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Average density estimation for urban traffic networks:
application to the Grenoble network

Martin Rodriguez-Vegaa,∗, Carlos Canudas-de-Wita, Hassen Fouratia

aCNRS, Gipsa-Lab, Grenoble INP, Univ. Grenoble Alpes, INRIA, 38000 Grenoble, France

Abstract

This paper deals with the problem of the average density estimation in large-
scale traffic networks, without requiring to know the density of each individual
road. This is achieved by the design of a reduced-order open-loop observer.
In general, this type of observers require some specific graph properties, but
we show that it is possible to find a virtual representation of the network that
satisfies these conditions, by diving each road into a number of cells of specific
length. The virtual network is shown to provide close approximations to the
average density of the real system for large enough networks. Algorithms to
efficiently calculate the observer parameters are proposed. This approach is
based on the assumption that traffic dynamics are linear, and is applied at first
in free-flow regime. Using microscopic simulations and real data we evaluate
the observer performance even when congestion is present in the network.

Keywords: Average density estimation, Large traffic networks, Virtual
divisions, Open-loop observer

1. Introduction

Traffic state estimation (TSE) is important in modern Intelligent Trans-
portation Systems (ITS) and refers to the process of observation of traffic state
variables (not observed everywhere in the network), such as flow, density, speed,
and other equivalent variables, on road segments, using partially observed and
noisy traffic data. For example, precise TSE is required usually in ramp me-
tering, pricing, and information provision in order to mitigate congestion ef-
fectively. For this purpose, different sensors such as loop detectors, radars,
magnetometers, etc. are used to collect the traffic measurements. The goal
with estimation algorithms is to observe the whole network’s traffic states.

First proposed works with classical TSE were applied to highways. Tampère
and Immers (2007) proposes the use of an Extended Kalman Filter (EKF) cou-
pled with the well known Cell Transmission Model (CTM) to estimate the den-
sity of sections of highways, using data from stationary sensors located at certain
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sections of the road. This approach is based on linearlizing the CTM around
a current state, and then compare the measurements with the predictions of
the linearized model. Later, Herrera and Bayen (2010) made use of the in-
crease of availability of GPS data to complement the stationary sensor data.
In this formulation, a Lagrangian model was used as input to the Kalman fil-
ter. More recently, other sources of information such as connected vehicles have
been used, Seo et al. (2015a). Connected vehicles are provided with sensors
capable of measuring its surrounding, such as the inter-vehicle distances and
speeds. This information is then transmitted to a centralized location. Sun and
Work (2014); Seo et al. (2015b) show how this information can be provided to
a Kalman filtering approach to improve highway state reconstruction.

More and more, the need to study urban traffic networks is increasing in the
last years for TSE issues. Some methods have been developed to estimate traffic
states such as Unscented Kalman Filter (UKF) in Pueboobpaphan and Nakat-
suji (2006), and Bayesian probabilistic model-based Expectation–Maximization
Extended Kalman Filter (EM-EKF) in Gu et al. (2017). Nevertheless, in com-
parison to highways, urban networks still have not received as much attention,
Seo et al. (2017). This is due in part to the complexity of modeling traffic
dynamics with intersections, the related entry and exit flows, and the lack of
sufficient sensor data. For instance, in this context, the main focus was on deter-
mining the optimal number of sensors and their locations to estimate the states
of the network. Ng (2012) proposes a method to identify the minimum number
of stationary sensors required to estimate the flow of all roads in the network.
This is done by expressing flow conservation laws at each node as a set of linear
equations, and then completing the rank of the resulting matrix using the Gaus-
sian algorithm. Later, He (2013) proposes a graph-based approach to identify
the optimal sensor locations in a more computational efficient manner. This
work also provides an algorithm to estimate the equilibrium flow for each road
from sensor data using also graph-based algorithms. In Lovisari et al. (2016),
a method to estimate the dynamical evolution of the density of each road is
proposed by using both stationary sensor measurements and Floating Car Data
(FCD). This is done by first giving a flow estimate for each road as if the net-
work is in stead-state, and then use the speed-density fundamental diagram to
provide density pseudo-measurements. This estimates are then the input to a
Luenberger-like observer. In Ladino et al. (2018), FCD is used to determine
if each road is in free-flow or congested regime, and then uses the flow-density
fundamental diagram and stationary sensor data to provided density estimates
to each road in the traffic network. More recently, Rostami Shahrbabaki et al.
(2020) proposes a data-based density estimation method that does not require
the use of a fundamental diagram. Instead, data from connected vehicles is
used to estimate the outflow of each road, and then uses the density conserva-
tion law to estimate the traffic state. However, as these methods provide density
and flow values for each road, as the size of the network increases the required
number of computations increases as well. This might be too computationally
expensive and sometimes we do not dispose of the sufficient number of sensors
to install in each road of the network. Also, it looks that in some roads of certain
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neighborhoods in urban traffic networks, cars rarely pass, then it might not be
necessary to estimate the density in each of such roads.

The alternative to these methods in that case is to partition the network
into regions (groups of interconnected roads) and estimate their average states.
Some works are conducted in that direction. In Geroliminis and Daganzo (2008),
the experimental evidence of a Macroscopic Fundamental Diagram (MFD) was
obtained, which is a relationship between the average density of a region with
its outgoing flow. Haddad and Geroliminis (2012) studies the stability of traffic
control for two-region urban cities. A city is partitioned in two regions with a
MFD for each of the regions. A set of conditions are derived for stable equilib-
rium accumulations in the undersaturated regimes for both MFDs. Moreover,
the traffic perimeter control problem for the two-region MFDs system is formu-
lated. Aboudolas and Geroliminis (2013) generalizes this control technique to
any number of regions. Haddad and Zheng (2020) also studies the use of the
MFD for multi-region perimeter control, but by modifying the MFD as to in-
clude time-delays between the changes in the inputs and the observed outputs.
In other applications, Saedi et al. (2020) estimates the traveling time between
two points, by dividing an heterogeneous network into homogeneous sections,
each with a well-defined MFD. Aboudolas and Geroliminis (2013) and Saedi
et al. (2020) use limited measurements of density in certain roads, which is then
used as a proxy for the entire region. This may incur in an error in the inputs of
the MFD. It is to note that in these approaches, the average-density estimation
per region is too approximate and we find the precision questionable.

By exploring last researches on network theory, it looks that few recent
works start to focus on the estimation of average states using low dimensional
observers for large-scale network systems as in Sadamoto et al. (2017) and Niazi
et al. (2019). The established conditions for the existence of such observers re-
sult in the concept of average detectability. Based on these works, we proposed
in this paper to explore the applicability of such theory to traffic network when
sensors (e.g. magnetic loop detectors) are available only at the boundaries and
estimate the average density of a predefined region. This will represent our
main contribution in the area of urban traffic networks and can be the main
work treating this issue to the best of the author’s knowledge. Due to the com-
plexity of modeling traffic dynamics with intersections, we assume that traffic
networks follow linear dynamics and focus at first on free-flow regime. This
work remains important for region-based estimators where free-flow conditions
are satisfied (interconnected residential neighborhoods or regions of cities with
low/moderate traffic for examples). Moreover, if the region does not satisfy
the linear dynamics condition, the proposed estimator can still provide bounds
on the average density. Even though the underlying methods assume free-flow,
simulations with congested regimes are carried out to model the resulting error,
and to provide working ranges where the estimator is applicable under mixed
regimes. Finally, such proposed theory can prepare for future work focusing on
the same problem but under high congestion.

