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Abstract: We are interested in the problem of determining the size of a fleet of robots able to
perform transport operations in a logistics warehouse. The operations are divided into several
phases: loading, loaded travel, unloading and empty travel. We first determine the minimum
number of robots needed to transport a set of homogeneous loads from point A to point B
over a determined time interval. For the same number of robots, many assignments exist. We
determine the assignment that minimizes the makespan, which is also the one which balances the
loads between robots. If we consider an infinity of pickup stations, we obtain a simple analytical
expression to find the optimal number of robots. With a single pickup station, we present a
simple algorithm that computes the optimal fleet size. Finally, we show that the extension with
heterogeneous loads can be formulated as a bin packing problem.

Keywords: Fleet-sizing, automated warehouse, internal logistics, transport operations, robots.

1. INTRODUCTION

Industrial robotics is a key factor in increasing the perfor-
mance of logistics warehouses. Moreover, the automation
of logistics warehouses is considered an essential step to
join the fourth industrial revolution or industry 4.0. In
fact, this automation can be implemented today in ware-
houses through: automated conveyors, Automated Guided
Vehicle (AGV), Automated Intelligent Vehicle (AIV), Au-
tonomous Mobile Robots (AMR), Automated Storage and
Retrieval Systems (AS/RS), Aerial Drones...

Focusing on industrial robotics, the concept of multi-robot
system (MRS) appeared in 1989 in order to replace a
large robot by a set of small robots (Mouad, 2014). For
multi-robot systems in the context of logistics warehouses,
the literature has since been enriched by focusing in
particular on the following fields of study: guide-path
design, fleet-sizing, vehicle scheduling, positioning, battery
management, deadlock management.

One of the major problems of logistics warehouses is the
problem of fleet-sizing which consists in determining the
optimal number of vehicles able to perform all requested
tasks in a given time interval with a minimum total cost
(Sinriech and Tanchoco, 1992). Indeed, the number of ve-
hicles greatly influences multi-robot systems performance
and determining the right type and number of vehicles is
essential.
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The fleet-sizing problem has two aspects: an operational
aspect and an economic aspect (Sinriech and Tanchoco,
1992). For the operational aspect, (Egbelu, 1987) presents
six strategic factors that influence strongly the estimation
of the number of vehicles: (1) The system layout, (2) the
location of load transfer points, (3) trip exchanges between
workcenters per unit time, (4) vehicle-dispatching strategy,
(5) system reliability, (6) travel speed.

For the economic aspect, the total costs of robots can be
divided as follows (Sinriech and Tanchoco, 1992):

• Operating costs including everything that is related
to the operations such as maintenance costs, energy
costs, etc.

• Design costs including the software costs (scheduling,
routing, dispatching, etc) and the hardware costs
(batteries / chargers, communication links, etc).

• Guide-path design cost related to the the guide-path
configuration.

The literature considers the fleet-sizing problem in differ-
ent ways (see e.g. (Choobineh et al., 2012) and (Gane-
sharajah et al., 1998) for reviews).

According to (Choobineh et al., 2012), the sizing models
presented in the literature can be classified into four
categories of approaches: (1) discrete and continuous event
simulation models, (2) calculus approaches including a
set of simple computations, (3) deterministic operations
research models including linear and integer programming,
(4) stochastic models including queuing theory.



Since the first research works dealing with this fleet-sizing
problem, the analytical models used to determine the
optimal size of the fleet are not entirely reliable in terms
of optimization. Indeed, analytical models today are only
used to find an initial number of robots which is not neces-
sarily optimal before continuing with the sizing procedure.
In order to refine the analytical results, most of the work is
based on the number of robots found analytically to launch
an optimization study through algorithmic or simulation
models.

Among the most used models to start the sizing procedure,
we can cite (Egbelu, 1987) model. This model calculates
the number of robots in the fleet according to the following
expression:

m∗ =
total operating time

time interval
Although this model takes into account several constraints
(empty circulation of vehicles, number of pickup / delivery
stations per zone ...), it does not take the integer values
into consideration which strongly impacts the optimality
of the solution.

Recently, (Vivaldini et al., 2016) improved this model by
taking into account integer values. On the other hand,
this model remains limited from an optimization point
of view since it does not take into account the waiting
times caused by several problems (unavailability of the
load to be transported, loading station occupied, etc).
Indeed, (Vivaldini et al., 2016) consider the number found
by this model as a starting point for a second optimization
step.

The model of (Choobineh et al., 2012) has been used by
several researchers to find an initial value for the size of
the fleet. This model was used recently by (Chawla et al.,
2018b) and (Chawla et al., 2019) in order to show that
the values found analytically can be optimized through
optimization tools like (gray wolf optimization algorithm,
particle swarm algorithm).

