Sizing of a heterogeneous fleet of robots in a logistics warehouse* Achraf Rjeb 1 , Jean-Philippe Gayon 2 and Sylvie Norre 3 ** Abstract-We are interested in a fleet sizing problem with several types of robots. The operations are divided into several phases: loading, loaded travel, unloading and empty travel. The purpose is to determine the size of the robot fleet, that is, to determine the optimal types and number of robots for each type. We first consider the case where loads are all of the same type (homogeneous) before generalizing to several types of loads (heterogeneous). In both cases, we show that the problem can be formulated by an integer linear program. In the case of homogeneous loads, we consider a relaxation of the problem where the number of robots can be a real number. For this approximation, we show that it is optimal to use a single type of robot. It is also near-optimal when the number of robots must be an integer number.

I. INTRODUCTION

Robotics has become an essential concept in industry today and a major concern in research [START_REF] Hazan | Coordination de robots pour le transport d'objets[END_REF]. Indeed, it allows to increase robustness, flexibility and efficiency of manufacturing systems. In addition, the existence of robotic industrial platforms in an industrial unit reflects the level of its performance and reliability. After a remarkable evolution of industrial robotics, the concept of Multi-Robot System (MRS) appeared in 1989 in order to replace a large robot by a set of small robots [2]. Logistics warehouses are essential in any supply chain and are a factor of success or failure of any business [START_REF] Frazelle | Supply chain strategy: the logistics of supply chain management[END_REF]. Finally, MRS are considered an essential tool for any logistics warehouse to have a high performance for its industrial future [START_REF] Vivaldini | Integrated tasks assignment and routing for the estimation of the optimal number of AGVS[END_REF].

The literature on MRS in warehouses has since been enriched by addressing several problems such as: guidepath design, sizing of vehicle fleets, planning of transport operations, positioning, battery management, conflict management. The number of vehicles plays a very important role in the performance of MRS. We focus on the fleet sizing problem, which consists in determining the optimal number of vehicles capable of carrying out requested transport operations in a given time limit at minimum cost [START_REF] Sinriech | An economic model for determining AGV fleet size[END_REF].

In the literature, several works deal with the fleet sizing problem with different methods. According to [START_REF] Choobineh | Fleet sizing of automated guided vehicles: a linear programming approach based on closed queuing networks[END_REF], the design models treated in the literature can be classified into four categories:

------------------------------*Thesis co-financed by the European Union within the framework of the European Regional Development Fund ERDF **LIMOS UMR CNRS 6158 -Université Clermont-Auvergne, Campus Universitaire des Cézeaux, 63178 AUBIERE -FRANCE 1 Achraf Rjeb achraf.rjeb@uca.fr 2 Jean-Philippe Gayon j-philippe.gayon@uca.fr 3 Sylvie Norre sylvie.norre@uca.fr 1) Discrete and continuous event simulation models [START_REF] Kasikingam | Vehicle requirements model for automated guided vehicle systems[END_REF]- [START_REF] Asef-Vaziri | Dual track and segmented single track bidirectional loop guidepath layout for AGV systems[END_REF]; 2) Calculus approaches including a set of simple computations [START_REF] Vivaldini | Integrated tasks assignment and routing for the estimation of the optimal number of AGVS[END_REF], [START_REF] Sinriech | An economic model for determining AGV fleet size[END_REF], [START_REF] Egbelu | The use of non-simulation approaches in estimating vehicle requirements in an automated guided based transport system[END_REF]- [START_REF] Chawla | Material handling robots fleet size optimization by a heuristic[END_REF]; 3) Deterministic operations research models including linear and integer programming [START_REF] Maxwell | Design of automatic guided vehicle systems[END_REF]- [START_REF] Rajotia | Determination of optimal AGV fleet size for an FMS[END_REF]; 4) Stochastic models including queuing theory [START_REF] Tanchoco | Determination of the total number of vehicles in an AGV-based material transport system[END_REF]- [START_REF] Koo | Estimation of part waiting time and fleet sizing in AGV systems[END_REF].

