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Introduction

Let H be a separable Hilbert space and I := [0, T ]. Let F : I × H ⇒ H be a mixed semi-continuous set-valued map and f : I × H → H be a single-valued mapping. In this paper, we are mainly interested at first in the perturbed evolution problem du dt (t) ∈ A(t)u(t) + f (t, u(t)) + F (t, u(t)) a.e. t ∈ I,

governed by a time-dependent maximal monotone operator A(t) in the vein of Kunze-Marques and Vladimirov's works [START_REF] Kunze | BV solutions to evolution problems with time-dependent domains[END_REF][START_REF] Vladimirov | Nonstationary dissipative evolution equations in Hilbert spaces[END_REF]. Here, the dependence t → A(t) is of absolutely continuous variation, in the sense that there exists β ∈ W There is a plethora of results dealing with convex weakly compact upper semi-continuous (or lower semi-continuous) perturbations for evolution inclusions involving maximal monotone (or m-accretive) operators, subdifferential operators, and sweeping processes. For first-order related problems, we refer the reader to [START_REF] Attouch | On multivalued evolution equations in Hilbert spaces[END_REF][START_REF] Benabdellah | Compactness and discretization methods for differential inclusions and evolution problems[END_REF][START_REF] Bounkhel | Non convex sweeping process and prox-regularity in Hilbert spaces[END_REF][START_REF] Castaing | Evolution equations governed by the sweeping process[END_REF][START_REF] Castaing | Evolution equations governed by maccretive and subdifferential operators with delay[END_REF][START_REF] Castaing | Functional differential inclusion on closed sets in Banach spaces[END_REF][START_REF] Castaing | Functional evolution equations governed by maccretive operators[END_REF][START_REF] Castaing | BV periodic solutions of an evolution problem associated with continuous convex sets[END_REF][START_REF] Castaing | Evolution problems associated with nonconvex closed moving sets with bounded variation[END_REF][START_REF] Castaing | Topological properties of solution sets for sweeping processes with delay[END_REF][START_REF] Castaing | Functional evolution equations governed by nonconvex sweeeping process[END_REF][START_REF] Cellina | Non-convex perturbations of maximal monotone diffrential inclusions[END_REF][START_REF] Colombo | Lower semi-continuous perturbations of maximal monotone differential inclusions[END_REF][START_REF] Faik | Differential inclusions governed by a nonconvex sweeping process[END_REF][START_REF] Guillaume | On a time-dependent subdifferential evolution inclusion with a nonconvex upper-semi continuous perturbation[END_REF][START_REF] Monteiro Marques | Perturbations convexes semi-continues supérieurement de problèmes d'évolution dans les espaces de Hilbert[END_REF][START_REF] Thibault | Sweeping process with regular and nonregular sets[END_REF] and the references therein.

Other corresponding results can be found in the case of a single-valued perturbation, we cite for instance [START_REF] Attouch | Strong solutions for parabolic vatiational inequalities[END_REF][START_REF] Azzam-Laouir | Perturbed evolution problems with absolutely continuous variation in time and applications[END_REF][START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF][START_REF] Castaing | Evolution problems with timedependent subdifferential operators[END_REF][START_REF] Edmond | Relaxation and optimal control problem involving a perturbed sweeping process[END_REF][START_REF] Kenmochi | Some nonlinear parabolic variational inequalities[END_REF][START_REF] Kubo | Characterisation of a class of evolution operators generated by timedependent subdifferential[END_REF][START_REF] Peralba | Équations d'évolution dans un espace de Hilbert, associées à des opérateurs sous-différentiels[END_REF][START_REF] Saïdi | Relaxation of optimal control problems involving time dependent subdifferential operators[END_REF][START_REF] Saïdi | On a time-dependent subdifferential evolution inclusion with Carathéodory perturbation[END_REF][START_REF] Yamada | On evolution equations generated by subdifferential operators[END_REF]. About the problems under consideration, the set-valued map F is mixed semi-continuous in the sense of Tolstonogov [START_REF] Tolstonogov | Solutions of a differential inclusion with unbounded righthand side (Russian)[END_REF], that is for each t ∈ I, at each x ∈ H where F (t, x) is convex, F (t, •) is upper semi-continuous, and whenever F (t, x) is not convex, F (t, •) is lower semi-continuous on some neighbourhood of x. The main ingredient to study evolution problems with such perturbation is a selection theorem due to Tolstonogov [START_REF] Tolstonogov | Solutions of a differential inclusion with unbounded righthand side (Russian)[END_REF] (see [START_REF] Tolstonogov | Differential inclusions in a Banach space[END_REF] for the infinite dimensional setting). There exist few results on mixed semi-continuous perturbation of sweeping process and maximal monotone operators in the literature, see [START_REF] Azzam-Laouir | Mixed semicontinuous perturbation to an evolytion problem with time dependent maximal monotone operator[END_REF][START_REF] Azzam-Laouir | Mixed semicontinuous perturbation of nonconvex state-dependent sweeping process[END_REF][START_REF] Azzam-Laouir | Nonconvex perturbations of second order maximal monotone differential inclusions[END_REF][START_REF] Azzam-Laouir | Existence solutions for secondorder differential inclusions with nonconvex perturbations[END_REF][START_REF] Azzam-Laouir | Existence of solutions for a second order boundary value problem with the Clarke subdifferential[END_REF][START_REF] Fryszkowski | Mixed semi-continuous mappings and their applications to differential inclusions[END_REF][START_REF] Haddad | Reduction of sweeping process to unconstrained differential inclusion[END_REF][START_REF] Haddad | Reduction of state dependent sweeping process to unconstrained differential inclusion[END_REF][START_REF] Haddad | Mixed semi-continuous perturbation of nonconvex sweeping process[END_REF]. So, the problems considered in this paper are new contributions on mixed semi-continuous perturbation of time-dependent maximal monotone operators and time-dependent subdifferential operators in the infinite dimensional framework. Perturbed differential inclusions involving time-dependent maximal monotone operators (resp. time-dependent subdifferential operators) by a single-valued map f (or a set-valued map F ) in [START_REF] Azzam-Laouir | Perturbed evolution problems with absolutely continuous variation in time and applications[END_REF] (resp. [START_REF] Saïdi | Relaxation of optimal control problems involving time dependent subdifferential operators[END_REF][START_REF] Saïdi | On a time-dependent subdifferential evolution inclusion with Carathéodory perturbation[END_REF][START_REF] Saïdi | Set-valued perturbation for time dependent subdifferential operator[END_REF]) lead naturally to consider general differential inclusions with the perturbations f + F in (1.3) and G + F in (1.2). Actually, the existence of solutions for such evolution problems remains a very wellactive area of research. It is worth pointing out that the class of sweeping processes perturbed by a sum F + f , has been investigated [START_REF] Azzam-Laouir | On perturbed sweeping process[END_REF], in the absolutely continuous framework. The author in [START_REF] Nacry | Truncated nonconvex state-dependent sweeping process: implicit and semi-implicit adapted Moreau's catching-up algorithms[END_REF] has developed several works on that topic, see also [START_REF] Nacry | Perturbed BV sweeping process involving prox-regular sets[END_REF] in the bounded variation framework. Related results to evolution problems governed by time-dependent maximal monotone operators have been recently established, see [START_REF] Azzam-Laouir | Multivalued perturbation to evolution problems involving time dependent maximal monotone operators[END_REF][START_REF] Azzam-Laouir | Mixed semicontinuous perturbation to an evolytion problem with time dependent maximal monotone operator[END_REF][START_REF] Azzam-Laouir | On a time and state dependent maximal monotone operator coupled with a sweeping process with perturbations[END_REF].

The paper is organized as follows. In section 2, we introduce notation and the necessary background material. In section 3, we deal with mixed semicontinuous perturbation of evolution inclusions (1.1)-(1.2) and (1.3) making use of a selection theorem due to Tolstonogov [START_REF] Tolstonogov | Differential inclusions in a Banach space[END_REF] and Kakutani-Ky Fan fixed point theorem. We give also a variant with a single-valued perturbation using Schauder fixed point theorem. Section 4 is devoted to study the existence and uniqueness of periodic solution.

Notation and Preliminaries

From now on I := [0, T ] (T > 0) is an interval of R and H is a real separable Hilbert space with scalar product denoted by •, • and associated norm || • ||. We will denote by B H the closed unit ball of H and B H [x, r] its closed ball of center x ∈ H and radius r > 0. For any interval I of R, we denote by L(I) (resp. B(H)) the σ-algebra of measurable sets of I (resp. Borel σ-algebra of measurable sets of H). On the space C H (I) of continuous maps x : I → H, we consider the norm of uniform convergence on I ||x|| ∞ = sup t∈I ||x(t)||. By L p H (I) for p ∈ [1, +∞[ (resp. p = +∞), we denote the space of measurable maps x : I → H such that I ||x(t)|| p dt < +∞ (resp. which are essentially bounded) endowed with the usual norm ||x|| L p H (I) = ( I ||x(t)|| p dt) 1 p , 1 ≤ p < +∞ (resp. endowed with the usual essential supremum norm || • ||). By W 1,1 (I, H) and W 1,2 (I, H), we denote the spaces of absolutely continuous functions from I to H with derivatives in L 1 H (I) and L 2 H (I) respectively. A map u : [0, T ] → H is absolutely continuous if there exists an integrable mapping v such that u(t) = u 0 + t 0 v(s)ds; in this case u = v a.e. on I. Let E be a Banach space and E its topological dual, we denote by σ(E, E ) the weak topology on E.

We introduce in the following the definition and some properties of maximal monotone operators needed in the proofs of our results, we refer the reader to [START_REF] Barbu | Nonlinear semigroups and differential equations in Banach spaces[END_REF][START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF][START_REF] Vrabie | Compactness methods for nonlinear evolution equations[END_REF] for their basic theory and more details. Let A : D(A) ⊂ H ⇒ H be a set-valued operator. The domain, the range and the graph of A are the following sets

D(A) = {x ∈ H : Ax = ∅}, R(A) = {y ∈ H : ∃ x ∈ D(A), y ∈ Ax} = ∪{Ax : x ∈ D(A)}, gph(A) = {(x, y) ∈ H × H : x ∈ D(A), y ∈ Ax}. We say that A : D(A) ⊂ H ⇒ H is monotone, if y 1 -y 2 , x 1 -x 2 ≥ 0 whenever (x i , y i ) ∈ gph(A), i = 1, 2.
It is maximal monotone, if its graph could not be contained strictly in the graph of any other monotone operator, in this case, for all λ > 0, R(I H + λA) = H, where I H stands for the identity mapping of H. If A is a maximal monotone operator then, for every x ∈ D(A), Ax is nonempty, closed and convex. So that, the projection of the origin into Ax, A 0 (x), exists and is unique. For λ > 0, we define the resolvent and the Yosida approximation of A respectively by, J A λ = (I H + λA) -1 and A λ = 1 λ I H -J A λ . These operators are both single-valued and defined on the whole space H, and we have

J A λ x ∈ D(A) and A λ (x) ∈ A(J A λ x), for every x ∈ H. (2.1) ||A λ (x)|| ≤ ||A 0 (x)|| ∀x ∈ D(A). (2.2)
Let A : D(A) ⊂ H ⇒ H and B : D(B) ⊂ H ⇒ H be two maximal monotone operators, then we denote by dis (A, B) (see [START_REF] Vladimirov | Nonstationary dissipative evolution equations in Hilbert spaces[END_REF]) the pseudodistance between A and B defined by

dis (A, B) = sup y -y , x -x 1 + ||y|| + ||y || : (x, y) ∈ gph(A), (x , y ) ∈ gph(B) . (2.3) Clearly, dis (A, B) ∈ [0, +∞], dis (A, B) = dis (B, A) and dis (A, B) = 0 iff A = B.
Let ϕ be a lower semi-continuous convex function from H into R∪{+∞} which is proper in the sense that its effective domain dom ϕ defined by dom ϕ := {x ∈ H : ϕ(x) < +∞} is nonempty and, as usual, its Fenchel conjugate is defined by ϕ

* (v) := sup x∈H [ v, x -ϕ(x)] and its Moreau regular- ization by ϕ λ (x) = inf{ 1 2 x -y 2 + ϕ(y)}. The subdifferential ∂ϕ(x) of ϕ at x ∈ domϕ is ∂ϕ(x) = {v ∈ H : ϕ(y) ≥ v, y -x + ϕ(x) ∀y ∈ dom ϕ},
and its effective domain is

D(∂ϕ) = {x ∈ H : ∂ϕ(x) = ∅}.
It is well known that if ϕ is a proper lower semi-continuous convex function, then its subdifferential operator ∂ϕ is a maximal monotone operator.

