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Abstract: This paper focuses on the control scheme design of two different control schemes
using delays. These two low-complexity controllers are direct alternatives for the PD and PI
low-order controllers. More precisely, first, we study a PD controller using the Euler approach
for approximating the derivative action. Second, we analyze the implications of imposing a
delay in the error signal on the integral action of the PI controller for closed-loop response
manipulation purposes. Our main contribution lies in proposing some practical guidelines for
the tuning of these delayed control schemes such that the closed-loop system is stable. To this
end, the criteria developed in this work makes use of the well-known D-partition curves method
avoiding crossing direction analysis. Finally, in order to test the effectiveness of the proposed
methodology, some numerical examples are presented.

Keywords: LTI Systems, Delay Control, Stability Crossing Curves, PID controllers, SISO
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1. INTRODUCTION

It is well recognized that low-order controllers are one
of the most widely applied strategies to control indus-
trial processes (see, e.g., Aström and Hägglund (2001);
O’Dwyer (2009)). Such a “popularity” is mainly due to
their particular distinct features: simplicity and ease of
implementation. Among these controllers, those of PID-
type are known to be able to cope with uncertainties, dis-
turbances, elimination of steady-state errors and transient
response improvement (Aström and Hägglund (1995);
Méndez-Barrios et al. (2008); Ramı́rez et al. (2016)). How-
ever, the main drawbacks of PID controllers, reported
in Aström and Hägglund (1995), lie in the tuning of
the derivative term, which may amplify high-frequency
measurement noise. In fact, as mentioned in Aström and
Hägglund (2001); O’Dwyer (2009) the above arguments
advise to avoid the derivative action in most applications.

In order to circumvent such a problem, the Euler approx-
imation of the derivative:

y′ (t) ≈ y (t)− y (t− ε)
ε

, (1)

for small ε > 0, seems to be the simplest way to replace
the derivative action by using its delay-difference approxi-
mation counterpart (Niculescu and Michiels (2004)). How-
ever, it is important to point out that the presence of a de-
lay in the feedback loop of continuous-time systems is ac-
companied among others with oscillations, instability and
bandwidth sensitivity (see, for instance, Niculescu (2001);
Michiels and Niculescu (2014)). It is also worth to mention
that there exist some situations when the delay may induce
stability, as explained in the classical example shown in
Abdallah et al. (1993), where an oscillator is controlled by
one delay “block”: (gain, delay), with positive gains and
small delay values (a detailed analysis of such an approach

can be found in Niculescu et al. (2010)). In addition, it has
also been reported that there exist situations where an
appropriate selection of the delay parameter may improve
the system’s response (see, for instance, Chen (1987)).
Inspired by the above observations, the design of low-
order controllers with delay as a control parameter have
been addressed in several works, for example, Niculescu
and Michiels (2004) (stabilizing chains of integrators by
using delays), Kharitonov et al. (2005) (multiple delay
blocks), Mazenc et al. (2003) (bounded input,single delay),
to mention a few.

In this paper, we present two alternatives using delays
as design parameters to the classical PD and PI control
schemes. On one hand, we study the Pδ controller, which
consists in substituting directly the derivative part of a PD
controller by the above mentioned Euler approximation.
One of the main benefits in considering such an approx-
imation is that most control schemes are implemented
digitally. As a consequence, a numerical method needs to
be considered in order to achieve a derivative action. In
this vein, one of the main features of the Pδ controller is
that is easier to implement on such platforms and its model
approximates more accurately the derivative action alike
applied for small delay values. On the other hand, based
on a PI controller, we consider a delay in the error signal
only in the integral action. This provides an extra degree
of freedom in the tuning of this controller maintaining
the most important feature of the PI controller, which
is the null steady state error in the regulation of zero type
systems (open-loop systems with no poles at the origin).