The paper is organized as follows: in Section 2 we introduce the model for
traffic state evolution and the conditions required for the existence of an ob-
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server for the average density. Section 3 shows simple motivating examples that
suggest how choosing specific road divisions yields average detectable networks.
Section 4 formally states the definition of a virtual network and its average
density observer. Section 5 presents the main results on how to select road divi-
sions for general networks. Section 6 analyses the error induced by the observer.
Section 7 demonstrates the use of the proposed methods on a Manhattan grid.
Finally, Section 8 describes the use of real data from a region of the city of
Grenoble in France, to validate the proposed techniques.

2. Background

2.1. Traffic model

In this paper, we model traffic networks as a direct graph G = {N,E, R},
where the nodes N = {1, 2, . . . , p} represent sections of roads, the edges E ⊂
N×N represent the possible vehicle transfers (turns) from one road to another,
and R ∈ Rp×p is the adjacency matrix whose elements ri,j (also called turning
or split ratios) are the fraction of vehicles that turn from road i to road j. In
addition to G, we include a set of parameters for each road representing physical
properties, e.g., a vector of road lengths ` ∈ Rp.

The traffic dynamics for a given graph defines the trajectories of the density
ρ(t), the incoming (or upstream) flow ϕin(t), and the outgoing (or downstream)
flow ϕout(t), for each road at every time t. The dynamics are obtained as in
Bianchin et al. (2019) from the conservation law

ρ̇(t) = L−1(ϕin(t)−ϕout(t)) (1)

where L = diag(`).

Road j
ϕoutjϕinj

R
oa

d
k

ϕink

ϕoutk

Road i
ϕini ϕouti

Figure 1: Flow exchange at an intersection.
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As shown in Fig. 1, the incoming flow for each road is equal to the sum of the
outgoing flows of the upstream roads, weighted by the corresponding turning
ratio,

ϕini (t) =
∑
j 6=i

rj,iϕ
out
j (t). (2)

Taking into account all roads, this can be written in matrix notation as

ϕin(t) = R>ϕout(t) +Bu(t) (3)

where B ∈ {0, 1}p×q is a selection matrix that indicates the location of boundary
inflows, and u(t) ∈ Rq contains the input demands. Thus, (1) becomes,

ρ̇(t) = L−1(R> − I)ϕout(t) + L−1Bu(t). (4)

To calculate the output flow ϕout(t) we use the well known Cell Trans-
mission Model (CTM) first proposed in Daganzo (1994) and Daganzo (1995).
For a single road this model makes use of the triangular Fundamental dia-
gram, which expresses the flow as a function of the density as shown in Fig. 2.
This Fundamental Diagram is a piecewise linear function with a single break-
point, whose parameters are the free-flow speed v, the backward wave speed w,
the capacity ϕmax, and the jam density ρmax. In matrix notation, we define
{v,w,ϕmax,ρmax} ⊂ Rp as the vectors of the corresponding parameters for all
roads. The density coordinate of the breakpoint is called the critical density ρc,
and is directly calculated from the other parameters. A road whose density is
less than the critical value is said to be in free-flow. Conversely, if the density
is greater than ρc, the road is said to be congested.

When considering a network of roads, the effect of adjacent nodes has to
be taken into consideration. Define the Demand D(ρ(t)) and Supply S(ρ(t))
functions as the maximum flow of vehicles that can leave and enter each road
at time t, respectively. These are evaluated as

D(ρ) = min{V ρ,ϕmax} , S(ρ) = min{W (ρmax − ρ),ϕmax} (5)

Density ρ

F
lo

w
ϕ

ρmaxρc

ϕmax

v
−w

Figure 2: Triangular fundamental diagram.
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where V = diag(v) and W = diag(w).
With these definitions, the outgoing flow for each cell is given by the opti-

mization problem,

ϕout(t) = argmax
ϕ

1>ϕ

s.t.

 ϕ < D(ρ(t)),
R>ϕ < S(ρ(t)),

0 < ϕ.

(6)

This is called the flow-maximizing junction model, as it assumes that the through-
put of each intersection is always maximized. This is the most common choice
of model, but other options are available, see Jabari (2016).

2.1.1. Linear dynamics

In this paper, we examine the convergence of a one-dimensional estimator
for the average density of the whole network. However, due to the limitations
of the available tools to analyze the observability and detectability of non-linear
systems, we are restricted to the case of linear systems of the form

ρ̇(t) = Aρ(t) + L−1Bu(t) (7)

where A = L−1(R> − I)V is a time-invariant matrix. Note than (7) implies
that the velocity of each road V is constant and independent of the density ρ.
This limits the working range of our proposed method, as it is clear that the
CTM given dynamics in (6) are non-linear, as the velocity of vehicles decreases
with increasing density. For instance, the case when all roads are in free-flow,
ρ ≤ ρc, satisfies the required condition, but in the congested regime, the road
outflow decreases as the density increases, implying the average vehicle speed
decreases as well.

Despite this limitation, Section 8 evaluates the performance of the estimator
under congested scenarios. It was found that for some cases, even multiple
congestions in a considered region still provide an error under 10%. Nevertheless,
the extension of this work to consider more general cases with congestion is a
work in progress.

2.2. Average density dynamics

Consider that sensors are located in a set of nodes S ⊂ N corresponding to the
boundaries (inflows and outflows) of the network. Without loss of generality,
we index roads such that measured roads have the highest indexes, i.e., S =
{p− s+ 1, . . . , p} with q < s < p. Thus, y(t) = Cρ(t) where C = [0s×m Is],
and m = p− s is the number of unmeasured nodes.

Consider a partition of the state vector as ρ(t) = [ρ>1 (t) ρ>2 (t)]> such that
ρ1(t) ∈ Rm corresponds to the states of the unmeasured nodes, and ρ2(t) ∈ Rs
to the states of the measured nodes. Note that ρ2(t) = y(t). The system
matrices are partitioned accordingly,

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
. (8)
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where A11 ∈ Rm×m, A12 ∈ Rm×s, A21 ∈ Rs×m, A22 ∈ Rs×s, and B1 ∈ Rm×q
and B2 ∈ Rs×q. Analogously, let

R =

[
R11 R12

R21 R22

]
, L =

[
L1 0
0 L2

]
, V =

[
V1 0
0 V2

]
. (9)

We aim to estimate the average of the unmeasured states, i.e., ρav(t) =
1
m1>ρ1(t) without requiring knowledge about the full vector ρ1(t). Consider a
lower-dimensional projected system in which the unmeasured states are aggre-
gated. The average state follows

ρ̇av(t) =
1

m
1>A111ρav(t) +

1

m
1>A12ρ2(t) +

1

m
1>A11σ(t) +

1

m
1>B1u(t) (10)

where σ(t) is the average deviation vector given by σ(t) = ρ1(t)− 1ρav(t).

2.3. Average detectability

Consider the open-loop observer

˙̂ρav(t) =
1

m
[1>A111ρ̂av(t) + 1>A12y(t) + 1>B1u(t)] (11)

which is obtained by following the known dynamics (10) ignoring the unknown
input σ(t).

