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Massively parallel computation of globally optimal
shortest paths with curvature penalization

Jean-Marie Mirebeau∗, Lionel Gayraud†, Remi Barrere†, Da Chen‡, François Desquilbet§

March 13, 2021

Abstract

We address the computation of paths globally minimizing an energy involving their cur-
vature, with given endpoints and tangents at these endpoints, according to models known as
the Reeds-Shepp car (reversible or forward only), the Euler-Mumford elasticae, and the Du-
bins car. For that purpose, we numerically solve degenerate variants of the eikonal equation,
on a three dimensional domain, in a massively manner on a graphical processing unit. Due
to the high anisotropy and non-linearity of the addressed PDE, the discretization stencil is
rather wide, has numerous elements, and is costly to generate, which leads to subtle com-
promises between computational cost, memory usage, and cache coherency. Accelerations
by a factor ten to hundred are obtained w.r.t sequential implementation. The efficiency and
robustness of the method is illustrated in various contexts, ranging from motion planning to
vessel segmentation and radar configuration.

1 Introduction

The eikonal Partial Differential Equation (PDE) characterizes the minimal travel time of an omni-
directional vehicle, from a fixed source point to an arbitrary target point, and allows to backtrack
the corresponding globally optimal shortest path. The numerical solution of the eikonal PDE
is at the foundation of numerous applications ranging from path planning to image processing
or seismic tomography [Set99]. Real vehicles however are usually not omni-directional, but are
subject to maneuverability constraints: cars cannot perform side motions, planes cannot stop,
etc. In this paper we focus on the Reeds-Shepp, Euler-Mumford and Dubins vehicle models,
which account for these constraints by increasing the cost of highly curved path sections, or
even forbidding them. The variants of the eikonal PDE corresponding to these models are
non-holonomic (a degenerate form of anisotropy) and posed on the three dimensional state
space R2 × S1, which makes their numerical solution challenging. A dedicated variant of the
fast marching method is presented in [Mir18, MP19], and together with earlier prototypes it
has found applications in medical image segmentation [CMC16, CMC17, DMMP18] as well as
the configuration of surveillance systems [MD17, DDBM19]. However, a weakness of the fast
marching algorithm is its sequential nature: the points of the discretized domain are accepted one
by one in a specific order, namely by ascending values of the front arrival times, which imposes
the use of a single CPU thread managing a priority queue.
∗Centre Borelli, ENS Paris-Saclay, CNRS, University Paris-Saclay, 91190, Gif-sur-Yvette, France
†Thales Research & Technology, Campus Polytechnique, 91767 Palaiseau
‡Qilu University of Technology (Shandong Acad. of Sciences), Shandong Artificial Intelligence Institute, China
§Univ. Grenoble-Alpes, LJK, F-38000, Grenoble, France

1



In this paper, we present a massively parallel solver of the non-holonomic eikonal PDEs
associated with the Reeds-Shepp, Euler-Mumford and Dubins models of curvature penalized
shortest paths. We use the same finite difference discretization as [Mir18, MP19], on a Cartesian
discretization grid, but solve the resulting coupled system of equations using an iterative method
implemented on a massively parallel computational architecture, namely a Graphics Processing
Unit (GPU), following [WDB+08, JW08, FKW13, GHZ18]. Our numerical schemes involve finite
difference offsets which are often numerous (30 for Euler-Mumford), rather wide (up to 7 pixels),
and whose construction requires non-trivial techniques from lattice geometry [Mir18]. This is in
sharp contrast with the standard isotropic eikonal equation addressed by existing GPU solvers,
which only requires few and small finite difference offsets when it is discretized on Cartesian grids
[WDB+08, JW08], and depends on unrelated geometric data when the domain is an unstructured
mesh [FKW13, GHZ18]. Due to these differences, the compromises needed to achieve optimal
efficiency - a delicate balance between the cost of computations and of memory accesses - strongly
differ between previous works and ours, and even between the different models considered in this
paper. Eventually, the GPU accelerated eikonal solver is often 50× faster than the CPU fast
marching method from [Mir18], see Table 2. In the considered applications, computations times
on typical problem instances are often reduced from 30 seconds to less than one, which enables
convenient user interaction.

Remark 1.1 (Intellectual property). The numerical methods presented in this paper are avail-
able as a public and open source library1, licensed under the Apache License 2.0, and whose
development is led by J.-M. Mirebeau. Accelerations of the same order were first obtained with
an earlier independent GPU implementation of the HFM [MP19] method (limited to the Dubins
model) developed by L. Gayraud with the support of R. Barrere, and in informal collaboration
with J.-M. Mirebeau. The two libraries are written in different languages (Python/CUDA versus
C++/OpenCL), do not share a single line of code, use different implementation tricks, and offer
distinct functionality.

1.1 Curvature penalized path models

Throughout this paper we fix a bounded and closed domain Ω ⊂ R2, and a continuous and
positive cost function ρ : Ω×S1 →]0,∞[, where S1 := [0, 2π[ with periodic boundary conditions.
The objective of this paper is to compute paths (x,θ) : [0, L]→ Ω×S1 in the position-orientation
state space, which globally minimize the energy

E(x,θ) :=

∫ L

0
ρ(x,θ) C(θ̇) dl, subject to ẋ = eθ, (1)

where we denoted eθ := (cos θ, sin θ) and θ̇ := dθ
dl and ẋ := dx

dl . An additional constraint to (1) is
that the initial and final configurations x(0), θ(0) and x(L), θ(L) are imposed, in other words the
endpoints of the physical path and the tangents at these endpoints. The path is parametrized by
Euclidean length in the physical space Ω, and the total length L is a free optimization parameter.
The constraint (1, right) requires the path physical velocity ẋ(l) matches the direction defined
by the angular coordinate eθ(l) := (cosθ(l), sinθ(l)), for all l ∈ [0, L]. This constraint is said
non-holonomic because it binds together the some of the first order derivatives of the path (ẋ, θ̇).

