minimize the size of the
epidemic rather than the reproduction number. We will in passing provide insight on the
efficiency of classical vaccination strategies such as ηuni

crit or ηequi.
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1.3. Literature on targeted vaccination strategies. Targeted vaccination problems have
mainly been studied using two different mathematical frameworks.

1.3.1. On meta-populations models. Problems (1) and (2) have been examined in depth for
deterministic meta-population models, that is, models in which an heterogeneous population
is stratified into a finite number of homogeneous sub-populations (by age group, gender, . . . ).
Such models are specified by choosing the sizes of the subpopulations and quantifying the degree
of interactions between them, in terms of various mixing parameters. In this setting, R0 can
often be identified as the spectral radius of a next-generation matrix whose coefficients depend
on the subpopulation sizes, and the mixing parameters. It turns out that the next generation
matrices take similar forms for many dynamics (SIS, SIR, SEIR,...); see the discussion in [25,
Section 10]. Vaccination strategies are defined as the levels at which each sub-population is
immunized. After vaccination, the next-generation matrix is changed and its new spectral
radius corresponds to the effective reproduction number Re.

Problem (1) has been studied in this setting by Hill and Longini [25]. These authors study the
geometric properties of the so-called threshold hypersurface, that is the vaccination allocations
for which Re = 1. They also compute the vaccination belonging to this surface with minimal
cost for an Influenza A model. Making structural assumptions on the mixing parameters,
Poghotayan, Feng, Glasser and Hill derive in [38] an analytical formula for the solutions of
Problem (2), for populations divided in two groups. Many papers also contain numerical
studies of the optimization problems (1) and (2) on real-world data using gradient techniques
or similar methods; see for example [14, 17, 18, 21, 47].

Finally, the effective reproduction number is not the only reasonable way of quantifying a
population’s vulnerability to an infection. For an SIR infection for example, the proportion of
individuals that eventually catch (and recover from) the disease, often referred to as the attack
rate, is broadly used. We refer to [14, 15] for further discussion on this topic.

1.3.2. On networks. Whereas the previously cited works typically consider a small number of
subpopulations, often with a “dense” structure of interaction (every subpopulation may directly
infect all the others), other research communities have looked into a similar problem for graphs.
Indeed, given a (large), possibly random graph, with epidemic dynamics on it, and supposing
that we are able to suppress vertices by vaccinating, one may ask for the best way to choose
the vertices to remove.

The importance of the spectral radius of the network has been rapidly identified as its value
determines if the epidemic dies out quickly or survives for a long time [20, 39]. Since Van
Mieghem et al. proved in [46] that the problem of minimizing spectral radius of a graph by
removing a given number of vertices is NP-complete (and therefore unfeasible in practice),
many computational heuristics have been put forward to give approximate solutions; see for
example [40] and references therein.

1.4. Main results. The differential equations governing the epidemic dynamics in meta-
population SIS models were developed by Lajmanovich and Yorke in their pioneer paper [33].
In [7], we introduced a natural generalization of their equation, which can also be viewed as the
limit equation of the stochastic SIS dynamic on network, in an infinite-dimensional space Ω,
where x ∈ Ω represents a feature and the probability measure µ(dx) represents the fraction of
the population with feature x.

1.4.1. Regularity of the effective reproduction function Re. We consider the effective reproduc-
tion function in a general operator framework which we call the kernel model. This model is char-
acterized by a probability space (Ω,F , µ) and a measurable non-negative kernel k : Ω×Ω→ R+.
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Let Tk be the corresponding integral operator defined by:

Tk(h)(x) =

∫
Ω

k(x, y)h(y)µ(dy).

In the setting of [7] (see in particular Equation (11) therein), Tk is the so-called next generation
operator, where the kernel k is defined in terms of a transmission rate kernel k(x, y) and a
recovery rate function γ by the product k(x, y) = k(x, y)/γ(y); and the reproduction number R0

is then the spectral radius ρ(Tk) of Tk.

Following [7, Section 5], we represent a vaccination strategy by a function η : Ω → [0, 1],
where η(x) represents the fraction of non-vaccinated individuals with feature x; the effective
reproduction number associated to η is then given by

(3) Re(η) = ρ(Tkη),

where ρ stands for the spectral radius and kη stands for the kernel (kη)(x, y) = k(x, y)η(y). If
R0 ≥ 1, then a vaccination strategy η is called critical if it achieves precisely the herd immunity
threshold, that is Re(η) = 1.

In particular, the “strategy” that consists in vaccinating no one corresponds to η ≡ 1, and of
course Re(1) = R0. As the spectral radius is positively homogeneous, we also get, when R0 ≥ 1,
that the uniform strategy that corresponds to the constant function:

ηuni
crit ≡

1

R0

is critical, as Re(ηuni
crit) = 1. This is consistent with results obtained in the homogeneous model

given in Section 1.2.

Let ∆ be the set of strategies, that is the set of [0, 1]-valued functions defined on Ω. The
usual technique to obtain the existence of solutions to optimization problems like (1) or (2)
is to prove that the function Re is continuous with respect to a topology for which the set
of strategies ∆ is compact. It is natural to try and prove this continuity by writing Re as
the composition of the spectral radius ρ and the map η 7→ Tkη. The spectral radius is indeed
continuous at compact operators (and Tkη is in fact compact under a technical integrability
assumption on the kernel k formalized on page 10 as Assumption 1), if we endow the set of
bounded operators with the operator norm topology; see [5, 37]. However, this would require
choosing the uniform topology on ∆, which then is not compact.

We instead endow ∆ with the weak topology, see Section 3.1, for which compactness holds; see
Lemma 3.1. This forces us to equip the space of bounded operators with the strong topology,
for which the spectral radius is in general not continuous; see [29, p. 431]. However, the
family of operators (Tkη, η ∈ ∆) is collectively compact which enables us to recover continuity,
using a serie of results obtained by Anselone [1]. This leads to the following result, proved
in Theorem 4.2 below. We recall that Assumption 1, formulated on page 10, provides an
integrability condition on the kernel k.

Theorem 1.1 (Continuity of the spectral radius). Under Assumption 1 on the kernel k, the
function Re : ∆→ R+ is continuous with respect to the weak topology on ∆.

In fact, we also prove the continuity of the spectrum with respect to the Hausdorff distance
on the set of compact subsets of C. We shall write Re[k] to stress the dependence of the
function Re in the kernel k. In Proposition 4.3, we prove the stability of Re, by giving
natural sufficient conditions on a sequence of kernels (kn, n ∈ N) converging to k which imply
that Re[kn] converges uniformly towards Re[k]. This result has both theoretical and practical
interest: the next-generation operator is unknown in practice, and has to be estimated from
data. Thanks to this result, the value of Re computed from the estimated operator should
converge to the true value.
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1.4.2. On the maximal endemic equilibrium in the SIS model. We consider the SIS model
from [7]. This model is characterized by a probability space (Ω,F , µ), the transmission
kernel k : Ω× Ω→ R+ and the recovery rate γ : Ω→ R∗+. We suppose in the following that
the technical Assumption 2, formulated on page 11, holds, so that the SIS dynamical evolution
is well defined.

This evolution is encoded as u = (ut, t ∈ R+), where ut ∈ ∆ for all t and ut(x) represents
the probability of an individual with feature x ∈ Ω to be infected at time t ≥ 0, and follows
the equation:

(4) ∂tut = F (ut) for t ∈ R+, where F (g) = (1− g)Tk(g)− γg for g ∈ ∆,

with an initial condition u0 ∈ ∆ and with Tk the integral operator corresponding to the
kernel k acting on the set of bounded measurable functions, see (16). It is proved in [7]
that such a solution u exists and is unique under Assumption 2. An equilibrium of (4) is a
function g ∈ ∆ such that F (g) = 0. According to [7], there exists a maximal equilibrium g, i.e.,
an equilibrium such that all other equilibria h ∈ ∆ are dominated by g: h ≤ g. Furthermore,
we have R0 ≤ 1 if and only if g = 0. In the connected case (for example if k > 0), then 0 and g
are the only equilibria; besides g is the long-time distribution of infected individuals in the
population: limt→+∞ ut = g as soon as the initial condition is non-zero; see [7, Theorem 4.14].

As hinted in [24, Section 4.5] for vaccination control of gonorrhea, it is interesting to consider
vaccinating people with feature x with probability g(x); this corresponds to the strategy based
on the maximal equilibrium:

ηequi = 1− g.

The following result entails that this strategy is critical and thus achieves the herd immunity
threshold. Recall that Assumption 2, formulated page 11, provides technical conditions on the
parameters k and γ of the SIS model. The effective reproduction number of the SIS model is
the function Re defined in (3) with the kernel k = k/γ.

Theorem 1.2 (The maximal equilibrium yields a critical vaccination). Suppose Assumption 2
holds. If R0 ≥ 1, then the vaccination strategy ηequi is critical, that is, Re(ηequi) = 1.

This result will be proved below as a part of Proposition 8.2. Let us finally describe informally
another consequence of this Proposition. We were able to prove in [7, Theorem 4.14] that, in the
connected case, if R0 > 1, the disease-free equilibrium u = 0 is unstable. Proposition 8.2 gives
spectral information on the formal linearization of the dynamics (4) near any equilibrium h;
in particular if h 6= g then h is linearly unstable.

1.4.3. Regularity of the total proportion of infected population function I. According to [7,
Section 5.3.], the SIS equation with vaccination strategy η is given by (4), where F is replaced
by Fη defined by:

Fη(g) = (1− g)Tkη(g)− γg.
and ut now describes the proportion of infected among the non-vaccinated population. We
denote by gη the corresponding maximal equilibrium (thus considering η ≡ 1 gives g = g1),
so that Fη(gη) = 0. Since the probability for an individual x to be infected in the stationary
regime is gη(x) η(x), the fraction of infected individuals at equilibrium, I(η), is thus given by:

(5) I(η) =

∫
Ω
gη η dµ =

∫
Ω
gη(x) η(x)µ(dx).

As mentioned above, for a SIR model, distributing vaccine so as to minimize the attack rate is
at least as natural as trying to minimize the reproduction number, and this problem has been
studied for example in [14, 15]. In the SIS model the quantity I appears as a natural analogue
of the attack rate, and is therefore a natural optimization objective.
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We obtain results on I that are very similar to the ones on Re. Recall that Assumption 2 on
page 11 ensures that the infinite-dimensional SIS model, given by equation (4), is well defined.
The next theorem corresponds to Theorem 4.6.

Theorem 1.3 (Continuity of the equilibrium infection size). Under Assumption 2, the func-
tion I : ∆→ R+ is continuous with respect to the weak topology on ∆.

In Proposition 4.7, we prove the stability of I, by giving natural sufficient condition on a se-
quence of kernels and functions ((kn, γn), n ∈ N) converging to (k, γ) which imply that I[kn, γn]
converges uniformly towards I[k, γ]. We also prove that the loss functions L = Re and L = I
are both non-decreasing (η ≤ η′ implies L(η) ≤ L(η′)), and sub-homogeneous (L(λη) ≤ λL(η)
for all λ ∈ [0, 1]); see Propositions 4.1 and 4.5.

1.4.4. Optimizing the protection of the population. Consider a cost function C : ∆ → [0, 1]
which measures the cost for the society of a vaccination strategy (production and diffusion).
Since the vaccination strategy η represents the non-vaccinated population, the cost function C
should be decreasing (roughly speaking η < η′ implies C(η) > C(η′); see Definition 5.1). We
shall also assume that C is continuous with respect to the weak topology on ∆, and that doing
nothing costs nothing, that is, C(1) = 0. A simple and natural choice is the uniform cost Cuni

given by the overall proportion of vaccinated individuals:

Cuni(η) =

∫
Ω

(1− η) dµ = 1−
∫

Ω
η dµ.

See Remark 5.2 for comments on other examples of cost functions.

Our problem may now be seen as a bi-objective minimization problem: we wish to minimize
both the loss L(η) and the cost C(η), subject to η ∈ ∆, with the loss function L being either Re
or I. Following classical terminology for multi-objective optimisation problems [36], we call a
strategy η? Pareto optimal if no other strategy is strictly better:

C(η) < C(η?) =⇒ L(η) > L(η?) and L(η) < L(η?) =⇒ C(η) > C(η?).

The set of Pareto optimal strategies will be denoted by PL, and we define the Pareto frontier
as the set of Pareto optimal outcomes:

FL = {(C(η?),L(η?)) : η? ∈ PL}.
Notice that, with this definition, the Pareto frontier is empty when there is no Pareto optimal
strategy.

For any strategy η, the cost and loss of η vary between the following bounds:

0 = C(1) ≤ C(η) ≤ C(0) = cmax = cost of vaccinating the whole population,
0 = L(0) ≤ L(η) ≤ L(1) = `max = loss incurred in the absence of vaccination.

Let L? be the optimal loss function and C?,L the optimal cost function defined by:

L?(c) = inf {L(η) : η ∈ ∆, C(η) ≤ c } for c ∈ [0, cmax],

C?,L(`) = inf {C(η) : η ∈ ∆, L(η) ≤ ` } for ` ∈ [0, `max].

We simply write C? for C?,L when no confusion on the loss function can arise. Proposition 5.5
(in a more general framework in particular for the cost function) and Lemma 5.6 states that
the Pareto frontier is non empty and has a continuous parametrization for the cost C = Cuni

and the loss L = Re or L = I; see Figure 1(b) below for a visualization of the Pareto frontier.

Theorem 1.4 (Properties of the Pareto frontier). For the kernel model with loss function L =
Re or the SIS model with L ∈ {Re, I}, and the uniform cost function C = Cuni, the function C?,L
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is continuous and decreasing on [0, `max], the function L? is continuous on [0, cmax] decreasing
on [0, C?,L(0)] and zero on [C?,L(0), cmax]; furthermore the Pareto frontier is connected and:

FL = {(c,L?(c)) : c ∈ [0, C?,L(0)]} = {(C?,L(`), `) : ` ∈ [0, `max]}.

We also establish that PL is compact in ∆ for the weak topology in Corollary 5.7; that the
set of outcomes or feasible region F = {(C(η),L(η)), η ∈ ∆} has no holes in Proposition 6.1;
and that the Pareto frontier is convex if C and L are convex in Proposition 6.6. We study
in Proposition 6.2 the stability of the Pareto frontier and the set of Pareto optima when the
parameters vary.

In a sense the Pareto optimal strategies are intuitively the “best” strategies. Similarly, we
also study the “worst” strategies, which we call anti-Pareto optimal strategies, and describe the
corresponding anti-Pareto frontier. Understanding the “worst strategies” also helps to avoid
pitfalls when one has to consider sub-optimal strategies: for example, we prove in [8] that
disconnecting strategies are not the “worst” strategies, and we provide in [10, Section 4] an
elementary example where the same strategies can be “best” or “worst” according to model
parameters values. Surprisingly, proving properties of the anti-Pareto frontier sometimes
necessitates stronger assumptions than in the Pareto case: for example, the connectedness of
the anti-Pareto frontier is only proved under a quasi-irreducibility assumption on the kernel,
see Lemmas 5.11 and 5.12.

