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Mixed semi-continuous perturbation of time
-dependent maximal monotone operators
and subdifferentials.

Charles Castaing, Christiane Godet-Thobie, Soumia
Säıdi and Manuel D.P. Monteiro Marques

Abstract. We are concerned in the present work with the existence of
absolutely continuous solutions to a class of evolution problems gov-
erned by time-dependent maximal monotone operators A(t) of the form
− du

dt
(t) ∈ A(t)u(t) + f(t, u(t)) + F (t, u(t)), where the perturbation is a

sum of a mixed semi-continuous compact set-valued map F and a single-
valued map f . New variants dealing with a class of time-dependant sub-
differential operators of the form − du

dt
(t) ∈ ∂ϕ(t, u(t)) + f(t, u(t)) +

F (t, u(t)) are also investigated. Some applications are given.

Mathematics Subject Classification (2010). 34A60, 34B15, 47H10, 49J52,
49J53, 35B10.

Keywords. maximal monotone operator, pseudo-distance, perturbation,
subdifferential operator, evolution inclusion, mixed semi-continuity .

1. Introduction

Let H be a separable Hilbert space and I := [0, T ]. Let F : I ×H ⇒ H be a
mixed semi-continuous set-valued map and f : I×H → H be a single-valued
mapping. In this paper, we are mainly interested at first in the perturbed
evolution problem

−du
dt

(t) ∈ A(t)u(t) + f(t, u(t)) + F (t, u(t)) a.e. t ∈ I, (1.1)

governed by a time-dependent maximal monotone operator A(t) in the vein
of Kunze-Marques and Vladimirov’s works [39, 51]. Here, the dependence
t 7→ A(t) is of absolutely continuous variation, in the sense that there exists
β ∈W 1,2(I,R) such that

dis (A(t), A(s)) ≤ |β(t)− β(s)| ∀t, s ∈ I,
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where dis (·, ·) is the pseudo-distance between maximal monotone operators
introduced by Vladimirov [51], cf. (2.3). Secondly we investigate the evolution
problem with perturbation G+ F

−du
dt

(t) ∈ A(t)u(t) +G(t, u(t)) + F (t, u(t)) a.e. t ∈ I, (1.2)

where G : I ×H ⇒ H is a set-valued map.
Tertio we are interested in the perturbed evolution problem

−du
dt

(t) ∈ ∂ϕ(t, u(t)) + f(t, u(t)) + F (t, u(t)) a.e. t ∈ I, (1.3)

governed by the subdifferential of a time-dependent proper lower semi-
continuous convex function ϕ(t, ·) of H into [0,+∞]. There is a plethora of
results dealing with convex weakly compact upper semi-continuous (or lower
semi-continuous) perturbations for evolution inclusions involving maximal
monotone (or m-accretive) operators, subdifferential operators, and sweeping
processes. For first-order related problems, we refer the reader to [1, 13, 14,
16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 29, 31, 40, 47] and the references therein.
Other corresponding results can be found in the case of a single-valued per-
turbation, we cite for instance [2, 3, 15, 23, 28, 35, 38, 43, 44, 45, 53].

About the problems under consideration, the set-valued map F is mixed
semi-continuous in the sense of Tolstonogov [48], that is for each t ∈ I, at each
x ∈ H where F (t, x) is convex, F (t, ·) is upper semi-continuous, and whenever
F (t, x) is not convex, F (t, ·) is lower semi-continuous on some neighbourhood
of x. The main ingredient to study evolution problems with such perturbation
is a selection theorem due to Tolstonogov [48] (see [49] for the infinite dimen-
sional setting). There exist few results on mixed semi-continuous perturbation
of sweeping process and maximal monotone operators in the literature, see
[6, 7, 8, 9, 11, 30, 32, 33, 34]. So, the problems considered in this paper are
new contributions on mixed semi-continuous perturbation of time-dependent
maximal monotone operators and time-dependent subdifferential operators
in the infinite dimensional framework. Perturbed differential inclusions in-
volving time-dependent maximal monotone operators (resp. time-dependent
subdifferential operators) by a single-valued map f (or a set-valued map F )
in [3] (resp. [44, 45, 46]) lead naturally to consider general differential inclu-
sions with the perturbations f + F in (1.3) and G + F in (1.2). Actually,
the existence of solutions for such evolution problems remains a very well-
active area of research. It is worth pointing out that the class of sweeping
processes perturbed by a sum F + f , has been investigated [10], in the abso-
lutely continuous framework. The author in [42] has developed several works
on that topic, see also [41] in the bounded variation framework. Related re-
sults to evolution problems governed by time-dependent maximal monotone
operators have been recently established, see [4, 6, 5].

The paper is organized as follows. In section 2, we introduce notation
and the necessary background material. In section 3, we deal with mixed semi-
continuous perturbation of evolution inclusions (1.1)-(1.2) and (1.3) making
use of a selection theorem due to Tolstonogov [49] and Kakutani-Ky Fan fixed
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point theorem. We give also a variant with a single-valued perturbation using
Schauder fixed point theorem. Section 4 is devoted to study the existence and
uniqueness of periodic solution.

2. Notation and Preliminaries

From now on I := [0, T ] (T > 0) is an interval of R and H is a real separable
Hilbert space with scalar product denoted by 〈·, ·〉 and associated norm || · ||.
We will denote by BH the closed unit ball of H and BH [x, r] its closed ball
of center x ∈ H and radius r > 0. For any interval I of R, we denote by L(I)
(resp. B(H)) the σ-algebra of measurable sets of I (resp. Borel σ-algebra of
measurable sets of H).
On the space CH(I) of continuous maps x : I → H, we consider the norm of
uniform convergence on I ||x||∞ = sup

t∈I
||x(t)||. By LpH(I) for p ∈ [1,+∞[

(resp. p = +∞), we denote the space of measurable maps x : I → H
such that

∫
I
||x(t)||pdt < +∞ (resp. which are essentially bounded) endowed

with the usual norm ||x||Lp
H(I) = (

∫
I
||x(t)||pdt)

1
p , 1 ≤ p < +∞ (resp. en-

dowed with the usual essential supremum norm || · ||). By W 1,1(I,H) and
W 1,2(I,H), we denote the spaces of absolutely continuous functions from I
to H with derivatives in L1

H(I) and L2
H(I) respectively. A map u : [0, T ]→ H

is absolutely continuous if there exists an integrable mapping v such that

u(t) = u0 +
∫ t
0
v(s)ds; in this case u̇ = v a.e. on I. Let E be a Banach space

and E′ its topological dual, we denote by σ(E,E′) the weak topology on E.
We introduce in the following the definition and some properties of

maximal monotone operators needed in the proofs of our results, we refer the
reader to [12, 15, 52] for their basic theory and more details.
Let A : D(A) ⊂ H ⇒ H be a set-valued operator. The domain, the range
and the graph of A are the following sets

D(A) = {x ∈ H : Ax 6= ∅},
R(A) = {y ∈ H : ∃x ∈ D(A), y ∈ Ax} = ∪{Ax : x ∈ D(A)},

gph(A) = {(x, y) ∈ H ×H : x ∈ D(A), y ∈ Ax}.
We say that A : D(A) ⊂ H ⇒ H is monotone, if 〈y1 − y2, x1 − x2〉 ≥ 0
whenever (xi, yi) ∈ gph(A), i = 1, 2. It is maximal monotone, if its graph
could not be contained strictly in the graph of any other monotone operator,
in this case, for all λ > 0, R(IH +λA) = H, where IH stands for the identity
mapping of H.
If A is a maximal monotone operator then, for every x ∈ D(A), Ax is
nonempty, closed and convex. So that, the projection of the origin into Ax,
A0(x), exists and is unique.
For λ > 0, we define the resolvent and the Yosida approximation of A re-
spectively by, JAλ = (IH + λA)

−1
and Aλ = 1

λ

(
IH − JAλ

)
. These operators

are both single-valued and defined on the whole space H, and we have

JAλ x ∈ D(A) and Aλ(x) ∈ A(JAλ x), for every x ∈ H. (2.1)
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||Aλ(x)|| ≤ ||A0(x)|| ∀x ∈ D(A). (2.2)

Let A : D(A) ⊂ H ⇒ H and B : D(B) ⊂ H ⇒ H be two maxi-
mal monotone operators, then we denote by dis (A,B) (see [51]) the pseudo-
distance between A and B defined by

dis (A,B) = sup

{
〈y − y′, x′ − x〉
1 + ||y||+ ||y′||

: (x, y) ∈ gph(A), (x′, y′) ∈ gph(B)

}
.

(2.3)
Clearly, dis (A,B) ∈ [0,+∞],dis (A,B) = dis (B,A) and dis (A,B) = 0 iff
A = B.

Let ϕ be a lower semi-continuous convex function from H into R∪{+∞}
which is proper in the sense that its effective domain domϕ defined by
domϕ := {x ∈ H : ϕ(x) < +∞} is nonempty and, as usual, its Fenchel
conjugate is defined by ϕ∗(v) := sup

x∈H
[〈v, x〉 − ϕ(x)] and its Moreau regular-

ization by ϕλ(x) = inf{ 12‖x− y‖
2 + ϕ(y)}.

The subdifferential ∂ϕ(x) of ϕ at x ∈ domϕ is

∂ϕ(x) = {v ∈ H : ϕ(y) ≥ 〈v, y − x〉+ ϕ(x) ∀y ∈ domϕ},
and its effective domain is D(∂ϕ) = {x ∈ H : ∂ϕ(x) 6= ∅}.
It is well known that if ϕ is a proper lower semi-continuous convex function,
then its subdifferential operator ∂ϕ is a maximal monotone operator.

Let F : Ω ⇒ Y be a set-valued map from an open set Ω of a normed
space X into a normed space Y . The set-valued map F is upper (resp. lower)
semi-continuous at x0 ∈ Ω if for every open set U of Y such that F (x0) ⊂ U
(resp. F (x0) ∩U 6= ∅) there exists a neighbourhood V of x0 such that for all
x ∈ V , we have F (x) ⊂ U (resp. F (x) ∩ U 6= ∅).
The set-valued map F is upper (resp. lower) semi-continuous if it is upper
(resp. lower) semi-continuous at each point.
Let F : T ⇒ Y be a set-valued map from a measurable space (T, T ) into a
metric space Y . The set-valued map F is measurable if for any open set U of
Y , we have F−1(U) ∈ T , with F−1(U) = {t ∈ T : F (t) ∩ U 6= ∅}.
A function f : I×H −→ R is said to be a Carathéodory map if it is measurable
with respect to the first variable and continuous with respect to the second
one.
We refer to [25] for details concerning convex analysis and measurable set-
valued-maps.

For the proof of our theorems we will need the following selection the-
orem (see Theorem 6.6. [49]).

Theorem 2.1. Let Y be a separable Banach space and J ⊂ R. Let G : J×Y ⇒
Y be a set-valued map with compact values that satisfies

(j) G is L(J)⊗ B(Y )-measurable;
(jj) for every t ∈ J , at each x ∈ Y such that G(t, x) is convex, the set-

valued map G(t, ·) is upper semi-continuous on Y and whenever G(t, x)
is not convex, the set-valued map G(t, ·) is lower semi-continuous on
some neighbourhood of x;
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(jjj) there exists a function g : J × Y −→ R+ of Carathéodory type which is
integrably bounded on bounded subsets of Y and which is such that

G(t, x) ∩BY [0, g(t, x)] 6= ∅ for any x ∈ Y and a.e. t ∈ J.
Then, for any ε > 0 and any compact set K ⊂ CY (J), there is a nonempty
closed convex set valued map Ψ : K ⇒ L1

Y (J) which has a sequentially closed
graph with respect to the norm of uniform convergence in K and the weak
topology σ(L1

Y (J), L∞Y (J)) in L1
Y (J) and which is such that for any x ∈ K

and h ∈ Ψ(x), one has for a.e. t ∈ J
h(t) ∈ G(t, x(t))

||h(t)|| ≤ g(t, x(t)) + ε.