The choice of curvature penalty function C(κ), where κ := θ̇ is the derivative of the path
direction in (1), is limited to three possibilities in our approach. This is in contrast with the state
dependent penalty ρ which is essentially arbitrary. The considered curvature penalties are defined

1www.github.com/Mirebeau/AdaptiveGridDiscretizations
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by the three following expressions, which correspond to the Reeds-Shepp2, Euler-Mumford, and
Dubins models respectively: we define C(κ), for all κ ∈ R, as either√

1 + κ2, 1 + κ2, 1 +∞|κ|>1, (2)

where ∞cond stands for +∞ where cond holds, and 0 elsewhere. The Reeds-Shepp model pe-
nalizes curvature in a roughly linear manner, which allows in-place rotations3. The quadratic
curvature penalty of the Euler-Mumford model corresponds to the energy of an elastic bar, hence
minimal paths follow their rest position. Finally the Dubins model forbids any path section whose
curvature exceeds that of the unit disk, by assigning to it the cost +∞. Minimal paths for these
models are qualitatively distinct, as illustrated on Figure 1. The curvature penalty may also be
scaled and shifted, so as to control its strength and symmetry, see Remark 1.2 and §3.4.

In the following, we fix a seed point (x∗, θ∗) ∈ Ω×S1 in the state space, and denote by u(x, θ)
the minimal cost of a path from this seed to an arbitrary target (x, θ) ∈ Ω× S1:

u(x, θ) := inf{E(x,θ);L ≥ 0, (x,θ) : [0, L]→ Ω× S1, ẋ = eθ,

x(0) = x∗, θ(0) = θ∗, x(L) = x, θ(L) = θ}. (3)

Once the map u : Ω × S1 → R is numerically computed, as described in § 1.2, a standard
backtracking technique [Mir18] allows to extract the path (x,θ) : [0, L] → Ω × S1 globally
minimizing (1), from the seed state (x∗, θ∗) to any given target (x∗, θ∗) ∈ Ω× S1.

Remark 1.2 (Scaling and shifting the curvature penalty). The curvature penalty C(θ̇) appearing
in our path models (1) can be generalized into C(ξ(θ̇ − ϕ)). The parameter ξ > 0 dictates the
intensity of curvature penalization, whereas ϕ ∈ R can introduce asymmetric penalty. Optionally,
ξ = ξ(x, θ) and ϕ = ϕ(x, θ) may depend on the current state (x, θ) ∈ Ω× S1.

1.2 Non-holonomic eikonal equations, and their discretization

The minimal travel cost (3), from a given source point to an arbitrary target, is the value function
of a deterministic optimal control problem. As such, it obeys a first order static non-linear PDE,
a variant of the eikonal equation, of the generic form

Fu(x, θ) = ρ(x, θ) where Fu(x, θ) = F(x, θ, ∇xu(x, θ), ∂θu(x, θ)),

where ∇xu(x, θ) ∈ R2 and ∂θu(x, θ) ∈ R denote the partial derivatives of the unknown u :
Ω× S1 → R w.r.t the physical position x and angular coordinate θ. This PDE holds in Ω× S1 \
{(x∗, θ∗)}, while the constraint u(x∗, θ∗) = 0 is imposed at the seed point (x∗, θ∗), and outflow
boundary conditions are applied on ∂Ω. The detailed arguments and adequate concepts of
optimal control, Hamilton-Jacobi-Bellman equations, and discontinuous viscosity solutions, are
non-trivial and unrelated to the object of this paper (which is GPU acceleration), hence we simply
refer the interested reader to [BCD08, Mir18]. For comparison, the standard isotropic eikonal
equation [RT92, Set99] on Rd, which corresponds to an omni-directional vehicle not subject to
maneuverability constraints or feature curvature penalization, is defined by the operator Fu =
‖∇u‖.

2The following description applies to the forward only variant of the Reeds-Shepp model, see Remark 1.3 for
a discussion of the reversible variant.

3In full rigor, a parametrization by Euclidean length in the full state space (both physical and angular), or
an arbitrary Lipschitz parametrization, is necessary to ensure the existence of a minimizer of (1) for the Reeds-
Shepp forward model. Indeed, in-place rotations are path sections where the the physical velocity vanishes, but
the angular velocity does not. See [Mir18] for a discussion of well posedness.
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Figure 1: Planar projections of minimal geodesics for the Reeds-Shepp, Reeds-Shepp forward,
Elastica and Dubins models (left to right). Seed point (0, 0) with horizontal tangent, regularly
spaced tip point with random tangent (but identical for all models).

Figure 2: Discretization stencils used for the Reeds-Shepp reversible, Reeds-Shepp forward,
Euler-Mumford, and Dubins models. Note the sparseness and anisotropy of the stencils. Model
parameters: θ = π/3, ξ = 0.2, ε = 0.1.
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The variants of the eikonal PDE associated with the Reeds-Shepp forward, Euler-Mumford
and Dubins models, involve the following non-linear and anisotropic operators [Mir18]: define
Fu(x, θ) as, respectively√

max{0, 〈∇xu, eθ〉}2 + |∂θu|2,
1

2
(〈∇xu, eθ〉+

√
〈∇xu, eθ〉2 + |∂θu|2), 〈∇xu, eθ〉+ |∂θu|. (4)

We rely on a finite differences discretization Fu of the operator Fu, on the Cartesian grid