Definition: a system is called average detectable if the open-loop observer
(11) converges asymptotically, i.e., ρ̂av(t)→ ρav(t) as t→∞.

Note that average detectability is a particular case of Functional Observabil-
ity, as described in Fernando et al. (2010). The following theorem can determine
if a given network is average detectable based on the structure of the transition
matrix,

Theorem 1. [Niazi et al. (2019)] For systems of the form (10), the open-loop
observer (11) converges if and only if 1>A11 = −γ1> with γ > 0.

In the following section we show that these conditions are not generally sat-
isfied for traffic networks. Nevertheless, we will show by dividing each road into
virtual cells it is possible to construct networks which are average detectable.

3. Motivating examples

3.1. One way road

Consider a one way road as shown in Fig. 3.a. Sensors are located at the
upstream and downstream boundaries of the road, represented by green strips
in the figure. Let ` be the length of road between the sensors, and v be the
maximum velocity. We divide this stretch into 3 virtual sections (cells), such
that the sum of their lengths is `, and all of them have maximum velocity v.
Possible divisions are shown in Figs. 3.b and 3.c.
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`

(a) One way road

`
3

`
3

`
3

4 1 2 3 5

(b) Homogeneous cells

δδ
2

δ
3

4 1 2 3 5

(c) Inhomogeneous cells

Figure 3: One way road. Green strips represent sensors located and the upstream and down-
stream ends. Two different virtual divisions are shown.

First, consider the common approach of considering homogeneous cells as
in Fig. 3.b, such that cells 1-3 have each length `/3. The corresponding state
matrix is,

A =


−3`−1 0 0 3`−1 0

3`−1 −3`−1 0 0 0

0 3`−1 −3`−1 0 0

0 0 0 −`−14 0

0 0 `−15 0 −`−15

 v.

where `4 is the length of entry and `5 is the length of the exit. It can be seen that
1>A11 = [0 0 −3`−1]v. Thus, the condition 1>A11 = −γ1> from Theorem 1
is not satisfied, and thus, equal length divisions are not average detectable.

This results seems counterintuitive, as it is known that for one ways roads
such as highways, measuring the density of the downstream cell is enough to
make the entire system observable and the density of each cell can be known,
Bekiaris-Liberis et al. (2016). However, we are interested in estimating the
average density of all cells directly, without the need to calculate each individual
density. Therefore, full observability does not imply average detectability.

Now, consider a division such that cell 3 has length δ, cell 2 has length δ/2
and cell 1 has length δ/3, where δ = 6

11` (see Fig. 3.c). The corresponding state
matrix is

A =


−3δ−1 0 0 3δ−1 0

2δ−1 −2δ−1 0 0 0

0 δ−1 −δ−1 0 0

0 0 0 −`−14 0

0 0 `−15 0 −`−15

 v
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Figure 4: Circle road with one entry and one exit.

and thus 1>A11 = [−δ−1 − δ−1 − δ−1]v. Note that all column sums are
equal, and because of Theorem 1, this division is average detectable.

3.2. Circle road: networks

Consider a ring road as shown in Fig. 4. Suppose that sensors are located
at the entry and the exit. Consider the network representation in Fig. 5. The
green nodes represent sensors in the network boundaries. For simplicity, we no
longer index the nodes with sensors as they are not concerned with the average
detectability conditions.

Denote by `1, `2, v1, v2 the lengths and free-flow velocities of the top and
bottom sections of the circle, respectively. In this example, we are interested in
expressing the required conditions for the lengths, so to simplify the writing of
the equations let v1 = v2 = 1. The state matrix of the unmeasured partition is

A11 =

[
−`−11 `−11

r`−12 −`−12

]
.

According to Theorem 1, to be able to reconstruct the average density this
matrix must satisfy 1>A11 = −γ1>, and therefore

−`−11 + r`−12 = −γ
`−11 − `

−1
2 = −γ ⇒ `1 =

2

r + 1
`2.

As r < 1, the roads cannot be of equal length. Thus, we are interested in find-
ing a way to modify the network, such that physical parameters are conserved
(i.e. lengths, velocities and turning ratios), but that the network is average
detectable.

Let the physical lengths of the roads 1 and 2 be `1 = `2 = `. Consider a
new network where roads 1 and 2 are divided into n1 and n2 cells, respectively,
as shown in Fig. 6. Let cells 1 to n1 correspond to road 1, and cells n1 + 1
to n1 + n2 correspond to road 2. Furthermore, let δi be the length of the i-th
cell. The dimension and elements of this network’s state matrix, denoted by
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A(n1,n2), depend on the values of n1, n2 and the vector of cell lengths δ. The
block matrix corresponding to the unmeasured states is

A
(n1,n2)
11 =



−δ−1
1 δ−1

1 0 · · · 0 0 0

0 −δ−1
2 δ−1

2 · · · 0 0 0

...
. . .

...

0 · · · −δ−1
n1

δ−1
n1

· · · 0

0 · · · 0 −δ−1
n1+1 · · · 0

...
. . .

...

rδ−1
n1+n2

0 · · · 0 0 · · · −δ−1
n1+n2


.

The average detectability condition requires −δ−11 + rδ−1n1+n2
= −γ and −δ−1i +

δ−1i−1 = −γ for i = 2, 3, . . . , n1 + n2. Using these equations, we can calculate
section lengths as

δi =
1

[i+ r
1−r (n1 + n2)]γ

. (12)

The specific values of n1 and n2 must be such that the physical parameters
of the network are conserved, this is,

` =

n1∑
i=1

δi =

n2∑
i=1

δn1+i. (13)

By substituting (12) into (13), we obtain

n1∑
i=1

1

i+ r
1−r (n1 + n2)

=

n2∑
i=1

1

i+ 1
1−r (n1 + rn2)

.

The values of n1 and n2 that satisfy this equation yield a network partition that
is average detectable. Note that as the summands on both side of the equation
are different, then it must be n1 6= n2.

4. Problem statement

In the previous section, we discussed how some simple traffic networks can
be given an average detectable representation by dividing each road into several
inhomogeneous virtual cells.

1

2

1

r

1− r

1

Figure 5: Network representation of a circle road.
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1

2...

n1

n1 + 1

n1 + 2 ...

n1 + n2

1

1

1

1

1− r

r

1

1

1

1

Figure 6: Network of a circle road with virtual partitions. Road 1 is divided into n1 sections,
and road 2 into n2.

For a given traffic network G = {N,E, R, `,v} and vector n ∈ Nm, we intro-
duce the following notation:

Definition: Road division. Consider an arbitrary road i ∈ N, and ni the
corresponding element of n. A division of road i is a directed path graph
whose nodes {i(1), i(2), . . . , i(ni)} are virtual cells of i. The downstream cell is
denoted i(1), whereas i(ni) denotes the upstream cell. Additionally, the length

and velocity of the k-th cell of road i are denoted by δ
(k)
i and v

(k)
i , respectively.

Definition: Virtual network. A network G(n) = {N(n),E(n), R(n), δ(n),v(n)}
is called a virtual network of G according to n if its nodes N(n) correspond
to the road divisions of the nodes N, and the adjacency matrix R(n) satisfies

r
(n)

i(1),j(nj)
= ri,j and r

(n)

i(j),i(k) = 1 if k = j − 1. Additionally,

δ(n) = [δ
(1)
1 · · · δ

(n1)
1 δ

(1)
2 · · · δ

(n2)
2 · · · δ(1)m · · · δ(nm)

m ]>

and
v(n) = [v

(1)
1 · · · v

(n1)
1 v

(1)
2 · · · v

(n2)
2 · · · v(1)m · · · v(nm)

m ]>.