Let F : Ω ⇒ Y be a set-valued map from an open set Ω of a normed space X into a normed space Y . The set-valued map F is upper (resp. lower) semi-continuous at x 0 ∈ Ω if for every open set U of Y such that F (x 0 ) ⊂ U (resp. F (x 0 ) ∩ U = ∅) there exists a neighbourhood V of x 0 such that for all x ∈ V , we have F (x) ⊂ U (resp. F (x) ∩ U = ∅). The set-valued map F is upper (resp. lower) semi-continuous if it is upper (resp. lower) semi-continuous at each point. Let F : T ⇒ Y be a set-valued map from a measurable space (T, T ) into a metric space Y . The set-valued map F is measurable if for any open set U of Y , we have

F -1 (U ) ∈ T , with F -1 (U ) = {t ∈ T : F (t) ∩ U = ∅}.
A function f : I×H -→ R is said to be a Carathéodory map if it is measurable with respect to the first variable and continuous with respect to the second one. We refer to [START_REF] Castaing | Convex Analysis and Measurable Multifunctions[END_REF] for details concerning convex analysis and measurable setvalued-maps.

For the proof of our theorems we will need the following selection theorem (see Theorem 6.6. [START_REF] Tolstonogov | Differential inclusions in a Banach space[END_REF]).

Theorem 2.1. Let Y be a separable Banach space and J ⊂ R. Let G : J ×Y ⇒ Y be a set-valued map with compact values that satisfies (j) G is L(J) ⊗ B(Y )-measurable; (jj) for every t ∈ J, at each x ∈ Y such that G(t, x) is convex, the setvalued map G(t, •) is upper semi-continuous on Y and whenever G(t, x) is not convex, the set-valued map G(t, •) is lower semi-continuous on some neighbourhood of x;

(jjj) there exists a function g : J × Y -→ R + of Carathéodory type which is integrably bounded on bounded subsets of Y and which is such that

G(t, x) ∩ B Y [0, g(t,
x)] = ∅ for any x ∈ Y and a.e. t ∈ J.

Then, for any ε > 0 and any compact set K ⊂ C Y (J), there is a nonempty closed convex set valued map Ψ : K ⇒ L 1 Y (J) which has a sequentially closed graph with respect to the norm of uniform convergence in K and the weak topology

σ(L 1 Y (J), L ∞ Y (J)) in L 1 Y (J)
and which is such that for any x ∈ K and h ∈ Ψ(x), one has for a.e.

t ∈ J h(t) ∈ G(t, x(t)) ||h(t)|| ≤ g(t, x(t)) + ε.
We close this section by recalling the following lemma (Lemma A.5. [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]).

Lemma 2.1. Let m ∈ L 1 R ([0, T ]
) such that m ≥ 0 a.e. on [0, T ] and let α be a positive constant. Consider a continuous function φ : [0, T ] → R satisfying

1 2 φ 2 (t) ≤ 1 2 α 2 + t 0 m(s)φ(s)ds for all t ∈ [0, T ].
Then, one has

|φ(t)| ≤ α + t 0 m(s)ds for all t ∈ [0, T ].

Existence results

We are going to prove our main results under the following assumptions: Let for every t ∈ I, A(t) : D(A(t)) ⊂ H ⇒ H is a maximal monotone operator such that (H1) There exists a function β ∈ W 1,2 (I, R) which is non-negative on [0, T [ and non-decreasing with β(T ) < ∞ and β(0

) = 0 such that dis (A(t), A(s)) ≤ |β(t) -β(s)|, ∀t, s ∈ I.
(H2) There exists a non-negative real number c such that

||A 0 (t, x)|| ≤ c(1 + ||x||) for t ∈ I, x ∈ D(A(t)). (H3) t → J λ (t)(x) = I H + λA(t) -1
x is measurable for every λ > 0 and for

every x ∈ H. Let f : I × H → H be a mapping such that (i) f (•, x) is measurable on I for every x ∈ H; (ii) ||f (t, x) -f (t, y)|| ≤ m||x -y|| for all (t, x, y) ∈ I × H × H for some positive constant m; (iii) ||f (t, x)|| ≤ m for all (t, x) ∈ I × H.
or again (ii) for every η > 0, there exists a non-negative function γ η (•) ∈ L 2 R (I) such that, for all t ∈ I and for any u, w

∈ B H [0, η] ||f (t, u) -f (t, w)|| ≤ γ η (t)||u -w||;
(iii) there exists a non-negative function β(•) ∈ L 2 R (I) such that, for all t ∈ I and for all u ∈ H, one has

||f (t, u)|| ≤ β(t)(1 + ||u||).
Let F : I × H ⇒ H be a compact set-valued map such that (j) F is L(I) ⊗ B(H)-measurable; (jj) for every t ∈ I, at each x ∈ H such that F (t, x) is convex, the set-valued map F (t, •) is upper semi-continuous and whenever F (t, x) is not convex, F (t, •) is lower semi-continuous on some neighbourhood of x; (jjj) F (t, x)∩α(t)(1+||x||)B H = ∅ for all (t, x) ∈ I ×H for some measurable function α with 0 < α(t) < 1 for all t ∈ I.

Let ϕ : I × H → [0, +∞] be a map satisfying: (H 1 ) For each t ∈ I, the function x -→ ϕ(t, x) is proper lower semi-continuous and convex. (H 2 ) There exist a ρ-Lipschitz function k : H -→ R + and an absolutely continuous function a : I → R, with a non-negative derivative ȧ ∈ L 2 R (I), such that ϕ * (t, x) ≤ ϕ * (s, x) + k(x)|a(t) -a(s)| for every (t, s, x) ∈ I × I × H.

Mixed semi-continuous perturbation problem with time-dependent maximal monotone operators

For the sake of completeness we recall and summarize some important results [START_REF] Azzam-Laouir | Perturbed evolution problems with absolutely continuous variation in time and applications[END_REF][START_REF] Azzam-Laouir | Multivalued perturbation to evolution problems involving time dependent maximal monotone operators[END_REF][START_REF] Azzam-Laouir | Mixed semicontinuous perturbation to an evolytion problem with time dependent maximal monotone operator[END_REF]. Theorem 3.1. Assume that for every t ∈ I, A(t) : D(A(t)) ⊂ H ⇒ H is a maximal monotone operator satisfying (H1)-(H2). Let f : I × H → H be such that for every x ∈ H the mapping f (•, x) belongs to L ∞ H (I), and that f satisfies the linear growth condition: there exists a non-negative real constant M such that ||f (t, x)|| ≤ M (1 + ||x||) for t ∈ I, x ∈ H. Moreover, for every R > 0 there exists a non-negative real function

α R (•) ∈ L 1 R (I) such that ||f (t, x) -f (t, y)|| ≤ α R (t)||x -y||, ∀t ∈ I, ∀x, y ∈ B H [0, R].
Then, for all u 0 ∈ D(A(0)), the problem Taking into account the fact (J ), it is clear that D(A) is nonempty and A is well defined. On the other hand, it is easy to see that A is monotone. For the maximality, we need to check that R(I L 2

- du dt (t) ∈ A(t)u(t) + f (t,
H (I) + λA) = L 2 H (I) for each λ > 0. Let g ∈ L 2
H (I). Then, from (H3), t → v(t)

:= I H + λA(t) -1 g(t) = J λ (t)(g(t)) = g(t) -λA λ (t)(g(t)) is measurable by noting that J λ (t)(•) is non expansive and A λ (t)(•) is 2 λ -Lipschitz. Set for each t ∈ I, h(t) := λA λ (t)(g(t)) = λ(A λ (t)(g(t)) -A λ (t)(u(t)) + λA λ (t)(u(t))
where u denotes the absolutely continuous solution of the unperturbed problem above. Then, h is measurable and h(t) ≤ 2 g(t)-u(t) +λ A λ (t)(u(t)) So we deduce that h ∈ L 2 H (I) because g ∈ L 2 H (I) and t → A λ (t)(u(t)) ∈ L ∞ H (I) using (2.2) and (H2). This proves that v ∈ L 2 H (I) and g ∈ v + λAv, so that R(I L 2 H (I) + λA) = L 2 H (I).

In the light of the mentioned results above, we develop some new variants for time-dependent maximal monotone operators involving a perturbation f + F , where F is a mixed semi-continuous set-valued map. 

u(0) = u 0 ∈ D(A(0)).
The existence and uniqueness of such a solution follow from Lemma 3.1. Now, let r : [0, 1] → R + be the unique absolutely continuous solution of the differential equation

ṙ(t) = α(t)(1 + r(t)) + ε + m a.e. with r(0) = sup t∈[0,1] ||u(t)||. Since ṙ + ε ∈ L ∞ R+ (I) ⊂ L 1 R+ (I), the set M := {h ∈ L 1 H (I) : ||h(t)|| ≤ ṙ(t) + ε a.e.}, is clearly convex σ(L 1 H (I), L ∞ H (I))-compact. Consider the problem of the form -u(t) ∈ A(t)u(t) + f (t, u(t)) + h(t), h ∈ M a.e. t ∈ I, u(0) = u 0 ∈ D(A(0)).
The existence and uniqueness of solutions follow from Theorem 3.1, by considering the perturbation defined by f (t, x) + h(t). Denote by u h , for any h ∈ M , the unique absolutely continuous solution to the perturbed evolution problem

-uh (t) ∈ A(t)u h (t) + f (t, u h (t)) + h(t) a.e. t ∈ I, u h (0) = u 0 ∈ D(A(0)).
Using the monotonicity of A(t), for all t ∈ I, one has the estimation

1 2 ||u h (t) -u(t)|| 2 ≤ t 0 ||f (s, u h (s)) + h(s)||||u h (s) -u(s)||ds.
Thanks to Lemma 2.1, it follows

||u h (t) -u(t)|| ≤ t 0 ||f (s, u h (s)) + h(s)||ds,
so that for all t ∈ I, one gets

||u h (t)|| ≤ r(0) + t 0 [ ṙ(s) + ε + m]ds = r(t) + εt + mt ≤ r(t) + m + ε. (3.2)
Main fact:

L := {u h : h ∈ M } is compact in C H (I).
The essential tools to prove it are the above estimate, the ball compactness assumption on D(A(t)), along with the maximal monotone property of the extension A to L 2 H (I) of A(t) defined in Lemma 3.1. In view of the estimate in Theorem 3.1 with the perturbation f + h, one gets || uh (t