Xh := (Ω× S1) ∩ hZ3, (5)

where the physical domain is usually rectangular Ω = [a, b]×[c, d] (or padded as such), and where
the grid scale h > 0 is such that 2π/h ∈ N so that the samping of S1 := [0, 2π[ is compatible with
the periodic boundary conditions. By convention, the value function u is extended by +∞ outside
Ω, thus implementing the desired outflow boundary conditions on ∂Ω. For any discretization
point p = (x, θ) ∈ Xh, the finite differences operator Fu(p) is defined as the square root of an
expression of the following form [MP19]

max
1≤k≤K

( ∑
1≤i≤I

αik max
{

0,
u(p)− u(p+ heik)

h

}2
+
∑

1≤j≤J
βjk max

{
0,
u(p)− u(p± hfjk)

h

}2
)
, (6)

where I, J,K are fixed integers, αik, βjk ≥ 0 are non-negative weights, and eik, fjk ∈ Z3 are finite
difference offsets, for all 1 ≤ i ≤ I, 1 ≤ j ≤ J , 1 ≤ k ≤ K. The weights and offsets may depend
on the current point p. Before turning to the variants (4), let us mention that the standard
discretization [RT92] of the isotropic eikonal equation (Fu = ‖∇u‖) fits within this framework,
with meta-parameters J = d (and I = 0, K = 1), choosing unit weights wj1 = 1, 1 ≤ j ≤ d, and
letting (fj1)di=1 be the canonical basis of Rd. Riemannian eikonal PDEs can also be addressed
in this framework, with J = d(d+ 1)/2 and using weights and offsets defined by an appropriate
decomposition of the inverse metric tensor, see [Mir19, MP19].

In the curvature penalized case, the weights and offsets in (6) implicitly depend on the base
point p = (x, θ), at least through the angular coordinate θ consistently with the continuous PDE
(4), and possibly the physical position x as well if the strength or symmetry of the curvature
penalty varies from point to point, see Remark 1.2. We refer to [Mir18, MP19] for details on
the construction of the weights and offsets, which involves a relaxation parameter ε > 0 for the
non-holonomic constraint (1, right), and simply report the meta-parameters for the Reeds-Shepp
(I = 3, J = 1, K = 1), Euler-Mumford (I = 30, J = 0, K = 1), and Dubins (I = 6, J = 0,
K = 2) models, see Figure 2.

A fundamental property of discretization schemes of the form (6) is that they can be solved
in a single pass over the domain, using a generalization of the fast-marching algorithm [Mir18,
MP19, Mir19]. This is highly desirable when implementing CPU solver, but anecdotical for a
GPU eikonal solver whose massive parallelism forbids taking advantage of this property. Nev-
ertheless, those schemes are robust and well tested. Alternative approaches offering different
compromises possibly more suited to GPUs will be considered in future works.

Remark 1.3 (Forward and reversible Reeds-Shepp models). The Reeds-Shepp model comes in
two flavors [DMMP18]: the forward variant, presented above, and the (more standard) reversible
variant, modeling a vehicle equipped with a reverse gear additionally. The latter is obtained by
relaxing the constraint (1, right) into ẋ = ±eθ. In turn the eikonal PDE (4, left) is replaced with√
〈∇xu, eθ〉2 + |∇θu|2, whose discretization (6) uses the meta-parameters I = 0, J = 4, K = 1.
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Remark 1.4 (Monotony and degenerate ellipticity). The discrete operator (6) is degenerate
elliptic: Fu(p) is a non-decreasing function of the finite differences [u(p) − u(q)]q∈Xh\{p}. This
property implies comparison principles, used in the proof of convergence of the numerical method
[Mir18]. In addition, degenerate ellipticity implies a monotony property of the local update op-
erator Λ, see Proposition A.4 in [Mir19], implemented in Algorithm 3 below. As a result, the
sequence of approximate solutions (un)n≥0, un : Xh → [0,∞], produced along the iterations of
our numerical method are pointwise non-increasing.

2 Implementation

We describe the implementation of our massively parallel solver of generalized eikonal PDEs,
discretized under the form (6). The bulk of the method is split in three procedures, Algorithms 1
to 3, discussed in detail in the corresponding sections.

For simplicity, Algorithms 2 and 3 are written in the special case where the meta parameters
of the discretization (6) are J = 0 and K = 1, whereas I is arbitrary. The case of arbitrary J
and K is discussed in §2.3. The assignment of a value val to a scalar (resp. array) variable var
is denoted var ← val (resp. var ⇐ val).

Algorithm 1 Parallel iterative solver (Python)
Variables:

u : Xh → [0,∞] (The problem unknown)
active,next : Bh → {0, 1}. (Blocks marked for current and next update)

Initialization:
u⇐∞; active,next ⇐ 0.
u[p∗]← 0; active[b∗]← 1. (Set seed point value, and mark its block for update)

While an active block remains:
For all active blocks b in parallel: (CUDA kernel lauch)

For all p ∈ Xb
h in parallel: (Block of threads)

BlockUpdate(u,next , b, p)
active ⇐ next ; next ⇐ 0.

2.1 Parallel iterative solver

Massively parallel architectures divide computational tasks into threads which, in the case of
graphics processing units, are grouped into blocks following a common sequence of instructions,
and able to take advantage of shared data, see Remark 2.1. Following [WDB+08, JW08, GHZ18],
the main loop of our iterative eikonal equation solver is designed to take advantage of this
computational architecture, see Algorithm 1. It is written in the Python programming language,
which is also used for the pre- and post-processing tasks, and launches Algorithm 2 as a CUDA
kernel via the cupy4 library.