The seminal paper of Egbelu [START_REF] Egbelu | The use of non-simulation approaches in estimating vehicle requirements in an automated guided based transport system[END_REF] calculates the number of robots in the fleet by dividing the total operating time by the time limit. Although this model takes into account several constraints (empty circulation of vehicles, number of loading / unloading stations per zone, etc), it is optimistic as waiting times are not taken into consideration. [START_REF] Choobineh | Fleet sizing of automated guided vehicles: a linear programming approach based on closed queuing networks[END_REF] presents an analytical model to estimate the size of an AGV fleet in a Closed Queuing Network (CQN) system. This model is based on linear programming in order to minimize the number of robots required. A comparison part was presented in order to compare the analytical results with those found by simulation. In addition, [START_REF] Vivaldini | Integrated tasks assignment and routing for the estimation of the optimal number of AGVS[END_REF] treats the problem of sizing an AGV fleet in a warehouse. The goal is to solve this problem while ensuring efficient assignment of tasks and minimum operational cost. The study is carried out on two warehouse configurations. It consists in initially estimating the number of robots to calculate the total service time, the distance traveled by each robot and the number of tasks for each robot. Then a meta-heuristic on the initial solution is implemented in order to optimize the size of the fleet.

More recently, [START_REF] Chawla | Automatic guided vehicles fleet size optimization for flexible manufacturing system by grey wolf optimization algorithm[END_REF] deals with the problem of sizing a robot system in a FMS (Flexible Manufacturing System) with the aim of optimizing the fleet size of robots for FMS with different dimensions. The authors compare the results obtained by an analytical model and by a Grey wolf optimization algorithm for three different sizes of FMS. [START_REF] Chawla | Material handling robots fleet size optimization by a heuristic[END_REF] tackle the same problem with a particle swarm optimization algorithm.

Contributions: All papers deal with the problem of sizing a homogeneous fleet of robots, that is, a fleet of identical robots. The notion of heterogeneity has not been addressed in any of these works. Through this paper, we deal with the problem of sizing a fleet of heterogeneous robots in a logistics warehouse.

In section II, we treat the problem with a set of homogeneous loads to be transported and show that it is nearoptimal to use a single type of robots. In section III, we assume that the loads are heterogeneous. In both models, we formulate our problem as an Integer linear program (ILP) to optimize the fleet size based on the cost expressions of each configuration.

II. TRANSPORT OF HOMOGENEOUS LOADS

In this part, we want to determine the size of a heterogeneous fleet of robots allowing the transport of homogeneous loads from a zone A to a zone B.

Assumptions and notations

We will make the following assumptions:

-The robots are stored at point A; -The transport is unitary: each robot carries at most a single load at a given time; -The loads to be transported are always available and there is no waiting time before loading and unloading; -Deadlock during travel and idleness of robots are not taken into account; -The battery charging problem is not taken into account.

We will use the following notations :

• n: number of homogeneous loads to transport • D: round trip distance between A and B • T : time limit 

p k = D 2 • 1 v k l + 1 v k e + t k l + t k u • Cost structure :
α k : fixed cost per robot linked to the hardware part of the system (connectors, chargers, batteries, etc.). β k : fixed cost linked to the type k of robots used, independent of the number of robots. This is the software part of the system that manages the robots operations (planning, routing, etc.). γ k : cost per distance traveled by a robot of type k. The cost of a fleet of m k robots of type k to carry n k loads is

C k (m k , n k ) = α k m k + β k 1{m k > 0} + γ k n k D
The cost of a fleet of K types of robots is then

C( - → m, - → n ) = K k=1 C k (m k , n k ) = K k=1 (α k m k + β k 1{m k > 0} + γ k n k D)
where

- → m = (m 1 , • • • , m K ) and - → n = (n 1 , • • • , n K ) A.

ILP formulation

We use the following indexes :

-i = 1, • • • , n : loads -j = 1, • • • , n : robots (there are at most n robots) -k = 1, • • • , K : robots types
We can formulate our problem by an ILP. Using the following binary variables:

x ijk =    1 if the load i is carried by the robot j of type k 0 otherwise y jk = 1 if the robot j is of type k and is used 0 otherwise z k = 1 if a robot of type k is used 0 otherwise
Therefore, we have :

m k = n j=1 y jk n k = n i=1 n j=1
x ijk

The optimization problem can then be written as an ILP :

C * = min   K k=1   α k n j=1 y jk + β k z k + γ k D n i=1 n j=1 x ijk     s.t. n j=1 K k=1 x ijk = 1 ∀i (1) 
K k=1 n i=1 x ijk • p k ≤ T ∀j (2) 
x ijk + x i jk ≤ 1 ∀i , ∀i , ∀j , ∀k = k (3) y jk ≥ x ijk ∀i , ∀j , ∀k (4) 
z k ≥ x ijk ∀i , ∀j , ∀k (5) 
x ijk ∈ {0, 1} , y jk ∈ {0, 1} , z k ∈ {0, 1} (6) 
Constraints meaning :

