
HAL Id: hal-03170945
https://hal.science/hal-03170945v1

Preprint submitted on 16 Mar 2021 (v1), last revised 14 Aug 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accretive Computation of Global Transformations of
Graphs

Alexandre Fernandez, Luidnel Maignan, Antoine Spicher

To cite this version:
Alexandre Fernandez, Luidnel Maignan, Antoine Spicher. Accretive Computation of Global Transfor-
mations of Graphs. 2021. �hal-03170945v1�

https://hal.science/hal-03170945v1
https://hal.archives-ouvertes.fr

Accretive Computation of

Global Transformations of Graphs

Alexandre Fernandez, Luidnel Maignan, and Antoine Spicher

Univ Paris Est Creteil, LACL, 94000, Creteil, France
firstname.lastname@u-pec.fr

Abstract. The framework of global transformations aims at describing
synchronous rewriting systems on a given data structure. In this work we
focus on the data structure of graphs. Global transformations of graphs
are defined and a local criterion is given for a rule system to extend to
a graph global transformation. Finally we present an algorithm, with its
correction, which computes online the global transformation of a finite
graph in an accretive manner.

1 Introduction

In [10], the model of Global Transformations is introduced with the purpose of
capturing the essence of spatially extended dynamical systems which are simul-
taneously local, synchronous and deterministic. A paradigmatic example of such
systems are cellular automata where a set of local rules drives the synchronous

evolution of cells. We advocate that this kind of systems is not restricted to the
unique case of cellular automata. It can be generalized to any kind of spatial
organizations once the common and generic computation mechanism underlying
such systems is identified. Global transformations provide a formal framework
for describing this mechanism.

A classical approach in rewriting is to describe a local evolution rule as the
removal of a sub-part of a given input followed by a gluing of a new part with
the rest of the input, and the application of a rule can potentially prevent the
application of another rule. In contrast, in the global transformation approach,
the input is totally discarded. All applicable rules are applied together, their
results being glued together without any reference to the input. The way these
pieces of result are connected is driven by the way the matched sub-parts were
originally connected within the input. Formally, this connectivity of the state
space is captured by a category and the mechanism induces the local evolution
rules to extend to a functor over that category.

The applicability of global transformations to capture local, synchronous and
deterministic dynamical systems has been shown with examples like dynamic
meshes operations, acting on abstract cellular complexes [10], and like deter-
ministic Lindenmayer [5] systems and cellular automata [6], acting on formal
words. In parallel of these works, a software development has been undertaken
to demonstrate the practicability of the global transformation approach. The

2 Alexandre Fernandez, Luidnel Maignan, and Antoine Spicher

tool aims at embedding several non trivial data structures and at providing a
single generic algorithm for computing global transformations for all these cases
at once.

The present work aims at introducing a part of this development. More par-
ticularly, we are interested in the description of the global transformation com-
putation algorithm with a focus on the graph data structure. The corresponding
underlying category is the category of graphs with subgraph relationship as mor-
phisms. Formally, these morphisms are the monomorphisms of the usual category
of graphs. The choice of working with monomorphisms only is a key element of
our work. Indeed, the proposed algorithm computes the output of a global trans-
formation application accretively: local evolutions contribute one after the other
to the computation of the output by only adding fresh matter to the current
result. This strategy saves memory during the computation since it avoids the
generation of different instances of the same final element (vertex or edge) that
must be merged once they have been identified. We give sufficient conditions
for a collection of rules on graphs to only involves monomorphisms so that the
accretive algorithm can be used.

The article is organized as follows. Section 2 reminds general facts about
graphs in category theory. After defining in Section 3 global transformations
of graphs, Section 4 gathers the paper contributions: we start with the afore-
mentioned sufficient conditions; then we present the proposed online accretive
algorithm; we finish with its correction before conclusion.

2 Preliminaries

The reader is assumed to be familiar with the definitions of categories, functors,
monomorphisms, comma categories, diagrams, cocones and colimits. Refer to [9]
for details. These constructions are also pedagogically introduced in the context
of global transformation in [5].

We work with unlabeled directed multigraphs that we refer to as graphs

for simplicity. Let Graph be the usual category of graphs and GraphI be its
subcategory consisting of all graphs but only monomorphisms of Graph. We
write U : GraphI → Graph for the obvious forgetful functor. For clarity,
morphisms of GraphI and monomorphisms of Graph are written g →֒ g′.

Given a graph g, each of its elements (vertices and edges) corresponds bijec-
tively to a morphism in Graph from an atomic graph, the single-vertex graph
or the single-edge graph. In order to work in GraphI, we make a distinction
between proper edges and self-loops and consider A = {d, e, s} as set of atomic
graphs where

d = , e = and s = .