The discretization domain Xh, which is a three dimensional cartesian grid (5), is split into
rectangular tiles Xb

h, indexed by b ∈ Bh, see Figure (3, left). The update of a tile Xb
h is handled

by a block of threads, and the tile should therefore contain no less than 32 points in view of
Remark 2.1. The best shape of the tiles Xb

h was found to be 4 × 4 × 4 for the Reeds-Shepp
models (forward and reversible), and 4 × 4 × 2 for the Euler-Mumford and Dubins models, see

4A NumPy-compatible array library accelerated by CUDA. https://cupy.dev
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Algorithm 2 BlockUpdate(u, next, b, p), where p ∈ Xb
h (CUDA)

Global variables: u : Xh → [0,∞], next : Bh → {0, 1}, ρ : Xh → R (the r.h.s).
Block shared variable: ub : Xb

h → [0,∞].
Thread variables: αi ≥ 0, ei ∈ Zd, ui ∈ R, for all 1 ≤ i ≤ I.

ub(p)← u(p); __syncthreads() (Load main memory values into shared array)
Load or compute the stencil weights (αi)

I
i=1 and offsets (ei)

I
i=1.

ui ← u(p+ hei), for all 1 ≤ i ≤ I such that p+ hei /∈ Xb
h. (Load the neighbor values)

For r from 1 to R:
ui ← ub(p+ hei), for all 1 ≤ i ≤ I such that p+ hei ∈ Xb

h. (Load shared values)
ub(p)← Λ(ρ(p), αi, ui, 1 ≤ i ≤ I) (Update ub(p), unless p is the seed point)
__syncthreads() (Sync shared values)

u(p)← ub(p) (Export shared array values to main memory)
If appropriate, next [b]← 1 and/or next [b′]← 1 for each neighbor block b′ of b. (Thread 0 only)

Algorithm 3 Local update operator Λ(ρ, αi, ui, 1 ≤ i ≤ I) (C++)
Variables a← 0, b← 0, c← −h2ρ2, λ←∞.
Sort the indices, so that ui1 ≤ · · · ≤ uiI .
For r from 1 to I:

If λ ≤ uir then break.
a← a+ αir ; b← b+ αiruir ; c← c+ αiru

2
ir

λ← (b+
√
b2 − ac)/a

return λ
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Figure 3: Left: Decomposition of the Cartesian grid Xh into tiles Xb
h, with block index b ∈ Bh.

Grayed blocks are tagged active. Center: Updating a block b ∈ Bh requires loading the unknown
values u : Xh → R, both within Xb

h and at some neighbor points. Right: Several local updates
are performed within a block (two here).

7



§2.2 and Table 1. Some padding is introduced if the dimensions of the tiles Xb
h do not divide

those of the grid Xh.
A boolean table active : Bh → {0, 1} records all tiles tagged for update. Denote by Nh :=

#(Bh) the total number of tiles, and by Nb = #(Xb
h) the number of grid points in a tile, which

is independent of b ∈ Bh, so that #(Xh) = NhNb by construction. Let also Nact = #{b ∈
Bh; active[b]} be the number of active tiles in a typical iteration of Algorithm 1. Since we
are implementing a front propagation in a three dimensional domain, one typically expects that
Nact ≈ N2/3

h (in d-dimensions, N b
act ≈ N

1−1/d
h ).

In each iteration of Algorithm 1, the active table is checked for emptiness, in which case the
program terminates. More importantly, the indices of all non-zero entries of the active table are
extracted, so as to update only the relevant blocks. The complexity O(Nh lnNh) of this operation
is in practice negligible w.r.t the cost of the block updates themselvesO

(
NactNbRK(I+J)

)
where

R is the number of inner loops in Algorithm 2 and I, J,K are the scheme parameters (6). A
second boolean table next : Bh → {0, 1}, is used to mark which blocks are to be updated in the
subsequent iteration.

A single array u : Xh → [0,∞[ holds the solution values. Indeed, the block update operator
benefits from a monotony property, see Remark 1.4, which guarantees that the values of (un)n≥0

of the approximation solution decrease along the iterations of Algorithm 1 toward a limit u∞.
As a result, load/store data races in u between the threads are innocuous.

Remark 2.1 (SIMT architecture). A block of threads is under the hood handled by a GPU device
in a Single Instruction Multiple Threads (SIMT) manner : the same instructions are applied on
32 threads of a same block (also called a warp) simultaneously. For this reason, the number
of threads within a block should preferably be a multiple of the width of a warp. For the same
reason, thread divergence (threads within a warp going along different execution paths, due to
conditional branching statements, implemented by “muting” the threads of the inactive branch)
should be avoided for best efficiency.

2.2 Block update

The BlockUpdate procedure, presented in Algorithm 2, is the most complex part of our numerical
method. It is executed in parallel by a block of threads, each handling a given point p ∈ Xb

h of
a tile of the computational grid, where the tile index b ∈ Bh is fixed.

A array ub : Xb
h → [0,∞] shared between the threads of the block is initialized with the

values of the unknown u : X → [0,∞] at the same positions. Throughout the execution of the
BlockUpdate procedure, the values of ub are updated several times, and then finally stored by
in the main array u. If the number R of updates of ub is sufficiently large, then this procedure
amounts to solving a local eikonal equation on Xb

h, with u|Xh\Xb
h
treated as boundary conditions.

A similar approach is used in [WDB+08, JW08, GHZ18].
The finite difference scheme (6) used for curvature penalized fast marching is built using non-

trivial tools from lattice geometry [Mir18], whose numerical cost cannot be ignored. Empirical
tests show that precomputing the weights and offsets usually reduces overall computation time
by 30% to 50%. If the scheme structure only depends on the angular coordinate of the point,
then the precomputed stencils have a negligible memory usage, and these precomputations are
used. On the other hand, if the scheme stencils depend on all coordinates (x, θ) of the current
point, typically for a model whose curvature penalty function depends on the current point as
discussed in Remark 1.2 and §3.4, then the storage cost of the weights and offsets significantly
exceeds the problem data. (Stencils are defined by N = K(I + J) scalars and offsets per grid
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point, see (6), where typically 4 ≤ N ≤ 30. In comparison, the problem data u, ρ and optionally
ξ, ϕ consists of 2 to 4 scalars per grid point, see Remark 1.2.) Stencil recomputation is preferred
in these cases, in order to not cripple the ability of the numerical method to address large scale
problems on memory limited GPUs.