Remark 1.5 (Eradication strategies do not depend on the loss). In [7], we proved that, for
all η ∈ ∆, the equilibrium infection size I(η) is non zero if and only if Re(η) > 1. Consider the
uniform cost C = Cuni. First, this implies that PI is a subset of {η ∈ ∆ : Re(η) ≥ 1}. Secondly,
a vaccination strategy η ∈ ∆ is Pareto optimal for the objectives (Re, C) and satisfies Re(η) = 1
if and only if η is Pareto optimal for the objectives (I, C) and satisfies I(η) = 0:

(6) η ∈ PRe and Re(η) = 1 ⇐⇒ η ∈ PI and I(η) = 0.

Remark 1.6 (Minimal cost of eradication). Assume R0 > 1 and the uniform cost C = Cuni.
The equivalence (6) implies directly that:

C?,Re(1) = C?,I(0).

Thus, this latter quantity can be seen as the minimal cost (or minimum percentage of people
that have to be vaccinated) required to eradicate the infection. Recall the critical vaccination
strategies ηuni

crit ≡ 1/R0 and ηequi = 1−g (asRe(ηuni
crit) = Re(η

equi) = 1). Since C(ηuni
crit) = 1−1/R0

and C(ηequi) =
∫

Ω gdµ = I(1), we obtain the following upper bounds of the minimal cost
required to eradicate the infection:

C?,Re(1) = C?,I(0) ≤ min

(
1− 1

R0
,

∫
Ω
gdµ

)
.

1.4.5. Equivalence of models. Our last results address a natural question stemming from our
choice of a very general framework to modelize the infection. Since our models are infinite
dimensional and depend on the choices of the probability space (Ω,F , µ), the kernel k (for
the kernel model) and the kernel k and recovery rate γ (for the SIS model), the are different
equivalent ways to model the same situation. We study in Section 7 a way to ensure that,
even if the parameters are different, we end up with the same Pareto frontiers. This situation
is similar to random variables having the same law in probability theory, or to equivalent
graphons in graphon theory. In particular it allows us to treat the same meta-population model
in either a discrete or a continuous setting, see Figure 4 for an illustration and Example 1.7.
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1.4.6. An illustrative example: the multipartite graphon. Let us illustrate some of our results
on an example, which will be discussed in details in a forthcoming companion paper [10].

Example 1.7 (Multipartite graphon). Graphs that can be colored with ` colors, so that no
two endpoints of an edge have the same color are known as `-partite graphs. In a biological
setting, this corresponds to a population of ` groups, such that individuals in a group can
not contaminate individuals of the same group. Let us generalize and assume there is an
infinity of groups, ` = ∞ of respective size (2−n, n ∈ N∗) and that the next generation
kernel k is equal to the constant κ > 0 between individuals of different groups and equal
to 0 between individuals of the same group (so there is no intra-group contamination). Using
the equivalence of models from Section 7, we can represent this model by using a continuous
state space Ω = [0, 1], endowed with µ the Lebesgue measure on Ω, the group n being
represented by the interval In = [1 − 2−n+1, 1 − 2−n) for n ∈ N∗. The kernel k is then given
by k = κ(1−∑n∈N∗ 1In×In); it is represented in Figure 1(a).

Consider the loss L = Re and the cost C = Cuni giving the overall proportion of vaccinated
individuals. Based on the results of [16, 45], we prove in [10] that the vaccination strate-
gies 1[0,1−c], with cost C(1[0,1−c]) = c ∈ [0, 1/2], are Pareto optimal. Remembering that the
natural definition of the degree in a continuous graph is given by deg(x) =

∫
Ω k(x, y)µ(dy),

we note that the vaccination strategy 1[0,1−c] corresponds to vaccinating individuals with
feature x ∈ (1−c, 1], that is, the individuals with the highest degree. In Figure 1(b), the corre-
sponding Pareto frontier (i.e., the outcome of the “best” vaccination strategies) is drawn as the
solid red line; the blue-colored zone corresponds to the feasible region that is, all the possible
values of (C(η), Re(η)), where η ranges over ∆; the dotted line corresponds to the outcome of
the uniform vaccination strategy η ≡ c, that is (C(η), Re(η)) = (c, (1− c)R0) where c ranges
over [0, 1]; and the red dashed curve corresponds to the anti-Pareto frontier (i.e., the outcome of
the “worst” vaccination strategies), which for this model correspond to the uniform vaccination
of the nodes with the updated lower degree; see [10]. Notice that the path (1[0,1−c], c ∈ [0, 1/2])

is an increasing continuous (for the topology of the simple convergence and thus the L1(µ)
topology) path of Pareto optima which gives a complete parametrization of the Pareto frontier.
The latter has been computed numerically using the power iteration method. In particular, we
obtained the following value: R0 ' 0.697κ.

1.5. On the companion papers. We detail some developments in forthcoming papers where
only the uniform cost C = Cuni is considered. In [8], motivated by the conjecture formulated
by Hill and Longini in finite dimension [25, Conjecture 8.1], we investigate the convexity and
concavity of the effective reproduction function Re. We also prove that a disconnecting strategy
is better than the worst, i.e., is not anti-Pareto optimal.

In [11], under monotonicity properties of the kernel, satisfied for example by the configuration
model, it is proven that vaccinating the individuals with the highest (resp. lowest) number
of contacts is Pareto (resp. anti-Pareto) optimal. In this case the greedy algorithm, which
performs infinitesimal locally optimal steps, is optimal as it browses continuously the set of
Pareto (resp. anti-Pareto) optimal strategies, providing an increasing parametrization of the
Pareto (resp. anti-Pareto) frontier. In this setting, we provide some examples of SIS models
where the set of Pareto optimal strategies coincide for the losses Re and I:

(7) PI = PRe ∩ {η ∈ ∆ : Re(η) ≥ 1}.
In [10], which includes a detailed study of the multipartite kernel of Example 1.7, we study

the optimal vaccination when the individuals have the same number of contacts. This provides
examples where the uniform vaccination is Pareto optimal, or anti-Pareto optimal, or not
optimal for either problem. We also provide an example where the set PRe has a countable
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Figure 1. Example of optimization with L = Re.

number of connected components (and is thus not connected). This implies in particular that
the greedy algorithm is not optimal in this case.

In [9], we give a comprehensive treatment of the two groups model, Ω = {1, 2}, for L = Re,
and some partial results for L = I. Despite its apparent simplicity, the derivation of formulae
for the Pareto optimal strategies is non trivial, see also [38]. In addition, this model is rich
enough to give examples of various interesting behaviours:

• On the critical strategies ηuni
crit and ηequi. Depending on the parameters, the strate-

gies ηuni
crit and/or η

equi may or may not be Pareto optimal, and the cost C(ηuni
crit) may be

larger than, smaller than or equal to C(ηequi).
• Vaccinating people with highest contacts. The intuitive idea of vaccinating the individu-
als with the highest number of contacts may or may not provide the optimal strategies,
depending on the parameters.
• Dependence on the choice of the loss function. For examples where R0 > 1, the optimal
strategies for the losses I and Re may coincide, so that (7) holds, or not at all, so
that PI ∩ PRe ∩ {η ∈ ∆ : 1 < Re(η) < R0} = ∅, depending on the parameters.

1.6. Structure of the paper. Section 2 is dedicated to the presentation of the vaccination
model and the various assumptions on the parameters. We also define properly the so-called
loss functions Re and I. After recalling a few topological facts in Section 3, we study the
regularity properties of Re and I in Section 4. We present the multi-objective optimization
problem in Section 5 under general condition on the loss function L and cost function C and
prove the results on the Pareto frontier. This is completed in Section 6 with miscellaneous
properties of the Pareto frontier. In Section 7, we discuss the equivalent representation of
models with different parameters. Proofs of a few technical results are gathered in Section 8.

2. Setting and notation

2.1. Spaces, operators, spectra. All metric spaces (S, d) are endowed with their Borel σ-field
denoted by B(S). The set K of compact subsets of C endowed with the Hausdorff distance dH

is a metric space, and the function rad from K to R+ defined by rad(K) = max{|λ| , λ ∈ K}
is Lipschitz continuous from (K , dH) to R endowed with its usual Euclidean distance.
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Let (Ω,F , µ) be a probability space. We denote by L∞, the Banach spaces of bounded
real-valued measurable functions defined on Ω equipped with the sup-norm, L∞

+ the subset
of L∞ of non-negative function, and ∆ = {f ∈ L∞ : 0 ≤ f ≤ 1} the subset of non-negative
functions bounded by 1. For f and g real-valued functions defined on Ω, we may write 〈f, g〉 or∫

Ω fg dµ for
∫

Ω f(x)g(x)µ(dx) whenever the latter is meaningful. For p ∈ [1,+∞], we denote
by Lp = Lp(µ) = Lp(Ω, µ) the space of real-valued measurable functions g defined Ω such that
‖g‖p =

(∫
|g|p dµ

)1/p (with the convention that ‖g‖∞ is the µ-essential supremum of |g|) is
finite, where functions which agree µ-almost surely are identified. We denote by Lp+ the subset
of Lp of non-negative functions.

Let (E, ‖·‖) be a Banach space. We denote by ‖·‖E the operator norm on L(E) the Banach
algebra of bounded operators. The spectrum Spec(T ) of T ∈ L(E) is the set of λ ∈ C such
that T −λId does not have a bounded inverse operator, where Id is the identity operator on E.
Recall that Spec(T ) is a compact subset of C, and that the spectral radius of T is given by:

(8) ρ(T ) = rad(Spec(T )) = lim
n→∞

‖Tn‖1/nE .

The element λ ∈ Spec(T ) is an eigenvalue if there exists x ∈ E such that Tx = λx and x 6= 0.
If E is also a functional space, for g ∈ E, we denote by Mg the multiplication (possibly

unbounded) operator defined by Mg(h) = gh for all h ∈ E.

2.2. Kernel operators. We define a kernel (resp. signed kernel) on Ω as a R+-valued (resp.
R-valued) measurable function defined on (Ω2,F⊗2). For f, g two non-negative measurable
functions defined on Ω and k a kernel on Ω, we denote by fkg the kernel defined by:

(9) fkg : (x, y) 7→ f(x) k(x, y)g(y).

When γ is a positive measurable function defined on Ω, we write k/γ for kγ−1, and remark
that it may differ from γ−1k.

For p ∈ (1,+∞), we define the double norm of a signed kernel k by:

(10) ‖k‖p,q =

(∫
Ω

(∫
Ω
|k(x, y)|q µ(dy)

)p/q
µ(dx)

)1/p

with q given by
1

p
+

1

q
= 1.

Assumption 1 (On the kernel model [(Ω,F , µ), k]). Let (Ω,F , µ) be a probability space. The
kernel k on Ω has a finite double-norm, that is, ‖k‖p,q < +∞ for some p ∈ (1,+∞).

To a kernel k such that ‖k‖p,q < +∞, we associate the positive integral operator Tk on Lp
defined by:

(11) Tk(g)(x) =

∫
Ω

k(x, y)g(y)µ(dy) for g ∈ Lp and x ∈ Ω.

According to [22, p. 293], operator Tk is compact. It is well known and easy to check that:

(12) ‖Tk‖Lp ≤ ‖k‖p,q.
For η ∈ ∆, the kernel kη has also a finite double norm on Lp and the operatorMη is bounded, so
that the operator Tkη = TkMη is compact. We can define the effective spectrum function Spec[k]
from ∆ to K by:

(13) Spec[k](η) = Spec(Tkη),

the effective reproduction number function Re[k] = rad ◦ Spec[k] from ∆ to R+ by:

(14) Re[k](η) = rad(Spec(Tkη)) = ρ(Tkη),

and the corresponding reproduction number :

(15) R0[k] = Re[k](1) = ρ(Tk).
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When there is no ambiguity, we simply write Re for Re[k] and R0 for R0[k]. We say a vaccination
strategy η ∈ ∆ is critical if Re(η) = 1.

Following the framework of [7], for q ∈ (1,+∞), we also consider the following norm for the
kernel k:

‖k‖∞,q = sup
x∈Ω

(∫
Ω

k(x, y)q µ(dy)

)1/q

.

Clearly, we have that ‖k‖∞,q finite implies that ‖k‖p,q is also finite, with p such that 1/p+1/q =
1. When ‖k‖∞,q < +∞, the corresponding positive bounded linear integral operator Tk on L∞

is similarly defined by:

(16) Tk(g)(x) =

∫
Ω

k(x, y)g(y)µ(dy) for g ∈ L∞ and x ∈ Ω.

Notice that the integral operators Tk and Tk corresponds respectively to the operators Tk and
T̂k in [7]. According to [7, Lemma 3.7], the operator T 2

k on L∞ is compact and Tk has the
same spectral radius as Tk:

(17) ρ(Tk) = ρ(Tk).

2.3. Dynamics for the SIS model and equilibria. In accordance with [7], we consider the
following assumption. Recall that k/γ = kγ−1.

Assumption 2 (On the SIS model [(Ω,F , µ), k, γ]). Let (Ω,F , µ) be a probability space. The
recovery rate function γ is a function which belongs to L∞

+ and the transmission rate kernel k
on Ω2 is such that ‖k/γ‖∞,q < +∞ for some q ∈ (1,+∞).

Assumption 2 implies Assumption 1 for the kernel k = k/γ. Under Assumption 2, we also
consider the bounded operators Tk/γ on L∞, as well as Tk/γ on Lp, which are the so called
next-generation operator. The SIS dynamics considered in [7] (under Assumption 2) follows
the vector field F defined on L∞ by:

(18) F (g) = (1− g)Tk(g)− γg.

More precisely, we consider u = (ut, t ∈ R), where ut ∈ ∆ for all t ∈ R+ such that:

(19) ∂tut = F (ut) for t ∈ R+,

with initial condition u0 ∈ ∆. The value ut(x) models the probability that an individual of
feature x is infected at time t; it is proved in [7] that such a solution u exists and is unique.

An equilibrium of (19) is a function g ∈ ∆ such that F (g) = 0. According to [7], there exists
a maximal equilibrium g, i.e., an equilibrium such that all other equilibria h ∈ ∆ are dominated
by g: h ≤ g. The reproduction number R0 associated to the SIS model given by (19) is the
spectral radius of the next-generation operator, so that using the definition of the effective
reproduction number (14), (15) and (17), this amounts to:

(20) R0 = ρ(Tk/γ) = R0[k/γ] = Re[k/γ](1).

If R0 ≤ 1 (sub-critical and critical case), then ut converges pointwise to 0 when t → ∞. In
particular, the maximal equilibrium g is equal to 0 everywhere. If R0 > 1 (super-critical case),
then 0 is still an equilibrium but different from the maximal equilibrium g, as

∫
Ω gdµ > 0.
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2.4. Vaccination strategies. A vaccination strategy η of a vaccine with perfect efficiency is
an element of ∆, where η(x) represents the proportion of non-vaccinated individuals with
feature x. Notice that η dµ corresponds in a sense to the effective population.