Contributions : Egbelu (1987) provides an approximation
of the optimal number of robots. We propose an exact
approach to determine the optimal number of robots in a
less general setting than Egbelu (1987).

2. TRANSPORT OF HOMOGENEOUS LOADS

In this section, we present a transport model for loads with
the same type.

2.1 Notations and assumptions

Fig. 1. Transport model between A and B

Fig. 1 illustrates a homogeneous fleet of robots that
transport homogeneous loads from zone A (reception) to
zone B (storage). A robot moves loaded from A to B before
crossing the same empty distance from B to A.

Notations

− tl : loading time
− tu : unloading time
− T : time limit
− dAB : distance between A and B
− n : number of loads to transport from A to B during

T
− m : number of robots
− nA : number of pickup stations in A
− nB : number of delivery stations in B
− vl : loaded robot travel speed (uniform)
− ve : empty robot travel speed (uniform)

Assumptions

− The robot parking is located at point A
− Transport is unitary: each robot carries at most a

single load at a given time
− The loads to be transported are always available
− Deadlock during travel and idleness of robots are not

taken into account
− The battery charging problem is not taken into ac-

count

Objective function The purpose of this study is to
determine the minimum number of robots m∗ allowing to
transport the n loads in the time interval [0, T ].

Many load assignments can exist for the same number of
robots. We will denote by Cj the time at which robot Rj

has terminated its last transport cycle. We will also denote
by Cmax = maxjCj the makespan which represents the
time at which all loads have been transported and all
robots are back in A. We will focus in particular on the
assignment which minimizes the makespan but also on the
one which distributes the loads in the most balanced way
between robots.

Cycle time of a robot We will denote by p the cycle time
of a robot for one load (loading, loaded travel, unloading
and empty travel):

p = dAB ·
(

1

vl
+

1

ve

)
+ tl + tu (1)

2.2 Many pickup / delivery stations

We assume in this part that there are at least as many
pickup / delivery stations as there are robots at the opti-
mum (nA ≥ m∗ and nB ≥ m∗). Under this assumption,
there is no waiting time for loading or unloading.

We can notice that there is a solution to the problem if and
only if the cycle time p is less than or equal to the time
interval [0, T ]. We will assume in the rest of this paper
that p ≤ T in order to place ourselves in the case where a
solution exists.

Optimal number of robots The maximum number of
loads nmax transported by a robot on the time interval



[0, T ] must satisfy the inequality (nmaxp ≤ T ). The
number nmax must be integer, which implies that

nmax =

⌊
T

p

⌋
(2)

where ⌊x⌋ is the floor function of x. We will also denote
by ⌈x⌉ the ceiling function of x.

The maximum number of loads transported by m robots,
denoted by Nmax(m), is then

Nmax(m) = m

⌊
T

p

⌋
(3)

In order to be able to transport the set of n loads, it is
necessary that Nmax(m) ≥ n, so

m ≥ n⌊
T
p

⌋ (4)

The optimal number of robots is the smallest value of m
which satisfies (4), so we have

m∗ =

 n⌊
T
p

⌋
 (5)

Robots load balancing There can be several ways of
assigning loads between the m∗ robots. The most balanced
solution is the one that assigns the load with the objective
of balancing the use of robots as much as possible. More
precisely, it is the solution which minimizes the maximum
difference between the different end dates maxi,j |Ci − Cj |.
If n

m∗ is an integer, then it is possible to distribute the
loads in a perfectly balanced way between the robots by
assigning n

m∗ loads to each one.

If n
m∗ is not an integer, the robots will transport, in the

most balanced solution, either
⌊

n
m∗

⌋
loads, or

⌈
n
m∗

⌉
=⌊

n
m∗

⌋
+ 1 loads.

Let s be the number of robots carrying
⌊

n
m∗

⌋
loads. Thus

we have (m∗ − s) other robots carrying
⌈

n
m∗

⌉
=

⌊
n
m∗

⌋
+ 1

loads. The total number of loads to be transported being
n, we have

n = s
⌊ n

m∗

⌋
+ (m∗ − s)

(⌊ n

m∗

⌋
+ 1

)
(6)

which implies that

s =
⌈ n

m∗

⌉
m∗ − n (7)

We notice that if n
m∗ is an integer, this last formula remains

correct by giving s = 0.

In the most balanced solution, the end date of the latest
robot finishing its cycle is Cmax where

Cmax =
⌈ n

m∗

⌉
p (8)

We notice that the most balanced solution is also the one
which minimizes the Cmax.

Let us now summarize our main results in the following
theorem.