Definition: Admissible virtual network. A virtual network G(n) of G is said
to be admissible if for every road i ∈ N, the velocity of any cell is equal to the
velocity of the road,

v
(k)
i = vi, (14)

and the sum of cell lengths is equal to the length of the road,

`i =

ni∑
k=1

δ
(k)
i . (15)

Given a traffic network G, many possible admissible virtual networks G(n)
can be constructed. Each of the cells of the virtual network has an associated
density, with its relevant dynamics. Denote as ρ

(k)
i as the density of the cell k

of road i, and let ρ(n) be the density vector of dimension 1>n corresponding to
the virtual network. Thus, the dynamics of the virtual network are given by

ρ̇(n)(t) = A(n)ρ(t) + diag(δ(n))−1B(n)u(t) (16)
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where
A(n) = diag(δ(n))−1(R(n) − I)diag(v(n)). (17)

and B(n) maps the input demands to the upstream cell of the boundary inflows.
Following the same discussion as in sections 2.2 and 2.3, we can analyze

the convergence of the open-loop observer for the average density of the virtual

network, ρ
(n)
av .

The postulated problem is as follows: for any given traffic network G, find
a division vector n, cell length vector δ(n), and constant γ > 0, such that the
virtual network G(n) is admissible and average detectable.

5. Virtual division for general networks

In this section, we present the conditions required for a virtual network to
be admissible and average detectable.

Theorem 2. Let G = {N,E, R, `,v} be a given traffic network. An admissible
network G(n) = {N(n),E(n), R(n), δ(n), v(n)} is average detectable if and only if
there exist n ∈ Nm, γ > 0, and δ(n) such that

δ
(k)
i =

vi
(vid>i n + k)γ

(18)

under the constraints (14) and (15), for all i = 1, 2, . . . ,m; k = 1, 2, . . . , ni;
where d>i is the i-th row of D = (I−R11)−1R11V

−1
1 .

The proof of Theorem 2 is presented in Appendix A.
Consider a virtual network whose cell lengths are calculated according to

(18). Define

fi(n, γ) = `i −
vi
γ

ni∑
k=1

1

vid>i n + k
. (19)

such that it corresponds to the error in (15), i.e., the error between the sum of
cell lengths and the length of road i. Thus, the problem of finding an average
detectable and admissible division of a given network is equivalent to finding a
vector of integers n and a constant γ such that fi(n, γ) = 0 for all i = 1, . . .m.
However, this is difficult in practice, as it is a combinatorial problem. As a
simplification, we can search for solutions that satisfy the constraints approx-
imatively, that is, to find n and γ such that |fi(n, γ)| is less than a desired
tolerance.

In the following theorems, we propose an alternative system of equations
used to calculate n and γ. To do this, we allow the values of n to take real
(instead of only integer) values. Then, we approximate the sum in fi(n, γ)
using the continuous functions. This results in a system of equations that is
simpler to solve, but that results in approximation error. However, we show
that this error is bounded and can be reduced by selecting different values of γ.
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Theorem 3. Consider any given traffic network G. Let x ∈ Rm and γ > 0
such that,

[(Kγ − I)−1Kγ − V1(I−R11)−1V −11 ]x =
1

2
1, (20)

where Kγ = diag([eγ`1/v1 eγ`2/v2 · · · eγ`m/vm ]). Let b·e denote the nearest
integer function. Then, n = bxe and γ satisfy

|fi(n, γ)| ∼ O
(
(vid

>
i n + 1)−1

)
(21)

for i = 1, 2, . . . ,m.

The proof of Theorem 3 is presented in Appendix B.

Theorem 4. There exists γmax such that for every 0 < γ < γmax, the solution
to (20) is positive. Moreover, as γ approaches γmax the magnitude of x grows
arbitrarily large.

The proof of Theorem 4 is presented in Appendix C.
Using Theorems 3 and 4, we propose the following algorithm to find a vector

n of partitions that yields an admissible network within a given tolerance.

Algorithm 1. Create virtual network
Inputs: Traffic network G = {N,E, R, `,v}. Tolerance ε.
Output: Vector of divisions n. Detectability constant γ.

1. Initialize range for γ:

1.1 Set γ1 ← 0.
1.2 Set γ2 ← maxi[− ln(λ(R11))vi/`i].

2. Calculate n:

2.1 Set γ ← (γ1 + γ2)/2.
2.2 Set x← [(Kγ − I)−1Kγ − V1(I−R11)−1V −11 ]−11/2.
2.3 Set n← bxe.
2.4 If ∃i : xi < 0

2.4.1 Set γ2 ← γ.
2.4.2 Go to Step 2.1.

2.5 If ∃i : |fi(n, γ)| > ε

2.5.1 Set γ1 ← γ.
2.5.2 Go to Step 2.1.

3. Return n, γ.

The algorithm is based on an implementation of the well known bisection
method (see Burden and Faires (1985), Ch. 2). From Theorems 3 and 4, as γ
approaches the maximum value γmax, the error function fi(n, γ) decreases its
magnitude. As γmax is not generally known a priori, the algorithm searches
inside a range of possible values until it finds a value of γ for which fi(n, γ) is
less than the given tolerance for each i = 1, . . . ,m.

13



The algorithm explores for values of γ inside of the interval [γ1, γ2], initialized
in Step 1. γ1 is set to zero, which is a trivial constraint from the problem
formulation. The expression for the maximum value γ2 comes from the fact
that

λ(R11Kγmax
) = 1 (22)

(see proof of Theorem 4), and that Kγ is a diagonal matrix.
With these initial limits, the algorithm proceeds by setting γ as the inter-

mediate value between γ1 and γ2, and then it is used to calculate a candidate
solution x. If x has negative entries, it means that the current γ is higher than
γmax, so the upper limit γ2 is reduced. Else, the error functions |fi(n, γ)| are
compared against the tolerance. If the tolerance is not met, then the lower limit
γ1 is increased. This process continues until a good-enough solution is found.

Note that after every step, the exploration range [γ1, γ2] is reduced by half,
and therefore, the algorithm will require at most O(log2(1/ε)) cycles. Addition-
ally, every cycle requires the inversion of a m×m matrix, each requiring O(m3)
calculations. Therefore, the overall computational cost is O(m3 log2(1/ε)).

6. Difference between original and virtual networks

In the previous sections we have discussed how to generate a virtual network
G(n) from a given one G. The virtual network keeps the same physical properties
as the original one, but its roads have been divided into smaller cells. This
transformation allows one to have an average detectable network.

Nevertheless, even if the underlying physical network is the same, the dy-
namics of the real and virtual systems are different, and therefore the trajectories
of the corresponding average densities are not identical. Let ρav be the average

density of the given undivided network, and let ρ
(n)
av be the average density of

the divided network (following the methods discussed before). It can be seen
that both definitions are not equivalent:

ρav =
1

m

m∑
i=1

ρi (23)

where ρi is the density of road i, and,

ρ(n)av =
1

m∑
i=1

ni

m∑
i=1

ni∑
k=1

ρ
(k)
i (24)

where ρ
(k)
i is the density of cell k of road i, and ni is the number of divisions of

road i. The quantities ρi and ρ
(k)
i are related by the expression

`iρi =

ni∑
k=1

δ
(k)
i ρ

(k)
i (25)
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which states that the total number of vehicles must be the same in both repre-
sentations.