2. PROBLEM FORMULATION

Consider the class of proper SISO open-loop systems given
by the transfer function:



G(s) :=
P (s)

Q(s)
= CT (sI −A)−1B, (2)

where (A,B,CT ) is the state-space representation of the
open-loop system, with P and Q polynomials of degree m
and n, respectively. Whose highest degree coefficients are
denoted by pm 6= 0 and pn 6= 0. In the remaining part of
the paper, we will consider that the following assumption
is satisfied.

Assumption 1. Polynomials P and Q satisfy the following
conditions:

(i) degQ > degP .
(ii) P (s) and Q(s) are coprime polynomials.

It is clear that Assumption 1-(i) states that the system
is causal. If Assumption 1-(ii) is not fulfilled, this implies
that there exist a non constant common factor c(s), such

that P (s) = c(s)P̃ (s) and Q(s) = c(s)Q̃(s). In such a
case, choosing c(s) to be of the highest possible degree, the
analysis can be pursued if c(s) is a Hurwitz polynomial,
otherwise, the system will remain unstable independently
of the control action.

The problems considered in this paper can be summarized
as follows:

Problem 1. Find explicit conditions on the parameters
(τ, kp, kδ) ∈ R+ × R2, such that the Pδ controller:

Cδ(s) = kp + kδ
1− e−τs

τ
, (3)

asymptotically stabilizes the closed-loop system.

Problem 2. Find explicit conditions on the parameters
(τ, kp, ki) ∈ R+ × R2, such that the PδI controller:

Ci(s) = kp + ki
e−τs

s
, (4)

asymptotically stabilizes the closed-loop system.

In the following, we consider the vectors kδ := [kp, kδ]
T

and ki := [kp, ki]
T referring to the Pδ and PδI controllers,

respectively. The real functions <(σ, ω) (and =(σ, ω))
stand for the real (and imaginary part) of G−1(σ + iω).
Moreover, from a geometric point of view, for a fixed
τ∗ ∈ R+, we can define the collection of all controller
gains kδ ∈ R2 as points in the kp-kδ parameters plane.
Therefore, Problem 1 can be stated as the task of finding
at least one region in the kp-kδ parameters-plane such
that, for all kδ−points inside this region, the characteristic
equation of the closed-loop system has all of its roots in
the LHP (left-half plane) of the complex plane. A region of
the kp-kδ parameters-plane with such a feature is defined
as a stability region. Without any loss of generality, the
same can be stated for the controller PδI.

3. MOTIVATING EXAMPLES

In this section we depict two motivating examples of the
use of each controller (Pδ and PIδ). The main purpose of
these is to enhance some advantages regarding the stability
of the closed-loop system with respect to their low-order
controllers counterparts (PD and PI).

Example 1. Consider the following open-loop transfer
function:

G(s) =
1

s3 − s2 + 4s− 6
, (5)

with two stable poles s1,2 = −0.17 ± 2.1i and a real
unstable one s3 = 1.34. Considering the use of the well
known PD controller, such case leads to the following
characteristic equation:

∆(s) = s3 − s2 + (kd + 4)s+ (kp − 6) = 0. (6)

Using the Routh-Hurwitz stability criterion is easy to
prove that a necessary condition for closed-loop stability
lies in having a positive second order term. Notice that in
this case, the PD controller does not have the necessary
impact on the characteristic equation to achieve it. In fact,
it is only possible to design the zero and first order terms
through this control scheme.

In contrast, using the MatLab package DDE-BIFTOOL
we compute the location of the rightmost roots of the
characteristic equation of the closed-loop system, now by
tunning a Pδ controller with parameters kδ = [6.4,−3.4]T

with a fixed delay τ = 1s. As depicted in Fig. 1, all of these
are located inside the LHP, therefore, the system can be
stabilized with such controller.