Theorem 1. When considering an infinity of pickup sta-
tions, the optimal number of robots is

m∗ =

 n⌊
T
p

⌋
 (9)

In the most balanced solution, noting s =
⌈

n
m∗

⌉
m∗−n, we

have

• s robots carrying
⌊

n
m∗

⌋
loads

• (m∗ − s) robots carrying
⌈

n
m∗

⌉
loads.

Finally, the most balanced solution is also the one that
minimizes the makespan where

Cmax =
⌈ n

m∗

⌉
p.

Figs. 2 and Fig. 3 present two solutions for a transport
model with an infinity of pickup stations and an optimal
number of robots m∗ = 4. In the most balanced optimal
solution (Fig. 2), 1 robot carries 4 loads and 3 robots carry
3 loads. In the unbalanced solution (Fig. 3), 3 robots carry
4 loads and 1 robot carries 1 load.

We can notice that the two solutions have the same
makespan Cmax = 28. On the other hand, the most
balanced solution minimizes the differences between all
the Cj which guarantees the balanced use of robots for
this model.

Fig. 2. Balanced solution
(n = 13, tl = 1, p = 7, T = 30, m∗ = 4)

Fig. 3. Unbalanced solution
(n = 13, tl = 1, p = 7, T = 30, m∗ = 4)

Continuous approximation If we relax the assumption
that the number of robots and the number of loads carried
by a robot must be integer numbers, then the optimal



number of robots can be expressed as m∗ = np/T and all
the robots carry T/p loads with a makespan Cmax = T .
These results are consistent with (Egbelu, 1987).

2.3 Single pickup station

We assume in this section that the system contains a single
pickup station at point A and at least one delivery station
at point B, thus, nA = 1 and nB ≥ 1.

With a single pickup station, only one robot can load at
a given time. We will denote by Rj the robot starting in
j-th position with (1 ≤ j ≤ m∗). During the first load,
R1 does not wait, R2 waits tl and more generally Rj waits
(j − 1)tl. For the following loadings, we must distinguish
three cases:

• Case 1 : Waiting for first loading only (p ≥ m · tl)
In this situation, when R1 returns for the first time
to A, robots R2, · · · , Rm have completed their first
loading. In this case, R1 never waits to load and the
others wait only for their first loading (see example
in Fig. 4).

Fig. 4. Waiting for first loading only (p ≥ m · tl)
(n = 9, tl = 1, p = 7, T = 21 , m∗ = 4)

• Case 2 : Waiting for every loading (m−1)tl < p < mtl
In this situation, when R1 returns for the first time
to A, Rm is being loaded. Note that the robots wait
for (m · tl − p) from their second loading. We observe
for example in Fig. 5 that R1 is forced to wait, on its
return to A, for the end of loading of R5.

Fig. 5. Waiting for every loading (m− 1) · tl < p < m · tl
(n = 7, tl = 2, p = 9, T = 21, m∗ = 5)

• Case 3 : Unnecessary robots p ≤ (m− 1) · tl

Here, when R1 returns for the first time in A, Rm

has not yet started its first loading. Hence, there is at
least one useless robot. We will therefore not consider
this case subsequently.

Optimal number of robots We denote by nmax
j the

maximum number of loads transported by Rj . In order to
find nmax

j , we will distinguish the two first cases identified
previously.

− Case 1 : The number of robots m is integer, so, the
condition m · tl ≤ p is equivalent to

m ≤
⌊
p

tl

⌋
(10)

In addition, the time required for robot Rj to trans-
port nj loads must be less than T , so we can write
this condition as p · nj + (j − 1) · tl ≤ T .
As nmax

j is an integer, we have

nmax
j =

⌊
T − tl · (j − 1)

p

⌋
(11)

− Case 2 : As m is an integer, the case p
tl
< m < p

tl
+1

is only possible if p
tl

is not an integer. It follows
that the condition is equivalent to m = m0 with

m0 =
⌈

p
tl

⌉
. The time required by Rj to transport

nj loads must be less than T , i.e.

nj · p+ (j − 1) · tl + (nj − 1)(m0 · tl − p) ≤ T (12)

It follows that

nmax
j =

⌊
T − tl(j − 1)− p+m0 · tl

m0 · tl

⌋
(13)

Then, we get the expression of Nmax(m) =
∑m

j=1 n
max
j ,

the maximum number of loads transported by m robots :

Nmax(m) =



m∑
j=1

⌊
T − tl(j − 1)

p

⌋
if m < m0

m0∑
j=1

⌊
T − tl(j − 1)− p+m0tl

m0 · tl

⌋
if m ≥ m0

(14)

We conclude that the optimal number of robots is :

m∗ = min [m ∈ {1, ..,m0} : Nmax(m) ≥ n]

Robots load balancing In this section, we use the found
minimum number of robots m∗ and the balanced distri-
bution of tasks presented previously (Theorem 1) which
always remains valid for this case.