)|| ≤ K(1 + β(t)), for a.e. t ∈ I, where K = K(||u 0 ||, c, I, m, α(•), β(•)) for all h ∈ M . Shortly || uh (t)|| ≤ γ(t) := K(1 + β(t)) with γ ∈ L 2 R+ (I). So, for any h ∈ M , uh is bounded in L 2 H (I), that is, S = sup h∈M || uh || L 2 H (I) < +∞. (3.3) It is clear that L := {u h : h ∈ M } is equicontinuous, Indeed, for any s, t ∈ I, one has ||u h (t) -u h (s)|| = || t s uh (τ )dτ || ≤ (t -s) 1/2 ( 1 0 || uh (τ )|| 2 dτ ) 1/2 ≤ (t -s) 1/2 S.
Moreover, by (3.2), one has sup

h∈M ||u h (t)|| < +∞ for any t ∈ I. Since u h (t) ∈ D(A(t)
) for all t ∈ I and for all h ∈ M , along with the ball-compactness of

D(A(t)), for each t ∈ I, the set {u h (t), h ∈ M } is relatively compact in H. Thus, L is relatively compact in C H (I). It remains to show that L is compact in C H (I). Let (h n ) n be a sequence in M and (u hn ) n be a sequence in L such that u hn → u ∈ C H (I)
. By weak compactness of M , we may assume that h n → h ∈ M with respect to the σ(L 2 H (I), L 2 H (I))-topology. Recall that u hn is the unique absolutely continuous solution of

-uhn (t) ∈ A(t)u hn (t) + h n (t) + f (t, u hn (t)), h n ∈ M, a.e. t ∈ I, u hn (0) = u 0 ∈ D(A(0)).
By hypothesis on f , one writes ||f (t, u hn (t))|| ≤ m for all t ∈ I. Since u hn → u in C H (I), along with the Lipschitz behavior of f with respect to its second variable yield (via the dominated convergence theorem)

f (•, u hn (•)) → f (•, u(•)) in L 2 H (I). As a consequence, f (•, u hn (•)) → f (•, u(•)) with respect to the σ(L 2 H (I), L 2 
H (I))-topology. Furthermore, in view of (3.3), the sequence ( uhn ) is bounded in L 2 H (I) so that, up to a subsequence that we do not relabel, we may suppose that ( uhn ) n weakly converges in L 2 H (I) to some element z(•). For any integer n and any y ∈ H and for 0 ≤ s ≤ t ≤ 1, relying on the absolute continuity of (u hn ) n , one writes

1 0 y1 [s,t] (τ ), uhn (τ ) dτ = y, u hn (t) -u hn (s) .
Next, passing to the limit in the equality yields

y, t s z(τ )dτ = y, u(t) -u(s) .
Therefore, given any s, t ∈ I with s ≤ t, we get t s z(τ )dτ = u(t) -u(s), and hence u(•) is absolutely continuous and z coincides almost everywhere in I with u(•). Thus, u ∈ L 2 H (I) and uhn → u weakly in

L 2 H (I). As uhn + f (•, u hn (•)) + h n (•) → u + f (•, u(•)) + h(•) weakly in L 2
H (I), so that by the maximal monotone extension A of A(t) cf. Lemma 3.1, we get

-u(t) ∈ A(t)u(t) + h(t) + f (t, u(t)), h ∈ M, a.e. t ∈ I.
Denote by u h the unique absolutely continuous solution of

-uh (t) ∈ A(t)u h (t) + h(t) + f (t, u h (t)), h ∈ M, a.e. t ∈ I, u h (0) = u 0 ∈ D(A(0)).
By uniqueness, one has u = u h . Thus, the set L is compact in C H (I).

Step 2 Now, given ε > 0, the compact set L in C H (I) being constructed, we may apply Theorem 2.1 to the mixed semi-continuous set-valued map F by taking g(t, x) = α(t)(1 + ||x||), (t, x) ∈ I × H. Then, there is a nonempty closed convex set valued-map Ψ : L ⇒ L 1 H (I) whose graph is sequentially closed with respect to the topology of uniform convergence in L and the weak topology in L 1 H (I) and such that, for any x ∈ L and y ∈ Ψ(x), for a.e. t ∈ I, one has

y(t) ∈ F (t, x(t)) and ||y(t)|| ≤ α(t)(1 + ||x(t)||) + ε.
This along with u h ∈ L and y h ∈ Ψ(u h ), one has for a.e t ∈ I y

h (t) ∈ F (t, u h (t)) and ||y h (t)|| ≤ α(t)(1 + ||u h (t)||) + ε ≤ α(t)(1 + r(t) + ε + m) + ε = α(t)(1 + r(t)) + α(t)ε + α(t)m + ε ≤ α(t)(1 + r(t)) + ε + m + ε = ṙ(t) + ε; taking into account the fact ||u h (t)|| ≤ r(t) + ε + m. It's easy to see that y h ∈ M , hence Ψ(u h ) ⊂ M for all u h ∈ L. Thus, there is a non-empty convex weakly-compact set-valued map Ψ : L ⇒ L 1 H (I) with the following properties (l) Ψ(x) ⊂ {h ∈ M : h(t) ∈ F (t, x(t)) a.e.} ⊂ M , for each x ∈ L, (ll) the set-valued map Ψ has closed graph, in the sense, for any y n ∈ Ψ(x n ) such that (x n ) converging uniformly to x ∈ L and (y n ) σ(L 1 H (I), L ∞ H (I))- converging in L 1 H (I) to y, then, y ∈ Ψ(x), equivalently, Ψ : L ⇒ M is upper semi-continuous from L ⊂ C H (I) to M endowed with the σ(L 1 H (I), L ∞ H (I))- topology.
Step 3 We finish the proof by using Kakutani-Ky Fan fixed point theorem. For each h ∈ M , let us set Φ(h) = Ψ(u h ) where

-uh (t) ∈ A(t)u h (t) + f (t, u h (t)) + h(t) h ∈ M, a.e. t ∈ I, u h (0) = u 0 ∈ D(A(0)).
Then, it's clear that Φ is a convex weakly compact set-valued map from M to M . We claim that Φ has a fixed point

h, i.e., h ∈ Φ(h) = Ψ(u h ), then, by (l) h(t) ∈ F (t, u h (t)) a.e., one has -uh (t) ∈ A(t)u h (t) + f (t, u h (t)) + h(t) a.e. t ∈ I, u h (0) = u 0 ∈ D(A(0)), with h(t) ∈ F (t, u h (t)) a.e., thus proving that -uh (t) ∈ A(t)u h (t) + f (t, u h (t)) + F (t, u h (t)) a.e. t ∈ I, u h (0) = u 0 ∈ D(A(0)),
has at least a solution. For this purpose, by virtue of Kakutani-Ky Fan fixed point theorem, we need to prove that Φ : M ⇒ M is upper semi-continuous with non-empty convex weakly compact values from M into itself, equivalently, the graph of Φ is sequentially closed in M × M , for M equipped with the σ(L 1

H (I), L ∞ H (I))-topology. Indeed, for each n ∈ N, let g n ∈ Φ(h n ) = Ψ(u hn ) with -uhn (t) ∈ A(t)u hn (t) + f (t, u hn (t)) + h n (t) a.e. t ∈ I, u hn (0) = u 0 ∈ D(A(0)), with u hn ∈ L by our definition of L and (g n ) ⊂ M which σ(L 1 H (I), L ∞ H (I))- converges to g ∈ M .
Further, by compactness of L, (u hn ) n uniformly converges to u h with

-uh (t) ∈ A(t)u h (t) + f (t, u h (t)) + h(t) a.e. t ∈ I, u h (0) = u 0 ∈ D(A(0)).
By the property (ll) of the set-valued map Ψ, one has g ∈ Ψ(u h ) = Φ(h). So, the graph of Φ : M ⇒ M is closed, hence the convex weakly compact valued mapping Φ admits a fixed point by Kakutani-Ky Fan theorem, h ∈ Φ(h) = Ψ(u h ). By the property (l), we get h(t) ∈ F (t, u h (t)) a.e. which implies

-uh (t) ∈ A(t)u h (t) + f (t, u h (t)) + h(t) a.e. t ∈ I, u h (0) = u 0 ∈ D(A(0)),
with h(t) ∈ F (t, u h (t)) a.e. just finishing the proof of the theorem.

We end this subsection by the following theorem.

Theorem 3.3. Let I := [0, 1]. Assume that for every t ∈ I, A(t) : D(A(t)) ⊂ H ⇒ H is a maximal monotone operator with D(A(t)
) is ball-compact for every t ∈ I satisfying (H1)-(H2)-(H3). Let F : I × H ⇒ H be a compact set-valued map satisfying (j)-(jj) and (j ) F (t, x) ∩ α(t)(1 + ||x||)B H = ∅ for all (t, x) ∈ I × H for some measurable function α with 0 < α(t) < 1 2 for all t ∈ I. Let G : I × H ⇒ H be a compact set-valued map satisfying (j)-(jj) and (j j ) G(t, x) ∩ mB H = ∅, for all (t, x) ∈ I × H, for some positive constant m with 0 < m < 1 2 for all t ∈ I. Then, for all u 0 ∈ D(A(0)), the problem

- du dt (t) ∈ A(t)u(t) + G(t, u(t)) + F (t, u(t)) a.e. t ∈ I,
has at least an absolutely continuous solution u.

Proof. Step 1 Let u 0 ∈ D(A(0)), ε > 0. Let u : [0, 1] → H be the unique absolutely continuous solution to -u(t) ∈ A(t)u(t) a.e. t ∈ I, u(0) = u 0 ∈ D(A(0)).
The existence and uniqueness of such a solution follow from Lemma 3.1. Now, let r : [0, 1] → R + be the unique absolutely continuous solution of the differential equation

ṙ(t) = α(t)(1 + r(t)) + ε + m a.e. with r(0) = sup t∈[0,1] ||u(t)||.
Let us consider the sets

M 1 := {h ∈ L 1 H (I) : ||h(t)|| ≤ m + ε/2 a.e.}, M 2 := {h ∈ L 1 H (I) : ||h(t)|| ≤ α(t)(1 + r(t)) + ε/2 a.e.}, M := {h ∈ L 1 H (I) : ||h(t)|| ≤ ṙ(t) a.e.}, are clearly convex σ(L 1 H (I), L ∞ H (I))-compact with M = M 1 + M 2
. Now, denote by u h , for any h ∈ M , the unique absolutely continuous solution to the perturbed evolution problem

-uh (t) ∈ A(t)u h (t) + h(t) a.e. t ∈ I, u h (0) = u 0 ∈ D(A(0)).
The existence and uniqueness of solutions follows from Theorem 3.1, by considering the perturbation h(t). Using the monotonicity of A(t), for all t ∈ I, one has the estimation

1 2 ||u h (t) -u(t)|| 2 ≤ t 0 ||h(s)||||u h (s) -u(s)||ds.
Thanks to Lemma 2.1, it follows

||u h (t) -u(t)|| ≤ t 0 ||h(s)||ds
so that for all t ∈ I, one gets

||u h (t)|| ≤ r(0) + t 0 ṙ(s) = r(t). (3.4) 
Main fact:

L := {u h : h ∈ M } is compact in C H (I).
This follows essentially from the ball compactness assumption on D(A(t)), along with the maximal monotone property of the extension A to L 2 H (I) of A(t) defined in Lemma 3.1. In view of estimate in Theorem 3.1 with perturbation h, one gets || uh (t)|| ≤ K(1 + β(t)), for a.e. t ∈ I, where 