Example 2. Consider the following open-loop transfer
function:

G(s) =
1

s2 − 0.1s− 0.02
, (7)

with poles s1 = 0.2 and s2 = −0.1. Considering the use
of the PI controller, such a case leads to the following
characteristic equation:

∆(s) = s3 − 0.1s2 + (kp − 0.02)s+ ki = 0. (8)

In a similar fashion that the first example, using the
Routh-Hurwitz stability criterion it arises the necessary
condition of having only positive terms in this polynomial
in order to achieve stability. Also for this example, the
use of the PI controller is not enough for this purpose
due to its null impact on the second order negative term.
Now, we compute the location of the rightmost roots of
the characteristic equation by considering a PδI controller
with parameters ki = [80, 200]T with a fixed delay τ =
0.3s. These results are shown in Fig. 1, since the roots
are located inside the LHP, therefore, the addition of the
delayed action gives the possibility of achieving stability.
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Fig. 1. Motivating examples – Closed-loop system right-
most roots location.

4. CONTROL SCHEME DESIGN

In this section the main results proposed in this paper are
presented and derived. First, the tuning methodology is
explained in detail. Second, we describe some insights of
the Pδ controller and we give conditions of the parameters
(kp, kδ, τ) such that the characteristic equation has at least



one root in s = σ + iω. Third, the same is properly
proposed for the PδI controller. Finally, we characterize
the delay interval such that the closed-loop system remains
stable given a stabilizing triplet (kp, ki, τ).

4.1 Delayed Controllers Tuning Methodology

In this section, without any loss of generality we consider
both controllers (Cδ(s) and Ci(s)) as C(s, e−τs) with its
respective gains k ∈ R2 (kδ and ki). The characteristic
equation of this closed-loop scheme rewrites as follows:

∆τ (s) = C(s, e−τs) +G−1(s) = 0. (9)

It is well known that, in order to achieve asymptotic
stability, all the roots of (9) have to remain in the LHP of
the complex plane.

Remark 1. It is clear that if we take the complex conju-
gate of (9), the following equality holds: ∆τ (σ + iω) =

∆τ (σ − iω). Therefore, in the rest of the paper we will
consider only nonnegative frequencies ω.

Now, let τ ∈ R+ and σ ∈ R+ ∪ {0} be fixed values, we
introduce the following set:

T (σ) :=
{
k ∈ R2 |∆τ (σ + iω) = 0,∀ω ∈ Ω

}
, (10)

with Ω ⊂ R+, which is the set of all ω values such that
∆τ (σ+ iω) = 0 for a fixed pair (τ, σ). Such set of frequen-
cies is characterized in Propositions 1 and 2 considering
the Pδ and PδI controller, respectively. Roughly speaking,
the set T (σ) contains all gain vectors k such that the
characteristic equation of the closed-loop system has at
least one root on a vertical line in σ on the complex plane.
In other words, Ω includes all the frequencies for which the
gains k ∈ R2 define some crossing points, that is, points
located in the complex plane on the line <{s} = σ.

With this notation, it is clear that all possible gain vectors
k such that the system has at least one root in the RHP
(right-half plane) or in the imaginary axis of the complex
plane can be characterized by:

T̄ + :=
⋃

σ∈R+∪{0}

T (σ). (11)

Therefore, all stabilizing controllers k are contained in the
set T̄ − := R2 \ T̄ +. However, it is worthy to notice that
we focus in a particular region of the parameters-space
of k ⊂ R2 for computational purposes. This process is
explained below.

First of all, it is necessary to enhance the importance of the
set T (0). This set contains all possible gain vectors k such
that the characteristic equation (9) has at least one root
on the imaginary axis. In other words, T (0) is nothing else
that the so-called “stability crossing curves” (see, e.g. Gu
et al. (2005), for the definition). Notice that any continuous
variation of k such that k 6∈ T (0) implies that no roots
exchange through the imaginary axis is achieved. Taking
into account this argument, it is easy to understand how
these stability crossing curves partition the parameters-
space in regions in which any choice of k implies that (9)
has a finite number of roots on the RHP. Second, notice
that if some element of T (σ) with σ > 0 is located inside
one of this regions implies that the characteristic equation
(9) has at least one unstable root in the RHP. Therefore,
this can be labeled as an unstable region. Finally, any
region which is not unstable is a subset of T̄ − and can
be labeled as a stability region.