We close this section by recalling the following lemma (Lemma A.5. [15]).

Lemma 2.1. Let m ∈ L1
R([0, T ]) such that m ≥ 0 a.e. on [0, T ] and let α be a

positive constant. Consider a continuous function φ : [0, T ]→ R satisfying

1

2
φ2(t) ≤ 1

2
α2 +

∫ t

0

m(s)φ(s)ds for all t ∈ [0, T ].

Then, one has

|φ(t)| ≤ α+

∫ t

0

m(s)ds for all t ∈ [0, T ].

3. Existence results

We are going to prove our main results under the following assumptions:
Let for every t ∈ I, A(t) : D(A(t)) ⊂ H ⇒ H is a maximal monotone
operator such that
(H1) There exists a function β ∈ W 1,2(I,R) which is non-negative on [0, T [
and non-decreasing with β(T ) <∞ and β(0) = 0 such that

dis (A(t), A(s)) ≤ |β(t)− β(s)|, ∀t, s ∈ I.
(H2) There exists a non-negative real number c such that

||A0(t, x)|| ≤ c(1 + ||x||) for t ∈ I, x ∈ D(A(t)).

(H3) t 7→ Jλ(t)(x) =
(
IH + λA(t)

)−1
x is measurable for every λ > 0 and for

every x ∈ H.
Let f : I ×H → H be a mapping such that
(i) f(·, x) is measurable on I for every x ∈ H;
(ii) ||f(t, x) − f(t, y)|| ≤ m||x − y|| for all (t, x, y) ∈ I × H × H for some
positive constant m;
(iii) ||f(t, x)|| ≤ m for all (t, x) ∈ I ×H.
or again
(ii) for every η > 0, there exists a non-negative function γη(·) ∈ L2

R(I) such

that, for all t ∈ I and for any u,w ∈ BH [0, η]

||f(t, u)− f(t, w)|| ≤ γη(t)||u− w||;
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(iii) there exists a non-negative function β(·) ∈ L2
R(I) such that, for all t ∈ I

and for all u ∈ H, one has

||f(t, u)|| ≤ β(t)(1 + ||u||).
Let F : I ×H ⇒ H be a compact set-valued map such that
(j) F is L(I)⊗ B(H)-measurable;
(jj) for every t ∈ I, at each x ∈ H such that F (t, x) is convex, the set-valued
map F (t, ·) is upper semi-continuous and whenever F (t, x) is not convex,
F (t, ·) is lower semi-continuous on some neighbourhood of x;
(jjj) F (t, x)∩α(t)(1+ ||x||)BH 6= ∅ for all (t, x) ∈ I×H for some measurable
function α with 0 < α(t) < 1 for all t ∈ I.

Let ϕ : I ×H → [0,+∞] be a map satisfying:

(H1) For each t ∈ I, the function x 7−→ ϕ(t, x) is proper lower semi-continuous
and convex.

(H2) There exist a ρ-Lipschitz function k : H −→ R+ and an absolutely
continuous function a : I → R, with a non-negative derivative ȧ ∈
L2
R(I), such that

ϕ∗(t, x) ≤ ϕ∗(s, x) + k(x)|a(t)− a(s)| for every (t, s, x) ∈ I × I ×H.

3.1. Mixed semi-continuous perturbation problem with time-dependent max-
imal monotone operators

For the sake of completeness we recall and summarize some important results
[3, 4, 6].

Theorem 3.1. Assume that for every t ∈ I, A(t) : D(A(t)) ⊂ H ⇒ H is a
maximal monotone operator satisfying (H1)-(H2). Let f : I × H → H be
such that for every x ∈ H the mapping f(·, x) belongs to L∞H (I), and that f
satisfies the linear growth condition: there exists a non-negative real constant
M such that ||f(t, x)|| ≤M(1 + ||x||) for t ∈ I, x ∈ H. Moreover, for every
R > 0 there exists a non-negative real function αR(·) ∈ L1

R(I) such that

||f(t, x)− f(t, y)|| ≤ αR(t)||x− y||, ∀t ∈ I, ∀x, y ∈ BH [0, R].

Then, for all u0 ∈ D(A(0)), the problem

−du
dt

(t) ∈ A(t)u(t) + f(t, u(t)) a.e. t ∈ I,

has a unique absolutely continuous solution u that satisfies

||u̇(t)|| ≤ K(1 + β̇(t)) a.e. t ∈ I,
for some real constant K > 0, which depends on ||u0||, c,M, T , and β.

Lemma 3.1. Let for every t ∈ I, A(t) : D(A(t)) ⊂ H ⇒ H be a maximal
monotone operator satisfying (H1)-(H2). Then, one has
(J ) For all u0 ∈ D(A(0)) the problem

− u̇(t) ∈ A(t)u(t) a.e. t ∈ I
u(t) ∈ D(A(t)) ∀t ∈ I,
u(0) = u0,
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has a unique absolutely continuous solution u with the property:

||u̇(t)|| ≤ K(1 + β̇(t)) a.e. t ∈ I, (3.1)

for some non-negative real constant K depending on ||u0||, c, T , and β.
(JJ ) Assume in addition that (H3) is satisfied. Then, the composition op-
erator A : D(A) ⊂ L2

H(I) ⇒ L2
H(I) defined by

Au =
{
v ∈ L2

H(I) : v(t) ∈ A(t)u(t) a.e. t ∈ I
}

for each u ∈ D(A) where

D(A) :=
{
u ∈ L2

H(I) : ∃ y ∈ L2
H(I), (u(t), y(t)) ∈ gph(A(t)) a.e. t ∈ I

}
,

is maximal monotone. Consequently, the graph of A is strongly-weakly se-
quentially closed in L2

H(I)× L2
H(I).

Proof. (J ) follows from Theorem 3.1.
Taking into account the fact (J ), it is clear that D(A) is nonempty and A
is well defined. On the other hand, it is easy to see that A is monotone. For
the maximality, we need to check that R(IL2

H(I) + λA) = L2
H(I) for each

λ > 0. Let g ∈ L2
H(I). Then, from (H3), t 7→ v(t) :=

(
IH + λA(t)

)−1
g(t) =

Jλ(t)(g(t)) = g(t)−λAλ(t)(g(t)) is measurable by noting that Jλ(t)(·) is non
expansive and Aλ(t)(·) is 2

λ -Lipschitz. Set for each t ∈ I,

h(t) := λAλ(t)(g(t)) = λ(Aλ(t)(g(t))−Aλ(t)(u(t)) + λAλ(t)(u(t))

where u denotes the absolutely continuous solution of the unperturbed prob-
lem above. Then, h is measurable and ‖h(t)‖ ≤ 2‖g(t)−u(t)‖+λ‖Aλ(t)(u(t))‖
So we deduce that h ∈ L2

H(I) because g ∈ L2
H(I) and t 7→ Aλ(t)(u(t)) ∈

L∞H (I) using (2.2) and (H2). This proves that v ∈ L2
H(I) and g ∈ v + λAv,

so that R(IL2
H(I) + λA) = L2

H(I). �

In the light of the mentioned results above, we develop some new vari-
ants for time-dependent maximal monotone operators involving a perturba-
tion f + F , where F is a mixed semi-continuous set-valued map.

Theorem 3.2. Let I := [0, 1]. Assume that for every t ∈ I, A(t) : D(A(t)) ⊂
H ⇒ H is a maximal monotone operator with D(A(t)) is ball-compact for
every t ∈ I, satisfying (H1)-(H2)-(H3). Let f : I × H → H be a mapping
satisfying (i)-(ii)-(iii). Let F : I × H ⇒ H be a compact set-valued map
satisfying (j)-(jj)-(jjj). Then, for all u0 ∈ D(A(0)), the problem

−du
dt

(t) ∈ A(t)u(t) + f(t, u(t)) + F (t, u(t)) a.e. t ∈ I,

has at least an absolutely continuous solution u.

Proof. Step 1 Let u0 ∈ D(A(0)), ε > 0. Let u : [0, 1] → H be the unique
absolutely continuous solution to

−u̇(t) ∈ A(t)u(t) a.e. t ∈ I,

u(0) = u0 ∈ D(A(0)).
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The existence and uniqueness of such a solution follow from Lemma 3.1.
Now, let r : [0, 1] → R+ be the unique absolutely continuous solution of the
differential equation

ṙ(t) = α(t)(1 + r(t)) + ε+m a.e. with r(0) = sup
t∈[0,1]

||u(t)||.

Since ṙ + ε ∈ L∞R+
(I) ⊂ L1

R+
(I), the set

M := {h ∈ L1
H(I) : ||h(t)|| ≤ ṙ(t) + ε a.e.},

is clearly convex σ(L1
H(I), L∞H (I))-compact.

Consider the problem of the form{
−u̇(t) ∈ A(t)u(t) + f(t, u(t)) + h(t), h ∈M a.e. t ∈ I,
u(0) = u0 ∈ D(A(0)).

The existence and uniqueness of solutions follow from Theorem 3.1, by con-
sidering the perturbation defined by f(t, x) + h(t). Denote by uh, for any
h ∈M , the unique absolutely continuous solution to the perturbed evolution
problem {

−u̇h(t) ∈ A(t)uh(t) + f(t, uh(t)) + h(t) a.e. t ∈ I,
uh(0) = u0 ∈ D(A(0)).

Using the monotonicity of A(t), for all t ∈ I, one has the estimation

1

2
||uh(t)− u(t)||2 ≤

∫ t

0

||f(s, uh(s)) + h(s)||||uh(s)− u(s)||ds.

Thanks to Lemma 2.1, it follows

||uh(t)− u(t)|| ≤
∫ t

0

||f(s, uh(s)) + h(s)||ds,

so that for all t ∈ I, one gets

||uh(t)|| ≤ r(0) +

∫ t

0

[ṙ(s) + ε+m]ds = r(t) + εt+mt ≤ r(t) +m+ ε. (3.2)

Main fact: L := {uh : h ∈M} is compact in CH(I).
The essential tools to prove it are the above estimate, the ball compactness
assumption on D(A(t)), along with the maximal monotone property of the
extension A to L2

H(I) of A(t) defined in Lemma 3.1. In view of the estimate

in Theorem 3.1 with the perturbation f +h, one gets ||u̇h(t)|| ≤ K(1 + β̇(t)),
for a.e. t ∈ I, where K = K(||u0||, c, I, m, α(·), β(·)) for all h ∈M . Shortly

||u̇h(t)|| ≤ γ(t) := K(1 + β̇(t)) with γ ∈ L2
R+

(I).

So, for any h ∈M , u̇h is bounded in L2
H(I), that is,

S = sup
h∈M

||u̇h||L2
H(I) < +∞. (3.3)
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It is clear that L := {uh : h ∈M} is equicontinuous, Indeed, for any s, t ∈ I,
one has

||uh(t)− uh(s)|| = ||
∫ t

s

u̇h(τ)dτ ||

≤ (t− s)1/2(

∫ 1

0

||u̇h(τ)||2dτ)1/2

≤ (t− s)1/2S.

Moreover, by (3.2), one has sup
h∈M

||uh(t)|| < +∞ for any t ∈ I. Since uh(t) ∈

D(A(t)) for all t ∈ I and for all h ∈ M , along with the ball-compactness of
D(A(t)), for each t ∈ I, the set {uh(t), h ∈ M} is relatively compact in H.
Thus, L is relatively compact in CH(I).
It remains to show that L is compact in CH(I). Let (hn)n be a sequence in
M and (uhn

)n be a sequence in L such that uhn
→ u ∈ CH(I). By weak

compactness of M , we may assume that hn → h ∈ M with respect to the
σ(L2

H(I), L2
H(I))-topology.