K = K(||u 0 ||, c, I, α, ε, m, β(•)) for all h ∈ M . Shortly || uh (t)|| ≤ γ(t) := K(1 + β(t)) with γ ∈ L 2 R+ (I). So, for any h ∈ M , uh is bounded in L 2 H (I), that is, S = sup h∈M || uh || L 2 H (I) < +∞. (3.5) It is clear that L := {u h : h ∈ M } is equicontinuous. Indeed, for any s, t ∈ I, one has ||u h (t) -u h (s)|| = || t s uh (τ )dτ || ≤ (t -s) 1/2 ( 1 0 || uh (τ )|| 2 dτ ) 1/2 ≤ (t -s)
-uhn (t) ∈ A(t)u hn (t) + h n (t), h n ∈ M, a.e. t ∈ I, u hn (0) = u 0 ∈ D(A(0)).
Furthermore, in view of (3.5), the sequence ( uhn ) is bounded in L 2 H (I) so that, up to a subsequence that we do not relabel, we may suppose that ( uhn ) n weakly converges in L 2 H (I) to some element z(•). For any integer n and any y ∈ H and for 0 ≤ s ≤ t ≤ 1, relying on the absolute continuity of (u hn ) n , one writes

1 0 y1 [s,t] (τ ), uhn (τ ) dτ = y, u hn (t) -u hn (s) .
Next, passing to the limit in the equality yields

y, t s z(τ )dτ = y, u(t) -u(s) .
Therefore, given any s, t ∈ I with s ≤ t, we get t s z(τ )dτ = u(t) -u(s), and hence u(•) is absolutely continuous and z coincides almost everywhere in I with u(•). Thus, u ∈ L 2 H (I) and uhn → u weakly in L 2 H (I). As uhn + h n → u + h weakly in L 2 H (I), so that by the maximal monotone extension A of A(t) cf. Lemma 3.1, we get

-u(t) ∈ A(t)u(t) + h(t), h ∈ M, a.e. t ∈ I.
Denote by u h the unique absolutely continuous solution to

-uh (t) ∈ A(t)u h (t) + h(t), h ∈ M, a.e. t ∈ I, u h (0) = u 0 ∈ D(A(0)).
By uniqueness, one has u = u h . Thus, the set L is compact in C H (I).

Step 2 Now, given ε > 0, the compact set L in C H (I) being constructed, we may apply Theorem 2.1 to the mixed semi-continuous set-valued map F by taking g(t, x) = α(t)(1 + ||x||), (t, x) ∈ I × H. Then, there is a nonempty closed convex set valued-map Ψ F : L ⇒ L 1 H (I) whose graph is sequentially closed with respect to the topology of uniform convergence in L and the weak topology in L 1 H (I) and such that, for any x ∈ L and y ∈ Ψ F (x), for a.e. t ∈ I, one has y(t) ∈ F (t, x(t)) and y(t) ≤ α(t)(1 + x(t) ) + ε/2. This along with u h ∈ L and y h ∈ Ψ F (u h ), one has for a.e t ∈ I y h (t) ∈ F (t, u h (t)) and

y h (t) ≤ α(t)(1 + u h (t) ) + ε ≤ α(t)(1 + r(t)) + ε/2 taking into account the fact u h (t) ≤ r(t). It's easy to see that y h ∈ M 2 , hence Ψ F (u h ) ⊂ M 2
for all u h ∈ L. Thus, there is a non-empty convex weakly-compact set-valued map Ψ F : L ⇒ L 1 H (I) with the following properties (k) Ψ F (x) ⊂ {h ∈ M 2 : h(t) ∈ F (t, x(t))} ⊂ M 2 a.e., for each x ∈ L, (kk) the set-valued map Ψ F has closed graph, in the sense, for any

y n ∈ Ψ(x n ) such that (x n ) converging uniformly to x ∈ L and (y n ) σ(L 1 H (I), L ∞ H (I))- converging in L 1 H (I) to y, then, y ∈ Ψ F (x), equivalently, Ψ F : L ⇒ M 2 is up- per semi-continuous from L ⊂ C H (I) to M 2 endowed with the σ(L 1 H (I), L ∞ H (I))- topology.
Similarly, we may apply Theorem 2.1 to the mixed semi-continuous set-valued map G by taking g(t, x) = m, (t, x) ∈ I ×H. Then, there is a nonempty closed convex set valued-map Ψ G : L ⇒ L 1 H (I) whose graph is sequentially closed with respect to the topology of uniform convergence in L and the weak topology in L 1 H (I) and such that, for any x ∈ L and y ∈ Ψ G (x), for a.e. t ∈ I, one has

y(t) ∈ G(t, x(t)) and ||y(t)|| ≤ m + ε/2.
This along with u h ∈ L and y h ∈ Ψ G (u h ), yields for a.e t ∈ I

y h (t) ∈ G(t, u h (t)) and ||y h (t)|| ≤ m + ε/2.

It's easy to see that y

h ∈ M 1 , hence Ψ G (u h ) ⊂ M 1 for all u h ∈ L. Thus, there is a non-empty convex weakly-compact set-valued map Ψ G : L ⇒ L 1 H (I) with the following properties (k ) Ψ G (x) ⊂ {h ∈ M 1 : h(t) ∈ G(t, x(t)) ⊂ M 1 a.e.}, for each x ∈ L, (k k ) the set-valued map Ψ G has closed graph, in the following sense, for any y n ∈ Ψ G (x n ) such that (x n ) converging uniformly to x ∈ L and (y n ) σ(L 1 H (I), L ∞ H (I)) converging in L 1 H (I) to y, then, y ∈ Ψ G (x). So Ψ G : L ⇒ M 1 is upper semi-continuous from L ⊂ C H (I) to M 1 endowed with the σ(L 1 H (I), L ∞ H (I))-topology. As consequence, let us set Ψ(x) := Ψ F (x) + Ψ G (x), ∀x ∈ L, then (l) Ψ : L ⇒ L 1
H (I) is upper semi-continuous from L ⊂ C H (I) to M endowed with the σ(L 1 H (I), L ∞ H (I))-topology, equivalently its graph is sequentially closed with respect to the topology of uniform convergence in L and the weak topology in L 1 H (I).

Step 3 We finish the proof by using Kakutani-Ky Fan fixed point theorem via the compactness of the solutions set L to the evolution inclusion given in Step 1. For each h ∈ M , let us set Φ(h) = Ψ(u h ) := Ψ F (u h ) + Ψ G (u h ) where u h is the unique absolutely continuous solution to

-u(t) ∈ A(t)u(t) + h(t) a.e. t ∈ I, u(0) = u 0 ∈ D(A(0)).
Recall that L := {u h : h ∈ M } is compact in C H (I). Then, it's clear that Φ is a convex weakly compact set-valued map from M to M . We claim that Φ has a fixed point h, i.e., h 

∈ Φ(h) = Ψ(u h ) = Ψ F (u h ) + Ψ G (u h ), then, h = h 1 + h 2 with h 1 ∈ Ψ F (u h ), h 2 ∈ Ψ G (u h ) so that h 1 (t) ∈ F (t,
(I), L ∞ H (I))-topology. Indeed, for each n ∈ N, let f n ∈ Φ(h n ) = Ψ(u hn ) = Ψ F (u hn ) + Ψ G (u hn ) where -uhn (t) ∈ A(t)u hn (t) + h n (t) a.e. t ∈ I, u hn (0) = u 0 ∈ D(A(0)),
with u hn ∈ L by our definition of L and (

f n ) ⊂ M which σ(L 1 H (I), L ∞ H (I))- converges to f ∈ M . Further, by compactness of L, (u hn ) n uniformly con- verges to u h with -uh (t) ∈ A(t)u h (t) + h(t) a.e. t ∈ I, u h (0) = u 0 ∈ D(A(0)), As f n ∈ Φ(h n ) = Ψ(u hn ) with f n → f ∈ M weakly in L 1
H (I) and u hn → u h ∈ L uniformly, by the closed graph property (l) for Ψ, we get f ∈ Ψ(u h ) = Φ(h). Hence, the set-valued map Φ : M ⇒ M has weakly compact graph, by Kakutani-Ky Fan theorem, there is

h ∈ Φ(h) = Ψ(u h ). Then, h = h 1 + h 2 with h 1 ∈ Ψ F (u h ), h 2 ∈ Ψ G (u h ) so that h 1 (t) ∈ F (t, u h (t)) a.e. and h 2 (t) ∈ G(t, u h (t)) a.e. thus proving that -u(t) ∈ A(t)u(t) + F (t, u(t)) + G(t, u(t)) a.e. t ∈ I, u(0) = u 0 ∈ D(A(0)),
has at least a solution u, just finishing the proof of the theorem.

Mixed semi-continuous perturbation problem with time-dependent subdifferential operators

For the sake of completeness we recall and summarize some needed results. Let us start with the existence and uniqueness result established in [START_REF] Peralba | Équations d'évolution dans un espace de Hilbert, associées à des opérateurs sous-différentiels[END_REF]. Proof. By (i), one has w n ∈ Au n where A is the maximal monotone operator associated with A(t) given in Proposition 3.1. Since the graph of A is sequentially strongly-weakly closed, by w n ∈ Au n and by (ii) and (iii), one deduces that w ∈ Au, so that coming back to the definition of A, one gets w(t) ∈ A(t)u(t) a.e. t ∈ I.

Theorem 3.4. Let ϕ : [0, T ] × H → [0, +∞] be a map satisfying (H 1 )-(H 2 ). Let u 0 ∈ domϕ(0, •). Then, the unperturbed differential inclusion -u(t) ∈ ∂ϕ(t, u(t)) a.e. t ∈ [0, T ], u(0) = u 0 ∈ domϕ(0,
The following proposition contains crucial estimates in the study of the evolution problem with perturbation -u(t) ∈ ∂ϕ(t, u(t)) + h(t) (see [START_REF] Saïdi | Relaxation of optimal control problems involving time dependent subdifferential operators[END_REF]). 

|| u|| L 2 H ([0,T ]) ≤ ρ 2 || ȧ|| L 2 R ([0,T ]) + [ √ T k(0)|| ȧ|| L 2 R ([0,T ]) + ρ 2 4 || ȧ|| 2 L 2 R ([0,T ]) + ϕ(0, u 0 ) -ϕ(T, u(T ))] 1 2 . (b) If h ∈ L 2 H ([0, T ]) and u 0 ∈ dom ϕ(0, •), then the following problem -u(t) ∈ ∂ϕ(t, u(t)) + h(t) a.e. t ∈ [0, T ], u(0) = u 0 ∈ domϕ(0, •),
admits a unique absolutely continuous solution u(•) that satisfies

|| u|| L 2 H ([0,T ]) ≤ 1 2 (ρ + 1) ȧ + |h| L 2 R ([0,T ]) + h L 2 H ([0,T ]) + [ √ T k(0) ȧ+|h| L 2 R ([0,T ]) + (ρ + 1) 2 4 ȧ+|h| 2 L 2 R ([0,T ]) +ϕ(0, u 0 )-ϕ(T, u(T ))] 1 2 , (3.6) 
where |h| is the function defined by |h| : t → ||h(t)|| for all t ∈ [0, T ].
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We recall also the existence and uniqueness result for the perturbed problem -u(t) ∈ ∂ϕ(t, u(t)) + f (t, u(t)) when f (•, •) is separately measurable and Lipschitz continuous (see Theorem 4.1. [START_REF] Saïdi | Relaxation of optimal control problems involving time dependent subdifferential operators[END_REF]). 