The values of the unknown u : Xh → R needed for the evaluation of the scheme (6) and
lying outside Xb

h are loaded once and for all at the beginning of the BlockUpdate procedure
Algorithm 2, and treated as fixed boundary conditions so as to minimize memory bandwidth
usage. Contrary to what could be expected, such boundary values are an overwhelming majority
in comparison with the values located within the tile Xb

h. For instance the three dimensional
isotropic eikonal equation, using standard tiles of 64 = 4× 4× 4 points, involves 96 = 6× 4× 4
boundary values. Boundary values are even more numerous with the curvature penalization
schemes, which involve many wide finite difference offsets, as illustrated on Figure (3, center).

Each thread of a block, associated to a discretization point p ∈ Xb
h where b ∈ Bh is the block

index, goes through R iterations of a loop where the local unknown value ub(p) is updated via
Algorithm 3, see §2.3. The threads are synchronized at each iteration of this loop, to ensure that
the front propagates through the tile Xb

h. Since the values of ub : Xb
h → [0,∞] are decreasing

along the iterations, by monotony of the scheme see Remark 1.4, no additional protection of ub
against data races between the threads of the block is required. The number R of iterations is
discussed in §2.3.

Last but not least, if appropriate, the block b and its immediate neighbors b′ need to be
tagged for update in the next iteration of the eikonal solver Algorithm 1, via the boolean array
next : Bh → {0, 1}. This step is not fully described in Algorithm 2, and in particular the
neighbors of a tile and the appropriate condition for marking them are not specified. Indeed, a
variety of strategies can be plugged in here, and our numerical solver is not tied to any of them.
Good results were obtained using Adaptive Gauss Siedel Iteration (AGSI) [BR06, GHZ18] and
with the Fast Iterative Method (FIM) [JW08], while other variants were not tested [WDB+08].

Remark 2.2 (Walls and thin obstacles). Our finite differences scheme involves rather wide
stencils, see Figure 2, raising the following issue: the update of a point p may involve neighbor
values u(p + hei) across a thin obstacle. In order to avoid propagating the front through the
obstacles, if any are present, an additional walls array is introduced in Algorithm 2, as well
as and intersection test between the segment [p, p + hei] and the obstacles. For computational
efficiency, the array walls : Xh → {0, · · · , 255} is not boolean, but walls[p] instead encodes the
Manhattan distance in pixels (capped at 255) from the current point p to the nearest obstacle. If
‖ei‖1 < walls[p], then [p, p + hei] does not meet the obstacles, and the intersection test can be
bypassed.

2.3 Local update

This section is devoted to the local update operator presented in Algorithm 3. From the math-
ematical standpoint, it is customary to define Λu(p) as the solution to equation Fu(p) = ρ(p)
w.r.t the variable u(p), regarding all neighbor values as constants, see [Mir19, Appendix A]. We
prove in this subsection that Algorithm 3 does compute this value, and comment on its numerical
complexity and efficient implementation. A closely related method is used in the update step of
the standard fast marching method for isotropic eikonal equations [Set96], whose discretization
is a special case of (6).

For simplicity, and consistently with the presentation of Algorithm 3, we assume a numerical
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scheme of the form

(Fu(x))2 := h−2
I∑
i=1

αi
(
u(x)− u(x+ hei)

)2
+
, (7)

in other words J = 0 and K = 1 in (6). Denote ui := u(x + hei) for all 1 ≤ i ≤ I, and let
ρ := ρ(p). The update value λ = Λu(x) is by construction the unique root λ ∈ R of

f(λ) :=
∑

1≤i≤I
αi(λ− ui)2

+ − h2ρ2, (8)

where a+ := max{0, a}. Note that f(λ) = −h2ρ2 < 0 on ]−∞, λ∗] where λ∗ := min{ui; 1 ≤ i ≤
I}, that f increasing on [λ∗,∞[, and that f(λ) → ∞ as λ → ∞. Thus f does indeed admit a
unique root λ, by the intermediate value theorem.

The numerical solution of the non-linear equation (8) takes advantage of its piecewise quadratic
structure. For that purpose, introduce a permutation i1, · · · , iI of {1, · · · , I} such that ui1 ≤
· · · ≤ uiI . Then for any 1 ≤ r ≤ I on has

f(λ) = arλ
2 − 2brλ+ cr, for all λ ∈ [uir , uir+1 ],

with the abuse of notations [uI , uI+1] := [uI ,∞[. The coefficients of this quadratic function are

ar :=
∑

1≤s≤r
αis , br :=

∑
1≤s≤r

αisuis , cr :=
∑

1≤s≤r
αisu

2
is − h

2ρ2.

Algorithm 3 solves the quadratic equations arλ2 − 2brλ + cr = 0 successively, for increasing
values of 1 ≤ r ≤ I. Only the largest of the two quadratic roots is relevant, denoted λr :=
(br +

√
b2r − arcr)/ar, and it is returned if λr ∈ [uir , uir+1 ], at some rank denoted r = r∗. By

construction, the root λr exists and is real for all 1 ≤ r ≤ r∗, since ar > 0 and f(uir) < 0.
From the implementation standpoint, some attention must be paid to the sorting step, espe-

cially in the Euler-Mumford case where I = 30 neighbor values are used. Indeed, a naive bubble
sort has a complexity O(I2) which dominates the rest of the computations and severely slows
down the numerical method in that case. Best results were obtained applying a network sort
[Knu98] (an efficient branchless sorting method) to the 15 first (resp. last) values, followed by a
merge operation.