4.2 Pδ Controller

Consider the use of the Pδ controller shown in (3). The
corresponding control law to be applied can be described
as:

u(t) = kpe(t) + kδ

(
e(t)− e(t− τ)

τ

)
. (12)

Notice that the delayed action resembles the simplest ap-
proximation of a derivative given by the Euler approxima-
tion (1) previously discussed in the Introduction. Roughly
speaking, for small values of τ this controller approximates
to a classical PD controller as Cd(s) = kp + kδs ≈ Cδ(s).
In order to study its stability, the characteristic equation
of the closed-loop system can be computed by Cδ(s)G(s)+
1 = 0, which straightforwardly leads us to:

∆δ(s) = kp + kδ

(
1− e−τs

τ

)
+G−1(s) = 0. (13)

The following result shown in this section works as a tool
for describing the behavior of the roots of this equation.

Proposition 1. Let τ ∈ R+ and σ ∈ R be fixed values.
Then, the characteristic equation (13) has at least one root
in s = σ + iω, iff:

kp =−< (σ, ω)+
(
e−τσ csc(τω)−cot(τω)

)
= (σ, ω) , (14)

kδ =−τeτσ csc(τω)= (σ, ω) . (15)

with ω ∈ Ωδ, where the set Ωδ is defined by:

Ωδ :=
{
ω ∈ R

∣∣∣ω 6= π

τ
n, P (σ + iω) 6= 0

}
, (16)

where n ∈ Z. Furthermore, it has a single root in s = σ iff
P (σ) 6= 0 and:

kδ =
τ

e−τσ − 1

(
kp +G−1(σ)

)
, for σ 6= 0, (17)

kp = − q0
p0
, kδ ∈ R, for σ = 0. (18)

4.3 PδI Controller

Consider the use of the PδI controller shown in (4). The
control law corresponding to this scheme can be described
by:

u(t) = kpe(t) + ki

∫ t

0

e(v − τ)dv. (19)

Notice that this is basically a classical PI controller
in which the error signal is delayed by finite constant
amount of time τ before integrating it. As mentioned
before, the main reason for adding this delayed action to
this controller is to study the behavior of the closed-loop
response as τ is varied. In other words, to have an extra
degree of freedom in the tuning of a PI-alike controller.
In order to study its stability, the characteristic equation
of the closed-loop system rewrites as Ci(s)G(s) + 1 = 0,
which leads to:

∆i(s) = s
(
kp +G−1(s)

)
+ kie

−τs. (20)

The following result summarized in this section works
as tools for describing the behavior of the roots of this
equation.

Proposition 2. Let τ ∈ R+ and σ ∈ R be fixed values.
Then, the characteristic equation (20) has at least one root
in s = σ + iω, iff:



kp =−<(σ,ω)+
ω sin(τω)− σ cos(τω)

σ sin(τω) + ω cos(τω)
=(σ,ω), (21)

ki =
σ2 + ω2

σ sin(τω) + ω cos(τω)
=(σ, ω)eτσ, (22)

with ω ∈ Ωi, where the set Ωi is defined by:

Ωi := {ω ∈ R |ω cot(τω) + σ 6= 0, P (σ + iω) 6= 0} , (23)

where n ∈ Z. Furthermore, it has a single root in s = σ iff
P (σ) 66= 0 and:

ki = −σ
(
kp +G−1(σ)

)
eτσ. (24)

Furthermore, we present an additional proposition for
computing the stabilizing interval of the delay value given
a stabilizing triplet (kp, ki, τ).

Proposition 3. Let (kp, ki, τ
∗) be a stabilizing triplet, then,

the closed-loop system is asymptotically stable for any
delay value τ ∈ [τ∗, τc), where:

τc = min {τ ∈ R |τ(ω∗) > 0, ω∗ ∈ Ωp } , (25)

in which τ(ω∗) is computed as:

τ(ω∗)=
1

ω∗

[
arg

{
kiP (iω∗)

iω∗(kpP (iω∗)+Q(iω∗))

}
+(2n+1)π

]
, (26)

for n ∈ Z and where the set Ωp is defined as the set of all
real roots of the following equation:

|kiP (iω∗)|2 − ω∗
2

|kpP (iω∗) +Q(iω∗)|2 = 0. (27)

5. ILLUSTRATIVE EXAMPLES

In this section, we describe in detail how the methodology
explained in Section 4.1 can be applied for two different
examples of second-order systems using the Pδ and PδI
controllers.