Figures 7 and 8 show the trajectories of the average density of the real

system ρav, and the virtual system ρ
(n)
av for two sample networks considered in

this paper.

Figure 7: Trajectories of the average densities of the original and virtual systems for the one
way road from section 3.1.

Figure 8: Trajectories of the average densities of the original and virtual systems for the circle
road from section 3.2.
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Note that in general, both trajectories are very close, so using the estima-
tor for the virtual system yields a good result for the real one. However, the
closeness between these trajectories might depend in the original network pa-
rameters, so it is required to establish a way to determine if a particular network
might be well represented using the approach described in this paper.

The error between the average density of the original and virtual system can
be found to be

ρ(n)av − ρav =
1

m

m∑
i=1

ni∑
k=1

(
1

nav
− δ

(k)
i

`i

)
ρ
(k)
i (26)

where nav = 1>n/m. Note that this expression depends both on the properties
of the network division (the cell lengths), and on the state of the virtual network,
as the density of each cell is required.

6.1. Slow varying inputs

Consider the case where the rate of change of the inputs (incoming flows
at the boundaries) is small in comparison to the traveling time of each road.
This can be achieved if the input demands are relatively constant, or in urban
scenarios where the distance between intersections is small. Note that this does
not imply that the physical dimensions of the entire network is small, just its
individual components. This assumption implies that there are small spatial
variations in the flow for each road, so that ϕin(t) ≈ ϕout(t). This in turn
implies that the density of each road is approximately constant in space, and
thus

ρ
(k)
i ≈ ρi (27)

for each road i and each cell k. It follows that the average density of the virtual
system can be approximated as a weighted average of the density of the internal
nodes, where the weights are the number of partitions,

ρ(n)av ≈
1

ntot
n>ρ1. (28)

where ntot = 1>n. Thus, we can simplify the error equation as

ρ(n)av − ρav ≈
1

m

m∑
i=1

ρi

(
ni
nav
− 1

)
. (29)

Note that in this case, the difference between the two trajectories depends
only on the densities of the roads (not cells), and the number of cells per road.
Using matrix notation, this can be rewritten as

ρ(n)av − ρav ≈
n>σ

n>1
(30)

where
σ = ρ− ρ̄av1. (31)
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The value of the error depends then on the cell division and the state of
the original system, which is unknown. To benchmark the applicability of the
proposed method for all possible networks, we can analyze the distribution of
the error under the assumption that the deviation σ is a random process. We
introduce the following theorem,

Theorem 5. Consider the metric space (Sm, d) where Sm = {x ∈ Rm : ||x|| =
1} is the m-dimensional unit sphere and d is the spherical distance. Consider
two independent random vectors u ∈ Sm and v ∈ Sm. Then, for any ε > 0,

Pu,v(|u>v| < ε) ≥ 1− 2e−(m−1)ε
2/2 (32)

where P is the uniform spherical probability measure.

The proof of Theorem 5 is shown in Appendix D. This implies that for large
dimensions (m → ∞), the probability of the two vectors being ε-orthogonal is
asymptotically 1.

Because of this, the trajectories of the average density of the original and
virtual systems get closer as we consider larger networks. Note that this depends
on the assumption σ is independent to n. Even though both vectors depend on
the properties of the network, this assumption can be justified by the fact that
σ depends highly on the input demands u, and thus, the orientation of σ does
not depend on the orientation of n.

7. Application scenario 1: Manhattan grid network

Consider the traffic network shown in Fig. 9, which corresponds to the net-
work for a Manhattan Grid of 4× 4 intersections. Assume that all roads have the
same length of ` = 500m, and the same free-flow velocity of v = 30 km·h−1. As
all speeds and lengths are equal, Kγ = exp(γ `v )I, and γmax = −(v/`) ln [λ(R11)].
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Figure 9: 4×4 Manhattan grid (nodes correspond to roads). All turning ratios are set to 50%.
Green nodes symbolize sensor locations.

It was shown in the previous section that for a given value of γ ∈ (0, γmax),
there exists one vector n that is an approximate solution to the problem. Fig-
ure 10 shows n that solves (20) for different values of γ. For γ < 0.88γmax,
the elements of n are all 1. As γ approaches the maximum value, n increases
quickly.

Figure 10: Approximate solutions of (20) for n for all unmeasured nodes.

However, using (20) to calculate n induces an error fi(n, γ) in the admis-
sibility constraint. Consider the total root mean square error (RMSE) for all

18



roads i = 1, . . . ,m, as shown in Fig. 11. As γ increases, the upper limit of this
error decreases, approaching 0 as γ → γmax. This is because the number of cells
per road is also increasing rapidly, so Theorem 3 is applicable. In this sense,
the lowest error is obtained by choosing γ very close to γmax.

Figure 11: Normalized RMSE,

√∑
i

fi(n, γ)2/` for different values of γ.

Note that the virtual networks that yield a low error in the admissibility
constraint require many divisions per road and therefore are high-dimensional.
Using the defined observer in sections 2.2 and 2.3 applied to the dynamics of
the virtual system in (16), we obtain an estimator for the average density of the
virtual system of the form

˙̂ρ(n)av (t) =
1

ntot
1>A

(n)
11 1ρ̂(n)av +

1

ntot
1>A

(n)
12 y(t) (33)

where ntot = 1>n. The dimensions of the matrices A
(n)
11 and A

(n)
12 are propor-

tional to the norm of n, hence, large number of divisions could imply costly
calculations to obtain the values required by the estimator. However, the ex-
pressions for the gains in the estimator can be simplified such that the matrix
A(n) is not explicitly required.

The first term can be simplified by using the fact that the network is average

detectable, which requires 1>A
(n)
11 = −γ1> and thus

1

ntot
1>A

(n)
11 1 = − γ

ntot
1>1 = −γ.

The second term of the estimator can also be simplified. Let b> = 1
ntot

1>A
(n)
12

be the vector gain for the measurements. From the definition of this matrix, we
obtain:

bi−ntot =
1

ntot

m∑
j=1

nj∑
k=1

r
(n)

i,j(k)

vi

δ
(k)
j

(34)
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where the indexes i = ntot+1, . . . , ntot+k correspond to the measured boundary
nodes in the virtual network. From the definition of R(n), the expression can
be simplified to

bi−ntot =
1

ntot

m∑
j=1

ri,j
vi

δ
(nj)
j

. (35)

Substituting (18) into (35),

bi−ntot
=

γvi
ntot

m∑
j=1

ri,j

(
d>j n +

nj
vj

)
. (36)

Using matrix notation, this can be rewritten into

b> =
γ

1>n
n>(D> + V −11 )R>21V2. (37)

Substituting the definition of D, this simplifies to

b> =
γ

1>n
n>V −11 (I−R>11)−1R>21V2. (38)

Hence, the estimator for the average density of the virtual system becomes

˙̂ρ(n)av (t) = −γρ̂(n)av (t) +
γ

n>1
n>V −11 (I−R>11)−1R>21V2y(t). (39)

Note that to use the proposed observer, only the calculation of n, γ, and
the topology of the original network is required. As the virtual network is not
required, this provides an efficient way to deploy the estimator even for very
high number of divisions. Figure 12 shows the values of b> as a function of γ.