Recall the definition of the kernel fkg from (9). For η ∈ ∆, the kernels kη/γ and kη have
finite norm ‖·‖∞,q under Assumption 2, so we can consider the bounded positive operators Tkη/γ
and Tkη on L∞. According to [7, Section 5.3.], the SIS equation with vaccination strategy η
is given by (19), where F is replaced by Fη defined by:

(21) Fη(g) = (1− g)Tkη(g)− γg.
We denote by uη = (uηt , t ≥ 0) the corresponding solution with initial condition uη0 ∈ ∆. We
recall that uηt (x) represents the probability for an non-vaccinated individual of feature x to
be infected at time t. Since the effective reproduction number is the spectral radius of Tkη/γ ,
we recover (14) as ρ(Tkη/γ) = ρ(Tkη/γ) = Re[k/γ](η) with k = k/γ. We denote by gη the
corresponding maximal equilibrium (so that g = g1). In particular, we have:

(22) Fη(gη) = 0.

We will denote by I the fraction of infected individuals at equilibrium. Since the probability for
an individual with feature x to be infected in the stationary regime is gη(x) η(x), this fraction
is given by the following formula:

(23) I(η) =

∫
Ω
gη η dµ =

∫
Ω
gη(x) η(x)µ(dx).

We deduce from (21) and (22) that gηη = 0 µ-almost surely is equivalent to gη = 0. Applying
the results of [7] to the kernel kη, we deduce that:

(24) I(η) > 0 ⇐⇒ Re[k/γ](η) > 1.

We conclude this section with a result on the maximal equilibrium g which is a direct
consequence of Proposition 8.2 proved in Section 8.1. This result completes what is known
from [7]. Notice that, if R0 > 1, then Property (ii) implies that the strategy 1− g is critical.

Proposition 2.1 (On the maximal equilibrium). Suppose Assumption 2 holds and write Re
for Re[k/γ].

(i) For any h ∈ ∆, h = g if and only if F (h) = 0 and Re(1− h) ≤ 1.
(ii) If g 6= 0, then Re(1− g) = 1.

3. Preliminary topological results

3.1. On the weak topology. We first recall briefly some properties we shall use frequently. We
can see ∆ as a subset of L1, and consider the corresponding weak topology : a sequence (gn, n ∈
N) of elements of ∆ converges weakly to g if for all h ∈ L∞ we have:

(25) lim
n→∞

∫
Ω
hgn dµ =

∫
Ω
hg dµ.

Notice that (25) can easily be extended to any function h ∈ Lq for any q ∈ (1,+∞); so that the
weak-topology on ∆, seen as a subset of Lp with 1/p+ 1/q = 1, can be seen as the trace on ∆
of the weak topology on Lp. The main advantage of this topology is the following compactness
result.

Lemma 3.1 (Topological properties of ∆). We have that:
(i) The set ∆ endowed with the weak topology is compact and sequentially compact.
(ii) A function from ∆ (endowed with the weak topology) to a metric space (endowed with

its metric topology) is continuous if and only if it is sequentially continuous.
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Proof. Let p ∈ (1,+∞), and consider the weak topology on ∆ as the trace on ∆ of the weak
topology on Lp. We first prove (i). Since Lp is reflexive, by the Banach-Alaoglu theorem [6,
Theorem V.4.2], its unit ball is weakly compact. The set ∆ is closed and convex, therefore it is
weakly closed; see [6, Corollary V.1.5]. Thus, ∆ is weakly compact as a weakly closed subset
of the weakly compact unit ball. By the Eberlein–Šmulian theorem [6, Theorem V.13.1], ∆ is
also weakly sequentially compact.

We now prove (ii). A continuous function is sequentially continuous. Conversely, the inverse
image of a closed set by a sequentially continuous function is sequentially closed. Besides, a
sequentially closed subset of a sequentially compact set is sequentially compact. Using the
Eberlein–Šmulian theorem, we deduce that the inverse images of closed sets are compact. In
particular, they are closed which proves a sequentially continuous function is continuous. �

3.2. Invariance and continuity of the spectrum for compact operators. We recall a
few facts on operators. Let (E, ‖·‖) be a Banach space. Let A ∈ L(E). We denote by A> the
adjoint of A. A sequence (An, n ∈ N) of elements of L(E) converges strongly to A ∈ L(E)
if limn→∞‖Anx − Ax‖ = 0 for all x ∈ E. Following [1], a set of operators A ⊂ L(E) is
collectively compact if the set {Ax : A ∈ A , ‖x‖ ≤ 1} is relatively compact.

We collect some known results on the spectrum of to compact operators. Recall that the
spectrum of a compact operator is finite or countable and has at most one accumulation point,
which is 0. Furthermore, 0 belongs to the spectrum of compact operators in infinite dimension.

Lemma 3.2. Let A,B be elements of L(E).
(i) If A, B and A−B are positive operators, then we have:

(26) ρ(A) ≥ ρ(B).

(ii) If A is compact, then we have:

Spec(A) = Spec(A>)(27)
Spec(AB) = Spec(BA)(28)

and in particular:

(29) ρ(AB) = ρ(BA).

(iii) Let (E′, ‖·‖′) be a Banach space such that E′ is continuously and densely embedded
in E. Assume that A(E′) ⊂ E′, and denote by A′ the restriction of A to E′ seen as an
operator on E′. If A and A′ are compact, then we have:

(30) Spec(A) = Spec(A′).

(iv) Let (An, n ∈ N) be a collectively compact sequence which converges strongly to A. Then,
we have limn→∞ Spec(An) = Spec(A) in (K , dH), and limn→ ρ(Tn) = ρ(T ).

Proof. Property (i) can be found in [35, Theorem 4.2]. Equation (27) from Property (ii) can
be deduced from the [32, Theorem page 20]. Using the [32, Proposition page 25], we get
that Spec(AB) ∩ C∗ = Spec(BA) ∩ C∗, and thus (29). As A is compact we get that AB
and BA are compact, thus 0 belongs to their spectrum in infinite dimension. Whereas in finite
dimension, as det(AB) = det(A)det(B) = det(BA) (where A and B denote also the matrix of
the corresponding operator in a given base), we get that 0 belongs to the spectrum of AB if
and only if it belongs to the spectrum of BA. This gives (28).

Property (iii) follows from [23, Corollary 1 and Section 6]. We eventually check Property
(iv). We deduce from [1, Theorems 4.8 and 4.16] (see also (d) and (e) in [2, Section 3])
that limn→∞ Spec(Tn) = Spec(T ). Then use that the function rad is continuous to deduce
the convergence of the spectral radius from the convergence of the spectra (see also (f) in [2,
Section 3]). �
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4. First properties of the functions Re and I

4.1. The effective reproduction number Re. We consider the kernel model [(Ω,F, µ), k]
under Assumption 1, so that k is a kernel on Ω with finite double norm. Recall the effective
reproduction number function Re[k] defined on ∆ by (14): Re[k](η) = ρ(TkMη) and the
reproduction numberR0[k] = ρ(Tk). We simply writeRe andR0 forRe[k] andR0[k] respectively
when no confusion on the kernel can arise.

Proposition 4.1 (Basic properties of Re). Suppose Assumption 1 holds. Let η, η1, η2 ∈ ∆.
The function Re = Re[k] satisfies the following properties:

(i) Re(η1) = Re(η2) if η1 = η2 µ-almost surely.
(ii) Re(0) = 0 and Re(1) = R0.
(iii) Re(η1) ≤ Re(η2) if η1 ≤ η2 µ-almost surely.
(iv) Re(λη) = λRe(η) for all λ ∈ [0, 1].

Proof. If η1 = η2 µ-almost surely, then we have that Tkη1 = Tkη2 , and thus Re(η1) = Re(η2).
This gives Point (i). Point (ii) is a direct consequence of the definition of Re. Since for any
fixed λ ∈ C and any operator A, the spectrum of λA is equal to {λs, s ∈ Spec(A)}, Point (iv)
is clear. Finally, note that if η1 ≤ η2 µ-almost everywhere, then the operator Tkη2 − Tkη1

is positive. According to (26), we get that ρ(Tkη1) ≤ ρ(Tkη2). This concludes the proof of
Point (iii). �

We generalize a continuity property on the spectral radius originally stated in [7] by weakening
the topology.

Theorem 4.2 (Continuity of Re[k] and Spec[k]). Suppose Assumption 1 holds. Then, the
functions Spec[k] and Re[k] are continuous functions from ∆ (endowed with the weak-topology)
respectively to K (endowed with the Hausdorff distance) and to R+ (endowed with the usual
Euclidean distance).

Let us remark the proof holds even if k takes negative values.

Proof. Let B denote the unit ball in Lp, with p ∈ (1,+∞) from Assumption 1. Since the
operator Tk is compact, the set Tk(B) is relatively compact. For all η ∈ ∆, set ηB =
{ηg : g ∈ B}. As ηB ⊂ B, we deduce that Tkη(B) = Tk(ηB) ⊂ Tk(B). This implies that the
family (Tkη, η ∈ ∆) is collectively compact.

Let (ηn, n ∈ N) be a sequence in ∆ converging weakly to some η ∈ ∆. Let g ∈ Lp. The
weak convergence of ηn to η implies that (Tkηn(g), n ∈ N) converges µ-almost surely to Tkη(g).
Consider the function:

K(x) =

(∫
Ω

k(x, y)q µ(dy)

)1/q

,

which belongs to Lp, thanks to (10). Since for all x,

|Tkηn(g)(x)| ≤ Tk(|ηng|)(x) ≤ K(x) ‖ηng‖p ≤ K(x) ‖g‖p,
we deduce, by dominated convergence, that the convergence holds also in Lp:

(31) lim
n→∞

‖Tkηn(g)− Tkη(g)‖p = 0,

so that Tkηn converges strongly to Tkη. Using Lemma 3.2 (iv) (with Tn = Tkηn and T =
Tkη) on the continuity of the spectrum, we get that limn→∞ Spec[k](ηn) = Spec[k](η). The
function Spec[k] is thus sequentially continuous, and, thanks to Lemma 3.1, it is continuous
from ∆ endowed with the weak topology to the metric space K endowed with the Hausdorff
distance. The continuity of Re[k] then follows from its definition (8) as the composition of the
continuous functions rad and Spec[k]. �

We give a stability property of the spectrum and spectral radius with respect to the kernel k.
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Proposition 4.3 (Stability of Re[k] and Spec[k]). Let p ∈ (1,+∞). Let (kn, n ∈ N) and k be
kernels on Ω with finite double norms on Lp. If limn→∞‖kn − k‖p,q = 0, then we have:

(32) lim
n→∞

sup
η∈∆

∣∣∣Re[kn](η)−Re[k](η)
∣∣∣ = 0 and lim

n→∞
sup
η∈∆

dH

(
Spec[kn](η),Spec[k](η)

)
= 0.

Proof. We first prove that limn→∞ Spec[kn](ηn) = Spec[k](η), where the sequence (ηn, n ∈ N)
is any sequence in ∆ which converges weakly to η ∈ ∆.

The operators A = {Tk} ∪ {Tkn : n ∈ N} are compact, and we deduce from (12) that:

lim
n→∞

‖Tkn − Tk‖Lp = 0.

The family A is then easily seen to be collectively compact. (Indeed, let (yn = Tkin
(xn), n ∈ N)

be a sequence with ‖xn‖ ≤ 1, in ∈ N ∪ {∞} and the convention kin = k if in = ∞. Up
to taking a sub-sequence, we can assume that either the sequence (in, n ∈ N) is constant
and (Tki0

(xn), n ∈ N) is convergent (as Tki0
is compact) or that the sequence (in, n ∈ N) is

increasing and the sequence (Tk(xn), n ∈ N) is convergent (as Tk is compact) towards a limit,
say y. In the former case, clearly the sequence (yn, n ∈ N) converges. In the latter case, we
have: ‖Tkin

(xn)−y‖p ≤ ‖Tkin
−Tk‖Lp +‖Tk(xn)−y‖p, which readily implies that the sequence

(yn, n ∈ N) converges towards y. This proves that the family A is collectively compact.) This
implies, see [1, Proposition 4.1(2)] for details, that the family A ′ = {T ′Mη : , T ′ ∈ A and η ∈
∆} is collectively compact. We deduce that the sequence (Tn = Tknηn = TknMηn , n ∈ N) of
elements of A ′ is collectively compact and that T = Tkη = TkMη is compact.

Let g ∈ Lp. We have:

‖Tn(g)− T (g)‖p ≤ ‖Tkn − Tk‖Lp ‖g‖p + ‖Tkηn(g)− Tkη(g)‖p.
Using limn→∞‖Tkn−Tk‖Lp = 0 and (31), we get that limn→∞‖Tn(g)−T (g)‖p, thus (Tn, n ∈ N)
converges strongly to T . With Lemma 3.2 (iv), we get that limn→∞ Spec(Tn) = Spec(T ), that
is limn→∞ Spec[kn](ηn) = Spec[k](η).

Then, as the function η 7→ dH

(
Spec[kn](η), Spec[k](η)

)
is continuous on the compact set ∆,

thanks to Theorem 4.2, it reaches its maximum say at ηn ∈ ∆ for n ∈ N. As ∆ is compact,
consider a sub-sequence which converges weakly to a limit say η. Since

sup
η∈∆

dH

(
Spec[kn](η), Spec[k](η)

)
= dH

(
Spec[kn](ηn),Spec[k](ηn)

)
≤ dH

(
Spec[kn](ηn),Spec[k](η)

)
+ dH

(
Spec[k](ηn),Spec[k](η)

)
,

using the continuity of Spec[k], we deduce that along this sub-sequence the right hand side
converges to 0. Since this result holds for any converging sub-sequence, we get the second part
of (32). The first part then follows from the definition (8) of Re as a composition, and the
Lipschitz continuity of the function rad. �

4.2. The asymptotic proportion of infected individuals I. We consider the SIS model
[(Ω,F , µ), k, γ] under Assumption 2. Recall from (23) that the asymptotic proportion of
infected individuals I is given on ∆ by I(η) =

∫
Ω gη η dµ, where gη is the maximal solution in

∆ of the equation Fη(h) = 0. We first give a preliminary result.

Lemma 4.4. Let η, g ∈ ∆. If Fη(g) ≥ 0, then we have g ≤ gη.

Proof. According to [7, Proposition 2.10], the solution ut of the SIS model with vaccination
∂tut = Fη(ut) and initial condition u0 = g is non-decreasing since Fη(g) ≥ 0. According to [7,
Proposition 2.13], the pointwise limit of ut is an equilibrium. As this limit is dominated by the
maximal equilibrium gη and since ut is non-decreasing, this proves that g ≤ gη. �
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We may now state the main properties of the function I.