Recall that uhn
is the unique absolutely continuous solution of{

−u̇hn(t) ∈ A(t)uhn(t) + hn(t) + f(t, uhn(t)), hn ∈M, a.e. t ∈ I,
uhn(0) = u0 ∈ D(A(0)).

By hypothesis on f , one writes ||f(t, uhn(t))|| ≤ m for all t ∈ I. Since uhn → u
in CH(I), along with the Lipschitz behavior of f with respect to its sec-
ond variable yield (via the dominated convergence theorem) f(·, uhn

(·)) →
f(·, u(·)) in L2

H(I). As a consequence, f(·, uhn
(·)) → f(·, u(·)) with respect

to the σ(L2
H(I), L2

H(I))-topology. Furthermore, in view of (3.3), the sequence
(u̇hn) is bounded in L2

H(I) so that, up to a subsequence that we do not rela-
bel, we may suppose that (u̇hn)n weakly converges in L2

H(I) to some element
z(·).
For any integer n and any y ∈ H and for 0 ≤ s ≤ t ≤ 1, relying on the
absolute continuity of (uhn

)n, one writes∫ 1

0

〈y1[s,t](τ), u̇hn
(τ)〉dτ = 〈y, uhn

(t)− uhn
(s)〉.

Next, passing to the limit in the equality yields

〈y,
∫ t

s

z(τ)dτ〉 = 〈y, u(t)− u(s)〉.

Therefore, given any s, t ∈ I with s ≤ t, we get
∫ t
s
z(τ)dτ = u(t) − u(s),

and hence u(·) is absolutely continuous and z coincides almost everywhere
in I with u̇(·). Thus, u̇ ∈ L2

H(I) and u̇hn
→ u̇ weakly in L2

H(I). As u̇hn
+

f(·, uhn(·)) + hn(·) → u̇ + f(·, u(·)) + h(·) weakly in L2
H(I), so that by the

maximal monotone extension A of A(t) cf. Lemma 3.1, we get

−u̇(t) ∈ A(t)u(t) + h(t) + f(t, u(t)), h ∈M, a.e. t ∈ I.
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Denote by uh the unique absolutely continuous solution of{
−u̇h(t) ∈ A(t)uh(t) + h(t) + f(t, uh(t)), h ∈M, a.e. t ∈ I,
uh(0) = u0 ∈ D(A(0)).

By uniqueness, one has u = uh. Thus, the set L is compact in CH(I).
Step 2 Now, given ε > 0, the compact set L in CH(I) being constructed, we
may apply Theorem 2.1 to the mixed semi-continuous set-valued map F by
taking g(t, x) = α(t)(1 + ||x||), (t, x) ∈ I × H. Then, there is a nonempty
closed convex set valued-map Ψ : L ⇒ L1

H(I) whose graph is sequentially
closed with respect to the topology of uniform convergence in L and the
weak topology in L1

H(I) and such that, for any x ∈ L and y ∈ Ψ(x), for a.e.
t ∈ I, one has

y(t) ∈ F (t, x(t)) and ||y(t)|| ≤ α(t)(1 + ||x(t)||) + ε.

This along with uh ∈ L and yh ∈ Ψ(uh), one has for a.e t ∈ I yh(t) ∈
F (t, uh(t)) and ||yh(t)|| ≤ α(t)(1 + ||uh(t)||) + ε ≤ α(t)(1 + r(t) + ε+m) + ε

= α(t)(1 + r(t)) + α(t)ε+ α(t)m+ ε ≤ α(t)(1 + r(t)) + ε+m+ ε = ṙ(t) + ε;

taking into account the fact ||uh(t)|| ≤ r(t) + ε + m. It’s easy to see that
yh ∈M , hence Ψ(uh) ⊂M for all uh ∈ L. Thus, there is a non-empty convex
weakly-compact set-valued map Ψ : L⇒ L1

H(I) with the following properties
(l) Ψ(x) ⊂ {h ∈M : h(t) ∈ F (t, x(t)) a.e.} ⊂M , for each x ∈ L,
(ll) the set-valued map Ψ has closed graph, in the sense, for any yn ∈ Ψ(xn)
such that (xn) converging uniformly to x ∈ L and (yn) σ(L1

H(I), L∞H (I))-
converging in L1

H(I) to y, then, y ∈ Ψ(x), equivalently, Ψ : L ⇒ M is upper
semi-continuous from L ⊂ CH(I) to M endowed with the σ(L1

H(I), L∞H (I))-
topology.
Step 3 We finish the proof by using Kakutani-Ky Fan fixed point theorem.
For each h ∈M , let us set Φ(h) = Ψ(uh) where{

−u̇h(t) ∈ A(t)uh(t) + f(t, uh(t)) + h(t) h ∈M, a.e. t ∈ I,
uh(0) = u0 ∈ D(A(0)).

Then, it’s clear that Φ is a convex weakly compact set-valued map from M
to M . We claim that Φ has a fixed point h, i.e., h ∈ Φ(h) = Ψ(uh), then, by
(l) h(t) ∈ F (t, uh(t)) a.e., one has{

−u̇h(t) ∈ A(t)uh(t) + f(t, uh(t)) + h(t) a.e. t ∈ I,
uh(0) = u0 ∈ D(A(0)),

with h(t) ∈ F (t, uh(t)) a.e., thus proving that

{
−u̇h(t) ∈ A(t)uh(t) + f(t, uh(t)) + F (t, uh(t)) a.e. t ∈ I,
uh(0) = u0 ∈ D(A(0)),

has at least a solution. For this purpose, by virtue of Kakutani-Ky Fan fixed
point theorem, we need to prove that Φ : M ⇒ M is upper semi-continuous
with non-empty convex weakly compact values from M into itself, equiva-
lently, the graph of Φ is sequentially closed in M ×M , for M equipped with
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the σ(L1
H(I), L∞H (I))-topology.

Indeed, for each n ∈ N, let gn ∈ Φ(hn) = Ψ(uhn) with{
−u̇hn

(t) ∈ A(t)uhn
(t) + f(t, uhn

(t)) + hn(t) a.e. t ∈ I,
uhn

(0) = u0 ∈ D(A(0)),

with uhn
∈ L by our definition of L and (gn) ⊂ M which σ(L1

H(I), L∞H (I))-
converges to g ∈ M . Further, by compactness of L, (uhn

)n uniformly con-
verges to uh with{

−u̇h(t) ∈ A(t)uh(t) + f(t, uh(t)) + h(t) a.e. t ∈ I,
uh(0) = u0 ∈ D(A(0)).

By the property (ll) of the set-valued map Ψ, one has g ∈ Ψ(uh) = Φ(h). So,
the graph of Φ : M ⇒M is closed, hence the convex weakly compact valued
mapping Φ admits a fixed point by Kakutani-Ky Fan theorem, h ∈ Φ(h) =
Ψ(uh). By the property (l), we get h(t) ∈ F (t, uh(t)) a.e. which implies{

−u̇h(t) ∈ A(t)uh(t) + f(t, uh(t)) + h(t) a.e. t ∈ I,
uh(0) = u0 ∈ D(A(0)),

with h(t) ∈ F (t, uh(t)) a.e. just finishing the proof of the theorem. �

We end this subsection by the following theorem.

Theorem 3.3. Let I := [0, 1]. Assume that for every t ∈ I, A(t) : D(A(t)) ⊂
H ⇒ H is a maximal monotone operator with D(A(t)) is ball-compact for
every t ∈ I satisfying (H1)-(H2)-(H3). Let F : I × H ⇒ H be a compact
set-valued map satisfying (j)-(jj) and
(j′) F (t, x)∩α(t)(1 + ||x||)BH 6= ∅ for all (t, x) ∈ I ×H for some measurable
function α with 0 < α(t) < 1

2 for all t ∈ I.
Let G : I ×H ⇒ H be a compact set-valued map satisfying (j)-(jj) and
(j′j′) G(t, x) ∩mBH 6= ∅, for all (t, x) ∈ I × H, for some positive constant
m with 0 < m < 1

2 for all t ∈ I.
Then, for all u0 ∈ D(A(0)), the problem

−du
dt

(t) ∈ A(t)u(t) +G(t, u(t)) + F (t, u(t)) a.e. t ∈ I,

has at least an absolutely continuous solution u.

Proof. Step 1 Let u0 ∈ D(A(0)), ε > 0. Let u : [0, 1] → H be the unique
absolutely continuous solution to

−u̇(t) ∈ A(t)u(t) a.e. t ∈ I,

u(0) = u0 ∈ D(A(0)).

The existence and uniqueness of such a solution follow from Lemma 3.1.
Now, let r : [0, 1] → R+ be the unique absolutely continuous solution of the
differential equation

ṙ(t) = α(t)(1 + r(t)) + ε+m a.e. with r(0) = sup
t∈[0,1]

||u(t)||.
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Let us consider the sets

M1 := {h ∈ L1
H(I) : ||h(t)|| ≤ m+ ε/2 a.e.},

M2 := {h ∈ L1
H(I) : ||h(t)|| ≤ α(t)(1 + r(t)) + ε/2 a.e.},

M := {h ∈ L1
H(I) : ||h(t)|| ≤ ṙ(t) a.e.},

are clearly convex σ(L1
H(I), L∞H (I))-compact with M = M1 +M2.

Now, denote by uh, for any h ∈ M , the unique absolutely continuous
solution to the perturbed evolution problem{

−u̇h(t) ∈ A(t)uh(t) + h(t) a.e. t ∈ I,
uh(0) = u0 ∈ D(A(0)).

The existence and uniqueness of solutions follows from Theorem 3.1, by con-
sidering the perturbation h(t). Using the monotonicity of A(t), for all t ∈ I,
one has the estimation

1

2
||uh(t)− u(t)||2 ≤

∫ t

0

||h(s)||||uh(s)− u(s)||ds.

Thanks to Lemma 2.1, it follows

||uh(t)− u(t)|| ≤
∫ t

0

||h(s)||ds

so that for all t ∈ I, one gets

||uh(t)|| ≤ r(0) +

∫ t

0

ṙ(s) = r(t). (3.4)

Main fact: L := {uh : h ∈M} is compact in CH(I).
This follows essentially from the ball compactness assumption on D(A(t)),
along with the maximal monotone property of the extension A to L2

H(I) of
A(t) defined in Lemma 3.1. In view of estimate in Theorem 3.1 with pertur-

bation h, one gets ||u̇h(t)|| ≤ K(1 + β̇(t)), for a.e. t ∈ I, where K = K(||u0||,
c, I, α, ε, m, β(·)) for all h ∈M . Shortly ||u̇h(t)|| ≤ γ(t) := K(1 + β̇(t)) with
γ ∈ L2

R+
(I). So, for any h ∈M , u̇h is bounded in L2

H(I), that is,

S = sup
h∈M

||u̇h||L2
H(I) < +∞. (3.5)

It is clear that L := {uh : h ∈M} is equicontinuous. Indeed, for any s, t ∈ I,
one has

||uh(t)− uh(s)|| = ||
∫ t

s

u̇h(τ)dτ ||

≤ (t− s)1/2(

∫ 1

0

||u̇h(τ)||2dτ)1/2

≤ (t− s)1/2S.
Moreover, by (3.4), one has sup

h∈M
||uh(t)|| < +∞ for any t ∈ I. Since uh(t) ∈

D(A(t)) for all t ∈ I and for all h ∈ M , along with the ball-compactness of
D (A(t)), for each t ∈ I, the set {uh(t), h ∈ M} is relatively compact in H.
Thus, L is relatively compact in CH(I).
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It remains to show that L is compact in CH(I). Let (hn)n be a sequence in
M and (uhn)n be a sequence in L such that uhn → u ∈ CH(I). By weak
compactness of M , we may assume that hn → h ∈ M with respect to the
σ(L2

H(I), L2
H(I))-topology.