Figure 12: Measurement gain for the open-loop observer as a function of γ.

As a specific case, let γ = 0.95γmax, which corresponds to a vector n with
elements 2, 3 and 4, and a RMS error below 3%. The corresponding virtual

20



Figure 13: Virtual network using γ = 0.95γmax.

network is shown in Fig. 13. Using the virtual network as an input, we performed
a simulation using random initial conditions, and sinusoidal inputs with additive
noise. The trajectory of the real average density is shown in blue in Fig. 14.

Using the measurements y as an input, we used the open-loop observer to
estimate the average density. The trajectory of the estimate is shown in red in
Fig. 14. This observer converges to the real solution as expected. Note that
to deploy the observer, the virtual network of Fig. 13 is not needed; only γ, n
are required and can be calculated off-line. Therefore, the on-line deployment of
the observer requires little computational power and is applicable for large-scale
networks.
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Figure 14: Real and estimated average density.

8. Application scenario 2: Grenoble Downtown

This work makes part of the Scale-FreeBack1 research project, which deals
with the modeling, monitoring and control of large scale systems. One of its
initiatives oriented to the application to traffic networks is the GTL-Ville2,
which takes as subject the city of Grenoble. The GTL-Ville serves as a platform
to share data and analysis with the users of the traffic network, and to constitute
a collection of validation experiments for the development of traffic research. All
data and analysis are available for download. Figure 15 shows the home website
of the GTL-Ville. From here, users can inspect available data from sensors and
traffic indicators for roads.

For the purposes of this paper, we consider a section of the Grenoble network
with dimensions 1.4 km by 1 km, as shown in Fig. 16. This area is equipped
with two type of sensing technologies:

• magnetic loops, located under the pavement, detect the presence of vehi-
cles by measuring a change in inductance, and can provide the number of
vehicles that passed the location during a time interval.

• radar sensors, which emit a pulse of infrared light and then collect the
reflected light. By measuring the time between pulses, these sensors can
provided the velocity and length of individual vehicles, and the vehicular
flow in the location.

1http://scale-freeback.eu/
2http://gtlville.inrialpes.fr/
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Figure 15: Home website of the GTL-Ville.

Figure 16: Selected area of the Grenoble traffic network. Blue: radar locations, Green:
magnetic loop locations. Text indicates sensors identifier in database.
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Figure 17: List of values of the division vector n sorted in ascending order.

The figure shows the location of the sensors that will be used as an input to the
proposed method. These locations correspond to most of the boundary roads
of the area.

In addition to the sensor data, aggregated FCD provides the average speed
data for each road. This data is provided by TomTom3, a navigation assistance
company.

Because of the network’s size it is not feasible to analyze the variation of
the division vector n and error functions f(γ,n) for all possible values of γ. To
calculate the number of partitions per road, we used Algorithm 1, with an error
tolerance of 5%. Figures 17 and 18 shows the resulting division vector. For this
set up, the algorithm required 24 iterations to satisfy the constraints.

Note that this result implies that roads are divided into very wildly varying
number of cells, for which the maximum requires around 12000 cells. Neverthe-
less, as shown in the previous simulated example, the deployment of the esti-
mator only requires the outputs of the algorithm (n and γ) and the properties
of the original network. Therefore, the very large number of cells in the virtual
representation does not lead to a problem in the actual on-line calculations.

Although sensors are available at the network’s boundaries, neither the den-
sity of each road nor the average network’s density are known. For this reason,
to be able to validate the methods it is required to use simulated data. To
obtain a more realistic scenario, we used the well-known microscopic simulator
Aimsun, Barceló and Casas (2005). This type of simulators models the behavior
of each individual vehicle, depending on its relative position and velocity with
respect to other surrounding vehicles. Therefore, this allows to obtain behavior
not easily captured by macroscopic models, such as vehicle slowing down at
intersections, stop and go waves, and other phenomena.

3https://www.tomtom.com
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Figure 18: Network representation of the selected area where the color of each node corre-
sponds to its number of cells. The color scale of this graph is logarithmic.

To use Aimsun, we recreated the layout of the Grenoble network as shown
in Fig. 19. Sensor data is used to feed the simulator with a real inflow profile.
To determine the turning ratios, we use the heuristic

ri,j =
vjΓj∑

k∈O(i)

vkΓk
(40)

where Γi is the number of lanes of road i, and O(i) is the set of downstream
roads adjacent to i. This heuristic is based on the assumption that turning
ratios are proportional to the maximum capacity of the receiving road.

The simulation outputs are: density, mean speed, inflow and outflow for
every road. They are aggregated for 5 min. From this data, we compute the
real average density for the internal (non-boundary) roads as

ρav =
1

m
1>ρ1[k]. (41)

As specified in Section 2.1.1, the proposed estimator was designed using a
linear model, assuming the velocity of each road being constant. However, in
common urban traffic networks applications, this is not the case. Therefore,
it is necessary to evaluate the resulting errors caused by the deviation of this
hypothesis.

Consider
ρ∗i = max

k
(ρi[k]) (42)
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Figure 19: Recreated layout of the Grenoble network in Aimsun. For each road, parameters
include the number of lanes, speed limit, length, and road interconnections.

as the maximum density obtained in road i. Figure 20 shows the spatial distri-
bution of the ρ∗ for a simulation. Note that several locations present congestion
(the density is higher than the critical value), specially at the center of the net-
work. As a result, the average vehicle speed of the congested roads varies in
time. For instance, Fig. 21 shows the speed profile of the road with the largest
density ρ∗i . The deviation from the speed limit is significant, passing from 35
km/h to a minimum of about 7 km/h.

Figure 22 shows the trajectories of the real average density and the estimated
value for the virtual system.

Consider the estimation error calculated by∑
k

|ρav[k]− ρ(n)av [k]|∑
k

ρav[k]
.

For the current scenario, we obtained an error of 10.2%. This error is due
to the speed deviations from the speed limit. This can be seen as between
6h00 and 8h00, the estimation error is low, and then increases after 8h00, which
corresponds to the same time when the speed in Fig. 21 deviates from its nominal
value.

To verify this results, a second simulation was performed, where the input
demands were increased. Figure 23 shows the spatial distribution of the density
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Figure 20: Spatial distribution of the highest densities for simulation 1.

Figure 21: Average vehicle velocity for a selected road for simulation 1.
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Figure 22: Average density trajectories for simulation 1.

values. Note that the presence of new congested areas specially at the north and
north-east. Similarly, the speed profile in Fig. 24 shows a significant decrease in
the average vehicle velocities during the congestion, which in turns results in an
error in the estimation of the average density, as seen in Fig. 25. The relative
error obtained for this simulation is now of 8.8%.

To generalize the relation between the estimation error and the speed devi-
ation, denote by V ∗1 the real speed of internal roads, and V1 the nominal speed
used in the estimator. By assuming the steady-state of (39), the estimation
error is

ρ(n)av − ρ̂(n)av ≈
1

ntot
n>(V̄ −11 − V −11 )w (43)

where w = (I − R>11)−1R>21V2y. This equation provides just an approximation
of the estimation error, as it assumes steady-state conditions. However, this
allows to identify key factors in the determination of the error.