In the case of a general scheme (6), where I, J,K are arbitrary, the update λ = Λu(p) is by
construction the unique root of f : R→ R defined by

f(λ) := max
1≤k≤K

fk(λ), where fk(λ) :=
∑

1≤i≤I
αik(λ− uik)2

+ +
∑

1≤j≤J
βjk(λ− u′jk)2

+ − ρ2h2,

and where uik := u(p + heik) and u′jk := min{u(p − hfjk), u(p + hfjk)}. For each 1 ≤ k ≤ K,
the unique root λ(k) of fk is computed as for (8), by grouping the two sums defining fk into a
single one over 1 ≤ l ≤ I + J . The root of f is λ = min1≤k≤K λ

(k).
The numerical cost of the local update operator Λ is roughly5 proportional to the number

Nfd := K(I + J) of terms involved in the finite difference scheme (6). The variations of Nfd
among models lead to interesting compromises in the choice of the number R of iterations in
Algorithm 2 and of the tile size, see Table 1.

5Strictly speaking the complexity is O
(
K(I + J) ln(I + J)

)
, due to the sorting step.
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Model Nfd Best tile Best R
Isotropic (d=2) 2 24× 24 48
Isotropic (d=3) 3 4× 4× 4 8

Reeds-Shepp (both) 4 4× 4× 4 6

Model Nfd Best tile Best R
Dubins 12 4× 4× 4 2
− − 4× 4× 2 1

Euler-Mumford 30 4× 4× 2 1

Table 1: Number Nfd = K(I + J) of finite differences terms in (6) for a variety of path models.
Tile shape and number of iterations R in Algorithm 2, producing the smallest running time, found
experimentally. Two sets of parameters are reported for Dubins model, since the corresponding
running times results are close which one is fastest depends on the test case. Simple models,
whose stencil involves few and short finite differences, work best with large tile sizes and numerous
iterations allowing the front to propagate within the tile, whereas complex models involving many
wide finite differences and a costly update operator, benefit from small tiles and few iterations.

Exp. model GPU(s) CPU(s) accel
Empty RS rev 0.28 34.3 120×

RS fwd 0.25 15.7 62×
EM 1.53 117 76×

Dubins 0.44 46.5 105×
Building RS rev 1.37 50.5 37×

RS fwd 0.59 29 49×
EM 3.21 174 54×

Dubins 1.02 55.4 54×

Exp. model GPU(s) CPU(s) ratio
Boat Dubins 0.52 30.2 59×
MRI RS fwd 0.93 30.8 33×

EM 3.32 275.9 83×
Retina1 RS fwd 0.66 21.1 32×

EM 2.22 171.3 77×
Retina2 RS fwd 0.98 32.8 33×

EM 3.21 256.1 80×
Radar Dubins 0.26 9.57 37×

Table 2: Running time of the CPU and GPU eikonal solver, for the experiments presented §3.

3 Numerical experiments

We illustrate our numerical solver of curvature penalized shortest paths, in (mostly) synthetic
experiments, related to a variety of contexts ranging from motion planning with obstacles or
drift, to image segmentation, and the configuration of radar systems. Some of the test cases
are new, whereas others reproduce or are strongly inspired by previous works [CMC16, CMC17,
DDBM19, DMMP18, MD17, Mir18] which used an earlier CPU implementation.

We report in Table 2 the running times of the GPU eikonal solver presented in this paper,
and of the CPU solver introduced in [Mir18], as well as the GPU/CPU speedup which varies
significantly depending on the experiment. Indeed, the running time of the GPU eikonal solver,
which is an iterative method, depends on the presence of obstacles or slow regions in the test
case, and their layout, as noted in [WDB+08]. This in contrast with the fast-marching-like
method [Mir18] implemented on the CPU, which is guaranteed update each discretization point
at most Nfd = K(I + J) times where I, J,K are the scheme parameters (6) (for this reason,
slightly abusively, fast-marching is referred to as a single pass method), and whose complexity
O(NfdN lnN) is independent of the specific test case, where N is the total number of discretiza-
tion points. However, fast-marching is limited in speed by its sequential nature.

The numerical experiments presented in the following sections are designed to illustrate the
following features of the eikonal solver introduced in this paper:

1. Geodesics in an empty domain. Illustrates the qualitative properties of the different path
models, and the GPU/CPU speedup in its ideal case.

2. Fastest exit from a building. Illustrates the implementation of walls and thin obstacles, as
described in Remark 2.2.
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3. Retinal vessel segmentation. Illustrates a realistic application to image processing, based
on the choice of a carefully designed cost function.

4. Boat routing. Illustrates a curvature penalty whose strength and asymmetry properties
vary over the PDE domain, as described in Remark 1.2.

5. Radar configuration. Illustrates the automatic differentiation of the eikonal PDE solution
u w.r.t the cost function ρ, see (1) and (3), for the optimization of a complex objective.

Remark 3.1 (Computation time and hardware characteristics). Program runtime is dependent
on the hardware characteristics of each machine. The reported CPU and GPU times were ob-
tained on the BladeR© Shadow cloud computing service, using the provided NvidiaR© GTX 1080
graphics card for the GPU eikonal solver, and an IntelR© Xeon E5-2678 v3 for the CPU eikonal
solver (a single thread was used, with turbo frequency 3.1Ghz).