Example 3. Consider the following transfer function:

G(s) =
1

s2 − 3s+ 5
, (28)

which two poles lie on s = 1.5 ± 1.65i. Since it has two
roots on the RHP, it is an unstable open-loop system.
Now, let us consider the application of a PD controller,
the characteristic equation of the closed-loop system can
be computed as:

s2 + (kd− 3)s+ kp + 5 = 0. (29)

By Hurwitz criterion, it is easy to observe that in order to
achieve closed-loop stability the application of a derivative
action is mandatory so every coefficient has the same sign.
This is the case of a simple PD controller with kp > −5
and kd > 3. To avoid such a derivative action we propose
the use of the Pδ controller in the following lines.

Considering the open-loop transfer function (28) and the
Pδ controller shown in (3) the characteristic equation of
the closed-loop system can be computed as:

∆δ(s) = s2 − 3s+ 5 + kp + kδ

(
1− e−τs

τ

)
= 0. (30)

Using Proposition 1 with a fixed delay value τ = 0.04s
we compute the stability crossing curves (T (0)) as some
curves from the set (σ) with σ > 0. These graphical
results are shown in Figure 2 on the kp − kδ parameters-
space. We use the curves from the set T (σ) with σ > 0
for discriminating the unstable regions to further find a
stability region.

Finally, in order to test this result we choose three dif-
ferent controllers, being c1 and c2 stable and c3 unstable
controllers as is depicted in Fig. 2. Some simulation results
using these controller parameters are shown in Fig. 3.
Also in this figure, we show the closed-loop response of
a PD controller using the same gains as the Pδ controller
((kp, kd) = (kp, kδ)). As expected, these results corrobo-
rate the graphical results on figure 2.

Fig. 2. Stability analysis in the kp − kδ parameters space
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Fig. 3. Closed-loop system response comparison between
a PD controller and a Pδ controller

Example 4. Consider the following open-loop transfer
function:

G(s) =
1

s2 + 2s+ 3
, (31)

with poles s1,2 = −1 ± 1.41i. In this stable open-loop
system we are considering the problem of a controller
design such that the steady state error is equal to zero.
This can be easily achieved by a simple PI controller,
however, as stated before we aim to use the delayed action
to manipulate the closed-loop response.

Considering the open-loop transfer function (31) and the
PIδ controller shown in (4) the characteristic equation of
the closed-loop system can be computed as:

∆δ(s) = s3 + 2s2 + (3 + kp)s+ kie
−τs = 0. (32)



Following the same methodology explained in the last
example using a fixed delay τ = 0.5s we find a stability
region as shown in Fig. 4. In a similar way, we test
its reliance with three different controllers, c4 and c5
stable controllers and c6 an unstable one. We show some
simulation results presented in Fig. 5 which corroborates
this result in comparison to a simple PI controller τ = 0.
From this comparison, we can notice the damping added
with controller c5 relative to the controller c4 and also
to the simple PI controller. At last, we show another

Fig. 4. Stability analysis in the kp − ki parameters space
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way to tune the delayed action in the PδI controller.
Consider the PδI gains (kp, ki) = (5, 5) with τ = 0, the
roots of the characteristic equation are s1,2 = −0.64 ±
2.58i and s3 = −0.7. Since this is a stable system, we
consider Proposition 3 to compute the stabilizing delay
interval τ = (0, τc), obtaining τc = 2.15s. Some simulation
results depicting the continuous variation of the closed-
loop response as τ is varied on this interval are presented
in Fig. 6. In this figure, one can notice how from τ = 0
to τ = 0.2τc we are able to inject damping to the closed-
loop response. Recall that this task is commonly achieved
by the use of a derivative action which we are avoiding.
Also in this figure, we show the behavior of the closed-loop

response as the other part of the interval is considered,
leading as expected to instability.
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5.1 PD Alike Controllers Comparison