Proposition 4.5 (Basic properties of I). Suppose that Assumption 2 holds. Let η, η1, η2 ∈ ∆.
The function I has the following properties:

(i) I(η1) = I(η2) if η1 = η2 µ-almost surely.
(ii) I(η) = 0 if and only if Re[k/γ](η) ≤ 1.
(iii) I(η1) ≤ I(η2) if η1 ≤ η2 µ-almost surely.
(iv) I(λη) ≤ λI(η) for all λ ∈ [0, 1].

Proof. If η1 = η2 µ-almost surely, then the operators Tkη1 and Tkη2 are equal. Thus, the
equilibria gη1 and gη2 are also equal which in turns implies that I(η1) = I(η2). Point (ii) is
already stated in Equation (24).

To prove the monotonicity (Point (iii)), consider η1 ≤ η2. Since Tkη1 ≤ Tkη2 , we get
Fη1(g) ≤ Fη2(g) for all g ∈ ∆. In particular, taking g = gη1 and using (22), we get Fη2(gη1) ≥ 0.
By Lemma 4.4 this implies gη1 ≤ gη2 . To sum up, we get:

(33) η1 ≤ η2 =⇒ gη1 ≤ gη2 .

This readily implies that I(η1) =
∫

Ω gη1 η1 dµ ≤
∫

Ω gη2 η2 dµ = I(η2). We conclude using
Point (i).

We now consider Point (iv). Since λ ∈ [0, 1], we deduce from (33) that gλη ≤ gη. This
implies that I(λη) =

∫
Ω gλη λη dµ ≤ λ

∫
Ω gη η dµ = λI(η). �

The proof of the following continuity results are both postponed to Section 8.1.

Theorem 4.6 (Continuity of I). Suppose that Assumption 2 holds. The function I defined on
∆ is continuous with respect to the weak topology.

We write I[k, γ] for I to stress the dependence on the parameters k, γ of the SIS model.

Proposition 4.7 (Stability of I). Let ((kn, γn), n ∈ N) and (k, γ) be a sequence of kernels and
functions satisfying Assumption 2. Assume furthermore that there exists p′ ∈ (1,+∞) such
that k = γ−1k and (kn = γ−1

n kn, n ∈ N) have finite double norm in Lp′ and that limn→∞‖kn −
k‖p′,q′ = 0. Then we have:

(34) lim
n→∞

sup
η∈∆

∣∣∣I[kn, γn](η)− I[k, γ](η)
∣∣∣ = 0.

5. Pareto and anti-Pareto frontiers

5.1. The setting. To any vaccination strategy η ∈ ∆, we associate a cost and a loss.
• The cost function . The cost C(η) measures all the costs of the vaccination strategy
(production and diffusion). The cost is expected to be a decreasing function of η, since
η encodes the non-vaccinated population. Since doing nothing costs nothing, we also
expect C(1) = 0, see Assumptions 3 below. We shall also consider natural hypothesis
on C, see Assumptions 4 and 6. A simple cost model is the affine cost given by:

(35) Caff(η) =

∫
Ω

(1− η(x)) caff(x)µ(dx),

where caff(x) is the cost of vaccination of population of feature x, with caff ∈ L1 positive.
The particular case caff = 1 is the uniform cost C = Cuni:

(36) Cuni(η) =

∫
Ω

(1− η) dµ.

The real cost of the vaccination may be a more complicated function ψ(Caff(η)) of the
affine cost, for example if the marginal cost of producing a vaccine depends on the
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quantity already produced. However, as long as ψ is strictly increasing, this will not
affect the optimal strategies.
• The loss function . The loss L(η) measures the (non)-efficiency of the vaccination
strategy η. Different choices are possible here. We prove in this section general results
that only depend on a few natural hypothesis for L; see Assumptions 3, 5 and 7. These
hypothesis are in particular satisfied if the loss is the effective reproduction number Re
(kernel and SIS models), or the asymptotic proportion of infected individuals I (SIS
model); more precisely see Lemmas 5.6, 5.11 and 5.12.

We shall consider cost and loss functions with some regularities.

Definition 5.1. We say that a real-valued function H defined on ∆ endowed with the weak
topology is:

• Continuous: if H is continuous with respect to the weak topology on ∆.
• Non-decreasing: if for any η1, η2 ∈ ∆ such that η1 ≤ η2, we have H(η1) ≤ H(η2).
• Decreasing: if for any η1, η2 ∈ ∆ such that η1 ≤ η2 and

∫
Ω η1 dµ <

∫
Ω η2 dµ, we have

H(η1) > H(η2).
• Sub-homogeneous: if H(λη) ≤ λH(η) for all η ∈ ∆ and λ ∈ [0, 1].

The definition of non-increasing function and increasing function are similar.

Assumption 3 (On the cost function and loss function). The loss function L : ∆ → R is
non-decreasing and continuous with L(0) = 0. The cost function C : ∆→ R is non-increasing
and continuous with C(1) = 0. We also have:

`max := max
∆

L > 0 and cmax := max
∆

C > 0.

Assumption 3 will always hold. In particular, the loss and the cost functions are non-negative
and non-constant.

We will consider the multi-objective minimization and maximization problems:

(37)

{
Minimize: (C(η),L(η))

subject to: η ∈ ∆
and

{
Maximize: (C(η),L(η))

subject to: η ∈ ∆

Before going further, let us remark that for the reproduction number optimization in the
vaccination context, one can without loss of generality consider the uniform cost instead of the
affine cost.

Remark 5.2. Consider the kernel model Param = [(Ω,F , µ), k] with the affine cost function
Caff and the loss Re. Furthermore, if we assume that caff is bounded and bounded away from
0 (that is caff and 1/caff belongs to L∞

+ ), and without loss of generality, that
∫
caff dµ = 1,

then we can consider the weighted kernel model Param0 = [(Ω,F , µ0), k0] with measure
µ0(dx) = caff(x)µ(dx) and kernel k0 = k/caff . (Notice that if Assumption 2 holds for the
model Param, then it also holds for the model Param0.) Consider the loss L = Re. Then for a
strategy η ∈ ∆, we get that (Caff(η),L(η)) for the model Param is equal to (Cuni(η),L(η)) for
the model Param0. Therefore, for the loss function L = Re, instead of the affine cost Caff , one
can consider without any real loss of generality the uniform cost. (This holds also for the SIS
model.) However, this is no longer the case for the loss function L = I in the SIS model.

Multi-objective problems are in a sense ill-defined because in most cases, it is impossible to
find a single solution that would be optimal to all objectives simultaneously. Hence, we recall
the concept of Pareto optimality. Since the minimization problem is crucial for vaccination, we
shall define Pareto optimality for the bi-objective minimization problem. A strategy η? ∈ ∆
is said to be Pareto optimal for the minimization problem in (37) if any improvement of one
objective leads to a deterioration of the other, for η ∈ ∆:

(38) C(η) < C(η?) =⇒ L(η) > L(η?) and L(η) < L(η?) =⇒ C(η) > C(η?).
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Similarly, a strategy η? ∈ ∆ is anti-Pareto optimal if it is Pareto optimal for the bi-objective
maximization problem in (37). Intuitively, the “best” vaccination strategies are the Pareto
optima and the “worst” vaccination strategies are the anti-Pareto optima.

We define the feasible region as all possible outcomes:

F = {(C(η),L(η)), η ∈ ∆}.
Then, we first consider the minimization problem for the “best” strategies. The set of Pareto
optimal strategies will be denoted by PL, and the Pareto frontier is defined as the set of Pareto
optimal outcomes:

FL = {(C(η),L(η)) : η Pareto optimal}.
We consider the minimization problems related to the “best” vaccination strategies, with
` ∈ [0, `max] and c ∈ [0, cmax]:

Minimize: L(η)(39a)
subject to: η ∈ ∆, C(η) ≤ c,(39b)

as well as

Minimize: C(η)(40a)
subject to: η ∈ ∆, L(η) ≤ `.(40b)

We denote the values of Problems (39) and (40) by:

L?(c) = inf{L(η) : η ∈ ∆ and C(η) ≤ c} for c ∈ [0, cmax],

C?(`) = inf{C(η) : η ∈ ∆ and L(η) ≤ `} for ` ∈ [0, `max].

We now consider the maximization problem related to the “worst” vaccination strategies,
with ` ∈ [0, `max] and c ∈ [0, cmax]:

Maximize: L(η)(41a)
subject to: η ∈ ∆, C(η) ≥ c,(41b)

as well as

Maximize: C(η)(42a)
subject to: η ∈ ∆, L(η) ≥ `.(42b)

We denote the values of Problems (41) and (42) by:

L?(c) = sup{L(η) : η ∈ ∆ and C(η) ≥ c} for c ∈ [0, cmax],

C?(`) = sup{C(η) : η ∈ ∆ and L(η) ≥ `} for ` ∈ [0, `max].

We denote by PAnti
L the set of anti-Pareto optimal strategies, and by FAnti

L its frontier:

FAnti
L = {(C(η),L(η)) : η anti-Pareto optimal}.

If necessary, we may write C?,L and C?,L to stress the dependence of the function C? and
C? in the loss function L.

Under Assumption 3, as the loss and the cost functions are continuous on the compact set
∆, the infima in the definitions of the value functions C? and L? are minima; and the suprema
in the definition of the value functions C? and L? are maxima. Since ∆ in endowed with the
weak topology, we will consider the set of Pareto and anti-Pareto optimal vaccination modulo
µ-almost sure equality.

See Figure 2 for a typical representation of the possible aspects of the feasible region F (in
light blue), the value functions and the Pareto and anti-Pareto frontiers under the general
Assumption 3, and the connected Pareto and anti-Pareto frontiers under further regularity on
the cost and loss functions (see Assumption 4-7 below) in Figure 2(d). In Figure 1(b), we
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have plotted in solid red line the Pareto frontier and in dashed red line the anti-Pareto frontier
from Example 1.7.

Outline of the section. It turns out that the anti-Pareto optimization problem can be recast as
a Pareto optimization problem by changing signs and exchanging the cost and loss functions.
In order to make use of this property for the kernel and SIS models, we study the Pareto
problem under assumptions on the cost that are general enough to cover the choices Cuni and
−L, and assumptions on the loss that cover the choices Re, I and −Cuni.

The main result of this section states that all the solutions of the optimization Problems (39)
or (40) are Pareto optimal, and gives a description of the Pareto frontier FL as a graph in
Section 5.2, and similarly for the anti-Pareto frontier in Section 5.3. Surprisingly, the problem
is not completely symmetric, compare Lemma 5.6 used for the Pareto frontier and Lemmas 5.11
and 5.12 used for the anti-Pareto frontier. In the latter lemmas, notice the kernel considered
is quasi-irreducible, whereas this condition is not needed for the Pareto frontier.

5.2. On the Pareto frontier. We first check that Problems (39) and (40) have solutions.

Proposition 5.3 (Optimal solutions for fixed cost or fixed loss). Suppose that Assumption 3
holds. For any cost c ∈ [0, cmax], there exists a minimizer of the loss under the cost constraint
C(·) ≤ c, that is, a solution to Problem (39). Similarly, for any loss ` ∈ [0, `max], there exists
a minimizer of the cost under the loss constraint L(·) ≤ `, that is a solution to Problem (40).

Proof. Let c ∈ [0, cmax]. The set {η ∈ ∆ : C(η) ≤ c} is non-empty as it contains 11 since
C(1) = 0. It is also compact as C is continuous on the compact set ∆ (for the weak topology).
Therefore, since the loss function L is continuous (for the weak topology), we get that L
restricted to this compact set reaches its minimum. Thus, Problem (39) has a solution. The
proof is similar for the existence of a solution to Problem (40). �

We start by a general result concerning the links between the three problems.

Proposition 5.4 (Single-objective and bi-objective problems). Suppose Assumption 3 holds.
(i) If η? is Pareto optimal, then η? is a solution of (39) for the cost c = C(η?), and a

solution of (40) for the loss ` = L(η?). Conversely, if η? is a solution to both problems
(39) and (40) for some values c and `, then η? is Pareto optimal.

(ii) The Pareto frontier is the intersection of the graphs of C? and L?:

FL = {(c, `) ∈ [0, cmax]× [0, `max] : c = C?(`) and ` = L?(c)}.
(iii) The points (0,L?(0)) and (C?(0), 0) both belong to the Pareto frontier, and we have

C?(L?(0)) = L?(C?(0)) = 0. Moreover, we also have C?(`) = 0 for ` ∈ [L?(0), `max],
and L?(c) = 0 for c ∈ [C?(0), cmax].

Proof. Let us prove (i). If η? is Pareto optimal, then for any strategy η, if C(η) ≤ C(η?) then
L(η) ≥ L(η?) by taking the contraposition in (38), and η? is indeed a solution of Problem (39)
with c = C(η?). Similarly η? is a solution of Problem (40).

For the converse statement, let η? be a solution of (39) for some c and of (40) for some `. It
is also a solution of (39) with c = C(η?). In particular, we get that for η ∈ ∆, L(η) < L(η?)
implies that C(η) > c = C(η?), which is the second part of (38). Similarly, use that η? is a
solution to (40), to get that the first part of (38) also holds. Thus the strategy η? is Pareto
optimal.

To prove Point (ii), we first prove that FL is a subset of {(c, `) : c = C?(`) and ` = L?(c)}.
A point in FL may be written as (C(η?),L(η?)) for some Pareto optimal strategy η?. By
Point (i), η? solves Problem (39) for the cost C(η?), so L?(C(η?)) = L(η?). Similarly, we have
C?(L(η?)) = C(η?), as claimed.
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0 C?(`max) C?(0) cmax

0

L?(cmax)

L?(0)

`max

L? L?

(a) Value functions for Problems (39) and (41).

0 C?(`max) C?(0) cmax

0

L?(cmax)

L?(0)

`max

C? C?

(b) Value functions for Problems (40) and (42).

0 C?(`max) C?(0) cmax

0

L?(cmax)

L?(0)

`max

FL FAnti
L

(c) Pareto and anti-Pareto frontier.

0 C?(`max) C?(0) cmax

0

L?(cmax)

L?(0)

`max

FL FAnti
L

(d) Pareto and anti-Pareto frontier under
additional regularity Assumptions 4-7.

Figure 2. An example of the possible aspects of the feasible region F (in
light blue), the value functions L?, L?, C?, C?, and the Pareto and anti-Pareto

frontier (in red) under Assumption 3.

We now prove the reverse inclusion. Assume that c = C?(`) and ` = L?(c), and consider η a
solution of Problem (40) for the loss `: L(η) ≤ ` and C(η) = C?(`) = c. Then η is admissible
for Problem (39) with cost c = C?(`), so L(η) ≥ L?(C?(`)) = L?(c) = `. Therefore, we get
L(η) = L?(c), and η is also a solution of Problem (39). By Point (i), η is Pareto optimal, so
(C(η),L(η)) = (c, `) ∈ FL, and the reverse inclusion is proved.