3.1 Geodesics in an empty domain

We compute minimal geodesics for the Reeds-Shepp, Reeds-Shepp forward, Euler-Mumford elas-
tica and Dubins model, in the domain [−1, 1]2 × S1 without obstacles. The front is propagated
from the seed point (x∗, θ∗) placed at the origin x∗ = (0, 0) and imposing a horizontal initial
tangent θ∗ = 0. Geodesics are backtracked from several tips (x∗, θ∗) where x∗ is placed at 16
regularly spaced points in the domain, whereas θ∗ is chosen randomly (but consistently across
all models).

This experiment is meant to illustrate the qualitative differences between minimal geodesic
paths associated with the four curvature penalized path models. The Reeds-Shepp car can
move both forward and backward, and reverse gear along its path, which is evidenced by cusps
along several trajectories. The Reeds-Shepp forward variant cannot move backward, but has the
ability to rotate in place (with a cost), and such behavior can be observed at the endpoints of
trajectories displayed [DMMP18]. The Elastica model produces pleasing smooth curves, which
have a physical interpretation as the rest positions of elastic bars. Trajectories of the Dubins
model have a bounded radius of curvature, and can be shown to be concatenations of straight
segments and of arcs of circles, provided the cost function is constant as here.

The generalized eikonal PDE (4) is discretized on a 300 × 300 × 96 Cartesian grid, follow-
ing (6), thus producing a coupled system of equations featuring 8.6 million unknowns6. Com-
putation time for the GPU eikonal solver ranges from 0.28s (Reeds-Shepp forward) to 1.54s
(Euler-Mumford elastica), reflecting (among other things) the complexity of the discretization
stencil, see Figure 2. A substantial speedup ranging from 60× to 120× is obtained over the CPU
implementation; let us nevertheless acknowledge that, as noticed in [WDB+08], the absence of
obstacles and of a position dependent speed function is usually the best case scenario for an
iterative eikonal solver such as our GPU implementation.

3.2 Fastest exit from a building

We compute minimal paths within a museum map, for the four curvature penalized models
under consideration in this paper. Due to the use of rather wide stencils, often 7 pixels long see
Figure 2, some intersection tests are needed to avoid propagating the front through the walls,
which are one pixel thick only. A careful implementation, as described in Remark 2.2, allows

6For this simple problem, results visually quite similar can be obtained at a fraction of the cost using a smaller
discretization grid, eg. of size 100× 100× 64.
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Figure 4: Planar projections of minimal geodesics for the Elastica and Dubins model (left to
right). Two seed points at the exits, with horizontal tangents. Geodesics are backtracked from
one tip point in each room, with a given but arbitrary tangent.

to bypass most of these intersection tests and limits their impact on computation time. In
contrast with [WDB+08], we do not consider “slightly permeable walls”, since they would not be
correctly handled with our wide stencils, and since as far as we know they have little relevance
in applications. A closely related experiment is presented in [DMMP18], for the Reeds-Shepp
forward and reversible models, using a CPU eikonal solver.

The front propagation starts from two seed points located at the exit doors, and a tip is placed
in each room for geodesic backtracking, with an arbitrary orientation. Note that the extracted
paths minimize a functional (1) which is unrelated with safety and thus may not be suitable for
motion planning, despite being smooth (Euler-Mumford) or having a bounded curvature radius
(Dubins). Indeed, in many places they are tangent to the obstacles, walls, and doorposts, without
any visibility behind, which is a hazardous way to move.

The PDE is discretized on a Cartesian grid of size 705× 447× 60, where the first two factors
are the museum map dimension, and the third factor is the number of angular orientations, for
a total of 19 million unknowns. Computation time on the GPU ranges from 0.59s (Reeds-Shepp
forward) to 3.2s (Euler-Mumford elastica), a reduction by approximately 50× over the CPU
eikonal solver.
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Figure 5: Segmentation of tubular structure centerlines using the Reeds-Shepp forward and
Euler-Mumford elastica models, following [CMC17]. Left : Blood vessels in Magnetic Resonance
Angiography (MRA) data. Center and right : Blood vessels on an image of the retina.

3.3 Tubular structure segmentation

A popular approach for segmenting tubular structures in medical images, such as blood vessels on
the retinal background in this experiment, is to devise a geometric model whose minimal paths
(between suitable endpoints) are the centerlines of the desired structures. For that purpose a key
ingredient, not discussed here, is the careful design of a cost function ρ : R2 × S1 →]0,∞] which
is small along the vessels of interest in their tangent direction, and large elsewhere [PKP09].
Curvature penalization, and in particular the Reeds-Shepp forward and Euler-Mumford elastica
models [CMC16, CMC17, DMMP18], helps avoid a classical artifact where the minimal paths
do not follow a single vessel but jump form one to another at crossings.

The test cases have size 512 × 512 × 60, 387 × 449 × 60, and 398 × 598 × 60, respectively,
and the computation time of the GPU eikonal solver ranges from 1s (Reeds-Shepp forward) to
3s (Euler-Mumford elastica) on the GPU. This is compatible with user interaction, in contrast
CPU run time which is 30× to 80× longer, see Table 2. Note that by construction, the front
propagation is fast along the blood vessels, and slower in the rest of the domain. This specificity
plays against the GPU solver, which is most efficient in the presence of wide fronts with rather
uniform velocity, yet the speedup remains very substantial. Computation time could in principle
be further reduced, both on the CPU and the GPU, by using advanced stopping criteria and
restriction methods [CCV13] to avoid solving the eikonal PDE on the whole domain.

3.4 Boat routing with a trailer

The Dubins-Zermelo-Markov model [BT13] describes a vehicle subject to a drift, and whose
speed and turning radius as measured before the drift is applied are bounded. This problem
was introduced to us in the context of maritime seismic prospection, where boats drag long
trails of acoustic sensors, and are subject to water currents. Optimal Dubins-Zermelo-Markov
trajectories, with drift defined by the water flow, may help avoid entangling and damaging these
trails, and reduce the prospection times. In this synthetic experiment we use the drift velocity
V (x) = 0.6 sin(πx0) sin(πx1)x/‖x‖ on the domain [−1, 1]2. Our vehicle has unit speed, and
turning radius ξ = 0.3.