9. Conclusion

In this work, we propose a novel approach to modify a given urban traffic
network by dividing each road into cells, such that there exists a one-dimensional
open-loop observer that estimates the modified traffic networks’s average den-
sity. Exact conditions relating the number of cells per road and their lengths
are provided. However, these conditions are difficult to be satisfied exactly in
some practical cases. To solve this situation, we also propose a procedure to
find approximate solutions. As we decrease the approximation error, the num-
ber of required partitions increases quickly, therefore implying a virtual network
of large dimension. However, to deploy the open-loop observer requires few pa-
rameters which can be obtained without explicitly calculating the entire virtual
system.
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Figure 23: Spatial distribution of the highest densities for simulation 2.

Figure 24: Average vehicle velocity for a selected road for simulation 2.
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Figure 25: Average density trajectories for simulation 2.

We also analyzed the difference between the average densities of the real
system (for which the observer does not generally converge) and the virtual
system. The difference between the two trajectories depends not only on the
number of cells and their length, but also on the density of every individual road,
which are unknown. Nevertheless, we show that by considering large networks,
the difference between these two variables is almost always small, and thus, the
method can give a useful approximation to the value of interest.

We showed the applicability of the results and the algorithm using two sim-
ulated networks. The first considers a Manhattan grid in free-flow, and the
second the real case of a zone of the city of Grenoble in France.

For future works, we will analyze how to generalize the average-density es-
timator to account for the presence of full congestion. This can be done with
the aid of measurements of the average vehicle speed in each road from FCD.
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Appendix A. Proof of Theorem 2

Consider an arbitrary cell i(k), with k 6= 1 such that its downstream neighbor

is cell i(k−1). The column sum of A
(n)
11 corresponding to this cell is

− vi

δ
(k)
i

+
vi

δ
(k−1)
i

= −γ.
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where we imposed the condition v
(k)
i = vi. By induction, we can calculate the

length of each cell from δ
(1)
i ,

1

δ
(k)
i

=
1

δ
(1)
i

+
k − 1

vi
γ. (A.1)

Cell i(1) has as out-neighbors all cells j(nj) such that (i, j) ∈ E. Thus, its
corresponding column sum is,

− vi

δ
(1)
i

+

m∑
j=1

rijvi

δ
(nj)
j

= −γ. (A.2)

Define δ−1(1) = [1/δ
(1)
1 1/δ

(1)
2 · · · 1/δ

(1)
m ]. By substituting (A.1) into

(A.2), we obtain a system of linear equations,

(I−R11)δ−1(1) = γ[R11V
−1
1 n + (I−R11)V −11 1]. (A.3)

Thus,
1

δ
(1)
i

= γ

(
d>i n +

1

vi

)
(A.4)

are the solutions to (A.3) for the downstream cells of each road i. Substitution
of (A.4) into (A.1) gives (18).

Appendix B. Proof of Theorem 3

Let ψ be the digamma function. Its definition and a list of properties can be
found in Abramowitz and Stegun (1972). This function satisfies the following
identity,

n∑
k=1

1

z + k
= ψ(z + n+ 1)− ψ(z + 1).

Therefore, with z = vid
>
i n, (19) can be rewritten as

fi(n, γ) = `i −
vi
γ

[
ψ
(
vid
>
i n + ni + 1

)
− ψ

(
vid
>
i n + 1

)]
. (B.1)

Define ε(z) = ψ(z) − ln(z − 1
2 ). It is known that for z > 1

2 , ε(z) is positive
and monotonically decreasing. Furthermore, its asymptotic expansion is ε(z) =
z−2

24 + z−3

24 + . . . as z →∞. Thus, (B.1) becomes

fi(n, γ) = `i −
vi
γ

[
ln
(
vid
>
i n + ni + 1

2

)
− ln

(
vid
>
i n + 1

2

)
+ ∆i(n)

]
, (B.2)

where ∆i(n) = ε
(
vid
>
i n + 1

)
− ε
(
vid
>
i n + ni + 1

)
, is the total error due to this

approximation.
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Using the Taylor expansion of the logarithm, it can be shown that for any
non-negative vector a and c > 0, ln

(
a>bxe+ c

)
− ln

(
a>x + c

)
is equal to

∞∑
k=1

(−1)k+1

k

[
a>(bxe − x)

a>x + c

]k
∼ O

(
1

a>bxe+ 1

)
.

Thus, we can rewrite (B.2) as

fi(n, γ) = `i −
vi
γ

[
ln
(
vid
>
i x + xi + 1

2

)
− ln

(
vid
>
i x + 1

2

)
+ ∆i(n) + ηi(x)

]
,

(B.3)
where ηi(x) is the rounding error.

Now, consider the equation

0 = `i −
vi
γ

[
ln
(
vid
>
i x + xi + 1

2

)
− ln

(
vid
>
i x + 1

2

)]
(B.4)

Using logarithm identities, this becomes

γ
`i
vi

= ln

(
vid
>
i x + xi + 1

2

vid>i x + 1
2

)
,

which can be written as xi − (eγ`i/vi − 1)vid
>
i x = 1

2 (eγ`i/vi − 1). Thus, we
obtain a system of m equations,

[I− (Kγ − I)V1D]x =
1

2
(Kγ − I)1. (B.5)

Substituting the expression for D into (B.5) and rearranging terms we obtain
(20), and thus, (B.4) is satisfied for the considered x and γ. Substituting (B.4)
into (B.3), we get

|fi(n, γ)| = vi
γ
|∆i(n) + ηi(x)|. (B.6)

Note that |∆(n)| < ε(vid
>
i n+1), and so ∆(n) ∼ O[(vid

>
i n+1)−2]. Additionally,

ηi(x) ∼ O[(vid
>
i n + 1)−1].

Thus |fi(n, γ)| ∼ O
(
(vid

>
i n + 1)−1

)
, completing the proof.

Appendix C. Proof of Theorem 4

Let M = (Kγ − I)−1Kγ − V1(I−R11)−1V −11 . Assume that M is invertible.
Using Woodbury’s identity4, we can write M−1 as

(I−K−1γ ) + (I−K−1γ )V1Kγ(I−R11Kγ)−1V −11 (I−K−1γ ).

Therefore, M is invertible only if I−R11Kγ is invertible.

4(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.
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Let λ(R11) denote the spectral radius of R11. It can be shown that I−R11 is
an invertible M-matrix (see Rodriguez-Vega et al. (2019)), and thus, λ(R11) <
1. For sufficiently small γ, Kγ can be made arbitrarily close to I, such that
λ(R11Kγ) < 1.

Let γmax be such that λ(R11Kγmax
) = 1. Thus, for every γ < γmax, I −

R11Kγ is an invertible M-matrix such that

(I−R11Kγ)−1 = I +

∞∑
k=1

(R11Kγ)k. (C.1)

As γ → γmax, the nonzero elements of (R11Kγ)k increase exponentially. For
γ = γmax, the sum diverges and the matrix is not invertible. Finally, for 0 <
γ < γmax, (I − R11Kγ)−1 and (I −K−1γ ) are non-negative, which implies that
M−1 is non-negative.