Finally we prove Point (iii). We have C?(0) = min{C(η) : η ∈ ∆ and L(η) = 0} ∈ [0, cmax].
Let η ∈ ∆ such that L(η) = 0 and C(η) = C?(0). We deduce that L?(C?(0)) ≤ L(η) = 0 and
thus L?(C?(0)) = 0 as L is non-negative. We deduce from (ii) that (C?(0), 0) belongs to FL.
Since C? is non-increasing, we also get that C? = 0 on [C?(0), cmax]. The other properties of
(iii) are proved similarly. �

The next two hypotheses on C and L will imply that the Pareto frontier is connected.
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Assumption 4. If the cost C has a local minimum (for the weak topology) at η, then C(η) = 0
and η is a global minimum of C.

Assumption 5. If the loss L has a local minimum (for the weak topology) at η, then L(η) = 0
and η is a global minimum of L.

Under these hypotheses, the picture becomes much nicer, see Figure 2(d), where the only
flat parts of the graphs of C? and L? occur at zero cost or zero loss.

Proposition 5.5. Under Assumption 3 and 4 the following properties hold:
(i) The optimal cost C? is decreasing on [0,L?(0)].
(ii) If η solves Problem (40) for the loss ` ∈ [0,L?(0)], then L(η) = ` (that is, the constraint

is binding). Moreover η is Pareto optimal, and:

(43) L?(C?(`)) = `.

(iii) The Pareto frontier is the graph of C?:

(44) FL = {(C?(`), `) : ` ∈ [0,L?(0)]}.
Similarly, under Assumptions 3 and 5, the following properties hold:

(iv) The optimal loss L? is decreasing on [0, C?(0)].
(v) If η solves Problem (39) for the cost c ∈ [0, C?(0)], then C(η) = c. Moreover η is Pareto

optimal, and C?(L?(c)) = c.
(vi) The Pareto frontier is the graph of L?:

(45) FL = {(c,L?(c)) : c ∈ [0, C?(0)]}.
Finally, if Assumptions 4 and 5 hold, then L? is a continuous decreasing bijection of [0, C?(0)]

onto [0, L?(0)] and C? is the inverse bijection, and the Pareto frontier is compact and connected.

Proof. We prove (i). Let 0 ≤ ` < `′ ≤ L?(0), and let η? be a solution of Problem (40):

(46) C(η?) = C?(`) and L(η?) ≤ `.
The set O = {η : L(η) < `′} is open and contains η?. Since L(η?) < L?(0), we get C(η?) > 0,
so η? is not a global minimum for C. By Assumption 4, it cannot be a local minimum for C, so
O contains at least one point η′ for which C(η′) < C(η?). Since η′ ∈ O, we get L(η′) ≤ `′, so
that C?(`′) ≤ C(η′) < C(η?) = C?(`). Since ` < `′ are arbitrary, C? is decreasing on [0,L?(0)].

We now prove (ii). If the inequality in (46) was strict, that is L(η?) < `, then we would
get a contradiction as C(η?) ≥ C?(L(η?)) > C?(`) = C(η?). Therefore any solution η? of (40)
satisfies L(η?) = `, and in particular C?(L(η?)) = C?(`) = C(η?). This implies in turn that
η? also solves (39): if η satisfies L(η) < L(η?), then using the definition of C?, the fact that it
decreases, and the definition of η?, we get:

C(η) ≥ C?(L(η)) > C?(L(η?)) = C(η?).

By contraposition, we have L(η) ≥ L(η?) for any η such that C(η) ≤ C(η?), proving that
η? is also a solution of (39) with c = C(η∗). By Point (i) of Proposition 5.4, η? is Pareto
optimal. Therefore (C(η?),L(η?)) = (C?(`), `) belongs to the Pareto frontier. Using Point (ii)
of Proposition 5.4, we deduce that ` = L?(C?(`)).

To prove Point (iii), note that Equation (43) shows that, if c = C?(`) for ` ∈ [0,L?(0)], then
` = L?(c). Use Point (ii) and (iii) of Proposition 5.4, to get that FL = {(c, `) : c = C?(`), ` ∈
[0,L?(0)]}.

The claims (iv), (v) and (vi) are proved in the same way, exchanging the roles of L and C.

To conclude the proof, it remains to check that C? and L? are continuous under Assumptions
3, 4 and 5. We deduce from Point (ii) and Proposition 5.3 that [0,L?(0)] is in the range of L?.
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Since L? is decreasing, thanks to Point (iv) and L?(C?(0)) = 0, see Proposition 5.4 (iii), we
get that L? is continuous and decreasing on [0,L?(0)], and thus one-to-one from [0, C?(0)] onto
[0,L?(0)]. Then use (43) to get that C? is its inverse bijection. The continuity of L? and (45)
implies that FL is compact and connected. �

Finally, let us check that Assumptions 4 and 5 hold under very simple assumptions, which
are in particular satisfied by the cost functions Cuni and Caff and the loss functions Re and I
(recall from Propositions 4.1 and 4.5 that Re and I are sub-homogeneous).

Lemma 5.6. Suppose Assumption 3 holds. If the cost function C is decreasing, then Assump-
tion 4 holds and L?(0) = `max. If the loss function L is sub-homogeneous, then Assumption 5
holds.

Proof. Let η ∈ ∆. If C has a local minimum at η, then, as C is non-increasing, for ε > 0 small
enough, we get that C(η) ≥ C(η + ε(1− η)) ≥ C(η). If C is decreasing, this is only possible if
η = 1 almost surely, so that η is a global minimum of C. This also gives L?(0) = `max. Similarly
if L has a local minimum at η, then for ε > 0 small enough L(η) ≤ L((1− ε)η) ≤ (1− ε)L(η),
so L(η) = 0 and η is a global minimum of L. �

Corollary 5.7. Suppose that Assumptions 3, 4 and 5 hold. The set of Pareto optimal strategies
PL is compact (for the weak topology).

Proof. Since L? is continuous thanks to Proposition 5.5, we deduce that FL, which is given
by (45), is compact and thus closed. Since PL = f−1(FL), where the function f = (C,L)
defined on ∆ is continuous, we deduce that PL is closed and thus compact as ∆ is compact. �

5.3. On the anti-Pareto frontier.

5.3.1. The general setting. Letting C ′(η) = `max − L(η) and L′(η) = cmax − C(η), it is easy to
see that:

C ′?(c) = `max − L?(cmax − c) and L′?(`) = cmax − C?(`max − `),
so that Proposition 5.5 may be applied to the cost function C ′ and the loss function L′ to yield
the following result.

Proposition 5.8 (Single-objective and bi-objective problems for the anti-Pareto strategies).
Suppose Assumption 3 holds.

(i) If η? is anti-Pareto optimal, then η? is a solution of (41) for the cost c = C(η?), and a
solution of (42) for the loss ` = L(η?). Conversely, if η? is a solution to both problems
(41) and (42) for some values c and `, then η? is anti-Pareto optimal.

(ii) The anti-Pareto frontier is the intersection of the graphs of C? and L?:

FAnti
L = {(c, `) ∈ [0, cmax]× [0, `max] : c = C?(`) and ` = L?(c)}.

(iii) The points (C?(`max), `max) and (cmax,L
?(cmax)) both belong to the anti-Pareto frontier,

and we have C?(L?(cmax)) = cmax and L?(C?(`max)) = `max. Moreover, we also have
C?(`) = cmax for ` ∈ [0,L?(cmax)], and L?(c) = `max for c ∈ [0, C?(`max)].

The following additional hypotheses rule out the occurrence of flat parts in the anti-Pareto
frontier.

Assumption 6. If the cost C has a local maximum at η (for the weak topology), then C(η) =
cmax and η is a global maximum of C.

Assumption 7. If the loss L has a local maximum at η (for the weak topology), then L(η) = `max

and η is a global maximum of L.

The following result is now a consequence of Proposition 5.5 and Corollary 5.7 applied to
the loss function L′ and cost function C ′.
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Proposition 5.9. Under Assumption 3 and 6 the following properties hold:
(i) The optimal cost C? is decreasing on [C?(`max), cmax].
(ii) If η solves Problem (42) for the loss ` ∈ [L?(cmax), `max], then L(η) = ` (that is, the

constraint is binding). Moreover η is anti-Pareto optimal, and L?(C?(`)) = `.
(iii) The anti-Pareto frontier is the graph of C?:

(47) FAnti
L = {(C?(`), `) : ` ∈ [L?(cmax), `max]}.

Similarly, under Assumptions 3 and 7, the following properties hold:
(iv) The optimal loss L? is decreasing on [L?(cmax), `max].
(v) If η solves Problem (41) for the cost c ∈ [C?(`max), cmax], then C(η) = c. Moreover η

is anti-Pareto optimal, and C?(L?(c)) = c.
(vi) The anti-Pareto frontier is the graph of L?:

(48) FAnti
L = {(c,L?(c)) : c ∈ [C?(`max), cmax]}.

Finally, if Assumptions 3, 6 and 7 hold, then L? is a continuous decreasing bijection of
[C?(`max), cmax] onto [L?(cmax), `max], C? is the inverse bijection, and the anti-Pareto frontier
is compact and connected. Furthermore, the set of anti-Pareto optimal strategies PAnti

L is
compact (for the weak topology).

The following result is similar to the first part of Lemma 5.6.

Lemma 5.10. Suppose Assumption 3 holds. If the cost function C is decreasing, then As-
sumption 6 holds and L?(cmax) = 0.

Proof. Let η ∈ ∆ and ε ∈ (0, 1). Since C is decreasing, C((1 − ε)η) ≥ C(η), with equality if
and only if η = 0 µ-almost surely. Therefore the only local maximum of C is η = 0, and it is
a global maximum. Since C(η) = cmax implies that η = 0 µ-almost surely, we also get that
L?(cmax) = L(0) = 0. �

5.3.2. The particular case of the kernel and SIS models. We show that, under an irreducibility
hypothesis on the kernel, Assumption 7 holds for the loss functions Re and J. The reducible
case is more delicate and it is studied in more details in [8] for the loss function L = Re; in
particular Assumption 7 may not hold and the anti-Pareto frontier may not be connected.

Let us recall some notation. Let k be a kernel with finite double norm. For A,B ∈ F , we
write A ⊂ B a.s. if µ(B ∩Ac) = 0 and A = B a.s. if A ⊂ B a.s. and B ⊂ A a.s. For A,B ∈ F ,
x ∈ Ω and a kernel k, we simply write k(x,A) =

∫
A k(x, y)µ(dy), k(B, x) =

∫
B k(z, x)µ(dz)

and:
k(B,A) =

∫
B×A

k(z, y)µ(dz)µ(dy).

A set A ⊂ F is k-invariant if k(Ac, A) = 0. (Notice that if A is k-invariant, then Lp(A,µ) is
an invariant closed subspace for Tk, seen as an operator on Lp(Ω, µ).) A kernel k is irreducible
(or connected) if any k-invariant set A is such that a.s. A = ∅ or a.s. A = Ω. Define {k ≡ 0} as
{x ∈ Ω : k(x,Ω) + k(Ω, x) = 0}, so that k(A,Ω) + k(Ω, A) = 0 implies that a.s. A ⊂ {k ≡ 0}.
A kernel k is quasi-irreducible if the restriction of k to {k ≡ 0}c is irreducible, that is if any
k-invariant set A is such that A ⊂ {k ≡ 0} a.s. or Ac ⊂ {k ≡ 0} a.s. Notice the definition of
the quasi-irreducibility from [3, Definition 2.11] is slightly stronger as it uses a topology on Ω.

Lemma 5.11. Consider the kernel model Param = [(Ω,F , µ), k] under Assumption 1. If k is
quasi-irreducible, then Assumption 7 holds for L = Re[k], and C?(`max) = C(1{k≡0}c) (which
is 0 if k is irreducible).

Proof. The quasi-irreducible case can easily be deduced from the irreducible case, so we assume
that k is irreducible. In particular, we have k(Ω, y) > 0 almost surely. Let η ∈ ∆ be a local
maximum of Re on ∆; we want to show that it is also a global maximum.
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Suppose first that inf η > 0. Then kη is irreducible with finite double norm. Accord-
ing [41, Theorem V.6.6 and Example V.6.5.b], the eigenspace of Tkη associated to Re(η) is
one-dimensional and it is spanned by a vector vd such that vd > 0 almost surely, and the corre-
sponding left eigenvector associated to Re(η), say vg, can be chosen such that 〈vg, vd〉 = 1 and
vg > 0 almost surely. According to [31, Theorem 2.6], applied to L0 = Tkη and L = Tk(η+ε(1−η)),
we have, using that ‖L0 − L‖ = O(ε) thanks to (12):

Re(η + ε(1− η)) = Re(η) + ε〈vg, Tk(1−η)vd〉+O(ε2).

Since Re has a local maximum at η, the first order term on the right hand side vanishes, so
vg(x)k(x, y)(1− η(y))vd(y) = 0 for µ almost all x and y. Since vg and vd are positive almost
surely and k is irreducible, we get that k(Ω, y)(1− η(y)) = 0 almost surely and thus η(y) = 1
almost surely. Therefore η = 1, which is a global maximum for Re.

Finally, suppose that inf η = 0. Let O be an open subset of ∆ on which Re ≤ Re(η) and
with η ∈ O. For ε > 0 small enough, the strategy ηε = η + ε(1 − η) belongs to O and
satisfies Re(η) ≤ Re(ηε) ≤ Re(η) (where the first inequality comes from the fact that Re is
non-decreasing). Therefore ηε is a local maximum, and thus ηε = 1 almost surely. This readily
implies that η = 1 almost surely.

We deduce that if η is a local maximum, then η = 1 almost surely. Thus η is a global
maximum and C?(`max) = C(1) = 0. This ends the proof. �

Lemma 5.12. Consider the SIS model Param = [(Ω,F , µ), k, γ] under Assumption 2. If k is
quasi-irreducible, then Assumption 7 holds for L = I and C?(`max) = C(1{k≡0}c) (which is 0
if k is irreducible).

Proof. The quasi-irreducible case can easily be deduced from the irreducible case, so we assume
that k is irreducible.

Set k = k/γ. Suppose that I has a local maximum at some η ∈ ∆. For ε ∈ (0, 1), the kernel
kηε, with ηε = η + ε(1− η), is irreducible (with finite double norm) since k is irreducible and
γ is positive and bounded. We have that for ε > 0 small enough:

I(η) ≥ I(ηε) =

∫
Ω
gηε ηε dµ ≥

∫
Ω
gηε η dµ ≥

∫
Ω
gη η dµ = I(η),

where we used that η ≤ ηε and 0 ≤ gη ≤ gηε , see (33). Therefore all these quantities are equal.
Since the equilibrium gηε is µ-a.e. positive thanks to [7, Remark 4.11] as kηε is irreducible, we
must have ηε = η a.s, which is only possible if η = 1 almost surely.