-Constraint (1) : each load must be carried by only one robot -Constraint (2) : each robot must be able to transport all the loads assigned to it within the time limit T -Constraint (3) : each robot j is of a single type k -Constraint (4) : if a load i is carried by a robot j of type k, this robot is used -Constraint (5) : if a load i is carried by a robot of type k, robots of type k are used B. Heuristic : Using a single type of robot

As a simple heuristic, we propose-to use a single type of robot, the one that minimizes the cost. If we only use robots of type k, the optimal cost is, according to [START_REF] Rjeb | Fleet-sizing of robots in a logistics warehouse -Transport operation between reception area and storage area[END_REF],

C * k = C k (m * k , n) with m * k =     n T p k    
.

It follows that

C * k = α k     n T p k     + β k + γ k nD
The heuristic consists in choosing a type of robot k minimizing

C * k , i.e. k ∈ arg min k∈{1,••• ,K} C * k .
The heuristic cost is therefore :

C + = min k∈{1,••• ,K} C * k .
We can, through a simple example, show that this heuristic is not always optimal. Table I presents a counterexample with 2 possible types of robots and 3 loads. 

(n = 3, T = 10, K = 2) k p k α k β k γ k 1 6 3 0 0 2 4 5 0 0
Table II presents the optimal solutions according to authorized types of robots. In the above example, the optimal solution is to use both types of robots. 

C. Relaxation

If we relax the integrity constraint on the number of robots and loads carried by a robot, we show that it is then optimal to use only a single type of robot. If the number of loads and robots can be real numbers, the number of robots m k can be expressed as a function of the number of loads carried by robots of type k:

m k = n k • p k T (7) 
The cost of a fleet with m k robots of type k can then be expressed as

C k (m k ) = α k + γ k D T p k m k + β k z k = δ k m k + β k z k where δ k = α k + γ k D T p k .
The optimization problem can then be formulated as a MIP (Mixed Integer Programming) :

C -= min K k=1 δ k m k + β k z k (8) s.t. K k=1 m k p k ≥ n T ( 9 
)
nz k ≥ m k ∀k = 1, • • • , K (10) 
m k ≥ 0, z k ∈ {0, 1} ∀k = 1, • • • , K (11) 
Constraints meaning :

-Constraint ( 9) : the number of robots must carry all the loads in the time limit T -Constraint (10) : if a load is carried by a robot of type k, robots of type k are used If we use robots of type k only, the optimal number of robots is

m * k = np k T
and the minimum cost is then

C * k = C k (m * k ) = n T δ k p k + β k
The following theorem establishes that it is optimal to have a homogeneous fleet of the type minimizing C * k .

Theorem 1: In the relaxed problem, it is optimal to use a single type of robots and the optimal cost is

C -= min k∈{1,••• ,K} n T δ k p k + β k .
Proof : : We first prove the result in the case where β k = 0 before relaxing this assumption.

β k = 0 : Suppose that β k = 0 for all k. Let u ∈ arg min k C * k and let - → m = (m 1 , • • • , m K ) be a feasible solution such that m u > 0 and m v > 0 with v = u.
By definition we have

C * u ≤ C * v . This implies that δ u p u ≤ δ v p v . Note also that robots of type v carry n v = mvT pv loads. Let - → m = (m 1 , • • • , m K ) be another feasible solution,
identical to -→ m except that the n v loads carried by robot of types v are now carried by robots of type u. More precisely :

m v = 0 m u = m u + n v p u T = m u + p u p v m v m k = m k , ∀k = u, v
The cost of solution -→ m is then

C( - → m ) = C( - → m) + δ u p u p v m v -δ v m v (12) = C( - → m) + (δ u p u -δ v p v ) m v p v (13) 
≤ C( - → m) (14) 
since

δ u p u ≤ δ v p v .
We have therefore built a solution -→ m of lower cost than -→ m, not using v robots. We can repeat the above process for all types of robots. We deduce that it is optimal to use only robots of type u.