Let nj be the number of loads transported by robot Rj

during the interval [0, T ]. We have

nj =


⌈ n

m∗

⌉
if j ∈ {1, · · · ,m∗ − s}⌊ n

m∗

⌋
if j ∈ {m∗ − s+ 1, · · · ,m∗}

(15)

et s =
⌈ n

m∗

⌉
m∗ − n



We can express the end date of the last transport cycle Cj

for any robot Rj :

− Case 1 :

The operating time of Rj includes the transport time
of nj loads as well as the waiting time for the first
loading (see Fig. (4)).
It follows that

Cj = nj · p+ (j − 1) · tl (16)

− Case 2 :

The operating time of Rj contains the transport time
of nj loads, the waiting time for the first loading
(except the first robot R1) which is proportional to
the loading time tl and the waiting time for any other
loading which is proportional to the quantity of loads
(m∗ · tl − p) (see Fig. 5). Hence, we have

Cj = nj · p+ (j − 1) · tl + (nj − 1)(m∗ · tl − p)

In the end, we can summarize our results in the following
theorem.

Theorem 2. When considering a single pickup station, the
optimal number of robots is

m∗ = min [m ∈ {1, · · · ,m0} : Nmax(m) ≥ n]

with m0 =
⌈

p
tl

⌉
and

Nmax(m) =



m∑
j=1

⌊
T − tl(j − 1)

p

⌋
if m < m0

m0∑
j=1

⌊
T − tl(j − 1)− p+m0tl

m0tl

⌋
if m ≥ m0

The most balanced solution has a makespan

Cmax = max
1≤j≤m∗

(Cj)

where

Cj =

{
njp+ (j − 1) tl if m∗ < m0

njp+ (j − 1) tl + (nj − 1)(m∗tl − p) if m∗ ≥ m0

When applying Theorem 2 to the case with zero loading
time (tl = 0), we re-obtain Theorem 1 as the condition
(p ≥ m · tl) is always true.

3. TRANSPORT OF HETEROGENEOUS LOADS

In this section, we extend our results to heterogeneous
loads in the case of many stations. Fig. 6 presents an
example with two types of loads.

Fig. 6. A transport model with two types of loads

We assume that the weight of the load impacts the speed
of a loaded robot. Without this assumption the problem
remains the same as the one of section 2.2 since we use the
same type of robots.

We will use the following notations:

− n : total number of loads (denoted 1, · · · , n)
− vli : travel speed of a robot carrying load i

The cycle time of the load i is

pi = dAB ·
(

1

vli
+

1

ve

)
+ tl + tu (17)

We assume that pi ≤ T for all i, otherwise there is no
solution to the problem.

This problem can be formulated as a bin packing problem.
We can consider that we have n objects (loads). Each
object i has a size pi. The problem is to put all the objects
in bins (robots) of size T (time limit). The smallest number
of bins is the optimal number of robots m∗.

This problem can be formulated as an integer linear
programming. Denote by xij the binary variable equal to
1 if load i is transported by robot Rj , 0 otherwise. Denote
also by yj the binary variable equal to 1 if bin j is used, 0
otherwise.

As there are at most n needed robots, we therefore seek
to minimize the number of bins used

min

n∑
j=1

yj

under the following constraints:

n∑
i=1

pi · xij ≤ T · yj j = 1, · · · , n

n∑
j=1

xij = 1 i = 1, · · · , n

yj ∈ {0, 1} j = 1, · · · , n
xij ∈ {0, 1} i, j = 1, · · · , n

There are different methods to solve this problem (see for
example Toth and Martello (1990)).



Continuous approximation Av If we allow a non-integer
number of robots and loads, we can approximation the
solution of our problem to

m∗ =

n∑
i=1

pi/T (18)

4. CONCLUSION

This paper considers a fleet-sizing problem of robots in a
logistics warehouse. An analytical approach allowed us to
deal with this problem for a simple model of transporting
homogeneous loads between two storage areas in the
warehouse, taking into account the number of pickup and
delivery stations in the system. For the case with many
pickup stations (nA ≥ m∗ and nB ≥ nA), the size of
the fleet is given by a simple analytical expression (see
Theorem 1). For the case with a single pickup station
(nA = 1 and nB ≥ nA), the problem is solved using a
simple algorithm (see Theorem 2). We also show how to
formulate the problem with heterogeneous loads and many
stations by a bin packing problem and an integer linear
programming.

It would be interesting to extend our model to the case
with heterogeneous robots in capacity or speed.

s.t
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