Recall that uhn
is the unique absolutely continuous solution of{
−u̇hn

(t) ∈ A(t)uhn
(t) + hn(t), hn ∈M, a.e. t ∈ I,

uhn
(0) = u0 ∈ D(A(0)).

Furthermore, in view of (3.5), the sequence (u̇hn
) is bounded in L2

H(I) so
that, up to a subsequence that we do not relabel, we may suppose that
(u̇hn

)n weakly converges in L2
H(I) to some element z(·).

For any integer n and any y ∈ H and for 0 ≤ s ≤ t ≤ 1, relying on the
absolute continuity of (uhn)n, one writes∫ 1

0

〈y1[s,t](τ), u̇hn
(τ)〉dτ = 〈y, uhn

(t)− uhn
(s)〉.

Next, passing to the limit in the equality yields

〈y,
∫ t

s

z(τ)dτ〉 = 〈y, u(t)− u(s)〉.

Therefore, given any s, t ∈ I with s ≤ t, we get
∫ t
s
z(τ)dτ = u(t)− u(s), and

hence u(·) is absolutely continuous and z coincides almost everywhere in I
with u̇(·). Thus, u̇ ∈ L2

H(I) and u̇hn → u̇ weakly in L2
H(I). As u̇hn + hn →

u̇+h weakly in L2
H(I), so that by the maximal monotone extension A of A(t)

cf. Lemma 3.1, we get

−u̇(t) ∈ A(t)u(t) + h(t), h ∈M, a.e. t ∈ I.

Denote by uh the unique absolutely continuous solution to{
−u̇h(t) ∈ A(t)uh(t) + h(t), h ∈M, a.e. t ∈ I,
uh(0) = u0 ∈ D(A(0)).

By uniqueness, one has u = uh. Thus, the set L is compact in CH(I).
Step 2 Now, given ε > 0, the compact set L in CH(I) being constructed, we
may apply Theorem 2.1 to the mixed semi-continuous set-valued map F by
taking g(t, x) = α(t)(1 + ||x||), (t, x) ∈ I × H. Then, there is a nonempty
closed convex set valued-map ΨF : L ⇒ L1

H(I) whose graph is sequentially
closed with respect to the topology of uniform convergence in L and the weak
topology in L1

H(I) and such that, for any x ∈ L and y ∈ ΨF (x), for a.e. t ∈ I,
one has y(t) ∈ F (t, x(t)) and ‖y(t)‖ ≤ α(t)(1+‖x(t)‖)+ε/2. This along with
uh ∈ L and yh ∈ ΨF (uh), one has for a.e t ∈ I yh(t) ∈ F (t, uh(t)) and
‖yh(t)‖ ≤ α(t)(1 + ‖uh(t)‖) + ε ≤ α(t)(1 + r(t)) + ε/2 taking into account
the fact ‖uh(t)‖ ≤ r(t). It’s easy to see that yh ∈ M2, hence ΨF (uh) ⊂ M2

for all uh ∈ L. Thus, there is a non-empty convex weakly-compact set-valued
map ΨF : L⇒ L1

H(I) with the following properties
(k) ΨF (x) ⊂ {h ∈M2 : h(t) ∈ F (t, x(t))} ⊂M2 a.e., for each x ∈ L,
(kk) the set-valued map ΨF has closed graph, in the sense, for any yn ∈ Ψ(xn)
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such that (xn) converging uniformly to x ∈ L and (yn) σ(L1
H(I), L∞H (I))-

converging in L1
H(I) to y, then, y ∈ ΨF (x), equivalently, ΨF : L⇒M2 is up-

per semi-continuous from L ⊂ CH(I) toM2 endowed with the σ(L1
H(I), L∞H (I))-

topology.
Similarly, we may apply Theorem 2.1 to the mixed semi-continuous set-valued
map G by taking g(t, x) = m, (t, x) ∈ I×H. Then, there is a nonempty closed
convex set valued-map ΨG : L ⇒ L1

H(I) whose graph is sequentially closed
with respect to the topology of uniform convergence in L and the weak topol-
ogy in L1

H(I) and such that, for any x ∈ L and y ∈ ΨG(x), for a.e. t ∈ I, one
has

y(t) ∈ G(t, x(t)) and ||y(t)|| ≤ m+ ε/2.

This along with uh ∈ L and yh ∈ ΨG(uh), yields for a.e t ∈ I

yh(t) ∈ G(t, uh(t)) and ||yh(t)|| ≤ m+ ε/2.

It’s easy to see that yh ∈M1, hence ΨG(uh) ⊂M1 for all uh ∈ L. Thus, there
is a non-empty convex weakly-compact set-valued map ΨG : L⇒ L1

H(I) with
the following properties
(k′) ΨG(x) ⊂ {h ∈M1 : h(t) ∈ G(t, x(t)) ⊂M1 a.e.}, for each x ∈ L,
(k′k′) the set-valued map ΨG has closed graph, in the following sense, for
any yn ∈ ΨG(xn) such that (xn) converging uniformly to x ∈ L and (yn)
σ(L1

H(I), L∞H (I)) converging in L1
H(I) to y, then, y ∈ ΨG(x). So ΨG : L ⇒

M1 is upper semi-continuous from L ⊂ CH(I) to M1 endowed with the
σ(L1

H(I), L∞H (I))-topology.
As consequence, let us set Ψ(x) := ΨF (x) + ΨG(x),∀x ∈ L, then
(l) Ψ : L ⇒ L1

H(I) is upper semi-continuous from L ⊂ CH(I) to M en-
dowed with the σ(L1

H(I), L∞H (I))-topology, equivalently its graph is sequen-
tially closed with respect to the topology of uniform convergence in L and
the weak topology in L1

H(I).
Step 3 We finish the proof by using Kakutani-Ky Fan fixed point theorem
via the compactness of the solutions set L to the evolution inclusion given in
Step 1. For each h ∈M , let us set Φ(h) = Ψ(uh) := ΨF (uh) + ΨG(uh) where
uh is the unique absolutely continuous solution to{

−u̇(t) ∈ A(t)u(t) + h(t) a.e. t ∈ I,
u(0) = u0 ∈ D(A(0)).

Recall that L := {uh : h ∈ M} is compact in CH(I). Then, it’s clear that
Φ is a convex weakly compact set-valued map from M to M . We claim that
Φ has a fixed point h, i.e., h ∈ Φ(h) = Ψ(uh) = ΨF (uh) + ΨG(uh), then,
h = h1 + h2 with h1 ∈ ΨF (uh), h2 ∈ ΨG(uh) so that h1(t) ∈ F (t, uh(t)) a.e.
and h2(t) ∈ G(t, uh(t)) a.e. thus proving that

{
−u̇h(t) ∈ A(t)uh(t) + F (t, uh(t)) +G(t, uh(t)) a.e. t ∈ I,
uh(0) = u0 ∈ D(A(0)),
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has at least a solution uh. For this purpose, by virtue of Kakutani-Ky Fan
fixed point theorem, we need to prove that Φ : M ⇒ M is upper semi-
continuous with non-empty convex weakly compact values from M into itself,
equivalently, the graph of Φ is sequentially compact inM×M , forM equipped
with the σ(L1

H(I), L∞H (I))-topology.
Indeed, for each n ∈ N, let fn ∈ Φ(hn) = Ψ(uhn

) = ΨF (uhn
) + ΨG(uhn

)
where {

−u̇hn
(t) ∈ A(t)uhn

(t) + hn(t) a.e. t ∈ I,
uhn(0) = u0 ∈ D(A(0)),

with uhn
∈ L by our definition of L and (fn) ⊂ M which σ(L1

H(I), L∞H (I))-
converges to f ∈ M . Further, by compactness of L, (uhn

)n uniformly con-
verges to uh with {

−u̇h(t) ∈ A(t)uh(t) + h(t) a.e. t ∈ I,
uh(0) = u0 ∈ D(A(0)),

As fn ∈ Φ(hn) = Ψ(uhn
) with fn → f ∈M weakly in L1

H(I) and uhn
→ uh ∈

L uniformly, by the closed graph property (l) for Ψ, we get f ∈ Ψ(uh) = Φ(h).
Hence, the set-valued map Φ : M ⇒ M has weakly compact graph, by
Kakutani-Ky Fan theorem, there is h ∈ Φ(h) = Ψ(uh). Then, h = h1 + h2
with h1 ∈ ΨF (uh), h2 ∈ ΨG(uh) so that h1(t) ∈ F (t, uh(t)) a.e. and h2(t) ∈
G(t, uh(t)) a.e. thus proving that{

−u̇(t) ∈ A(t)u(t) + F (t, u(t)) +G(t, u(t)) a.e. t ∈ I,
u(0) = u0 ∈ D(A(0)),

has at least a solution u, just finishing the proof of the theorem. �

3.2. Mixed semi-continuous perturbation problem with time-dependent sub-
differential operators

For the sake of completeness we recall and summarize some needed results.
Let us start with the existence and uniqueness result established in [43].

Theorem 3.4. Let ϕ : [0, T ] × H → [0,+∞] be a map satisfying (H1)-(H2).
Let u0 ∈ domϕ(0, ·). Then, the unperturbed differential inclusion{

−u̇(t) ∈ ∂ϕ(t, u(t)) a.e. t ∈ [0, T ],
u(0) = u0 ∈ domϕ(0, ·)

has a unique absolutely continuous solution u(·) on [0, T ]. Moreover, u(t) ∈
domϕ(t, ·) for all t ∈ [0, T ] and the function t 7→ ϕ(t, u(t)) is absolutely
continuous on [0, T ].

Now, we introduce the extension to L2
H(I) of subdifferential operators

defined on H.
Denote by A(t) := ∂ϕ(t, ·) the maximal monotone operator in H associated
with ∂ϕ(t, ·), t ∈ I (ϕ satisfies conditions (H1)-(H2)). Let us consider the
operator A : L2

H(I) ⇒ L2
H(I) defined by

Au = {w ∈ L2
H(I) : w(t) ∈ A(t)u(t) a.e.}.
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Then, A is well defined since by Theorem 3.4, the evolution inclusion

−u̇(t) ∈ A(t)u(t) = ∂ϕ(t, u(t)) a.e. t ∈ I, u(0) ∈ domϕ(0, ·)

admits a unique absolutely continuous solution.
The operator A enjoys the following property (see [43]).

Proposition 3.1. If for any t ∈ I, A(t) = ∂ϕ(t, ·) where ϕ satisfies conditions
(H1)-(H2) then, A is a maximal monotone operator.

We also recall the following useful proposition.

Proposition 3.2. Let A(t) := ∂ϕ(t, ·), ∀t ∈ I where ϕ satisfies conditions
(H1)-(H2). Let (un)n and (wn)n be two sequences in L2

H(I) satisfying
(i) wn(t) ∈ A(t)un(t), ∀n ∈ N and for a.e. t ∈ I;
(ii) (un)n strongly converges to u in L2

H(I);
(iii) (wn)n weakly converges to w in L2

H(I).
Then, one has w(t) ∈ A(t)u(t) a.e. t ∈ I.

Proof. By (i), one has wn ∈ Aun where A is the maximal monotone oper-
ator associated with A(t) given in Proposition 3.1. Since the graph of A is
sequentially strongly-weakly closed, by wn ∈ Aun and by (ii) and (iii), one
deduces that w ∈ Au, so that coming back to the definition of A, one gets
w(t) ∈ A(t)u(t) a.e. t ∈ I. �

The following proposition contains crucial estimates in the study of the
evolution problem with perturbation −u̇(t) ∈ ∂ϕ(t, u(t)) + h(t) (see [44]).