T 0 || u(t)|| 2 dt ≤ d + σ T 0 ||f (t, u(t))|| 2 dt, (3.7) 
where

d = (k 2 (0) + 3(ρ + 1) 2 ) T 0 ȧ2 (t)dt + 2[T + ϕ(0, u 0 )] σ = k 2 (0) + 3(ρ + 1) 2 + 4.
The following theorem deals with a perturbation f + F with a mixed semi-continuous set-valued map F , extending a recent result given in [START_REF] Castaing | Evolution problems with timedependent subdifferential operators[END_REF] with f = 0. Then, for any u 0 ∈ domϕ(0, •), there is an absolutely continuous solution u(•) of the differential inclusion

-u(t) ∈ ∂ϕ(t, u(t)) + f (t, u(t)) + F (t, u(t)) a.e. t ∈ I, u(0) = u 0 ∈ domϕ(0, •).
Proof. We will use some arguments of the proof of Theorem 3.2 with appropriate modifications. However this need a careful look.

Step 1 Let u 0 ∈ domϕ(0, •), ε > 0. Let u : [0, 1] → H be the unique absolutely continuous solution to -u(t) ∈ ∂ϕ(t, u(t)) a.e. t ∈ I, u(0) = u 0 ∈ domϕ(0, •). The existence and uniqueness of such a solution follow from Theorem 3.4. Now, let r : [0, 1] → R + be the unique absolutely continuous solution of the differential equation

ṙ(t) = α(t)(1 + r(t)) + ε + m a.e. with r(0) = sup t∈[0,1] ||u(t)||. Since ṙ + ε ∈ L ∞ R+ (I) ⊂ L 1 R+ (I), the set M := {h ∈ L 1 H (I) : ||h(t)|| ≤ ṙ(t) + ε a.e.}, is clearly convex σ(L 1 H (I), L ∞ H (I))-compact.
For any h ∈ M , denote by u h the unique absolutely continuous solution to the perturbed evolution problem

-uh (t) ∈ ∂ϕ(t, u h (t)) + f (t, u h (t)) + h(t) a.e. t ∈ I, u h (0) = u 0 ∈ domϕ(0, •).
The existence and uniqueness of such a solution is granted by Theorem 3.5, that is due to the particular choice of the perturbation f and the perturbation h ∈ M . In fact, to see that, let us set for any h ∈ M , g(t, x) = f (t, x) + h(t) for all (t, x) ∈ I × H and check assumptions of Theorem 3.5. Clearly, the function g satisfies assumptions (i)-(ii). Moreover, for all (t, x) ∈ I × H, one has

||g(t, x)|| ≤ m + ||h(t)|| ≤ (m + ||h(t)||)(1 + ||x||), which yields (iii) with β(•) := m + ṙ(•) + ε ∈ L 2 R+ (I).
Using the monotonicity of ∂ϕ(t, •), for all t ∈ I, one has the estimation

1 2 ||u h (t) -u(t)|| 2 ≤ t 0 ||f (s, u h (s)) + h(s)||||u h (s) -u(s)||ds.
Thanks to Lemma 2.1, it follows

||u h (t) -u(t)|| ≤ t 0 ||f (s, u h (s)) + h(s)||ds,
so that for all t ∈ I, one gets

||u h (t)|| ≤ r(0) + t 0 [ ṙ(s) + ε + m]ds = r(t) + εt + mt ≤ r(t) + m + ε. (3.8)
Now, we assert that Main fact:

K := {u h : h ∈ M } is compact in C H (I).
This follows essentially from the above estimate, the ball compactness assumption on dom ϕ(t, •), along with the maximal monotone property of the extension A to L 2 H (I) defined in Proposition 3.1. In view of estimate (3.7) in Theorem 3.5 (with g instead of f ), one gets

1 0 || uh (t)|| 2 dt ≤ d + σ 1 0 ||f (t, u h (t)) + h(t)|| 2 dt,
taking condition (iii) and the definition of M into account, yield

1 0 || uh (t)|| 2 dt ≤ d + σ 1 0 m + ṙ(t) + ε 2 dt. Since ṙ + ε ∈ L ∞ R+ (I) ⊂ L 2 R+ (I), then, the set M := {h ∈ L 1 H (I) : ||h(t)|| ≤ ṙ(t) + ε a.e.} is convex σ(L 1 H (I), L ∞ H (I))-compact. From the estimate above, for any h ∈ M , uh is bounded in L 2 H (I), that is, S = sup h∈M || uh || L 2 H (I) < +∞. (3.9)
By the absolute continuity of u h , h ∈ M , for any s, t ∈ I, one has

||u h (t) -u h (s)|| = || t s uh (τ )dτ || ≤ (t -s) 1/2 ( 1 0 || uh (τ )|| 2 dτ ) 1/2 ≤ (t -s) 1/2 S.
Then, the set K is equicontinuous. Moreover, by (3.8) 

(0) = u 0 ∈ domϕ(0, •).
By (iii), one has ||f (t, u hn (t))|| ≤ m for all t ∈ I. Since u hn → u in C H (I), along with the Lipschitz behavior of f with respect to its second variable yield (via the dominated convergence theorem)

f (•, u hn (•)) → f (•, u(•)) in L 2 H (I). As a consequence, f (•, u hn (•)) → f (•, u(•))
with respect to the σ(L 2 H (I), L 2 H (I))-topology. Furthermore, in view of (3.9), the sequence ( uhn ) is bounded in L 2 H (I) so that, up to a subsequence that we do not relabel, we may suppose that ( uhn ) n weakly converges in L 2 H (I) to some element z(•). For any integer n and any y ∈ H and for 0 ≤ s ≤ t ≤ 1, relying on the absolute continuity of (u hn ) n , we can write

1 0 y1 [s,t] (τ ), uhn (τ ) dτ = y, u hn (t) -u hn (s) .
Next, passing to the limit in the equality yields

y, t s z(τ )dτ = y, u(t) -u(s) .
Therefore, given any s, t ∈ I with s ≤ t, we get t s z(τ )dτ = u(t) -u(s), and hence u(•) is absolutely continuous and z coincides almost everywhere in I with u(•). Thus, u ∈ L 2 H (I) and uhn → u weakly in L 2 H (I) so that uhn +h n +f (•,

u hn (•)) → u+h+f (•, u(•)) weakly in L 2
H . Thanks to Proposition 3.2, one gets

-u(t) ∈ ∂ϕ(t, u(t)) + h(t) + f (t, u(t)), h ∈ M, a.e. t ∈ I.
Denote by u h the unique absolutely continuous solution of

-uh (t) ∈ ∂ϕ(t, u h (t)) + h(t) + f (t, u h (t)) a.e. t ∈ I, u h (0) = u 0 ∈ domϕ(0, •).
By uniqueness, one has u = u h . Thus, the set K is compact in C H (I).

Step 2 Now, given ε > 0, the compact set K in C H (I) being constructed, we may apply Theorem 2.1 to the mixed semi-continuous set-valued map F by taking g(t, x) = α(t)(1 + ||x||), (t, x) ∈ I × H. Then, there is a nonempty closed convex set valued-map Ψ : K ⇒ L 1 H (I) whose graph is sequentially closed with respect to the topology of uniform convergence in K and the weak topology in L 1 H (I) and such that, for any x ∈ K and y ∈ Ψ(x), for a.e. t ∈ I, one has

y(t) ∈ F (t, x(t)) and ||y(t)|| ≤ g(t, x(t)) + ε = α(t)(1 + ||x(t)||) + ε.
This along with u h ∈ K and y h ∈ Ψ(u h ), one has for a.e t ∈ I y h (t) ∈ F (t, u h (t)) and

||y h (t)|| ≤ α(t)(1 + ||u h (t)||) + ε ≤ α(t)(1 + r(t) + ε + m) + ε = α(t)(1 + r(t)) + α(t)ε + α(t)m + ε ≤ α(t)(1 + r(t)) + ε + m + ε = ṙ(t) + ε;
taking into account the fact ||u h (t)|| ≤ r(t) + ε + m. It's easy to see that y h ∈ M , hence Ψ(u h ) ⊂ M for all u h ∈ K. Thus, there is a non-empty convex weakly-compact set-valued map Ψ : K ⇒ L 1 H (I) with the following properties (l) Ψ(x) ⊂ {h ∈ M : h(t) ∈ F (t, x(t)) a.e.}, for each x ∈ K, (ll) the set-valued map Ψ has closed graph, in the sense, for any

y n ∈ Ψ(x n ) such that (x n ) converging uniformly to x ∈ K and (y n ) σ(L 1 H (I), L ∞ H (I))- converging in L 1 H (I) to y, then, y ∈ Ψ(x), equivalently, Ψ : K ⇒ M is upper semi-continuous from K ⊂ C H (I) to M endowed with the σ(L 1 H (I), L ∞ H (I))- topology.
Step 3 We finish the proof by using Kakutani-Ky Fan fixed point theorem. For each h ∈ M , let us set Φ(h) = Ψ(u h ) where

-uh (t) ∈ ∂ϕ(t, u h (t)) + f (t, u h (t)) + h(t), h ∈ M, a.e. t ∈ I, u h (0) = u 0 ∈ domϕ(0, •).
Then, it's clear that Φ is a convex weakly compact set-valued map from M to M . We claim that Φ has a fixed point h, i.e., h ∈ Φ(h) = Ψ(u h ), then, by (l) h(t) ∈ F (t, u h (t)) a.e., we have

-uh (t) ∈ ∂ϕ(t, u h (t)) + f (t, u h (t)) + h(t) a.e. t ∈ I, u h (0) = u 0 ∈ domϕ(0, •), with h(t) ∈ F (t, u h (t)) a.e., thus proving that -uh (t) ∈ ∂ϕ(t, u h (t)) + f (t, u h (t)) + F (t, u h (t)) a.e. t ∈ I, u h (0) = u 0 ∈ domϕ(0, •),
has at least a solution. For this purpose, by virtue of Kakutani-Ky Fan fixed point theorem, we need to prove that Φ : M ⇒ M is upper semi-continuous with non-empty convex weakly compact values from M into itself, equivalently, the graph of Φ is sequentially compact in M × M , for M equipped with the σ(L 1

H (I), L ∞ H (I))-topology. Indeed, for each n ∈ N, let g n ∈ Φ(h n ) = Ψ(u hn ) with -uhn (t) ∈ ∂ϕ(t, u hn (t)) + f (t, u hn (t)) + h n (t) a.e. t ∈ I, u hn (0) = u 0 ∈ domϕ(0, •),
with u hn ∈ K by our definition of K and (g n ) ⊂ M which σ(L 1 H (I), L ∞ H (I))converges to g ∈ M . Further, by compactness of K, (u hn ) n uniformly converges to u h with

-uh (t) ∈ ∂ϕ(t, u h (t)) + f (t, u h (t)) + h(t) a.e. t ∈ I, u h (0) = u 0 ∈ domϕ(0, •).
By the property (ll) of the set-valued map Ψ, we have g ∈ Ψ(u h ) = Φ(h). So, the graph of Φ : M ⇒ M is weakly compact, hence the convex weakly compact valued mapping Φ admits a fixed point by Kakutani-Ky Fan Theorem, h ∈ Φ(h) = Ψ(u h ). By the property (l), we get h(t) ∈ F (t, u h (t)) a.e. which implies

-uh (t) ∈ ∂ϕ(t, u h (t)) + f (t, u h (t)) + h(t) a.e. t ∈ I, u h (0) = u 0 ∈ domϕ(0, •)
with h(t) ∈ F (t, u h (t)) a.e. just finishing the proof of the theorem.

Let us recall the following existence result for the perturbed problem -u(t) ∈ ∂ϕ(t, u(t)) + g(t, u(t)) when the map g(•, •) is of Carathéodory type, see Theorem 4.1. [START_REF] Saïdi | On a time-dependent subdifferential evolution inclusion with Carathéodory perturbation[END_REF] (see Proposition 4.2. [START_REF] Saïdi | On a time-dependent subdifferential evolution inclusion with Carathéodory perturbation[END_REF] for the estimate of the velocity).