β k ≥ 0 : Consider the more general case. Let a feasible solution - → m = (m 1 , • • • , m K ) with m u > 0 and m v > 0,
u = v, and as δ u p u ≤ δ v p v . The cost associated with robots of types u and v is then

C u (m u ) + C v (m v ) = δ u m u + δ v m v + β u + β v
From what has been shown previously (β k = 0), there is a solution using m u robots of type u, and no robots of type v, of lower variable cost (δ u m u ≤ δ u m u + δ v m v ). We have then

C u (m u ) + C v (m v ) ≥ δ u m u + β u + β v ≥ δ u m u + β u = C u (m u )
So we built a solution using only one type of robot and lower cost. We conclude that there is an optimal solution using a single type of robot.

D. Heuristic asymptotic optimality

We show that the heuristic introduced in Section II-B works very well when it is necessary to use a large number of robots and each robot is carrying a lot of loads. We first remind some notations :

• C * : optimal cost • C * k : optimal cost if we restrict ourselves to robots of type k • C + = min k C * k : heuristic cost • C -: optimal cost

in continuous approximation

The heuristic solution being a feasible solution of the ILP, the cost of the heuristic is an upper bound of the optimal cost. The continuous approximation also provides a lower bound of the optimal cost. So we have C -≤ C * ≤ C + which implies that

1 ≤ C + C * ≤ C + C -. (15) 
Remind that

C -= min k α k np k T + β k + γ k nD (16) 
C + = min k α k     n T p k     + β k + γ k nD (17) 
If T is a multiple of p k and n is a multiple of T p k , then C -= C + = C * and the heuristic is optimal.

Otherwise, we can upper-bound the error by using the fact that x -1 < x ≤ x and that x ≤ x < x + 1. We have then

np k T ≤     n T p k     ≤ n T p k -1 + 1
which can be rewritten as

np k T ≤     n T p k     ≤ np k T 1 1 -p k T + T np k (18) 
Note that the term T tends to 0 and T np k tends to 0.

Noting p min = min k p k and p max = max k p k and using the equations ( 15)-( 18), we have

C + C * T pmax →∞ ----------→ np min T →∞ 1
Consequently, the heuristic cost will be close (in relative value) to the optimal cost if the following conditions are met:

the number of robots required is large : n pmin T >> 1; -Each robot can carry many loads within the time horizon: T >> p max .

III. TRANSPORT OF HETEROGENEOUS LOADS

In this part, we extend the approach to the case of heterogeneous loads.

A. Assumptions and notations

We use the following notations:

• n : total number of loads 

= D 2 • 1 v gk l + 1 v k e + t k l + t k u
We have the following relations for the numbers of loads:

n = G g=1 n g = K k=1 G g=1 n gk and n g = n i=1
w ig

For this transport model, we keep the same cost modeling as in the previous section. We therefore have the following expression describing the total cost :

C( - → m, - → n ) = K k=1 α k m k + β k 1{m k > 0} + γ k G g=1 n gk D
We use the following indexes :

-i = 1, • • • , n : for loads -j = 1, • • • , n : for robots -k = 1, • • • , K : for robots types -g = 1, • • • , G : for loads types

B. ILP formulation

We can formulate our ILP using the following binary variables : x ijk + x i jk ≤ 1 ∀i, i , ∀j, ∀k = k (22)

x ijk =    1 if
y jk ≥ x ijk ∀i, ∀j, ∀k (23) 
z k ≥ x ijk ∀i, ∀j, ∀k (24) 
x ijk ∈ {0, 1}, y jk ∈ {0, 1}, z k ∈ {0, 1}

Constraints meaning :

-Constraint (20) : each load must be carried by only one robot -Constraint (21) : each robot must be able to transport all the loads assigned to it in the time limit T -Constraint [START_REF] Mantel | Design and operational control of an AGV system[END_REF] : each robot j is of a single type k -Constraint (23) : if a load i is carried by a robot j of type k, this robot is used -Constraint (24) : if a load i is carried by a robot of type k, robots of type k are used

IV. CONCLUSIONS

This paper presents a fleet-sizing problem with several types of robots in a logistics warehouse. We show that the problem can be formulated by an integer linear program. In the case of homogeneous loads, we consider a relaxation of the problem under which it is optimal to use a single type of robot. We also show that it is near-optimal to use a single type of robots when the number of required robots is large
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and each robot can carry many loads within the time horizon. An avenue for research would be to consider stochastic cycle times.