As mentioned in the Introduction, non-desired high fre-
quency sensors noise can potentially be amplified by the
use of a classical PD controller. Even some filtered schemes
have been proposed in the literature (see, for instance
O’Dwyer (2009)) to circumvent such scenario. Probably
the most direct example of this is the PDf controller (PD
controller with filtered derivative) shown below:

Cf (s) := Kc

[
1 +

Td

1 + Td
N s

]
, (33)

where Kc, Td and N are real parameters and can be
described as a PD controller with a low pas filter in the
derivative action with break frequency wo = N

Td
. In this

section, we show an example in which we compare three
different schemes using the PD, PDf and Pδ controllers
applied to the open-loop system shown in (31). Also, we
evaluate these considering a tracking problem and under
high-frequency noise disturbances due to sensors noise.

Example 5. Consider a low frequency reference signal
r(t) = sin(2πfR) with fR = 1Hz and a high frequency
noise signal in the error as e(t) = r(t) − [y(t) + n(t)],
where n(t) = sin(2πfn) with fn = 50Hz. Furthermore,
in order to make an equivalent comparison regarding con-
trollers tuning we focus on the proportional and derivative
gains analogies inside each topology. That is, using the
Pδ controller gains c7 = (700, 80) with τ = 0.04s, this
translates as (kp, kd) = (kp, kδ) for the PD controller and

(Kc, Td) = (kp,
kδ
kp

) for the PDf controller. Finally, for this

last we choose N = Tdω0 for achieving a break frequency
of wo = 2πfo with fo = 40Hz (below the noise signal
frequency). The results of this tests are shown in Fig 7.

Now, with the purpose of making a quantitative com-
parison we propose the following performance indicators:
eA-Amplitude of the ripple in the error signal in steady
state due to noisy behavior, eM -Maximum peak of the
absolute value of the error signal and ts-Settling time. All
of this indicators values are shown in Tab. 1. Using this
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Table 1. Performance indicators values
Controller eA eM ts A

PD 0.44 0.802 0.1 0.225
PDf 0.085 0.870 0.35 0.129
Pδ 0.038 2.137 0.95 0.507

information we show in Fig. 8 a radar chart normalized
with respect to the worst case for a given indicator. Also,
another interesting indicator of this figure is the areas A
of the polygons depicted in this figure for each controller.
The ideal scenario concerns to the case in which this area
is zero, that is no error signal. In other words, as this area
is minimized, a controller fulfills more suitably the ideal
indicators.

Fig. 8. Radar chart comparison between the PD, PDf

and Pδ controllers for tracking performance and noise
rejection.

Finally, from the analysis depicted in Fig. 8 and Tab
1 we can notice that the controller better fulfilling this
indicators is the PDf controller. However, even though
the Pδ controller has the bigger area in this radar chart it
is worth noticing that is the one that achieves the better
high frequency noise rejection without implementing any
additional behavior.

6. CONCLUDING REMARKS

A methodology for the design of the PδI and Pδ con-
trollers such that the closed-loop system is asymptotically
stable and some motivating examples of the use of those is
presented. We like to enhance the fact that this method-
ology avoids any crossing direction analysis and is pre-
sented as practical guidelines to develop a simple control
scheme design. Moreover, simulation results corroborating
these ideas are shown to enhance the advantages of using
these delayed controllers. Likewise, a PD controllers alike
comparison considering a tracking problematic under high-
frequency noise is addressed
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Mazenc, F., Mondié, S., and Niculescu, S.I. (2003). Global
asymptotic stabilization for chains of integrators with a
delay in the input. IEEE Transactions on Automatic
Control, 48(1), 57–63.

Méndez-Barrios, C.F., Niculescu, S.I., Morărescu, I.C.,
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