Since I(1) > I(η) for any η 6= 1, we also get C?(`max) = 0, with `max = I(1) =
∫

Ω g dµ. �

6. Miscellaneous properties for set of outcomes and the Pareto
frontier

We prove results concerning the feasible region, the stability of the Pareto frontier and its
geometry.

6.1. No holes in the feasible region. We check there is no hole in the feasible region.

Proposition 6.1. Suppose that Assumption 3 holds. The feasible region F is compact, path
connected, and its complement is connected in R2. It is the whole region between the graphs of
the one-dimensional value functions:

F = {(c, `) ∈ R2 : 0 ≤ c ≤ cmax, L?(c) ≤ ` ≤ L?(c)}
= {(c, `) ∈ R2 : 0 ≤ ` ≤ `max, C?(`) ≤ c ≤ C?(`)}.

Proof. The region F is compact and path-connected as a continuous image by (C,L) of the
compact, path-connected set ∆.
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By symmetry, it is enough to prove that F is equal to F1 = {(c, `) ∈ R2 : 0 ≤ c ≤
cmax, L?(c) ≤ ` ≤ L?(c)}. Let (c, `) ∈ F and η ∈ ∆ be such that (c, `) = (C(η),L(η)). By
definition of L? and L?, we have: L?(c) = L?(C(η)) ≤ L(η) ≤ L?(C(η)) = L?(c). We deduce
that (c, `) ∈ F1.

Let us now prove that F1 ⊂ F. Let us first consider a point of the form (c,L?(c)), where
0 ≤ c ≤ cmax. By definition, there exists η such that C(η) ≤ c and L(η) = L?(c). Let ηt = tη.
The map t 7→ C(ηt) is continuous from [0, 1] to [C(η), cmax], and c ∈ [C(η), cmax], so there
exists s such that C(ηs) = c. Since L is non-decreasing, L(ηs) ≤ L(η). By definition of L?(c),
L(ηs) ≥ L?(c). Therefore (c,L?(c)) = (C(ηs),L(ηs)) belongs to F. Similarly the graphs of C?,
C? and L? are also included in F.

So, it is enough to check that, if A = (c, `) is in F1, with c ∈ (0, cmax) and ` ∈ (L?(c),L
?(c)),

then A belongs to F. We shall assume that A 6∈ F and derive a contradiction by building a
loop in F that encloses A and which can be continuously contracted into a point in F.

Since L?(c) < ` < L?(c), there exist ηSO and ηNE such that:

C(ηSO) ≤ c, L(ηSO) < `, C(ηNE) ≥ c and L(ηNE) > `.

We concatenate the four paths defined for u ∈ [0, 1]:

u 7→ uηSO, u 7→ (1− u)ηSO + u, u 7→ (1− u) + uηNE and u 7→ (1− u)ηNE,

to obtain a continuous loop (ηt, t ∈ [0, 4]) from [0, 4] to ∆, such that:

η0 = η4 = 0, η1 = ηSO, η2 = 1 and η3 = ηNE.

We now define a continuous family of loops (γs, s ∈ [0, 1]) in R2 by

γs(t) = (C(sηt),L(sηt), t ∈ [0, 4]).

By definition, for all s ∈ [0, 1], γs is a continuous loop in F . Since A = (c, `) /∈ F, the loops
γs do not contain A, so the winding number W (γs, A) is well-defined (see for example [26,
Definition 6.1]). As A 6∈ F, we get that γs is a continuous deformation in R2 \ {A} from γ1 to
γ0. Thanks to [26, Theorem 6.5], this implies that W (γs, A) does not depend on s ∈ [0, 1].

For s = 0, the loop degenerates to the single point (C(0), 0) so the winding number is 0. For
s = 1, let us check that the winding number is 1, which will provide the contradiction. To do
this, we compare γ1 with a simpler loop δ defined by:

δ(0) = δ(4) = (cmax, 0), δ(1) = (0, 0), δ(2) = (0, `max) and δ(3) = (cmax, `max),

and by linear interpolation for non integer values of t: in other words, δ runs around the
perimeter of the axis-aligned rectangle with corners (0, 0) and (cmax, `max). Clearly, we have
W (δ, A) = 1.

Let Mt, Nt denote γ1(t) and δ(t) respectively. For t ∈ [0, 1], we have Nt = ((1− t)cmax, 0),
so the second coordinate of

−−→
ANt is non-positive. On the other hand L(tηSO) ≤ L(ηSO) < `, so

the second coordinate of
−−→
AMt is negative. Therefore the two vectors

−−→
ANt and

−−→
AMt cannot

point in opposite directions. Similar considerations for the other values of t ∈ [1, 4] show that−−→
ANt and

−−→
AMt never point in opposite directions. By [26, Theorem 6.1], the winding numbers

W (γ1, A) and W (δ, A) are equal, and thus W (γ1, A) = 1.
This gives that A ∈ F by contradiction, and thus F1 ⊂ F.

Finally, it is easy to check that F1 has a connected complement, because F1 is bounded, and
all the points in F c1 can reach infinity by a straight line: for example, if ` > L?(c), then the
half-line {(c, `′), `′ ≥ `} is in F c1 . �
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(a) Grayplot of the kernel kε, with Ω = [0, 1]
and µ the Lebesgue measure (kε is equal to the
constant κ > 0 on the black zone and to ε on the

gray zone, with ε > 0 small).

0 1/2 1
0

C

R
e

(b) In red, the Pareto frontier of the kernel k
represented in Figure 1(a) compared to the

Pareto frontier of the kernel kε in blue.

Figure 3. On the stability of the Pareto frontier

6.2. Stability. We can consider the stability of the Pareto frontier and the set of Pareto
optima. Recall that, thanks to (45), the graph {(c,L?(c)) : c ∈ [0, cmax]} of L? is the union of
the Pareto frontier and the straight line joining (0, C?(0)) to (0, cmax) and can thus be seen as
an extended Pareto frontier. The proof of the following proposition is immediate. It implies
in particular the convergence of the extended Pareto frontier. This result can also easily be
adapted to the anti-Pareto frontier.

Proposition 6.2. Let C be a cost function and (L(n), n ∈ N) a sequence of loss functions
converging uniformly on ∆ to a loss function L. Assume that Assumptions 3, 4 and 5 hold for
the cost C and the loss functions L(n), n ∈ N, and L. Then L

(n)
? converges uniformly to L?.

Let η ∈ ∆ be the weak limit of a sequence (ηn, n ∈ N) of Pareto optima, that is ηn ∈ PL(n) for
all n ∈ N. If C(η) ≤ C?(0), then we have η ∈ PL.

Remark 6.3 (On the continuity of the Pareto Frontier). It might happen that some elements of
PL are not weak limit of sequence of elements of PL(n) ; see [9] for such discontinuity. It might
also happen that a sequence (ηn, n ∈ N) such that ηn ∈ PL(n) and L(n)(ηn) > 0 converges
to some η that does not belong to PL if L(η) = 0. In particular, in this case, C?,L(n)(0)

does not converge to C?,L(0), where C?,L′ is the value function C? associated to the loss L′.
This situation is represented in Figure 3. In Figure 3(a), we have plotted a perturbation
kε = k + ε

∑
n∈N? 1In×In of the multipartite kernel k defined in Example 1.7 for ε > 0 small.

According to Proposition 4.3, Re[kε] converges uniformly to Re[k] when ε vanishes. However,
the Pareto optimal strategies for kε that cost more than 1/2 do not converge to some Pareto
optimal strategies for k. This can be seen in Figure 3(b), where the Pareto frontier of kε (in
blue) corresponding to costs larger than 1/2 does not have a counterpart in the Pareto frontier
of k (in red).

6.3. Geometric properties. If the cost function is affine, then there is a nice geometric
property of the Pareto frontier.

Lemma 6.4. Suppose that Assumption 3 holds, the cost function is affine (i.e., C = Caff given
by (35)) and the loss function L is sub-homogeneous. Then, we have L?(θc+(1−θ)cmax) ≤ θL?(c)
for all c ∈ [0, cmax] and θ ∈ [0, 1].
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Remark 6.5. Geometrically, Lemma 6.4 means that the graph of the loss L? : [0, cmax] →
[0, `max] is below its chords with end point (1,L?(1)) = (1, 0). See Figures 1(b) for a typical
representation of the Pareto frontier (red solid line).

Proof. Let c ∈ [0, cmax] and θ ∈ [0, 1]. Thanks to Lemma 5.6, Assumption 5 holds. Thus,
thanks to Proposition 5.5 (iv), there exists η ∈ PL with cost C(η) = c and thus L(η) = L?(c).
Since C is affine, we have:

C(θη) = θC(η) + (1− θ)cmax ≤ θc+ (1− θ)cmax.

Therefore, θη is admissible for Problem (39) with cost constraint C(·) ≤ θc+ (1− θ)cmax. This
implies that L?(θc+ (1− θ)cmax) ≤ L(θη) ≤ θL?(c), thanks to the sub-homogeneity of the loss
function L. �

In some case, we shall prove that the considered loss function is convex (which in turn implies
Assumption 5). In this case, choosing a convex cost function implies that Assumption 4 holds
and the Pareto frontier is convex. A similar result holds in the concave case. We provide a
short proof of this result.

Proposition 6.6. Suppose that Assumption 3 holds. If the cost function C and the loss
function L are convex, then the functions C? and L? are convex. If the cost function C and the
loss function L are concave, then the functions C? and L? are convex.

Proof. Let `0, `1 ∈ [0, `max]. By Proposition 5.3, there exist η0, η1 such that L(ηi) ≤ `i and
C(ηi) = C?(`i) for i ∈ {0, 1}. For θ ∈ [0, 1], let ` = (1− θ)`0 + θ`1. Since C and L are assumed
to be convex, η = (1− θ)η0 + θη1 satisfies:

C(η) ≤ (1− θ)C?(`0) + θC?(`1) and L(η) ≤ (1− θ)`0 + θ`1.

Therefore, we get that C?((1− θ)`0 + θ`1) ≤ C(η) ≤ (1− θ)C?(`0) + θC?(`1), and C? is convex.
The proof of the convexity of L? is similar. The concave case is also similar. �

7. Equivalence of models by coupling

Even if in full generality, the cost function could also be treated as a parameter, we shall for
simplicity consider only the uniform cost Cuni given by (36) in this section. (The interested
reader can use Remark 5.2 for a first generalization to the affine cost function given by (35).)

7.1. Motivation. The aim of this section is to provide examples of different set of parameters
for which two kernel or SIS models are “equivalent”, in the intuitive sense that their Pareto
frontiers are the same (as subsets of R2

+), and it is possible to map nicely the Pareto optima
from one model to the another. In Section 7.4, we present an example where discrete models
can be represented as a continuous models and an example based on measure preserving
transformation in the spirit of the graphon theory. We shall consider the two families of
models:

• the kernel model characterized by Param = [(Ω,F , µ), k], with Assumption 1 fulfilled,
and loss function L = Re;
• the SIS model characterized by Param = [(Ω,F , µ), k, γ], with Assumption 2 fulfilled,
and loss function L ∈ {Re, I};

where (Ω,F , µ) is a probability space, k and k are non-negative kernels on Ω and γ is a
non-negative function on Ω.

In order to emphasize the dependence of a quantity H on the parameters Param of the model,
we shall write H[Param] for H. For example we write: ∆[Param] for the set of functions {η ∈
L∞(Ω,F ) : 1 ≥ η ≥ 0}, which clearly depends on the parameters Param; and the effective
reproduction function Re[Param]. For example, under Assumption 2, we have the equality
of the following functions: Re[(Ω,F , µ), k, γ] = Re[(Ω,F , µ), k/γ, 1] = Re[(Ω,F , µ), k/γ],
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where for the last equality the left hand-side refers to the SIS model and the right hand-side
refers to the kernel model (where Assumption 1 holds as a consequence of Assumption 2).
Using (29) if inf γ > 0 (see [8, Section 3] for details and more general results), then we also
have Re[(Ω,F , µ), k/γ] = Re[(Ω,F , µ), γ−1k].

7.2. On measurability. Let us recall some well-known facts on measurability. Let (E,E )
and (E′,E ′) be two measurable spaces. If E′ = R, then we take E ′ = B(R) the Borel σ-field.
Let f be a function from E to E′. We denote by σ(f) = {f−1(A) : A ∈ E ′} the σ-field generated
by f . In particular f is measurable from (E,E ) to (E′,E ′) if and only if σ(f) ⊂ E . Let ϕ
be a measurable function from (E,E ) to (E′,E ′). For ν a measure on (E,E ), we write ϕ#ν
for the for the push-forward measure on (E′,E ′) of the measure ν by the function ϕ (that
is ϕ#ν(A) = ν(ϕ−1(A)) for all A ∈ E ′). By definition of ϕ#ν, for a non-negative measurable
function g defined from (E′,E ′) to (R,B(R)), we have:

(49)
∫
E′
g dϕ#ν =

∫
E
g ◦ ϕdν.

Let f be a measurable function from (E,E ) to (R,B(R)). We recall that:

(50) σ(f) ⊂ σ(ϕ) =⇒ f = g ◦ ϕ,
for some measurable function g from (E′,E ′) to (R,B(R)).

The random variables we consider are defined on a probability space, say (Ω0,F0,P).

7.3. Coupled models. We refer the reader to [27] for a similar development in the graphon
setting. We first define coupled models in the next definition and state in Proposition 7.3 that
coupled models have related (anti-)Pareto optima and the same (anti-)Pareto frontiers.

In the kernel model, we consider the models Parami = [(Ωi,Fi, µi), ki] for i ∈ {1, 2}, where
Assumption 1 holds for each model; in the SIS model, we consider the models Parami =
[(Ωi,Fi, µi), ki, γi] for i ∈ {1, 2}, where Assumption 2 holds for each model. In what follows,
we simply write ∆i the set of functions ∆ for the model Parami.

A measure π on (Ω1 × Ω2,F1 ⊗F2) is a coupling if its marginals are µ1 and µ2.

Definition 7.1 (Coupled models). The models Param1 and Param2 are coupled if there
exists two independent Ω1 × Ω2-valued random vectors (X1, X2) and (Y1, Y2) (defined on a
probability space (Ω0,F0,P)) with the same distribution given by a coupling ( i.e. Xi and Yi
have distribution µi) such that, P-almost surely:

Kernel model: k1(X1, Y1) = k2(X2, Y2),

SIS model: γ1(X1) = γ2(X2) and k1(X1, Y1) = k2(X2, Y2).

In this case, two real-valued measurable functions v1 and v2 defined respectively on Ω1 and Ω2

are coupled (through V ) if there exists a real-valued σ(X1, X2)-measurable integrable random
variable V such that P-almost surely:

E [V |Xi] = vi(Xi) for i ∈ {1, 2}.
Remark 7.2. We keep notation from Definition 7.1

(i) Since V is real-valued and σ(X1, X2)-measurable, we deduce from (50) that there exits
a measurable function v defined on Ω1×Ω2 such that V = v(X1, X2), thus the following
equality holds P-almost surely:

E [v(Y1, Y2)|Yi] = vi(Yi) for i ∈ {1, 2}.
(ii) IfW is a real-valued integrable σ(X1)∩σ(X2)-measurable random variable, then setting

vi(Xi) = E [W |Xi] = W , the equality v1(X1) = v2(X2) holds almost surely, and we get
that v1 and v2 are coupled (through W ).
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(iii) Let η1 ∈ ∆1. According to (50), there exists η2 ∈ ∆2 such that E [η1(X1)|X2] = η2(X2).
Thus, by definition η1 and η2 are coupled (through V = η1(X1)).