Proposition 3.3. (a) The unique absolutely continuous solution u(·) of the
unperturbed problem satisfies

||u̇||L2
H([0,T ]) ≤

ρ

2
||ȧ||L2

R([0,T ])+

[
√
Tk(0)||ȧ||L2

R([0,T ]) +
ρ2

4
||ȧ||2L2

R([0,T ]) + ϕ(0, u0)− ϕ(T, u(T ))]
1
2 .

(b) If h ∈ L2
H([0, T ]) and u0 ∈ domϕ(0, ·), then the following problem{

−u̇(t) ∈ ∂ϕ(t, u(t)) + h(t) a.e. t ∈ [0, T ],
u(0) = u0 ∈ domϕ(0, ·),

admits a unique absolutely continuous solution u(·) that satisfies

||u̇||L2
H([0,T ]) ≤

1

2
(ρ+ 1)‖ȧ+ |h|‖L2

R([0,T ]) + ‖h‖L2
H([0,T ])+

[
√
Tk(0)‖ȧ+|h|‖L2

R([0,T ])+
(ρ+ 1)2

4
‖ȧ+|h|‖2L2

R([0,T ])+ϕ(0, u0)−ϕ(T, u(T ))]
1
2 ,

(3.6)

where |h| is the function defined by |h| : t 7→ ||h(t)|| for all t ∈ [0, T ].
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We recall also the existence and uniqueness result for the perturbed
problem −u̇(t) ∈ ∂ϕ(t, u(t)) + f(t, u(t)) when f(·, ·) is separately measurable
and Lipschitz continuous (see Theorem 4.1. [44]).

Theorem 3.5. Let I := [0, T ]. Assume that (H1)-(H2) hold. Let f : I×H → H
be a map satisfying (i)-(ii)-(iii) Then, for any u0 ∈ domϕ(0, ·), the following
problem {

−u̇(t) ∈ ∂ϕ(t, u(t)) + f(t, u(t)) a.e. t ∈ I,
u(0) = u0

has one and only one absolutely continuous solution u(·) on I that satisfies∫ T

0

||u̇(t)||2dt ≤ d+ σ

∫ T

0

||f(t, u(t))||2dt, (3.7)

where

d = (k2(0) + 3(ρ+ 1)2)

∫ T

0

ȧ2(t)dt+ 2[T + ϕ(0, u0)]

σ = k2(0) + 3(ρ+ 1)2 + 4.

The following theorem deals with a perturbation f + F with a mixed
semi-continuous set-valued map F , extending a recent result given in [23]
with f = 0.

Theorem 3.6. Let I := [0, 1]. Assume that (H1)-(H2) hold and that domϕ(t, ·)
is ball-compact, for every t ∈ I. Let f : I ×H → H be a mapping satisfying
(i)-(ii)-(iii). Let F : I × H ⇒ H be a compact set-valued map satisfying
(j)-(jj)-(jjj).
Then, for any u0 ∈ domϕ(0, ·), there is an absolutely continuous solution u(·)
of the differential inclusion{

−u̇(t) ∈ ∂ϕ(t, u(t)) + f(t, u(t)) + F (t, u(t)) a.e. t ∈ I,
u(0) = u0 ∈ domϕ(0, ·).

Proof. We will use some arguments of the proof of Theorem 3.2 with appro-
priate modifications. However this need a careful look.
Step 1 Let u0 ∈ domϕ(0, ·), ε > 0. Let u : [0, 1]→ H be the unique absolutely
continuous solution to

−u̇(t) ∈ ∂ϕ(t, u(t)) a.e. t ∈ I,

u(0) = u0 ∈ domϕ(0, ·).
The existence and uniqueness of such a solution follow from Theorem 3.4.
Now, let r : [0, 1] → R+ be the unique absolutely continuous solution of the
differential equation

ṙ(t) = α(t)(1 + r(t)) + ε+m a.e. with r(0) = sup
t∈[0,1]

||u(t)||.

Since ṙ + ε ∈ L∞R+
(I) ⊂ L1

R+
(I), the set

M := {h ∈ L1
H(I) : ||h(t)|| ≤ ṙ(t) + ε a.e.},
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is clearly convex σ(L1
H(I), L∞H (I))-compact. For any h ∈M , denote by uh the

unique absolutely continuous solution to the perturbed evolution problem{
−u̇h(t) ∈ ∂ϕ(t, uh(t)) + f(t, uh(t)) + h(t) a.e. t ∈ I,
uh(0) = u0 ∈ domϕ(0, ·).

The existence and uniqueness of such a solution is granted by Theorem 3.5,
that is due to the particular choice of the perturbation f and the perturbation
h ∈M . In fact, to see that, let us set for any h ∈M , g(t, x) = f(t, x) + h(t)
for all (t, x) ∈ I × H and check assumptions of Theorem 3.5. Clearly, the
function g satisfies assumptions (i)-(ii). Moreover, for all (t, x) ∈ I ×H, one
has

||g(t, x)|| ≤ m+ ||h(t)|| ≤ (m+ ||h(t)||)(1 + ||x||),

which yields (iii) with β(·) := m+ ṙ(·) + ε ∈ L2
R+

(I). Using the monotonicity

of ∂ϕ(t, ·), for all t ∈ I, one has the estimation

1

2
||uh(t)− u(t)||2 ≤

∫ t

0

||f(s, uh(s)) + h(s)||||uh(s)− u(s)||ds.

Thanks to Lemma 2.1, it follows

||uh(t)− u(t)|| ≤
∫ t

0

||f(s, uh(s)) + h(s)||ds,

so that for all t ∈ I, one gets

||uh(t)|| ≤ r(0) +

∫ t

0

[ṙ(s) + ε+m]ds = r(t) + εt+mt ≤ r(t) +m+ ε. (3.8)

Now, we assert that
Main fact: K := {uh : h ∈M} is compact in CH(I).
This follows essentially from the above estimate, the ball compactness as-
sumption on domϕ(t, ·), along with the maximal monotone property of the
extension A to L2

H(I) defined in Proposition 3.1. In view of estimate (3.7) in
Theorem 3.5 (with g instead of f), one gets∫ 1

0

||u̇h(t)||2dt ≤ d+ σ

∫ 1

0

||f(t, uh(t)) + h(t)||2dt,

taking condition (iii) and the definition of M into account, yield∫ 1

0

||u̇h(t)||2dt ≤ d+ σ

∫ 1

0

(
m+ ṙ(t) + ε

)2
dt.

Since ṙ + ε ∈ L∞R+
(I) ⊂ L2

R+
(I), then, the set M := {h ∈ L1

H(I) : ||h(t)|| ≤
ṙ(t) + ε a.e.} is convex σ(L1

H(I), L∞H (I))-compact. From the estimate above,
for any h ∈M , u̇h is bounded in L2

H(I), that is,

S = sup
h∈M

||u̇h||L2
H(I) < +∞. (3.9)
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By the absolute continuity of uh, h ∈M , for any s, t ∈ I, one has

||uh(t)− uh(s)|| = ||
∫ t

s

u̇h(τ)dτ ||

≤ (t− s)1/2(

∫ 1

0

||u̇h(τ)||2dτ)1/2

≤ (t− s)1/2S.
Then, the set K is equicontinuous. Moreover, by (3.8), one has sup

h∈M
||uh(t)|| <

+∞ for any t ∈ I. Therefore, K is bounded. Since uh(t) ∈ domϕ(t, ·) for
all t ∈ I and h ∈ M , along with the ball-compactness of domϕ(t, ·), for
each t ∈ I, the set {uh(t), h ∈ M} is relatively compact in H. Thus, K
is relatively compact in CH(I). It remains to show that K is compact in
CH(I). Let (hn)n be a sequence in M and (uhn

)n be a sequence in K such
that uhn

→ u ∈ CH(I). By weak compactness of M , we may assume that
hn → h ∈M with respect to the σ(L1

H(I), L∞H (I))-topology. Recall that uhn

is the unique absolutely continuous solution to{
−u̇hn

(t) ∈ ∂ϕ(t, uhn
(t)) + hn(t) + f(t, uhn

(t)) a.e. t ∈ I,
uhn(0) = u0 ∈ domϕ(0, ·).

By (iii), one has ||f(t, uhn
(t))|| ≤ m for all t ∈ I. Since uhn

→ u in
CH(I), along with the Lipschitz behavior of f with respect to its second vari-
able yield (via the dominated convergence theorem) f(·, uhn(·)) → f(·, u(·))
in L2

H(I). As a consequence, f(·, uhn
(·)) → f(·, u(·)) with respect to the

σ(L2
H(I), L2

H(I))-topology. Furthermore, in view of (3.9), the sequence (u̇hn
)

is bounded in L2
H(I) so that, up to a subsequence that we do not relabel, we

may suppose that (u̇hn
)n weakly converges in L2

H(I) to some element z(·).
For any integer n and any y ∈ H and for 0 ≤ s ≤ t ≤ 1, relying on the
absolute continuity of (uhn)n, we can write∫ 1

0

〈y1[s,t](τ), u̇hn
(τ)〉dτ = 〈y, uhn

(t)− uhn
(s)〉.

Next, passing to the limit in the equality yields

〈y,
∫ t

s

z(τ)dτ〉 = 〈y, u(t)− u(s)〉.

Therefore, given any s, t ∈ I with s ≤ t, we get
∫ t
s
z(τ)dτ = u(t) − u(s),

and hence u(·) is absolutely continuous and z coincides almost everywhere
in I with u̇(·). Thus, u̇ ∈ L2

H(I) and u̇hn
→ u̇ weakly in L2

H(I) so that
u̇hn

+hn+f(·, uhn
(·))→ u̇+h+f(·, u(·)) weakly in L2

H . Thanks to Proposition
3.2, one gets

−u̇(t) ∈ ∂ϕ(t, u(t)) + h(t) + f(t, u(t)), h ∈M, a.e. t ∈ I.
Denote by uh the unique absolutely continuous solution of{

−u̇h(t) ∈ ∂ϕ(t, uh(t)) + h(t) + f(t, uh(t)) a.e. t ∈ I,
uh(0) = u0 ∈ domϕ(0, ·).
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By uniqueness, one has u = uh. Thus, the set K is compact in CH(I).
Step 2 Now, given ε > 0, the compact set K in CH(I) being constructed,
we may apply Theorem 2.1 to the mixed semi-continuous set-valued map F
by taking g(t, x) = α(t)(1 + ||x||), (t, x) ∈ I ×H. Then, there is a nonempty
closed convex set valued-map Ψ : K ⇒ L1

H(I) whose graph is sequentially
closed with respect to the topology of uniform convergence in K and the
weak topology in L1

H(I) and such that, for any x ∈ K and y ∈ Ψ(x), for a.e.
t ∈ I, one has

y(t) ∈ F (t, x(t)) and ||y(t)|| ≤ g(t, x(t)) + ε = α(t)(1 + ||x(t)||) + ε.