Theorem 3.7. Let I = [0, T ]. Assume that (H 1 )-(H 2 ) hold, and that domϕ(t, •) is ball-compact for every t ∈ I. Let g : I × H → H be a Carathéodory map such that there exists a non-negative function β(•) ∈ L 2 R (I) such that, for all t ∈ I and for all u ∈ H, one has

||g(t, u)|| ≤ β(t)(1 + ||u||).
Then, for any u 0 ∈ dom ϕ(0, •), the following problem -u(t) ∈ ∂ϕ(t, u(t)) + g(t, u(t)) a.e. t ∈ I, u(0) = u 0 has at least one absolutely continuous solution u(•) on I that satisfies

T 0 || u(t)|| 2 dt ≤ d + σ T 0 ||g(t, u(t))|| 2 dt, (3.10) 
where

d = (k 2 (0) + 3(ρ + 1) 2 ) T 0 ȧ2 (t)dt + 2[T + ϕ(0, u 0 )] σ = k 2 (0) + 3(ρ + 1) 2 + 4.
Now, we address a new variant when the evolution problem involves a perturbation F + g, with a Carathéodory map g. Theorem 3.8. Let I := [0, 1]. Assume that (H 1 )-(H 2 ) hold, and that domϕ(t, •) is ball-compact for every t ∈ I. Let g : I ×H → H be a Carathéodory mapping satisfying ||g(t, x)|| ≤ m for all (t, x) ∈ I × H, for a positive constant m. Suppose further that there exists a function γ

(•) ∈ L 2 R+ (I) such that g(t, x 1 ) -g(t, x 2 ), x 1 -x 2 ≥ γ(t)||x 1 -x 2 || 2 ,
for all x 1 , x 2 ∈ H and t ∈ I. Let F : I × H ⇒ H be a compact set-valued map satisfying (j)-(jj)-(jjj). Then, for any u 0 ∈ domϕ(0, •), there is an absolutely continuous solution u(•) of the differential inclusion

-u(t) ∈ ∂ϕ(t, u(t)) + F (t, u(t)) + g(t, u(t)) a.e. t ∈ I, u(0) = u 0 ∈ domϕ(0, •).
Proof.

Step 1 We will use similar arguments as in the proof of Theorem 3.6, with appropriate modifications. This need a careful look. Let u 0 ∈ domϕ(0, •), ε > 0. Let u : [0, 1] → H be the unique absolutely continuous solution to

-u(t) ∈ ∂ϕ(t, u(t)) a.e. t ∈ I, u(0) = u 0 ∈ domϕ(0, •).
The existence and uniqueness of such a solution follow from Theorem 3.4. Now, let r : [0, 1] → R + be the unique absolutely continuous solution of the differential equation

ṙ(t) = α(t)(1 + r(t)) + ε + m a.e. with r(0) = sup t∈[0,1] ||u(t)||. Since ṙ + ε ∈ L ∞ R+ (I) ⊂ L 1 R+ (I), the set M := {h ∈ L 1 H (I) : ||h(t)|| ≤ ṙ(t) + ε a.e.}, is clearly convex σ(L 1 H (I), L ∞ H (I))-compact. Consider the problem of the form -u(t) ∈ ∂ϕ(t, u(t)) + g(t, u(t)) + h(t), h ∈ M, a.e. t ∈ I, u(0) = u 0 ∈ domϕ(0, •).
The existence of solutions follows from Theorem 3.7, by considering the Caratheodory perturbation g(t, x) + h(t). To prove uniqueness of the solution, let u 1 and u 2 be two solutions to the differential inclusion above.

Then, one has for any

h ∈ M, -u1 (t) -g(t, u 1 (t)) -h(t) ∈ ∂ϕ(t, u 1 (t)) and -u2 (t) -g(t, u 2 (t)) -h(t) ∈ ∂ϕ(t, u 2 (t))
, for almost all t ∈ I. The monotone condition on g yields

g(t, u 1 (t)) -g(t, u 2 (t)), u 1 (t) -u 2 (t) ≥ γ(t)||u 1 (t) -u 2 (t)|| 2 .
Moreover, the monotone property of ∂ϕ(t, •) ensures that

-u1 (t) -g(t, u 1 (t)) -(-u2 (t) -g(t, u 2 (t))), u 1 (t) -u 2 (t) ≥ 0, hence, u1 (t) -u2 (t), u 1 (t) -u 2 (t) ≤ -γ(t)||u 1 (t) -u 2 (t)|| 2 , that is, 1 2 d dt ||u 1 (t) -u 2 (t)|| 2 ≤ -γ(t)||u 1 (t) -u 2 (t)|| 2 for a.e. t ∈ I.
Remark that d dt ||u 1 (t) -u 2 (t)|| 2 ≤ 0, since by assumption γ is a non-negative function. This along with the fact that ||u 1 (0) -u 2 (0)|| = 0, integrating, one gets u 1 = u 2 . Thus, it results the uniqueness of the solution. Now, denote by u h , for any h ∈ M , the unique absolutely continuous solution to the perturbed evolution problem

-uh (t) ∈ ∂ϕ(t, u h (t)) + g(t, u h (t)) + h(t) a.e. t ∈ I, u h (0) = u 0 ∈ domϕ(0, •).
Using the monotonicity of ∂ϕ(t, •), for all t ∈ I, one has the estimation

1 2 ||u h (t) -u(t)|| 2 ≤ t 0 ||g(s, u h (s)) + h(s)||||u h (s) -u(s)||ds.
Thanks to Lemma 2.1, it follows

||u h (t) -u(t)|| ≤ t 0 ||g(s, u h (s)) + h(s)||ds
so that for all t ∈ I, one gets

||u h (t)|| ≤ r(0) + t 0 [ ṙ(s) + ε + m]ds = r(t) + εt + mt ≤ r(t) + m + ε. (3.11) 
Main fact:

K := {u h : h ∈ M } is compact in C H (I).
This follows essentially from the above estimate, the ball compactness assumption on dom ϕ(t, •), along with the maximal monotone property of the extension A to L 2 H (I) defined in Proposition 3.1. In view of estimate (3.10) in Theorem 3.7 (with g + h instead of g), one gets

1 0 || uh (t)|| 2 dt ≤ d + σ 1 0 ||g(t, u h (t)) + h(t)|| 2 dt.
Then, since by assumption ||g(t, x)|| ≤ m for all (t, x) ∈ I × H, along with the definition of M , yield

1 0 || uh (t)|| 2 dt ≤ d + σ 1 0 m + ṙ(t) + ε 2 dt. So, for any h ∈ M , uh is bounded in L 2 H (I), that is, S = sup h∈M || uh || L 2 H (I) < +∞. (3.12)
By the absolute continuity of u h , h ∈ M , for any s, t ∈ I, one has

||u h (t) -u h (s)|| = || t s uh (τ )dτ || ≤ (t -s) 1/2 ( 1 0 || uh (τ )|| 2 dτ ) 1/2 ≤ (t -s) 1/2 S.
Then, the set K is equicontinuous. Moreover, by (3.11) 

(•)) → g(•, u(•)) in L 2 H (I). As a consequence, g(•, u hn (•)) → g(•, u(•)) with respect to the σ(L 2 H (I), L 2 H (I))- topology.
Furthermore, in view of (3.12), the sequence ( uhn ) is bounded in L 2 H (I) so that, up to a subsequence that we do not relabel, we may suppose that ( uhn ) n weakly converges in L 2 H (I) to some element z(•). For any integer n and any y ∈ H and for 0 ≤ s ≤ t ≤ 1, relying on the absolute continuity of (u hn ) n , one writes Therefore, given any s, t ∈ I with s ≤ t, we get t s z(τ )dτ = u(t) -u(s), and hence u(•) is absolutely continuous and z coincides almost everywhere in I with u(•). Thus, u ∈ L 

(0) = u 0 ∈ domϕ(0, •).
By uniqueness, one has u = u h . Thus, the set K is compact in C H (I). Finally, we proceed as in Step 2-Step 3 of Theorem 3.6 to get -uh (t) ∈ ∂ϕ(t, u h (t)) + g(t, u h (t)) + h(t) a.e. t ∈ I, u h (0) = u 0 ∈ domϕ(0, •), with h(t) ∈ F (t, u h (t)) a.e. finishing the proof of the theorem.

In the remainder of this section, we state a variant of the above results dealing with another class of time-dependent subdifferential operator. Let ϕ : H → R satisfying H(ϕ) For each t ∈ I, the function x → ϕ(t, x) is proper, lsc, and convex such that the following property holds: for each r ≥ 0 there exist functions a r ∈ W 1,2 ([0, 1], R) b r ∈ W 1,1 ([0, 1], R) such that for any s, t ∈ [0, 1] s ≤ t, and any x ∈ dom ϕ(s, •), ||x|| ≤ r, there exists an element y ∈ domϕ(t, •) satisfying the inequalities

||x -y|| ≤ |a r (t) -a r (s)|(|ϕ(s, x)| 1/2 + 1) (3.13) ϕ(t, y) ≤ ϕ(s, x) + |b r (t) -b r (s)|(|ϕ(s, x)| + 1). (3.14)
For the sake of completeness, it seems convenient to recall the following lemma from [START_REF] Kenmochi | Solvability of nonlinear evolution equations with time-dependent constraints and applications[END_REF], [START_REF] Kenmochi | On the quasi-linear heat equation with time-dependent obstacles[END_REF]. Lemma 3.2. Let ϕ : H → R satisfying H(ϕ). Then, one has

(i) there exists a constant K 1 > 0 such that ϕ λ (t, x) ≥ -K 1 (||x|| + 1), t ∈ I, λ ∈]0, 1], x ∈ H, ||J t λ x|| = ||(I H + λ∂ϕ(t, •)) -1 x|| ≤ K 1 + ||x||, t ∈ I, λ ∈]0, 1], x ∈ H, (ii) for any function x ∈ L 1 H (I), the function t → ϕ(t, x(t)) is measurable; (iii) for any function x ∈ L 1 H (I), the function t → ϕ λ (t, x(t)), λ ∈]0, 1], is measurable.
Recall also Lemma 2.2 [START_REF] Kenmochi | On the quasi-linear heat equation with time-dependent obstacles[END_REF]. Lemma 3.3. Let ϕ : H → R satisfying H(ϕ), λ ∈]0, 1] and x : I → H be an absolutely continuous function. Then, the function t → ϕ λ (t, x(t)) is a.e. differentiable, its derivative is integrable on I, and the following inequalities hold Let us summarize a result from [START_REF] Kenmochi | Solvability of nonlinear evolution equations with time-dependent constraints and applications[END_REF] as follows.