The main result of this section, whose proof is given in Section 8.2, states that coupled
models have coupled Pareto optimal strategies, and thus the same (anti-)Pareto frontier.

Proposition 7.3 (Coupling and Pareto optimality). Let Param1 and Param2 be two coupled
(kernel or SIS) models with the uniform cost function C = Cuni and loss function L (with
L = Re in the kernel model and L ∈ {Re, I} in the SIS model). If the functions η1 ∈ ∆1 and
η2 ∈ ∆2 are coupled, then:

η1 is Pareto optimal (for Param1) ⇐⇒ η2 is Pareto optimal (for Param2).

Furthermore, if η1 ∈ ∆1 is Pareto optimal (for Param1), then there exists a Pareto optimal
(for Param2) strategy η2 ∈ ∆2 such that η1 and η2 are coupled. In particular, the (anti-)Pareto
frontiers are the same for the two models Param1 and Param2.

The next Corollary is useful for model reduction, which corresponds to merging individuals
with identical behavior, see the examples in Sections 7.4.1 and 7.4.3. Equation (51) below could
also be stated for anti-Pareto optima; and the adaptation to the kernel model is immediate.

Corollary 7.4. Let Param = [(Ω,F ,P), k, γ] be a SIS model with the uniform cost function
C = Cuni and loss function L ∈ {Re, I}. Let G ⊂ F be a σ-field such that γ is G -measurable
and k is G ⊗ G -measurable. Then, for any η ∈ ∆[Param], we have:

(51) η is Pareto optimal ⇐⇒ E [η|G ] is Pareto optimal.

Proof. Let Ω0 = Ω2 endowed with the product σ-field and the product probability measure P0,
and X (resp. Y ) be the projection on the first (resp. second) coordinate. Thus the random
variablesX and Y are independent, (Ω,F )-valued with distribution P. Write (X ′, Y ′) for (X,Y )
when considered as (Ω,G )-valued random variables. Notice that X ′ and Y ′ are by construction
independent with distribution P′, where P′ is the restriction of P to G . As γ is G -measurable
and k is G ⊗G -measurable, we can consider the model Param′ = [(Ω,G ,P′), k, γ]. Then (X,X ′)
and (Y, Y ′) are two trivial couplings such that k(X,Y ) = k(X ′, Y ′) and γ(X) = γ(X ′). Thus
the models Param and Param′ are coupled. We have that η ∈ ∆ and η′ = E[η|G ] ∈ ∆′

are coupled through η ◦ X since E0[η ◦ X|σ(X)] = η ◦ X and E0[η ◦ X|σ(X ′)] = η′ ◦ X ′ as
σ(X ′) = X−1(G ) and X = X ′ can be seen as the identity map on Ω. The conclusion then
follows from Proposition 7.3. �

7.4. Examples of couplings. In this section, we consider the SIS model as the kernel model
can be handled in the same way. We denote by Leb the Lebesgue measure.

7.4.1. Discrete and continuous models. We now formalize how finite population models can be
seen as particular cases of models with a continuous population. Let Ωd ⊂ N, Fd the set of
subsets of Ωd and µd a probability measure on Ωd. Without loss of generality, we can assume
that µd({`}) > 0 for all ` ∈ Ωd. We set Ωc = [0, 1), with Fc its Borel σ-field and µc = Leb.
Let (B`, ` ∈ Ωd) be a partition of [0, 1) in measurable sets such that Leb(B`) = µd({`}) for all
` ∈ Ωd. The measure π on Ωd × Ωc uniquely defined by:

π({`} ×A) = Leb(B` ∩A)

for all measurable A ⊂ [0, 1) and ` ∈ Ωd is clearly a coupling of µd and µc. If the kernels kd

on Ωd and kc on Ωc and the functions γd and γc are related through the formula:

γc(x) = γd(`) and kc(x, y) = kd(`, j), for x ∈ B`, y ∈ Bj and `, j ∈ Ωd,

then the discrete model Paramd = [(Ωd,Fd, µd), kd, γd] and the continuous model Paramc =
[([0, 1),Fc,Leb), kc, γc] are coupled. Roughly speaking, we can blow up the atomic part of the
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measure µd into a continuous part, or, conversely, merge all points that behave similarly for kc

and γc into an atom, without altering the Pareto frontier.

Example 7.5. We consider the so called stochastic block model, with 2 populations for simplicity,
in the setting of the SIS model, and give in this elementary case the corresponding discrete
and continuous models. Then, we explicit the relation with the formalism of the same model
developed in [33] by Lajmanovich and Yorke.

The discrete SIS model is defined on Ωd = {1, 2} with the probability measure µd defined
by µd({1}) = 1− µd({2}) = p with p ∈ (0, 1), and a kernel kd and recovery function γd given
by the matrix and the vector:

kd =

(
k11 k12

k21 k22

)
and γd =

(
γ1

γ2

)
.

Notice p is the relative size of population 1. The corresponding discrete model is Paramd =
[({1, 2},Fd, µd), kd, γd]; see Figure 4(b).

The continuous model is defined on the state space Ωc = [0, 1) is endowed with its Borel σ-
field, Fc, and the Lebesgue measure µc = Leb. The segment [0, 1) is partitioned into two
intervals B1 = [0, p) and B2 = [p, 1), the transmission kernel kc and recovery rate γc are given
by:

kc(x, y) = kij and γc(x) = γi for x ∈ Bi, y ∈ Bj , and i, j ∈ {1, 2}.
The corresponding continuous model is Paramc = [([0, 1),Fc,Leb), kc, γc]; see Figure 4(a). By
the general discussion above, the discrete and continuous models are coupled, and in particular
they have the same Pareto and anti-Pareto frontiers.

Furthermore, in this simple example, it is easily checked that a discrete vaccination ηd =
(η1, η2) and a continuous vaccination ηc = (ηc(x), x ∈ [0, 1)) are coupled if and only if there
exists a function η defined on Ωc × Ωd = [0, 1)× {1, 2} such that: ηi =

1

Leb(Bi)

∫
Bi

η(x, i) dx, i ∈ {1, 2},

ηc(x) = η(x, 1)1B1(x) + η(x, 2)1B2(x), Leb-a.s.,

which occurs if and only if:

ηi =
1

Leb(Bi)

∫
ηc(x)1Bi(x) dx, i ∈ {1, 2}.

Therefore, in this case, the optimal strategies of the continuous model are easily deduced from
the optimal strategies of the discrete model.

To conclude this example, we rewrite, using the formalism of the discrete model Paramd, the
next-generation matrix K in the setting of [33], and the effective next-generation matrix Ke(η)
when the vaccination strategy η is in force (recall ηi is the proportion of population with
feature i which is not vaccinated):

K =

(
k11 p k12 (1− p)
k21 p k22 (1− p)

)
and Ke(η) =

(
k11 p η1 k12 (1− p) η2

k21 p η1 k22 (1− p) η2

)
,

with p = µd({1}), 1− p = µd({2}) and kd = kd/γd, that is:

kd =

(
k11 k12

k21 k22

)
=

(
k11/γ1 k12/γ2

k21/γ1 k22/γ2

)
.
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k21k11

x

y

(a) Continuous model: kernel kc
on Ωc = [0, 1) with the Lebesgue measure.

p

{1}

1− p

{2}

k11

k22

k21

k12

(b) Discrete model: kernel kd on Ωd = {1, 2}
with the measure pδ1 + (1− p)δ2.

Figure 4. Coupled continuous model (left) and discrete model (right).

7.4.2. Measure preserving function. This section is motivated by the theory of graphons, which
are indistinguishable by measure preserving transformation, see [34, Sections 7.3 and 10.7].
Let (Ω,F , µ) be a measurable space. We say a measurable function ϕ from (Ω,F ) to itself is
measure preserving if µ = ϕ#µ. For example the function ϕ : x 7→ 2x mod (1) defined on the
probability space ([0, 1],B([0, 1],Leb) is measure preserving.

Let ϕ be measure preserving function on Ω. Let k1 be a kernel and γ1 a function on Ω
such that the model Param1 = [(Ω,F , µ), k1, γ1] satisfies Assumption 2. Let X1 be a random
variable with probability distribution µ and let X2 = ϕ(X1), so that (X1, X2) is a coupling of
(Ω,F , µ) with itself. Then for the kernel k2 and the function γ2 defined by:

k2(x, y) = k1(ϕ(x), ϕ(y)) and γ2(x) = γ1(ϕ(x)),

the models Param1 and Param2 = [(Ω,F , µ), k2, γ2] are coupled. Roughly speaking, we can
give different labels to the features of the population without altering the Pareto and anti-Pareto
frontiers.

7.4.3. Model reduction using deterministic coupling. This example is in the spirit of Sec-
tion 7.4.1, where one merges individual with identical behavior. We consider a SIS model
Param1 = [(Ω1,F1, µ1), k1, γ1]. Let ϕ be a measurable function from (Ω1,F1) to (Ω2,F2).
Assume that:

σ(γ1) ⊂ σ(ϕ) and σ(k1) ⊂ σ(ϕ)⊗ σ(ϕ).

We can then build an elementary coupling. Let X1 and Y1 be independent µ1 distributed
random elements of Ω1, and set (X2, Y2) = (ϕ(X1), ϕ(Y1)). Since σ(γ1) ⊂ σ(ϕ) and σ(k1) ⊂
σ(ϕ)⊗ σ(ϕ), we get that γ1(X1) is σ(X2)-measurable and k1(X1, Y1) is σ(X2, Y2)-measurable.
According to (50), there exists two measurable functions γ2 : Ω2 → R and k2 : Ω2 × Ω2 → R
such that γ1 = γ2 ◦ ϕ and k1 = k2(ϕ⊗ ϕ) that is almost surely:

γ1(X1) = γ2(X2) and k1(X1, Y1) = k2(X2, Y2).

Let µ2 = ϕ#µ1 be the push-forward measure of µ1 by ϕ. Using (49) it is easy to check that the
integrability condition from Assumption 2 is fulfilled, so we can consider the reduced model
Param2 = [(Ω2,F2, µ2), k2, γ2]. By Definition 7.1, Param1 is coupled with Param2 through
the (deterministic) coupling π given by the distribution of (X1, ϕ(X1)).
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Eventually, we get from Corollary 7.4 with G = σ(ϕ), that η1 ∈ ∆1 is Pareto optimal if
and only if E1[η1|ϕ] is Pareto optimal (for the model Param1), where E1 correspond to the
expectation with respect to the probability measure µ1 on (Ω1,F1).

8. Technical proofs

8.1. The SIS model: properties of I and of the maximal equilibrium. We prove
here Theorem 4.6 and Proposition 4.7, and properties of the maximal equilibrium. For the
convenience of the reader, we only use references to the results recalled in [7] for positive
operators on Banach spaces. For an operator A, we denote by A> its adjoint. We first give a
preliminary lemma.

Lemma 8.1. Suppose Assumption 2 holds, and consider the positive bounded linear integral
operator Tk/γ on L∞. If there exists g ∈ L∞

+ , with
∫

Ω g dµ > 0 and λ > 0 satisfying:

Tk/γ(g)(x) > λg(x), for all x such that g(x) > 0,

then we have ρ(Tk/γ) > λ.

Proof. Set T = Tk/γ . Let A = { g > 0 } be the support of the function g. Let T ′ be the bounded
operator defined by T ′(f) = 1AT (1Af). Since T ′(g) = 1AT (1Ag) = 1AT (g) > λg, we deduce
from the Collatz-Wielandt formula, see [7, Proposition 3.6], that ρ(T ′) ≥ λ > 0. According
to [7, Lemma 3.7 (v)], there exists v ∈ Lq+ \ {0}, seen as an element of the topological dual of
L∞, a left Perron eigenfunction of T ′, that is such that (T ′)>(v) = ρ(T ′)v. In particular, we
have v = 1A v and thus

∫
A v dµ > 0 and

∫
Ω vg dµ > 0. We obtain:

(ρ(T ′)− λ) 〈v, g〉 = 〈v, T ′(g)− λg〉 > 0.

This implies that ρ(T ′) > λ. Since T − T ′ is a positive operator, we deduce from (26) that
ρ(T ) ≥ ρ(T ′) > λ. �

We now state an interesting result on the characterization of the maximal equilibrium g. We
keep notations from Sections 2.3 and 2.4 and write Re for Re[k/γ]. Recall that R0 = Re(1)
and F defined by (18). Let DF [h] denote the bounded linear operator on L∞ of the derivative
of the map f 7→ F (f) defined on L∞ at point h:

DF [h](g) = (1− h)Tk(g)− (γ + Tk(h))g for h, g ∈ L∞.

Let s(A) denote the spectral bound of the bounded operator A, see (33) in [7].

Proposition 8.2. Suppose Assumption 2 holds and write Re for Re[k/γ]. Let h in ∆ be an
equilibrium, that is F (h) = 0. The following properties are equivalent:

(i) h = g,
(ii) s(DF [h]) ≤ 0,
(iii) Re((1− h)2) ≤ 1.
(iv) Re(1− h) ≤ 1.

We also have: g = 0⇐⇒ R0 ≤ 1; as well as: g 6= 0 =⇒ Re(1− g) = 1.

Proof. Let h ∈ ∆ be an equilibrium, that is F (h) = 0.

Let us show the equivalence between (ii) and (iii). According to [7, Proposition 4.2],
s(DF [h]) ≤ 0 if and only if:

ρ (Tk) ≤ 1 with k(x, y) = (1− h(x))
k(x, y)

γ(y) + Tk(h)(y)
·

Since F (h) = 0, we have (1− h)/γ = 1/(γ + Tk(h)). This gives:

(52) k(x, y) = (1− h(x))
k(x, y)(1− h(y))

γ(y)
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and thus Tk = M1−h Tk/γM1−h, where Mf is the multiplication operator by f . Recall the
definition (14) of Re. According to (29), we have:

(53) ρ (Tk) = ρ
(
Tk/γM(1−h)2

)
= Re((1− h)2).

This gives the equivalence between (ii) and (iii).