This along with uh ∈ K and yh ∈ Ψ(uh), one has for a.e t ∈ I
yh(t) ∈ F (t, uh(t)) and
||yh(t)|| ≤ α(t)(1 + ||uh(t)||) + ε ≤ α(t)(1 + r(t) + ε+m) + ε

= α(t)(1 + r(t)) + α(t)ε+ α(t)m+ ε ≤ α(t)(1 + r(t)) + ε+m+ ε = ṙ(t) + ε;

taking into account the fact ||uh(t)|| ≤ r(t) + ε + m. It’s easy to see that
yh ∈ M , hence Ψ(uh) ⊂ M for all uh ∈ K. Thus, there is a non-empty
convex weakly-compact set-valued map Ψ : K ⇒ L1

H(I) with the following
properties
(l) Ψ(x) ⊂ {h ∈M : h(t) ∈ F (t, x(t)) a.e.}, for each x ∈ K,
(ll) the set-valued map Ψ has closed graph, in the sense, for any yn ∈ Ψ(xn)
such that (xn) converging uniformly to x ∈ K and (yn) σ(L1

H(I), L∞H (I))-
converging in L1

H(I) to y, then, y ∈ Ψ(x), equivalently, Ψ : K ⇒M is upper
semi-continuous from K ⊂ CH(I) to M endowed with the σ(L1

H(I), L∞H (I))-
topology.
Step 3 We finish the proof by using Kakutani-Ky Fan fixed point theorem.
For each h ∈M , let us set Φ(h) = Ψ(uh) where{

−u̇h(t) ∈ ∂ϕ(t, uh(t)) + f(t, uh(t)) + h(t), h ∈M, a.e. t ∈ I,
uh(0) = u0 ∈ domϕ(0, ·).

Then, it’s clear that Φ is a convex weakly compact set-valued map from M
to M . We claim that Φ has a fixed point h, i.e., h ∈ Φ(h) = Ψ(uh), then, by
(l) h(t) ∈ F (t, uh(t)) a.e., we have{

−u̇h(t) ∈ ∂ϕ(t, uh(t)) + f(t, uh(t)) + h(t) a.e. t ∈ I,
uh(0) = u0 ∈ domϕ(0, ·),

with h(t) ∈ F (t, uh(t)) a.e., thus proving that{
−u̇h(t) ∈ ∂ϕ(t, uh(t)) + f(t, uh(t)) + F (t, uh(t)) a.e. t ∈ I,
uh(0) = u0 ∈ domϕ(0, ·),

has at least a solution. For this purpose, by virtue of Kakutani-Ky Fan fixed
point theorem, we need to prove that Φ : M ⇒ M is upper semi-continuous
with non-empty convex weakly compact values from M into itself, equiva-
lently, the graph of Φ is sequentially compact in M ×M , for M equipped
with the σ(L1

H(I), L∞H (I))-topology.
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Indeed, for each n ∈ N, let gn ∈ Φ(hn) = Ψ(uhn
) with{

−u̇hn
(t) ∈ ∂ϕ(t, uhn

(t)) + f(t, uhn
(t)) + hn(t) a.e. t ∈ I,

uhn
(0) = u0 ∈ domϕ(0, ·),

with uhn ∈ K by our definition of K and (gn) ⊂M which σ(L1
H(I), L∞H (I))-

converges to g ∈ M . Further, by compactness of K, (uhn
)n uniformly con-

verges to uh with{
−u̇h(t) ∈ ∂ϕ(t, uh(t)) + f(t, uh(t)) + h(t) a.e. t ∈ I,
uh(0) = u0 ∈ domϕ(0, ·).

By the property (ll) of the set-valued map Ψ, we have g ∈ Ψ(uh) = Φ(h). So,
the graph of Φ : M ⇒ M is weakly compact, hence the convex weakly com-
pact valued mapping Φ admits a fixed point by Kakutani-Ky Fan Theorem,
h ∈ Φ(h) = Ψ(uh). By the property (l), we get h(t) ∈ F (t, uh(t)) a.e. which
implies {

−u̇h(t) ∈ ∂ϕ(t, uh(t)) + f(t, uh(t)) + h(t) a.e. t ∈ I,
uh(0) = u0 ∈ domϕ(0, ·)

with h(t) ∈ F (t, uh(t)) a.e. just finishing the proof of the theorem. �

Let us recall the following existence result for the perturbed problem
−u̇(t) ∈ ∂ϕ(t, u(t)) + g(t, u(t)) when the map g(·, ·) is of Carathéodory type,
see Theorem 4.1. [45] (see Proposition 4.2. [45] for the estimate of the veloc-
ity).

Theorem 3.7. Let I = [0, T ]. Assume that (H1)-(H2) hold, and that domϕ(t, ·)
is ball-compact for every t ∈ I. Let g : I × H → H be a Carathéodory map
such that there exists a non-negative function β(·) ∈ L2

R(I) such that, for all
t ∈ I and for all u ∈ H, one has

||g(t, u)|| ≤ β(t)(1 + ||u||).

Then, for any u0 ∈ domϕ(0, ·), the following problem{
−u̇(t) ∈ ∂ϕ(t, u(t)) + g(t, u(t)) a.e. t ∈ I,
u(0) = u0

has at least one absolutely continuous solution u(·) on I that satisfies∫ T

0

||u̇(t)||2dt ≤ d+ σ

∫ T

0

||g(t, u(t))||2dt, (3.10)

where

d = (k2(0) + 3(ρ+ 1)2)

∫ T

0

ȧ2(t)dt+ 2[T + ϕ(0, u0)]

σ = k2(0) + 3(ρ+ 1)2 + 4.

Now, we address a new variant when the evolution problem involves a
perturbation F + g, with a Carathéodory map g.
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Theorem 3.8. Let I := [0, 1]. Assume that (H1)-(H2) hold, and that domϕ(t, ·)
is ball-compact for every t ∈ I. Let g : I×H → H be a Carathéodory mapping
satisfying ||g(t, x)|| ≤ m for all (t, x) ∈ I × H, for a positive constant m.
Suppose further that there exists a function γ(·) ∈ L2

R+
(I) such that

〈g(t, x1)− g(t, x2), x1 − x2〉 ≥ γ(t)||x1 − x2||2,
for all x1, x2 ∈ H and t ∈ I.
Let F : I ×H ⇒ H be a compact set-valued map satisfying (j)-(jj)-(jjj).
Then, for any u0 ∈ domϕ(0, ·), there is an absolutely continuous solution u(·)
of the differential inclusion{

−u̇(t) ∈ ∂ϕ(t, u(t)) + F (t, u(t)) + g(t, u(t)) a.e. t ∈ I,
u(0) = u0 ∈ domϕ(0, ·).

Proof. Step 1 We will use similar arguments as in the proof of Theorem 3.6,
with appropriate modifications. This need a careful look.
Let u0 ∈ domϕ(0, ·), ε > 0. Let u : [0, 1] → H be the unique absolutely
continuous solution to

−u̇(t) ∈ ∂ϕ(t, u(t)) a.e. t ∈ I,

u(0) = u0 ∈ domϕ(0, ·).
The existence and uniqueness of such a solution follow from Theorem 3.4.
Now, let r : [0, 1] → R+ be the unique absolutely continuous solution of the
differential equation

ṙ(t) = α(t)(1 + r(t)) + ε+m a.e. with r(0) = sup
t∈[0,1]

||u(t)||.

Since ṙ + ε ∈ L∞R+
(I) ⊂ L1

R+
(I), the set

M := {h ∈ L1
H(I) : ||h(t)|| ≤ ṙ(t) + ε a.e.},

is clearly convex σ(L1
H(I), L∞H (I))-compact.

Consider the problem of the form{
−u̇(t) ∈ ∂ϕ(t, u(t)) + g(t, u(t)) + h(t), h ∈M, a.e. t ∈ I,
u(0) = u0 ∈ domϕ(0, ·).

The existence of solutions follows from Theorem 3.7, by considering the
Caratheodory perturbation g(t, x) + h(t). To prove uniqueness of the so-
lution, let u1 and u2 be two solutions to the differential inclusion above.
Then, one has for any h ∈ M, −u̇1(t) − g(t, u1(t)) − h(t) ∈ ∂ϕ(t, u1(t)) and
−u̇2(t)− g(t, u2(t))− h(t) ∈ ∂ϕ(t, u2(t)), for almost all t ∈ I. The monotone
condition on g yields

〈g(t, u1(t))− g(t, u2(t)), u1(t)− u2(t)〉 ≥ γ(t)||u1(t)− u2(t)||2.
Moreover, the monotone property of ∂ϕ(t, ·) ensures that

〈−u̇1(t)− g(t, u1(t))− (−u̇2(t)− g(t, u2(t))), u1(t)− u2(t)〉 ≥ 0,

hence,

〈u̇1(t)− u̇2(t), u1(t)− u2(t)〉 ≤ −γ(t)||u1(t)− u2(t)||2,
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that is,

1

2

d

dt
||u1(t)− u2(t)||2 ≤ −γ(t)||u1(t)− u2(t)||2 for a.e. t ∈ I.

Remark that
d

dt
||u1(t)−u2(t)||2 ≤ 0, since by assumption γ is a non-negative

function. This along with the fact that ||u1(0)− u2(0)|| = 0, integrating, one
gets u1 = u2. Thus, it results the uniqueness of the solution.
Now, denote by uh, for any h ∈M , the unique absolutely continuous solution
to the perturbed evolution problem{

−u̇h(t) ∈ ∂ϕ(t, uh(t)) + g(t, uh(t)) + h(t) a.e. t ∈ I,
uh(0) = u0 ∈ domϕ(0, ·).

Using the monotonicity of ∂ϕ(t, ·), for all t ∈ I, one has the estimation

1

2
||uh(t)− u(t)||2 ≤

∫ t

0

||g(s, uh(s)) + h(s)||||uh(s)− u(s)||ds.

Thanks to Lemma 2.1, it follows

||uh(t)− u(t)|| ≤
∫ t

0

||g(s, uh(s)) + h(s)||ds

so that for all t ∈ I, one gets

||uh(t)|| ≤ r(0) +

∫ t

0

[ṙ(s) + ε+m]ds = r(t) + εt+mt ≤ r(t) +m+ ε. (3.11)

Main fact: K := {uh : h ∈M} is compact in CH(I).
This follows essentially from the above estimate, the ball compactness as-
sumption on domϕ(t, ·), along with the maximal monotone property of the
extension A to L2

H(I) defined in Proposition 3.1.
In view of estimate (3.10) in Theorem 3.7 (with g+ h instead of g), one gets∫ 1

0

||u̇h(t)||2dt ≤ d+ σ

∫ 1

0

||g(t, uh(t)) + h(t)||2dt.

Then, since by assumption ||g(t, x)|| ≤ m for all (t, x) ∈ I × H, along with
the definition of M , yield∫ 1

0

||u̇h(t)||2dt ≤ d+ σ

∫ 1

0

(
m+ ṙ(t) + ε

)2
dt.

So, for any h ∈M , u̇h is bounded in L2
H(I), that is,

S = sup
h∈M

||u̇h||L2
H(I) < +∞. (3.12)

By the absolute continuity of uh, h ∈M , for any s, t ∈ I, one has

||uh(t)− uh(s)|| = ||
∫ t

s

u̇h(τ)dτ ||

≤ (t− s)1/2(

∫ 1

0

||u̇h(τ)||2dτ)1/2

≤ (t− s)1/2S.
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Then, the set K is equicontinuous. Moreover, by (3.11), one has for any t ∈ I.
sup
h∈M

‖uh(t)‖ < +∞. Since uh(t) ∈ domϕ(t, ·) for all t ∈ I and h ∈ M , along

with the ball-compactness of domϕ(t, ·), for each t ∈ I, the set {uh(t), h ∈
M} is relatively compact in H. Thus, K is relatively compact in CH(I).
It remains to show that K is compact in CH(I). Let (hn)n be a sequence in
M and (uhn

)n be a sequence in K such that uhn
→ u ∈ CH(I). By weak

compactness of M , we may assume that hn → h ∈ M with respect to the
σ(L2

H(I), L2
H(I))-topology.

Recall that uhn is the unique absolutely continuous solution of{
−u̇hn

(t) ∈ ∂ϕ(t, uhn
(t)) + hn(t) + g(t, uhn

(t)), hn ∈M, a.e. t ∈ I,
uhn(0) = u0 ∈ domϕ(0, ·).