ϕ λ (t, x(t)) -ϕ λ (s, x(s)) ≤ t s d dτ ϕ λ (τ, x(τ ))dτ
Theorem 3.9. Let ϕ : H → R satisfying H(ϕ). Let h ∈ L 2 H (I), x 0 ∈ domϕ(0, •) and λ ∈]0, 1]. Then, the following inclusion -ẋ(t) ∈ ∂ϕ(t, x(t)) + h(t) a.e., h ∈ L 2 H (I), x(0) = x 0 ∈ domϕ(0, •);

(3.15) admits a unique absolutely continuous solution x : I → H, and the following equation -ẋλ (t) = ∂ϕ λ (t, x λ (t)) + h(t) a.e., h ∈ L 2 H (I), x λ (0) = x 0 ∈ domϕ(0, •); admits a unique absolutely continuous solution x λ : I → H for any x(0) = x λ (0) = x 0 ∈ dom ϕ(0, •). Moreover, ẋ(•), ẋλ (•) ∈ L 2 H (I) and there exists a constant M that depends only on ||x 0 || and ||h||

L 2 H such that ||x(•)|| ∞ ≤ M, ||x λ (•)|| ∞ ≤ M, 0 < λ ≤ 1, || ẋ(•)|| L 2 H (I) ≤ M, || ẋλ (•)|| L 2 H ≤ M, 0 < λ ≤ 1, |ϕ(t, x(t))| ≤ M, |ϕ λ (t, x λ (t))| ≤ M, 0 < λ ≤ 1.
As λ ↓ 0, one gets

x λ (•) → x(•) in C H (I), ẋλ (•) → ẋ(•) in L 2 H (I), lim λ↓0 ϕ λ (t, x λ (t)) ≥ ϕ(t, x(t)), t ∈ I.
We recall and summarize a compactness property (cf. Theorem 4.1 [START_REF] Tolstonogov | Relaxation in nonconvex optimal control problems with subdifferential operators[END_REF]) of the solution set to (3.15). Theorem 3.10. Assume that ϕ satisfies condition H(ϕ) and that domϕ(t, •) is ball-compact, for every t ∈ I. Let X : I ⇒ H be measurable with convex and weakly compact values, and X(t) ⊂ β(t)B H , ∀t ∈ I, where β ∈ L 2 R+ (I). Let S 2 X denotes the set of all L 2 H (I)-selections of X. Then, the set X := {x h : h ∈ S 2 X } of absolutely continuous solutions to the evolution inclusion Then, for any u 0 ∈ domϕ(0, •), there is an absolutely continuous solution u(•) to the differential inclusion

-ẋh (t) ∈ ∂ϕ(t, x h (t)) + h(t), a.e. t ∈ I, h ∈ S 2 X , x h (0) = x 0 ∈ domϕ(0, •), is a compact subset of C H (I).
-u(t) ∈ ∂ϕ(t, u(t)) + f (t, u(t)) + F (t, u(t)) a.e. t ∈ I, u(0) = u 0 ∈ domϕ(0, •).
Proof.

Step 1 Let u 0 ∈ domϕ(0, •), ε > 0. Let u : [0, 1] → H be the unique absolutely continuous solution to -u(t) ∈ ∂ϕ(t, u(t)) a.e. t ∈ I, u(0) = u 0 ∈ domϕ(0, •). The existence and uniqueness of such a solution follow from Theorem 3.9. Now, let r : [0, 1] → R + be the unique absolutely continuous solution of the differential equation

ṙ(t) = α(t)(1 + r(t)) + ε + m a.e. with r(0) = sup t∈[0,1] ||u(t)||. Since ṙ + ε ∈ L ∞ R+ (I) ⊂ L 1 R+ (I), the set M := {h ∈ L 1 H (I) : ||h(t)|| ≤ ṙ(t) + ε a.e.}, is clearly convex σ(L 1 H (I), L ∞ H (I))-compact.
For any h ∈ M , denote by u h the unique absolutely continuous solution to the perturbed evolution problem

-uh (t) ∈ ∂ϕ(t, u h (t)) + f (t, u h (t)) + h(t) a.e. t ∈ I, u h (0) = u 0 ∈ domϕ(0, •).
The existence and uniqueness of such a solution is granted by Theorem 3.9 (cf. also Theorem 3.5 ), that is due to the particular choice of the perturbation f and the perturbation h ∈ M . Let us set for any h ∈ M , g(t, x) = f (t, x)+h(t) for all (t, x) ∈ I × H. Clearly, the function g satisfies assumptions (i)-(ii). 

(0) = u 0 ∈ domϕ(0, •)
with h(t) ∈ F (t, u h (t)) a.e. finishing the proof of the theorem.

To finish the section we present an existence result of absolutely continuous solution to the inclusion -u(t) ∈ ∂ϕ(t, u(t)) + f (t, u(t)) when ϕ satisfies H(ϕ) and the perturbation f is Lipschitz with respect to x ∈ H by using some ideas in [START_REF] Castaing | Evolution problems with timedependent subdifferential operators[END_REF] and the above tools. This result is quite useful in further applications.

Theorem 3.12. Assume that ϕ satisfies condition H(ϕ) and that domϕ(t, •) is ball-compact, for every t ∈ I. Let f : I × H → H be a map satisfying (i)-(ii)-(iii). Then there is a unique absolutely continuous solution to the inclusion

-u(t) ∈ ∂ϕ(t, u(t)) + f (t, u(t)) a.e. t ∈ I, u(0) = u 0 ∈ domϕ(0, •), Proof.
Step 1. We will follow some arguments used in [START_REF] Castaing | Evolution problems with timedependent subdifferential operators[END_REF]. Let u 0 ∈ dom ϕ(0, •). where u h is the unique absolutely continuous solution to the inclusion -uh (t) ∈ ∂ϕ(t, u h (t)) + h(t) a.e. t ∈ I, u h (0) = u 0 ∈ domϕ(0, •).

Remark that Φ(h) ∈ K. Then, Φ(K) is contained in the σ(L 2 H (I), L 2 H (I))compact set K. Clearly, if h is a fixed point of Φ (h = Φ(h)), then u h is an absolutely continuous solution to the inclusion under consideration, namely -uh (t) ∈ ∂ϕ(t, u h (t)) + h(t) a.e. t ∈ I, u h (0) = u 0 ∈ domϕ(0, •), with h(t) = f (t, u h (t)) for all t ∈ I. Now let us prove that Φ : K → K is continuous when K is endowed with the σ(L We conclude that the mapping a ∈ D(A(0)) → u a (1) ∈ D(A(1)) has a unique fixed point which is the unique periodic solution for the problem (4.1).

By applying the tools given in Theorem 3.8, we obtain a new existence theorem of periodic solution for evolution problems governed by timedependent subdifferential operators as follows. for all y 1 ∈ F (t, x 1 ), y 2 ∈ F (t, x 2 ) and t ∈ I. Suppose also that domϕ(0, •) is convex compact and t → domϕ(t, •) satisfies the periodic condition domϕ(0, •) = domϕ(1, •).

Then, the differential inclusion -u(t) ∈ ∂ϕ(t, u(t)) + F (t, u(t)) a.e. t ∈ I, u(0) = u 0 ∈ domϕ(0, •), has a unique absolutely continuous solution u(•) which is periodic, that is, u(0) = u(1).

Proof. The proof is similar to the one of Theorem 4.1, so we omit it.

Conclusion.

In this paper, we have established new existence results regarding first-order perturbed evolution problems involving time-dependent maximal monotone (resp. subdifferential) operators, in Hilbert spaces. The set-valued perturbation is assumed to be mixed semi-continuous. We have also investigated periodic solutions under suitable assumptions. Our results cover related perturbed convex sweeping processes. It will be interesting to extend these results to the more general setting of Banach spaces, and to deal with the differential inclusion of the form studied here governed by time and state dependent operator A(t, x) instead of A(t). Such studies are out of the scope of this manuscript and will be the subject of future works.
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 33 (a) The unique absolutely continuous solution u(•) of the unperturbed problem satisfies
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 35 Let I := [0, T ]. Assume that (H 1 )-(H 2 ) hold. Let f : I ×H → H be a map satisfying (i)-(ii)-(iii) Then, for any u 0 ∈ domϕ(0, •), the following problem -u(t) ∈ ∂ϕ(t, u(t)) + f (t, u(t)) a.e. t ∈ I, u(0) = u 0 has one and only one absolutely continuous solution u(•) on I that satisfies

Theorem 3 . 6 .

 36 Let I := [0, 1]. Assume that (H 1 )-(H 2 ) hold and that dom ϕ(t, •) is ball-compact, for every t ∈ I. Let f : I × H → H be a mapping satisfying (i)-(ii)-(iii). Let F : I × H ⇒ H be a compact set-valued map satisfying (j)-(jj)-(jjj).

1 0

 1 y1 [s,t] (τ ), uhn (τ ) dτ = y, u hn (t) -u hn (s) . Next, passing to the limit in the equality yields y, t s z(τ )dτ = y, u(t) -u(s) .

  Now, we are ready to handle the following variant concerning the class of differential inclusions involving the subdifferential of a map ϕ satisfying H(ϕ) with a mixed semi-continuous perturbation. Theorem 3.11. Let I := [0, 1]. Assume that ϕ satisfies condition H(ϕ) and that dom ϕ(t, •) is ball-compact, for every t ∈ I. Let f : I × H → H be a mapping satisfying (i)-(ii)-(iii). Let F : I × H ⇒ H be a compact set-valued map satisfying (j)-(jj)-(jjj).

  Moreover, for all (t, x) ∈ I × H, one has ||g(t, x)|| ≤ m + ||h(t)|| ≤ (m + ||h(t)||)(1 + ||x||), which yields (iii) with β(•) := m + ṙ(•) + ε ∈ L

  ≤ 0, since by assumption γ is a non-negative function. This along with the fact that ||u 1 (0) -u 2 (0)|| = 0, integrating, one gets u 1 = u 2 . Thus, it follows the uniqueness of the solution for the problem (4.1). Now we check the periodic property of the solution. Let a, b ∈ D(A(0)) = D(A(1)) and denote by u a (resp. u b ) the unique solution of the problem (4.1) with the initial condition a (resp. b) in D(A(0) = D(A(1)). Then, we take in inequality (4.2), u 1 = u a and u 2 = u b . By integration, it results12 ||u a (t) -u b (t)|| 2 ≤ 1 2 ||a -b|| 2 -t 0 γ(s)||u a (s) -u b (s)|| 2 ds.(4.3)We may use similar arguments as in[START_REF] Castaing | BV periodic solutions of an evolution problem associated with continuous convex sets[END_REF], we will see that the function a → u a (1) is a strict contraction on the convex compact setD(A(0)) = D(A(1)), that is, ||u a (1) -u b (1)|| < ||a -b||, if ||a -b|| > 0.In view of Lemma 5.4 [20] (if θ is a continuous real valued function such that 0 ≤ θ(t) ≤ m -t 0 g(s)θ(s)ds with m > 0 and g(•) ∈ L 1 R+ (I), then, θ(t) < m for all t ∈ I), it results from (4.3) that ||u a (1) -u b (1)|| < ||a -b||.
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 42 Let I := [0, 1]. Assume that (H 1 )-(H 2 ) hold, and that domϕ(t, •) is ball-compact for every t ∈ I. Let F : I × H ⇒ H be a compact set-valued map satisfying (j)-(jj)-(jjj). Suppose further that: there exists a functionγ(•) ∈ L 2 R+ (I) such that y 1 -y 2 , x 1 -x 2 ≥ γ(t)||x 1 -x 2 || 2 ,

  where dis (•, •) is the pseudo-distance between maximal monotone operators introduced by Vladimirov[START_REF] Vladimirov | Nonstationary dissipative evolution equations in Hilbert spaces[END_REF], cf. (2.3). Secondly we investigate the evolution problem with perturbation G + F

	-	du dt	(t) ∈ A(t)u(t) + G(t, u(t)) + F (t, u(t)) a.e. t ∈ I,	(1.2)
	where G : I × H ⇒ H is a set-valued map.
	Tertio we are interested in the perturbed evolution problem
	-	du dt	(t) ∈ ∂ϕ(t, u(t)) + f (t, u(t)) + F (t, u(t)) a.e. t ∈ I,	(1.3)
	governed by the subdifferential of a time-dependent proper lower semi-
	continuous convex function ϕ(t, •) of H into [0, +∞].