We prove that (i) implies (iv). Suppose that Re(1 − h) > 1. Thanks to (29), we have
ρ(M1−hTk/γ) = ρ(Tk/γM1−h) = Re(1− h) > 1. According to [7, Lemma 3.7 (v)], there exists
v ∈ Lq+ \ {0} a left Perron eigenfunction of T(1−h)k/γ , that is T >(1−h)k/γ(v) = Re(1− h)v. Using
F (h) = 0, and thus (1− h)Tk(h) = γh, for the last equality, we have:

Re(1− h) 〈v, γh〉 = 〈v, (1− h)Tk/γ(γh)〉 = 〈v, γh〉 .
We get 〈v, γh〉 = 0 and thus 〈v,1A〉 = 0, where A = {h > 0 } denote the support of the
function h. Since T >(1−h)k/γ(v) = Re(1− h)v and setting v′ = (1− h)v (so that v′ = v µ-almost
surely on Ac), we deduce that:

T >k′/γ(v′) = Re(1− h)v′,

where k′ = 1Ac k 1Ac . This implies that ρ(Tk′/γ) ≥ Re(1 − h). Since k′ = (1 − h)k′ and
Tk/γ − Tk′/γ is a positive operator as k − k′ ≥ 0, we get, using (26) for the inequality, that
ρ(Tk′/γ) = ρ(M1−hTk′/γ) ≤ ρ(M1−hTk/γ) = Re(1−h). Thus, the spectral radius of Tk′/γ is equal
to Re(1− h). According to [7, Proposition 4.2], since ρ(Tk′/γ) > 1, there exists w ∈ L∞

+ \ {0}
and λ > 0 such that:

Tk′(w)− γw = λw.

This also implies that w = 0 on A = {h > 0 }, that is wh = 0 and thus wTk(h) = 0 as
Tk(h) = γh/(1 − h). Using that F (h) = 0, Tk(w) = Tk′(w) = (γ + λ)w and hTk(w) = 0, we
obtain:

F (h+ w) = w(λ− Tk(w)).

Taking ε > 0 small enough so that εTk(w) ≤ λ/2 and εw ≤ 1, we get h + εw ∈ ∆ and
F (h+ εw) ≥ 0. Then use Lemma 4.4 to deduce that h+ εw ≤ g and thus h 6= g.

To see that (iv) implies (iii), notice that (1− h)2 ≤ (1− h), and then deduce from Proposi-
tion 4.1 (iii) that Re((1− h)2) ≤ Re(1− h).

We prove that (iii) implies (i). Notice that F (g) = 0 and g ∈ ∆ implies that g < 1. Assume
that h 6= g. Notice that γ/(1−h) = γ+Tk(h), so that γ(g−h)/(1−h) ∈ L∞

+ . An elementary
computation, using F (h) = F (g) = 0 and k defined in (52), gives:

Tk

(
γ
g− h
1− h

)
= (1− h)Tk (g− h) = γ

g− h
1− g

=
1− h
1− g

γ
g− h
1− h ·

Since h 6= g and h ≤ g, we deduce that (1−h)/(1−g) ≥ 1, with strict inequality on { g− h > 0 }
which is a set of positive measure. We deduce from Lemma 8.1 (with k replaced by kγ) that
ρ (Tk) > 1. Then use (53) to conclude.

To conclude notice that g = 0⇐⇒ R0 ≤ 1 is a consequence of the equivalence between (i)
and (iv) with h = 0 and R0 = Re(1).

Using that F (g) = 0, we get Tk(g) = γg/(1− g). We deduce that Tk(1−g)/γ(Tk(g)) = Tk(g).
If g 6= 0, we get Tk(g) 6= 0 (on a set of positive µ-measure). This implies that Re(1− g) ≥ 1.
Then use (iv) to deduce that Re(1− g) = 1 if g 6= 0. �

In the SIS model, in order to stress, if necessary, the dependence of a quantity H, such as
Fη, Re or gη, in the parameters k and γ (which satisfy Assumption 2) of the model, we shall
write H[k, γ]. Recall that if k and γ satisfy Assumption 2, then the kernel k/γ has a finite
double norm on Lp for some p ∈ (1,+∞). We now consider the continuity property of the
maps η 7→ gη[k, γ] and (k, γ, η) 7→ gη[k, γ].
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Lemma 8.3. Let ((kn, γn), n ∈ N) and (k, γ) be kernels and functions satisfying Assumption 2
and (ηn, n ∈ N) be a sequence of elements of ∆ converging weakly to η.

(i) We have limn→∞ gηn [k, γ] = gη[k, γ] µ-almost surely.
(ii) Assume furthermore there exists p′ ∈ (1,+∞) such that k = γ−1k and (kn = γ−1

n kn, n ∈
N) have finite double norm on Lp′ and that limn→∞‖kn − k‖p′,q′ = 0. Then, we have
limn→∞ gηn [kn, γn] = gη[k, γ] µ-almost surely.

Proof. The proof of (i) and (ii) being rather similar, we only provide the latter and indicate
the difference when necessary. To simplify, we write gn = gηn [kn, γn]. We set hn = ηngn ∈ ∆
for n ∈ N. Since ∆ is sequentially weakly compact, up to extracting a subsequence, we can
assume that hn converges weakly to a limit h ∈ ∆. Since Fηn [kn, γn](gn) = 0 for all n ∈ N,
see (22), we have:

(54) gn =
Tkn(ηngn)

1 + Tkn(ηngn)
=

Tkn(hn)

1 + Tkn(hn)
·

We set g = Tk(h)/(1 + Tk(h)). Notice that Tkn(hn) = (Tkn − Tk)(hn) + Tk(hn). We have
limn→∞ Tk(hn) = Tk(h) pointwise. Since ‖(Tkn − Tk)(hn)‖p′ ≤ ‖kn − k‖p′,q′ , up to taking a
sub-sequence, we deduce that limn→∞(Tkn − Tk)(hn) = 0 almost surely. (Notice the previous
step is not used in the proof of (i) as kn = k and limn→∞ Tk(hn) = Tk(h) pointwise.) This
implies that gn converges almost surely to g. By the dominated convergence theorem, we
deduce that gn converges also in Lp to g. This proves that h = ηg almost surely. We get
g = Tk(ηg)/(1 + Tk(ηg)) and thus Fη[k, γ](g) = 0: g is an equilibrium for Fη[k, γ]. We recall
from [8, Section 3] the functional equality Re[k′h] = Re[hk

′], where k′ is a kernel, h a non-
negative functions such that the kernels k′h and hk′ have some finite double norm. We deduce
from the weak-continuity and the stability of Re, see Theorem 4.2 and Proposition 4.3, that:

Re[k/γ](η(1− g)) = Re[k](η(1− g)) = lim
n→∞

Re[kn](ηn(1− gn))

= lim
n→∞

Re[kn/γn](ηn(1− gn))

≤ 1.

(Only the weak-continuity of η′ 7→ Re[k/γ](η′) is used in the proof of (i) to get Re[k/γ](η(1−
g)) ≤ 1.) We deduce that property (iv) of Proposition 8.2 holds with k replaced by kη, and
thus property (i) therein implies that g = gη[k, γ]. �

Proofs of Theorem 4.6 and Proposition 4.7. Under the assumptions of Lemma 8.3, taking the
pair (kn, γn) equal to (k, γ) in the case (i) therein, we deduce that (ηn gηn [kn, γn], n ∈ N)
converges weakly to η gη[k, γ]. This implies that:

lim
n→∞

I[kn, γn](ηn) = lim
n→∞

∫
Ω
ηn gη[kn, γn] dµ =

∫
Ω
η gη[k, γ] dµ = I[k, γ](η).

Taking (kn, γn) = (k, γ) provides the continuity of I[k, γ] and thus Theorem 4.6. Then,
arguing as in the end of the proof of Proposition 4.3, we get Proposition 4.7. �

8.2. Coupling and Pareto optimality. We prove here Proposition 7.3. We only consider
the SIS model Param = [(Ω,F , µ), k, γ], as the kernel model can be handled similarly. We
suppose throughout this section that Assumption 2 holds.

The random variables we consider, are defined on a probability space, say (Ω0,F0,P). We
recall an elementary result on conditional independence. Let A , B and H be σ-fields subsets
of F0, such that H ⊂ A ∩B. Then, according to [28, Theorem 8.9], we have that for any
integrable real-valued random variable X which is B-measurable:

(55) A and B are conditionally independent given H =⇒ E [X|A ] = E [X|H ] .

We now state two technical lemmas.
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Lemma 8.4 (Measurability). Let Param1 and Param2 be coupled models with independent
coupling (X1, X2) and (Y1, Y2). Then the random variable γ1(X1) is σ(X1)∩σ(X2)-measurable.
For any measurable function v : Ω1 × Ω2 → R, such that k1(X1, Y1)v(Y1, Y2) is integrable, the
random variable E [k1(X1, Y1)v(Y1, Y2)|X1] is also σ(X1) ∩ σ(X2)-measurable.

Proof. The σ(X1)∩ σ(X2)-measurability of γ1(X1) is an immediate consequence of the almost-
sure equality γ1(X1) = γ2(X2). Since E [k(X1, Y1)v(Y1, Y2)|X1] is σ(X1)-measurable, it remains
to prove that it is also σ(X2)-measurable. Since (X1, X2) is independent from (Y1, Y2), the σ-
fields A = σ(X1, X2) and B = σ(X1, Y1, Y2) are conditionally independent given H = σ(X1).
Using (55), we deduce that:

E [k1(X1, Y1)v(Y1, Y2)|X1] = E [k1(X1, Y1)v(Y1, Y2)|X1, X2] .

Since k1(X1, Y1) = k2(X2, Y2) P-almost surely, we get:

E [k1(X1, Y1)v(Y1, Y2)|X1] = E [k2(X2, Y2)v(Y1, Y2)|X1, X2]

= E [k2(X2, Y2)v(Y1, Y2)|X2] ,

where the last equality follows from another application of (55) with A = σ(X1, X2), B =
σ(X2, Y1, Y2) which are conditionally independent given H = σ(X2). The last expression is
σ(X2) measurable, so the proof is complete. �

In the following key lemma, we simply write Hi for H[Parami] for H the loss functions Re
and I, the cost function C = Cuni and the spectrum Spec.

Lemma 8.5. If Param1 and Param2 are coupled models, and if the functions η1 ∈ ∆1 and
η2 ∈ ∆2 are coupled, then Spec1(η1)∪{0} = Spec2(η2)∪{0} and for H any one of the mappings
Cuni, Re or I:

(56) H1(η1) = H2(η2).

Proof. Let (X1, X2) and (Y1, Y2) be two independent couplings, and assume that η1 and η2 are
coupled through the function η, see Remark 7.2 (i):

(57) E [η(X1, X2)|Xi] = ηi(Xi) for i ∈ {1, 2}.

Step 1: The cost function (H = Cuni). We directly have:

C1(η1) = 1− E [η1(X1)] = 1− E [η(X1, X2)] = 1− E [η2(X2)] = C2(η2).

Step 2: The spectrum and the effective reproduction function (H = Re). Set ki = ki/γi for
i ∈ {1, 2}. Let λ be a non-zero eigenvalue of Tk1η1 associated with an eigenvector v1. Notice
that k(X1, Y1)η1(Y1)v(Y1) is integrable thanks to the integrability condition from Assumption
2. By definition of eigenvectors, v1(X1) is a version of the conditional expectation:

λ−1E [k1(X1, Y1) η1(Y1)v1(Y1)|X1] .

By Lemma 8.4 applied to the function v(y1, y2) = (v1η1/γ1)(y1), the real-valued random variable
v1(X1) is σ(X1) ∩ σ(X2)-measurable and thus σ(X2)-measurable. Thanks to (50), there exists
v2 such that v2(X2) = v1(X1) almost surely. Since (Y1, Y2) is distributed as (X1, X2), we
deduce that (57) holds also with (X1, X2) replaced by (Y1, Y2) and that v2(Y2) = v1(Y1) almost
surely. Recall that ki = ki/γi, so that k1(X1, Y1) = k2(X2, Y2) almost surely. We may now
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compute:

(58)

λv2(X2) = λv1(X1)

= E [k1(X1, Y1) η1(Y1)v1(Y1)|X1]

= E [k1(X1, Y1) η(Y1, Y2)v1(Y1)|X1] (de-conditioning on (Y1, X1))
= E [k1(X1, Y1) η(Y1, Y2)v1(Y1)|X2] (Lemma 8.4)
= E [k2(X2, Y2) η(Y1, Y2)v2(Y2)|X2] (a.s. equality)
= E [k2(X2, Y2) η2(Y2)v2(Y2)|X2] (conditioning on (Y2, X2))
= Tk2η2v2(X2).

Since the distribution of X2 is µ2, we have λv2 = Tk2η2v2 µ2-almost surely. Therefore λ is
also an eigenvalue for Tk2η2 . By symmetry we deduce that the spectrum up to {0} of Tk1η1

and Tk2η2 coincide, that is Spec1(η1) ∪ {0} = Spec2(η2) ∪ {0}, and in particular the spectral
radius coincide.

Step 3: The total proportion of infected population function (H = I). We assume without
loss of generality that ρ(Tk1/γ1) > 1, which is equivalent to ρ(Tk2/γ2) > 1, thanks to (56)
with H = Re and η1 = η2 = 1. Let g1 = gη1 be the maximal equilibrium for the model Param1.
Since Fη1(g1) = 0, see (22), we have:

(59) g1 =
Tk1(η1g1)

γ1 + Tk1(η1g1)
·

By Lemma 8.4, this implies that g1(X1) is σ(X1) ∩ σ(X2) measurable. Thus, there exists g′2
such that g′2(X2) = g1(X1) P-almost surely.. Therefore, by the same computation as in (58):

Tk1(η1g1)(X1) = Tk2(η2g
′
2)(X2) P− a.s.

We set:

(60) g2 =
Tk2(η2g

′
2)

γ2 + Tk2(η2g′2)
·

Then, we deduce from (59) that g2(X2) = g′2(X2) P-almost surely, that is g2 = g′2 µ2-almost
surely. Thus (60) holds with g′2 replaced by g2. In other words, g2 satisfies (22): it is an
equilibrium for the model given by Param2.

Let us now prove that g2 is in fact the maximal equilibrium. Since g2(X2) = g1(X1) P-almost
surely and g1(X1) is σ(X1)∩ σ(X2)-measurable, we deduce from Remark 7.2 (ii), that (1− g1)
and (1−g2) are coupled, so Re[Param1](1−g1) = Re[Param2](1−g2), by Property (56) applied
to H = Re. Since R0 > 1 and g1 is the maximal equilibrium for Param1, we deduce from
Proposition 8.2 that Re[Param1](1− g1) = 1. Using again Proposition 8.2, this gives that g2

is the maximal equilibrium for Param2.
We may now compute:

I1(η1) = E [η1(X1) g1(X1)]

= E [η(X1, X2) g1(X1)] (deconditioning on X1)
= E [η(X1, X2) g2(X2)] ( a.s. equality)
= E [η2(X2) g2(X2)] (conditioning on X2)
= I2(η2),

thus (56) holds for H = I, and the proof is complete. �

We now give the proof of Proposition 7.3. Its first part is an elementary consequence of the
Lemma 8.5; and the second part is a direct consequence of Remark 7.2 (iii).
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