By hypothesis on g, one writes ||g(t, uhn
(t))|| ≤ m for all t ∈ I. Since uhn

→ u
in CH(I) and g is continuous with respect to its second variable yield (via
the dominated convergence theorem) g(·, uhn

(·)) → g(·, u(·)) in L2
H(I). As

a consequence, g(·, uhn(·))→ g(·, u(·)) with respect to the σ(L2
H(I), L2

H(I))-
topology.
Furthermore, in view of (3.12), the sequence (u̇hn

) is bounded in L2
H(I) so

that, up to a subsequence that we do not relabel, we may suppose that (u̇hn
)n

weakly converges in L2
H(I) to some element z(·).

For any integer n and any y ∈ H and for 0 ≤ s ≤ t ≤ 1, relying on the
absolute continuity of (uhn)n, one writes∫ 1

0

〈y1[s,t](τ), u̇hn(τ)〉dτ = 〈y, uhn(t)− uhn(s)〉.

Next, passing to the limit in the equality yields

〈y,
∫ t

s

z(τ)dτ〉 = 〈y, u(t)− u(s)〉.

Therefore, given any s, t ∈ I with s ≤ t, we get
∫ t
s
z(τ)dτ = u(t) − u(s),

and hence u(·) is absolutely continuous and z coincides almost everywhere in
I with u̇(·). Thus, u̇ ∈ L2

H(I) and u̇hn
→ u̇ weakly in L2

H(I). Consequently
u̇hn

+hn+g(·, uhn
(·))→ u̇+h+g(·, u(·)) weakly in L2

H . Thanks to Proposition
3.2, one gets

−u̇(t) ∈ ∂ϕ(t, u(t)) + h(t) + g(t, u(t)) a.e. t ∈ I.

Denote by uh the unique absolutely continuous solution of{
−u̇h(t) ∈ ∂ϕ(t, uh(t)) + h(t) + g(t, uh(t)), h ∈M, a.e. t ∈ I,
uh(0) = u0 ∈ domϕ(0, ·).

By uniqueness, one has u = uh. Thus, the set K is compact in CH(I).
Finally, we proceed as in Step 2-Step 3 of Theorem 3.6 to get{

−u̇h(t) ∈ ∂ϕ(t, uh(t)) + g(t, uh(t)) + h(t) a.e. t ∈ I,
uh(0) = u0 ∈ domϕ(0, ·),

with h(t) ∈ F (t, uh(t)) a.e. finishing the proof of the theorem. �
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In the remainder of this section, we state a variant of the above results
dealing with another class of time-dependent subdifferential operator. Let
ϕ : H → R satisfying
H(ϕ) For each t ∈ I, the function x 7→ ϕ(t, x) is proper, lsc, and convex such
that the following property holds:
for each r ≥ 0 there exist functions ar ∈ W 1,2([0, 1],R) br ∈ W 1,1([0, 1],R)
such that for any s, t ∈ [0, 1] s ≤ t, and any x ∈ domϕ(s, ·), ||x|| ≤ r, there
exists an element y ∈ domϕ(t, ·) satisfying the inequalities

||x− y|| ≤ |ar(t)− ar(s)|(|ϕ(s, x)|1/2 + 1) (3.13)

ϕ(t, y) ≤ ϕ(s, x) + |br(t)− br(s)|(|ϕ(s, x)|+ 1). (3.14)

For the sake of completeness, it seems convenient to recall the following
lemma from [36], [37].

Lemma 3.2. Let ϕ : H → R satisfying H(ϕ). Then, one has

(i) there exists a constant K1 > 0 such that

ϕλ(t, x) ≥ −K1(||x||+ 1), t ∈ I, λ ∈]0, 1], x ∈ H,

||J tλx|| = ||(IH + λ∂ϕ(t, ·))−1x|| ≤ K1 + ||x||, t ∈ I, λ ∈]0, 1], x ∈ H,
(ii) for any function x ∈ L1

H(I), the function t 7→ ϕ(t, x(t)) is measurable;
(iii) for any function x ∈ L1

H(I), the function t 7→ ϕλ(t, x(t)), λ ∈]0, 1], is
measurable.

Recall also Lemma 2.2 [37].

Lemma 3.3. Let ϕ : H → R satisfying H(ϕ), λ ∈]0, 1] and x : I → H be
an absolutely continuous function. Then, the function t 7→ ϕλ(t, x(t)) is a.e.
differentiable, its derivative is integrable on I, and the following inequalities
hold

ϕλ(t, x(t))− ϕλ(s, x(s)) ≤
∫ t

s

d

dτ
ϕλ(τ, x(τ))dτ, s, t ∈ I, s ≤ t,

d

dt
ϕλ(t, x(t))− 〈∂ϕλ(t, x(t)), ẋ(t)〉 ≤

|ȧr(t)|||∂ϕλ(t, x(t))||(|ϕλ(t, x(t))| 12 + 1) + |ḃr(t)|(|ϕλ(t, x(t))|+ 1) a.e.,

where

r ≥ sup{||J tλ(x(t))||, t ∈ I, 0 < λ ≤ 1},
where ar(·) and br(·) are the functions defined by (3.13) and (3.14).

Let us summarize a result from [36] as follows.

Theorem 3.9. Let ϕ : H → R satisfying H(ϕ). Let h ∈ L2
H(I), x0 ∈

domϕ(0, ·) and λ ∈]0, 1]. Then, the following inclusion{
−ẋ(t) ∈ ∂ϕ(t, x(t)) + h(t) a.e., h ∈ L2

H(I),
x(0) = x0 ∈ domϕ(0, ·); (3.15)
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admits a unique absolutely continuous solution x : I → H, and the following
equation {

−ẋλ(t) = ∂ϕλ(t, xλ(t)) + h(t) a.e., h ∈ L2
H(I),

xλ(0) = x0 ∈ domϕ(0, ·);

admits a unique absolutely continuous solution xλ : I → H for any x(0) =
xλ(0) = x0 ∈ domϕ(0, ·). Moreover, ẋ(·), ẋλ(·) ∈ L2

H(I) and there exists a
constant M that depends only on ||x0|| and ||h||L2

H
such that

||x(·)||∞ ≤M, ||xλ(·)||∞ ≤M, 0 < λ ≤ 1,

||ẋ(·)||L2
H(I) ≤M, ||ẋλ(·)||L2

H
≤M, 0 < λ ≤ 1,

|ϕ(t, x(t))| ≤M, |ϕλ(t, xλ(t))| ≤M, 0 < λ ≤ 1.

As λ ↓ 0, one gets

xλ(·)→ x(·) in CH(I),

ẋλ(·)→ ẋ(·) in L2
H(I),

lim
λ↓0

ϕλ(t, xλ(t)) ≥ ϕ(t, x(t)), t ∈ I.

We recall and summarize a compactness property (cf. Theorem 4.1 [50])
of the solution set to (3.15).

Theorem 3.10. Assume that ϕ satisfies condition H(ϕ) and that domϕ(t, ·)
is ball-compact, for every t ∈ I. Let X : I ⇒ H be measurable with convex
and weakly compact values, and X(t) ⊂ β(t)BH ,∀t ∈ I, where β ∈ L2

R+
(I).

Let S2
X denotes the set of all L2

H(I)-selections of X. Then, the set X := {xh :
h ∈ S2

X} of absolutely continuous solutions to the evolution inclusion{
−ẋh(t) ∈ ∂ϕ(t, xh(t)) + h(t), a.e. t ∈ I, h ∈ S2

X ,
xh(0) = x0 ∈ domϕ(0, ·),

is a compact subset of CH(I).

Now, we are ready to handle the following variant concerning the class
of differential inclusions involving the subdifferential of a map ϕ satisfying
H(ϕ) with a mixed semi-continuous perturbation.

Theorem 3.11. Let I := [0, 1]. Assume that ϕ satisfies condition H(ϕ) and
that domϕ(t, ·) is ball-compact, for every t ∈ I. Let f : I × H → H be a
mapping satisfying (i)-(ii)-(iii). Let F : I ×H ⇒ H be a compact set-valued
map satisfying (j)-(jj)-(jjj).
Then, for any u0 ∈ domϕ(0, ·), there is an absolutely continuous solution u(·)
to the differential inclusion{

−u̇(t) ∈ ∂ϕ(t, u(t)) + f(t, u(t)) + F (t, u(t)) a.e. t ∈ I,
u(0) = u0 ∈ domϕ(0, ·).
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Proof. Step 1 Let u0 ∈ domϕ(0, ·), ε > 0. Let u : [0, 1] → H be the unique
absolutely continuous solution to

−u̇(t) ∈ ∂ϕ(t, u(t)) a.e. t ∈ I,
u(0) = u0 ∈ domϕ(0, ·).

The existence and uniqueness of such a solution follow from Theorem 3.9.
Now, let r : [0, 1] → R+ be the unique absolutely continuous solution of the
differential equation

ṙ(t) = α(t)(1 + r(t)) + ε+m a.e. with r(0) = sup
t∈[0,1]

||u(t)||.

Since ṙ + ε ∈ L∞R+
(I) ⊂ L1

R+
(I), the set

M := {h ∈ L1
H(I) : ||h(t)|| ≤ ṙ(t) + ε a.e.},

is clearly convex σ(L1
H(I), L∞H (I))-compact. For any h ∈M , denote by uh the

unique absolutely continuous solution to the perturbed evolution problem{
−u̇h(t) ∈ ∂ϕ(t, uh(t)) + f(t, uh(t)) + h(t) a.e. t ∈ I,
uh(0) = u0 ∈ domϕ(0, ·).

The existence and uniqueness of such a solution is granted by Theorem 3.9 (cf.
also Theorem 3.5 ), that is due to the particular choice of the perturbation f
and the perturbation h ∈M . Let us set for any h ∈M , g(t, x) = f(t, x)+h(t)
for all (t, x) ∈ I × H. Clearly, the function g satisfies assumptions (i)-(ii).
Moreover, for all (t, x) ∈ I ×H, one has

||g(t, x)|| ≤ m+ ||h(t)|| ≤ (m+ ||h(t)||)(1 + ||x||),
which yields (iii) with β(·) := m+ ṙ(·) + ε ∈ L2

R+
(I).

Using the monotonicity of ∂ϕ(t, ·), for all t ∈ I, one has the estimation

1

2
||uh(t)− u(t)||2 ≤

∫ t

0

||f(s, uh(s)) + h(s)||||uh(s)− u(s)||ds.

Thanks to Lemma 2.1, it follows

||uh(t)− u(t)|| ≤
∫ t

0

||f(s, uh(s)) + h(s)||ds,

so that for all t ∈ I, one gets

‖uh(t)‖ ≤ r(0) +

∫ t

0

[ṙ(s) + ε+m]ds = r(t) + εt+mt ≤ r(t) +m+ ε. (3.16)

Now, we assert that
Main fact: K := {uh : h ∈ M} is compact in CH(I). It follows from Theo-
rem 3.12.

Finally, we proceed as in Step 2-Step 3 of Theorem 3.6 to get{
−u̇h(t) ∈ ∂ϕ(t, uh(t)) + f(t, uh(t)) + h(t) a.e. t ∈ I,
uh(0) = u0 ∈ domϕ(0, ·)

with h(t) ∈ F (t, uh(t)) a.e. finishing the proof of the theorem. �
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To finish the section we present an existence result of absolutely contin-
uous solution to the inclusion −u̇(t) ∈ ∂ϕ(t, u(t))+f(t, u(t)) when ϕ satisfies
H(ϕ) and the perturbation f is Lipschitz with respect to x ∈ H by using
some ideas in [23] and the above tools. This result is quite useful in further
applications.