1,2 

(I, R) such that dis (A(t), A(s)) ≤ |β(t) -β(s)| ∀t, s ∈ I,

  It remains to show that L is compact in C H (I). Let (h n ) n be a sequence in M and (u hn ) n be a sequence in L such that u hn → u ∈ C H (I). By weak compactness of M , we may assume that h n → h ∈ M with respect to the σ(L 2 H (I), L 2 H (I))-topology. Recall that u hn is the unique absolutely continuous solution of

1/2 S.

Moreover, by

(3.4)

, one has sup h∈M ||u h (t)|| < +∞ for any t ∈ I. Since u h (t) ∈ D(A(t)) for all t ∈ I and for all h ∈ M , along with the ball-compactness of D (A(t)), for each t ∈ I, the set {u h (t), h ∈ M } is relatively compact in H. Thus, L is relatively compact in C H (I).

  has at least a solution u h . For this purpose, by virtue of Kakutani-Ky Fan fixed point theorem, we need to prove that Φ : M ⇒ M is upper semicontinuous with non-empty convex weakly compact values from M into itself, equivalently, the graph of Φ is sequentially compact in M ×M , for M equipped with the σ(L 1 H

u h (t)) a.e. and h 2 (t) ∈ G(t, u h (t)) a.e. thus proving that

-uh (t) ∈ A(t)u h (t) + F (t, u h (t)) + G(t, u h (t)) a.e. t ∈ I, u h (0) = u 0 ∈ D(A(0)),

  Proposition 3.2. Let A(t) := ∂ϕ(t, •), ∀t ∈ I where ϕ satisfies conditions (H 1 )-(H 2 ). Let (u n ) n and (w n ) n be two sequences in L 2 H (I) satisfying (i) w n (t) ∈ A(t)u n (t), ∀n ∈ N and for a.e. t ∈ I; (ii) (u n ) n strongly converges to u in L 2 H (I); (iii) (w n ) n weakly converges to w in L 2

	admits a unique absolutely continuous solution.
	The operator A enjoys the following property (see [43]).
	Proposition 3.1. If for any t ∈ I, A(t) = ∂ϕ(t, •) where ϕ satisfies conditions
	(H 1 )-(H 2 ) then, A is a maximal monotone operator.
	We also recall the following useful proposition.
	t, u(t)) is absolutely
	continuous on [0, T ].
	Now, we introduce the extension to L 2 H (I) of subdifferential operators
	defined on H.

•) has a unique absolutely continuous solution u(•) on [0, T ]. Moreover, u(t) ∈ domϕ(t, •) for all t ∈ [0, T ] and the function t → ϕ(Denote by A(t) := ∂ϕ(t, •) the maximal monotone operator in H associated with ∂ϕ(t, •), t ∈ I (ϕ satisfies conditions (H 1 )-(H 2 )). Let us consider the operator A : L 2 H (I) ⇒ L 2 H (I) defined by Au = {w ∈ L 2 H (I) : w(t) ∈ A(t)u(t) a.e.}. Then, A is well defined since by Theorem 3.4, the evolution inclusion -u(t) ∈ A(t)u(t) = ∂ϕ(t, u(t)) a.e. t ∈ I, u(0) ∈ dom ϕ(0, •) H (I). Then, one has w(t) ∈ A(t)u(t) a.e. t ∈ I.

  , one has sup +∞ for any t ∈ I. Therefore, K is bounded. Since u h (t) ∈ domϕ(t, •) for all t ∈ I and h ∈ M , along with the ball-compactness of dom ϕ(t, •), for each t ∈ I, the set {u h (t), h ∈ M } is relatively compact in H. Thus, K is relatively compact in C H (I). It remains to show that K is compact in C H (I). Let (h n ) n be a sequence in M and (u hn ) n be a sequence in K such that u hn → u ∈ C H (I). By weak compactness of M , we may assume that h n → h ∈ M with respect to the σ(L 1 H (I), L ∞ H (I))-topology. Recall that u hn is the unique absolutely continuous solution to -uhn (t) ∈ ∂ϕ(t, u hn (t)) + h n (t) + f (t, u hn (t)) a.e. t ∈ I, u hn

h∈M ||u h (t)|| <

  , one has for any t ∈ I. sup h∈M u h (t) < +∞. Since u h (t) ∈ domϕ(t, •) for all t ∈ I and h ∈ M , along with the ball-compactness of dom ϕ(t, •), for each t ∈ I, the set {u h (t), h ∈ M } is relatively compact in H. Thus, K is relatively compact in C H (I). It remains to show that K is compact in C H (I). Let (h n ) n be a sequence in M and (u hn ) n be a sequence in K such that u hn → u ∈ C H (I). By weak compactness of M , we may assume that h n → h ∈ M with respect to the σ(L 2 H (I), L 2 H (I))-topology. Recall that u hn is the unique absolutely continuous solution of -uhn (t) ∈ ∂ϕ(t, u hn (t)) + h n (t) + g(t, u hn (t)), h n ∈ M, a.e. t ∈ I, u hn (0) = u 0 ∈ domϕ(0, •). hypothesis on g, one writes ||g(t, u hn (t))|| ≤ m for all t ∈ I. Since u hn → u in C H (I) and g is continuous with respect to its second variable yield (via the dominated convergence theorem) g(•, u hn

	By

  (•) and b r (•) are the functions defined by (3.13) and (3.14).

			, s, t ∈ I, s ≤ t,
	d dt	ϕ λ (t, x(t)) -∂ϕ λ (t, x(t)), ẋ(t) ≤
		| ȧr (t)|||∂ϕ λ (t, x(t))||(|ϕ λ (t, x(t))|	1 2 + 1) + | ḃr (t)|(|ϕ λ (t, x(t))| + 1) a.e.,
	where
		r ≥ sup{||J t λ (x(t))||, t ∈ I, 0 < λ ≤ 1},
	where a r

  For any h ∈ K denote by u h the unique absolutely continuous solution to the perturbed evolution problem-uh (t) ∈ ∂ϕ(t, u h (t)) + h(t) a.e. t ∈ I, u h (0) = u 0 ∈ domϕ(0, •). H (I), L 2 H (I))-closed),and by assumption (iii), for every h ∈ K, we note that ||f (t, u h (t))|| ≤ β(t)(1 + ||u h (t)||) ≤ β(t)(1 + r(t)). Let us define the mapping Φ on K by Φ(h)(t) = f (t, u h (t)) for all t ∈ I,

	Since ṙ ∈ L 2 R+ (I), the set			
		K := {h ∈ L 2 H (I) : ||h(t)|| ≤ ṙ(t) a.e. t ∈ I},
	is clearly convex σ(L 2 H (I), L 2 H (I))-compact. Using the monotonicity of ∂ϕ(t, •) for all t ∈ I, one obtains the estimate
	1 2	||u h (t) -u(t)|| 2 ≤	0	t	||h(s)||||u h (s) -u(s)||ds.
	Thanks to Lemma 2.1, it follows that	
						t
		||u h (t) -u(t)|| ≤	||h(s)||ds
						0
	so that				t
		||u h (t)|| ≤ r(0) +	ṙ(s)ds = r(t).	(3.17)
					0

Let u : I → H be the unique absolutely continuous solution to -u(t) ∈ ∂ϕ(t, u(t)) a.e. t ∈ I, u(0) = u 0 ∈ domϕ(0, •). Now, let r : [0, 1] → R + be the unique absolutely continuous solution of the differential equation ṙ(t) = β(t)(1 + r(t)) a.e. with r(0) = sup t∈I ||u(t)||. Set L := {u h : h ∈ K}. Main fact L is compact in C H (I). This follows from the above estimate and the compactness property Theorem 3.10. Step 2. By construction, the set K is convex σ(L 2 H (I), L 2 H (I))-compact (then σ(L 2

  2 H (I), L 2 H (I)) topology. Remark that K is convex σ(L 2 H (I), L 2 H (I))-compact and H is separable so that K is convex σ(L 2 H (I), L 2 H (I))-compact metrizable. It is enough to show that Φ is sequentially σ(L 2 It remains to check the required continuity. Let g ∈ L 2 H (I). Then we have | g(t), f (t, u h (t)) | ≤ ||g(t)||α(t)(1 + ||u h (t)||) ≤ ||g(t)|| ṙ(t)for any h ∈ K. Whence the measurable functions g(t), f (t, u h (t)) are dominated by the integrable function t → ||g(t)|| ṙ(t). By construction we have for every t ∈ I g(t), f (t, u hn (t)) → g(t), f (t, u h (t)) , since f (t, •) is continuous for every fixed t in I. As a consequence of Lebesgue's convergence theorem, we have Applying Schauder fixed point theorem to the continuous mapping Φ : K → K shows that Φ admits a (t) -u 2 (t)|| 2 ≤ -γ(t)||u 1 (t) -u 2 (t)|| 2 for a.e. t ∈ I.

	that is,				
	1 2	d dt	||u 1 (4.2)
	Remark that	d dt	||u 1 (t) -u 2 (t)|| 2
					1	1
			lim n→∞	0	g(t), f (t, u hn (t)) dt =	0	g(t), f (t, u h (t)) dt.

H (I), L 2 H (I)) continuous on K. Let (h n ) σ(L 2 H (I), L 2 H (I)) converges in L 2 H (I) to h ∈ K. We have to prove that (Φ(h n )) weakly converges in L 2 H (I) to Φ(h) ∈ K. Recall that the set L := {u h : h ∈ K} of solutions to -uh (t) ∈ ∂ϕ(t, u h (t)) + h(t), a.e. t ∈ I, h ∈ K u h (0) = u 0 ∈ domϕ(0, •)

is compact in C H (I). Hence the solution u hn to -uhn (t) ∈ ∂ϕ(t, u hn (t)) + h n (t), a.e. t ∈ I, h n ∈ L u hn (0) = u 0 ∈ domϕ(0, •)

uniformly converges to the solution u h to

-uh (t) ∈ ∂ϕ(t, u h (t)) + h(t), a.e. t ∈ I, h ∈ K u h (0) = u 0 ∈ domϕ(0, •)

So we conclude that (Φ(h n )) converges to Φ(h) on K with respect to the σ(L 2 H (I), L 2 H (I))-topology. This means that Φ : K → K is continuous on K endowed with the σ(L 2 H (I), L 2 H (I))-topology.
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fixed point, h = Φ(h), thus proving the existence of an absolutely continuous solution to our inclusion. Uniqueness follows from the monotonicity of ∂ϕ(t, •) and the Lipschitz property of f (t, •).

Applications

We aim here to prove the existence of periodic solutions to our evolution problems. 

for all y 1 ∈ F (t, x 1 ), y 2 ∈ F (t, x 2 ) and t ∈ I. Suppose also that D(A(0)) is convex compact and t → D(A(t)) satisfies the periodic condition

has a unique absolutely continuous solution u(•) which is periodic, that is, u(0) = u(1).

Proof. Let us check first uniqueness of the solution.

Let u 1 and u 2 be two solutions of the differential inclusion

whose existence is guaranteed by Theorem 3.2. Then, there exist two L 2 H (I)functions h 1 (•) and h 2 (•) such that for all t ∈ I h 1 (t) ∈ F (t, u 1 (t)) and h 2 (t) ∈ F (t, u 2 (t)), and for almost all t ∈ I -u1 (t) -h 1 (t) ∈ A(t)u 1 (t) and -u2 (t) -h 2 (t) ∈ A(t)u 2 (t).

The monotone condition on

Moreover, the monotone property of A(t) ensures that -u1 (t) -h 1 (t) -(-u2 (t) -h 2 (t)), u 1 (t) -u 2 (t) ≥ 0, hence, u1 (t) -u2 (t), u 1 (t) -u 2 (t) ≤ -γ(t)||u 1 (t) -u 2 (t)|| 2 ,