Appendix D. Proof of Theorem 5

Because of the independence between the vectors u and v, we can rewrite
the desired probability in terms of the conditional probability

Pu,v(|u>v| < ε) = Pu(|u>v| < ε|v = y) (D.1)

where y ∈ Sm is any arbitrary vector.
Consider the set Pε = {x ∈ Sm : |x>y| < ε}. This can be visualized in

the unit m-sphere as all points within a distance ε from the equator, where
the pole is y. Let A = {x ∈ Sm : x>y > 0} be the hemisphere of Sm closest
to y, and B = {x ∈ Sm : x>y ≤ 0} be the opposite hemisphere. Note that
Pu(A) = Pu(B) = 1/2.

Define the ε-extension Aε = {x ∈ Sm : d(x,A) < ε}, and Bε defined anal-
ogously. It follows that Pε = Aε ∩ Bε. Due to the fact that u is independent
from the choice of y, the events Aε and Bε are independent, and thus

Pu(Pε) = Pu(Aε)Pu(Bε) (D.2)

Because of the concentration of measure phenomenon, (see Theorem 2.3 in
Ledoux (2005)), we have that

Pu(Aε) ≥ 1− e−(m−1)ε2/2,
Pu(Bε) ≥ 1− e−(m−1)ε2/2.

(D.3)

Substitution of (D.2) and (D.3) into (D.1) gives

Pu,v(|u>v| < ε) ≥ 1− 2e−(m−1)ε
2/2, (D.4)

thus, finalizing the proof.
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Barceló, J., Casas, J., 2005. Dynamic Network Simulation with AIMSUN.
In: Simulation Approaches in Transportation Analysis. Springer-Verlag, New
York, pp. 57–98.

Bekiaris-Liberis, N., Roncoli, C., Papageorgiou, M., sep 2016. Highway Traffic
State Estimation with Mixed Connected and Conventional Vehicles. IFAC-
PapersOnLine 49 (3), 309–314.

Bianchin, G., Pasqualetti, F., Kundu, S., jul 2019. Resilience of Traffic Networks
with Partially Controlled Routing. In: 2019 American Control Conference
(ACC). IEEE, pp. 2670–2675.

Burden, R. L., Faires, J. D., 1985. Numerical Analysis, 3rd Edition. Prindle,
Weber & Schmidt, Boston, MA.

Daganzo, C. F., 1994. The cell transmission model: A dynamic representation
of highway traffic consistent with the hydrodynamic theory. Transportation
Research Part B 28 (4), 269–287.

Daganzo, C. F., 1995. The cell transmission model, part II: Network traffic.
Transportation Research Part B 29 (2), 79–93.

Fernando, T. L., Hieu Minh Trinh, Jennings, L., may 2010. Functional Observ-
ability and the Design of Minimum Order Linear Functional Observers. IEEE
Transactions on Automatic Control 55 (5), 1268–1273.

Geroliminis, N., Daganzo, C. F., nov 2008. Existence of urban-scale macroscopic
fundamental diagrams: Some experimental findings. Transportation Research
Part B: Methodological 42 (9), 759–770.

Gu, Y., Qian, Z. S., Zhang, G., 2017. Traffic state estimation for urban road
networks using a link queue model. Transportation Research Record 2623 (1),
29–39.

Haddad, J., Geroliminis, N., 2012. On the stability of traffic perimeter control
in two-region urban cities. Transportation Research Part B: Methodological
46 (9), 1159–1176.

Haddad, J., Zheng, Z., 2020. Adaptive perimeter control for multi-region
accumulation-based models with state delays. Transportation Research Part
B: Methodological 137, 133–153.

34



He, S. X., 2013. A graphical approach to identify sensor locations for link flow
inference. Transportation Research Part B: Methodological 51 (516), 65–76.

Herrera, J. C., Bayen, A. M., 2010. Incorporation of Lagrangian measurements
in freeway traffic state estimation. Transportation Research Part B: Method-
ological 44 (4), 460–481.

Jabari, S. E., 2016. Node modeling for congested urban road networks. Trans-
portation Research Part B: Methodological 91, 229–249.

Ladino, A., Canudas-de Wit, C., Kibangou, A., Fourati, H., Rodriguez, M.,
2018. Density and flow reconstruction in urban traffic networks using hetero-
geneous data sources. In: IEEE European Control Conference (ECC). Limas-
sol, Ciprus, pp. 1679–1684.

Ledoux, M., 2005. The Concentration of Measure Phenomenon. Vol. 89 of Math-
ematical Surveys and Monographs. American Mathematical Society, Provi-
dence, Rhode Island.

Lovisari, E., Canudas-de Wit, C., Kibangou, A. Y., 2016. Density/Flow recon-
struction via heterogeneous sources and Optimal Sensor Placement in road
networks. Transportation Research Part C: Emerging Technologies 69, 451–
476.

Ng, M. W., 2012. Synergistic sensor location for link flow inference without
path enumeration: A node-based approach. Transportation Research Part B:
Methodological 46 (6), 781–788.

Niazi, M. U. B., Canudas-de Wit, C., Kibangou, A. Y., 2019. Average observ-
ability of large-scale network systems. 2019 18th European Control Conference
(ECC) (694209), 1506–1511.

Pueboobpaphan, R., Nakatsuji, T., 2006. Real-Time Traffic State Estimation
on Urban Road Network: The Application of Unscented Kalman Filter. pp.
542–547.

Rodriguez-Vega, M., Canudas-de Wit, C., Fourati, H., 2019. Location of turn-
ing ratio and flow sensors for flow reconstruction in large traffic networks.
Transportation Research Part B: Methodological 121, 21–40.

Rostami Shahrbabaki, M., Safavi, A. A., Papageorgiou, M., Setoodeh, P., Pa-
pamichail, I., jun 2020. State estimation in urban traffic networks: A two-
layer approach. Transportation Research Part C: Emerging Technologies 115,
102616.

Sadamoto, T., Ishizaki, T., Imura, J. I., 2017. Average state observers for large-
scale network systems. IEEE Transactions on Control of Network Systems
4 (4), 761–769.

35



Saedi, R., Saeedmanesh, M., Zockaie, A., Saberi, M., Geroliminis, N., Mah-
massani, H. S., 2020. Estimating network travel time reliability with net-
work partitioning. Transportation Research Part C: Emerging Technologies
112 (January), 46–61.

Seo, T., Bayen, A. M., Kusakabe, T., Asakura, Y., 2017. Traffic state estimation
on highway: A comprehensive survey. Annual Reviews in Control 43, 128–151.

Seo, T., Kusakabe, T., Asakura, Y., 2015a. Estimation of flow and density
using probe vehicles with spacing measurement equipment. Transportation
Research Part C: Emerging Technologies 53, 134–150.

Seo, T., Kusakabe, T., Asakura, Y., 2015b. Traffic State Estimation with the
Advanced Probe Vehicles Using Data Assimilation. IEEE Conference on In-
telligent Transportation Systems, Proceedings, ITSC 2015-Octob, 824–830.

Sun, Y., Work, D. B., 2014. A distributed local Kalman consensus filter for traf-
fic estimation. Proceedings of the IEEE Conference on Decision and Control
2015-Febru (February), 6484–6491.

Tampère, C. M., Immers, L. H., 2007. An extended Kalman filter application for
traffic state estimation using CTM with implicit mode switching and dynamic
parameters. In: IEEE Intelligent Transportation Systems Conference. Seattle,
USA, pp. 209–216.

36