Theorem 3.12. Assume that ϕ satisfies condition H(ϕ) and that domϕ(t, ·)
is ball-compact, for every t ∈ I. Let f : I × H → H be a map satisfying
(i)-(ii)-(iii).
Then there is a unique absolutely continuous solution to the inclusion{

−u̇(t) ∈ ∂ϕ(t, u(t)) + f(t, u(t)) a.e. t ∈ I,
u(0) = u0 ∈ domϕ(0, ·),

Proof. Step 1. We will follow some arguments used in [23].
Let u0 ∈ domϕ(0, ·). Let u : I → H be the unique absolutely continuous
solution to

−u̇(t) ∈ ∂ϕ(t, u(t)) a.e. t ∈ I,
u(0) = u0 ∈ domϕ(0, ·).

Now, let r : [0, 1] → R+ be the unique absolutely continuous solution of the
differential equation

ṙ(t) = β(t)(1 + r(t)) a.e. with r(0) = sup
t∈I
||u(t)||.

Since ṙ ∈ L2
R+

(I), the set

K := {h ∈ L2
H(I) : ||h(t)|| ≤ ṙ(t) a.e. t ∈ I},

is clearly convex σ(L2
H(I), L2

H(I))-compact. For any h ∈ K denote by uh the
unique absolutely continuous solution to the perturbed evolution problem{

−u̇h(t) ∈ ∂ϕ(t, uh(t)) + h(t) a.e. t ∈ I,
uh(0) = u0 ∈ domϕ(0, ·).

Using the monotonicity of ∂ϕ(t, ·) for all t ∈ I, one obtains the estimate

1

2
||uh(t)− u(t)||2 ≤

∫ t

0

||h(s)||||uh(s)− u(s)||ds.

Thanks to Lemma 2.1, it follows that

||uh(t)− u(t)|| ≤
∫ t

0

||h(s)||ds

so that

||uh(t)|| ≤ r(0) +

∫ t

0

ṙ(s)ds = r(t). (3.17)

Set L := {uh : h ∈ K}. Main fact L is compact in CH(I).
This follows from the above estimate and the compactness property Theorem
3.10.
Step 2. By construction, the set K is convex σ(L2

H(I), L2
H(I))-compact (then
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σ(L2
H(I), L2

H(I))-closed), and by assumption (iii), for every h ∈ K, we note
that

||f(t, uh(t))|| ≤ β(t)(1 + ||uh(t)||) ≤ β(t)(1 + r(t)).

Let us define the mapping Φ on K by

Φ(h)(t) = f(t, uh(t)) for all t ∈ I,
where uh is the unique absolutely continuous solution to the inclusion{

−u̇h(t) ∈ ∂ϕ(t, uh(t)) + h(t) a.e. t ∈ I,
uh(0) = u0 ∈ domϕ(0, ·).

Remark that Φ(h) ∈ K. Then, Φ(K) is contained in the σ(L2
H(I), L2

H(I))-
compact set K. Clearly, if h is a fixed point of Φ (h = Φ(h)), then uh is an
absolutely continuous solution to the inclusion under consideration, namely{

−u̇h(t) ∈ ∂ϕ(t, uh(t)) + h(t) a.e. t ∈ I,
uh(0) = u0 ∈ domϕ(0, ·),

with h(t) = f(t, uh(t)) for all t ∈ I. Now let us prove that Φ : K → K is
continuous when K is endowed with the σ(L2

H(I), L2
H(I)) topology. Remark

that K is convex σ(L2
H(I), L2

H(I))-compact and H is separable so that K
is convex σ(L2

H(I), L2
H(I))-compact metrizable. It is enough to show that Φ

is sequentially σ(L2
H(I), L2

H(I)) continuous on K. Let (hn) σ(L2
H(I), L2

H(I))
converges in L2

H(I) to h ∈ K. We have to prove that (Φ(hn)) weakly converges
in L2

H(I) to Φ(h) ∈ K. Recall that the set L := {uh : h ∈ K} of solutions to{
−u̇h(t) ∈ ∂ϕ(t, uh(t)) + h(t), a.e. t ∈ I, h ∈ K
uh(0) = u0 ∈ domϕ(0, ·)

is compact in CH(I). Hence the solution uhn
to{

−u̇hn
(t) ∈ ∂ϕ(t, uhn

(t)) + hn(t), a.e. t ∈ I, hn ∈ L
uhn(0) = u0 ∈ domϕ(0, ·)

uniformly converges to the solution uh to{
−u̇h(t) ∈ ∂ϕ(t, uh(t)) + h(t), a.e. t ∈ I, h ∈ K
uh(0) = u0 ∈ domϕ(0, ·)

It remains to check the required continuity. Let g ∈ L2
H(I). Then we have

|〈g(t), f(t, uh(t))〉| ≤ ||g(t)||α(t)(1 + ||uh(t)||) ≤ ||g(t)||ṙ(t) for any h ∈ K.
Whence the measurable functions 〈g(t), f(t, uh(t))〉 are dominated by the
integrable function t → ||g(t)||ṙ(t). By construction we have for every t ∈ I
〈g(t), f(t, uhn

(t))〉 → 〈g(t), f(t, uh(t))〉, since f(t, ·) is continuous for every
fixed t in I. As a consequence of Lebesgue’s convergence theorem, we have

lim
n→∞

∫ 1

0

〈g(t), f(t, uhn
(t))〉dt =

∫ 1

0

〈g(t), f(t, uh(t))〉dt.

So we conclude that (Φ(hn)) converges to Φ(h) on K with respect to the
σ(L2

H(I), L2
H(I))-topology. This means that Φ : K → K is continuous on K

endowed with the σ(L2
H(I), L2

H(I))-topology. Applying Schauder fixed point
theorem to the continuous mapping Φ : K → K shows that Φ admits a
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fixed point, h = Φ(h), thus proving the existence of an absolutely continuous
solution to our inclusion. Uniqueness follows from the monotonicity of ∂ϕ(t, ·)
and the Lipschitz property of f(t, ·). �

4. Applications

We aim here to prove the existence of periodic solutions to our evolution
problems.

Theorem 4.1. Let I := [0, 1]. Assume that for every t ∈ I, A(t) : D(A(t)) ⊂
H ⇒ H is a maximal monotone operator with D(A(t)) is ball-compact for
every t ∈ I, satisfying (H1)-(H2)-(H3). Let F : I × H ⇒ H be a compact
set-valued map satisfying (j)-(jj)-(jjj). Suppose further that: there exists a
function γ(·) ∈ L2

R+
(I) such that

〈y1 − y2, x1 − x2〉 ≥ γ(t)||x1 − x2||2,
for all y1 ∈ F (t, x1), y2 ∈ F (t, x2) and t ∈ I.
Suppose also that D(A(0)) is convex compact and t 7→ D(A(t)) satisfies the
periodic condition

D(A(0)) = D(A(1)).

Then, the differential inclusion{
−u̇(t) ∈ A(t)u(t) + F (t, u(t)) a.e. t ∈ I,
u(0) = x0 ∈ D(A(0)),

has a unique absolutely continuous solution u(·) which is periodic, that is,
u(0) = u(1).

Proof. Let us check first uniqueness of the solution.
Let u1 and u2 be two solutions of the differential inclusion{

−u̇(t) ∈ A(t)u(t) + F (t, u(t)) a.e. t ∈ I,
u(0) = u0 ∈ D(A(0)),

(4.1)

whose existence is guaranteed by Theorem 3.2. Then, there exist two L2
H(I)-

functions h1(·) and h2(·) such that for all t ∈ I
h1(t) ∈ F (t, u1(t)) and h2(t) ∈ F (t, u2(t)),

and for almost all t ∈ I
−u̇1(t)− h1(t) ∈ A(t)u1(t) and − u̇2(t)− h2(t) ∈ A(t)u2(t).

The monotone condition on F yields

〈h1(t)− h2(t), u1(t)− u2(t)〉 ≥ γ(t)||u1(t)− u2(t)||2.
Moreover, the monotone property of A(t) ensures that

〈−u̇1(t)− h1(t)− (−u̇2(t)− h2(t)), u1(t)− u2(t)〉 ≥ 0,

hence,

〈u̇1(t)− u̇2(t), u1(t)− u2(t)〉 ≤ −γ(t)||u1(t)− u2(t)||2,
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that is,

1

2

d

dt
||u1(t)− u2(t)||2 ≤ −γ(t)||u1(t)− u2(t)||2 for a.e. t ∈ I. (4.2)

Remark that
d

dt
||u1(t)−u2(t)||2 ≤ 0, since by assumption γ is a non-negative

function. This along with the fact that ||u1(0)− u2(0)|| = 0, integrating, one
gets u1 = u2. Thus, it follows the uniqueness of the solution for the problem
(4.1).
Now we check the periodic property of the solution.
Let a, b ∈ D(A(0)) = D(A(1)) and denote by ua (resp. ub) the unique solu-
tion of the problem (4.1) with the initial condition a (resp. b) in D(A(0) =
D(A(1)). Then, we take in inequality (4.2), u1 = ua and u2 = ub. By inte-
gration, it results

1

2
||ua(t)− ub(t)||2 ≤

1

2
||a− b||2 −

∫ t

0

γ(s)||ua(s)− ub(s)||2ds. (4.3)

We may use similar arguments as in [20], we will see that the function a 7→
ua(1) is a strict contraction on the convex compact set D(A(0)) = D(A(1)),
that is,

||ua(1)− ub(1)|| < ||a− b||, if ||a− b|| > 0.

In view of Lemma 5.4 [20] (if θ is a continuous real valued function such that

0 ≤ θ(t) ≤ m−
∫ t

0

g(s)θ(s)ds

with m > 0 and g(·) ∈ L1
R+

(I), then, θ(t) < m for all t ∈ I), it results from

(4.3) that

||ua(1)− ub(1)|| < ||a− b||.
We conclude that the mapping a ∈ D(A(0)) 7→ ua(1) ∈ D(A(1)) has a unique
fixed point which is the unique periodic solution for the problem (4.1). �

By applying the tools given in Theorem 3.8, we obtain a new exis-
tence theorem of periodic solution for evolution problems governed by time-
dependent subdifferential operators as follows.

Theorem 4.2. Let I := [0, 1]. Assume that (H1)-(H2) hold, and that domϕ(t, ·)
is ball-compact for every t ∈ I. Let F : I ×H ⇒ H be a compact set-valued
map satisfying (j)-(jj)-(jjj). Suppose further that: there exists a function
γ(·) ∈ L2

R+
(I) such that

〈y1 − y2, x1 − x2〉 ≥ γ(t)||x1 − x2||2,

for all y1 ∈ F (t, x1), y2 ∈ F (t, x2) and t ∈ I.
Suppose also that domϕ(0, ·) is convex compact and t 7→ domϕ(t, ·) satisfies
the periodic condition

domϕ(0, ·) = domϕ(1, ·).
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Then, the differential inclusion{
−u̇(t) ∈ ∂ϕ(t, u(t)) + F (t, u(t)) a.e. t ∈ I,
u(0) = u0 ∈ domϕ(0, ·),

has a unique absolutely continuous solution u(·) which is periodic, that is,
u(0) = u(1).

Proof. The proof is similar to the one of Theorem 4.1, so we omit it. �

Conclusion. In this paper, we have established new existence results
regarding first-order perturbed evolution problems involving time-dependent
maximal monotone (resp. subdifferential) operators, in Hilbert spaces. The
set-valued perturbation is assumed to be mixed semi-continuous. We have
also investigated periodic solutions under suitable assumptions. Our results
cover related perturbed convex sweeping processes. It will be interesting to
extend these results to the more general setting of Banach spaces, and to deal
with the differential inclusion of the form studied here governed by time and
state dependent operator A(t, x) instead of A(t). Such studies are out of the
scope of this manuscript and will be the subject of future works.
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