From the mathematical standpoint, the Dubins-Zermelo-Markov model can be rephrased in
the form of the original Dubins model, but with a curvature penalty which is scaled, shifted
(asymmetric), and depends on the current point, as described in Remark 1.2. This does not
raise particular issues for discretization, except that the weights and offsets of the numerical
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Figure 6: Illustration of the Dubins-Zermelo-Markov problem. Let drift velocity (water current).
Center shortest path, between the seed point (0, 0) with horizontal tangent, and other seed
points, such that the radius of curvature in the water referential does not exceed the prescribed
bound.

scheme (6) depend on the full position (x, θ) ∈ R2×S1, rather than the orientation θ ∈ S1 alone.
The boat routing problem is discretized on a grid of size 151× 151× 96. Computation time

on the GPU is 0.34s if stencils are pre-computed and stored, and 0.52s if they are recomputed on
the fly when needed. The second approach (recomputation) uses significantly less GPU memory,
which is usually a scarce ressource, hence we regard it as default despite the longer runtime, see
the discussion §2.2; it is nevertheless 59× faster than the CPU implementation.

3.5 Optimization of a radar configuration

We consider the optimization of a radar system, so as to maximize the probability of detection of
an intruder vehicle. The intruder has full knowledge of the radar configuration, and does its best
to avoid detection, but is subject to maneuverability constraints as does a fast plane. Following
[MD17, DDBM19] the intruder is modeled as a Dubins vehicle, traveling at unit speed with a
turning radius of 0.2, whose trajectory starts and ends at a given point x∗ ∈ Ω and which must
visit a target keypoint x∗ ∈ Ω in between7. The problem takes the generic form

sup
ξ∈Ξ

inf
γ∈Γ
E(ξ; γ), (9)

where Ξ is the set of radar configurations, and Γ is the set of admissible trajectories. A trajectory
γ escapes detection from a radar configured as ξ with probability exp(−E(ξ; γ)). Following (1),
a trajectory is represented as a pair γ = (x,θ) : [0, L]→ Ω× S1, and its cost is defined as

E(ξ; γ) =

∫ L

0
ρ(x,θ; ξ) C(θ̇) dl

where C denotes the Dubins cost (2, right), and ρ(x, θ; ξ) is an instantaneous probability of
detection depending on the radar configuration ξ, and the intruder position x and orientation
θ. We refer to [DDBM19] for a discussion of the detection probability model, and settle for a
synthetic and simplified yet already non-trivial construction. The detection probability is the

7This is achieved by concatenating a trajectory (x∗, θ0) ∈ Ω × S1 to (x∗, ϕ), with a reversed trajectory from
(x∗, θ1) to (x∗, ϕ+ π), where θ0, θ1, ϕ ∈ S1 are arbitrary, see [MD17].
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sum of three terms ρ(x, θ; ξ) =
∑3

i=1 ρ̃(x, θ; yi, ri, vi), corresponding to as many radars, each of
the form

ρ̃(x, θ; y, r, v) =
1

1 + 2‖x− y‖2
σ
(‖x− y‖

r

)
σ
(〈e(θ), x− y〉

v‖x− y‖

)
.

where y is the radar position, σ(s) = 1−((1+cos(2πs))/2)4 is a function vanishing periodically, r
is the ambiguous distance period, and v is the ambiguous radial velocity period. The ambiguous
periods r and v are related to the pulse repetition interval and frequency used by the radar, and
their product is bounded below. In this experiment, we choose to optimize following configuration
parameters, gathered into the abstract variable ξ ∈ Ξ : the position of the first radar x1 within
a disk, the position of the second one x2 within a line, and the blind distances r1, r2, r3 subject
to vi = 0.2/ri for 1 ≤ i ≤ 3.

Minimization over the parameter γ ∈ Γ in (9) is solved numerically using the eikonal solver
presented in this paper, thus defining a function E(ξ) := inf{E(ξ; γ); γ ∈ Γ} depending on
the radar configuration alone ξ ∈ Ξ. We use automatic differentiation to differentiate E(ξ), as
described in [MD17], and optimize this quantity via gradient ascent. Using these tools, a local
maximum of E(ξ) is reached in a dozen iterations approximately. Computation time is dominated
by the cost of solving a generalized eikonal equation in each iteration, which takes 0.26s on the
GPU and 9.6s on the CPU (Dubins model on a 200 × 100 × 96 grid). Since the optimization
landscape is highly non-convex, obtaining the global maximum w.r.t ξ would require a non-local
optimization method in complement or replacement of local gradient ascent, thus requiring many
more iterations and benefitting even more from GPU acceleration.

4 Conclusion

Geodesics and minimal paths are ubiquitous in mathematics, and their efficient numerical com-
putation has countless applications. In this paper, we present a numerical method for computing
paths which globally minimize a variety of energies featuring their curvature, by solving a gen-
eralized anisotropic eikonal PDE, and which takes advantage of the massive parallelism offered
by GPU hardware for computational efficiency. In comparison with previous CPU implementa-
tions, a computation time speed up by 30× to 120× is achieved, which enables convenient user
interaction in the context of image processing and segmentation, and reasonable run-times for
applications such as radar configuration which solve these problems within an inner optimization
loop.

Future work will be devoted to additional applications, to other classes of generalized eikonal
equations, and to the study of numerical schemes based on different compromises in favor of e.g.
allowing grid refinement or using shorter finite different offsets.
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