Monomorphisms in Graph are precisely the morphisms such that their ver-
tex and edge components are injective. This characterization can be expressed
directly within Graph by means of atomic graphs.

Accretive Computation of Global Transformations of Graphs 3

Proposition 1. Given two graphs g and g′ and a morphism m : g → g′, m is a

monomorphism if and only if m is an atomic-monomorphism, i.e. for all a ∈ A
and all pairs of monomorphisms p1, p2 : a →֒ g such that m ◦ p1 = m ◦ p2, we
have p1 = p2.

The category Graph is cocomplete. Given any diagram D : I→ Graph, we
write C = Colim(D) for the colimit of D; C also abusively designates the apex
and Ci : D(i)→ C the associated cocone components for any i ∈ I.

The usual description of colimits based on equivalence classes of vertices and
edges can be rephrased in terms of zig-zag as follows. A zig-zag z in a category
C is given by some natural number |z|, a sequence 〈zi〉0≤i≤|z| of |z|+ 1 objects
of C and a sequence 〈zi〉0≤i≤|z|−1 of morphisms in C of the form z0 → z1 ←
z2 → z3 · · · z|z| or z0 ← z1 → z2 ← z3 · · · z|z|. Given a functor F : C → D

and two morphisms g : c → F (z0) and g′ : c → F (z|z|), we write F (z) for the

zig-zag defined with |F (z)| = |z|, F (z)i = F (zi), and F (z)i = F (zi). Given
two morphisms f0 : c → z0 and f|z| : c → z|z|, z is said to link f0 and f|z|
if there is a sequence 〈fi : c → zi〉1≤i≤|z|−1 of morphisms such that, for any
i ∈ {0, . . . , |z| − 1}, fi = zi ◦ fi+1 or zi ◦ fi = fi+1 depending on the direction of
zi. We say that z links g and g′ through F if the zig-zag F (z) links g and g′.

Proposition 2. For any diagram D : I → Graph of small domain I with

C = Colim(D), any a ∈ A and any x : a →֒ C, there is at least one pair of

〈i ∈ I, y : a →֒ D(i)〉 such that x = Ci ◦ y, and any two such pairs 〈i, y〉 and
〈i′, y′〉 have a zig-zag z in I that links y and y′ through D.

C

D(i) D(z1) . . . D(i′)

a

C

a
y y′

Ci Ci′

x

3 Global Transformations

In the section, we adapt the definitions of global transformations given in [5,10]
to fit with the context of graphs.

Specification of Global Transformations. As a rewriting system, the specification
of a global transformation is based on a set of rules. Each rule γ = l ⇒ r expresses
that any occurrence of the left hand side (l.h.s.) l in the input object produces
the corresponding right hand side (r.h.s.) r in the output. The main feature of
global transformations is the promotion of this set of rules to a category whose
morphisms describe inclusion of rules. Such a rule inclusion i : γ1 → γ2 from a
sub-rule γ1 = l1 ⇒ r1 to a super-rule γ2 = l2 ⇒ r2 expresses how an occurrence
of l1 in l2 is locally transformed into an occurrence of r1 in r2. So a rule inclusion
is a pair i = 〈il : l1 → l2, ir : r1 → r2〉. Formally, such a presentation is captured
by a category and two functors.

4 Alexandre Fernandez, Luidnel Maignan, and Antoine Spicher

γ3

γ2

γ1

Fig. 1: Sierpinsky Rule System.

Definition 1. A rule system T = 〈ΓT ,LT ,RT 〉 is defined by:

– a category ΓT whose objects are called rules,
– a full embedding functor LT : ΓT → GraphI, called the l.h.s. functor, and
– a functor RT : ΓT → GraphI called the r.h.s. functor.

The subscript T is often omitted since this does not lead to any confusion.

Figure 1 illustrates a global transformation specification for generating a
Sierpinski gasket. The rule system is composed of 3 rules transforming locally
nodes (γ1), edges (γ2) and none cyclic triangles (γ3). These rules are related by
5 rule inclusions: in red for the 2 occurrences of γ1 in γ2 and in blue for the 3
occurrences of γ2 in γ3. Compounds, identities and symetries are not depicted.
Each inclusion rule is represented as two graph inclusions, the one between l.h.s.
and the other between r.h.s.; pairings are depicted using line styles.

Computing with Global Transformations. Given a rule system T , its application
on an arbitrary graph g is a three-step process. An illustration is given Fig. 2
based on the rules of Fig. 1.

1. Pattern matching which consists in decomposing the input graph by mean
of the rule l.h.s. It results a collection of l.h.s. instances, also called matches,
structured by rule inclusions. This step is achieved by considering the comma
category LT /g. See the top row of Fig. 2 for an illustration. Formally, the fig-
ure is a representation of LT ◦Proj[LT /g] where Proj designates the first pro-
jection of the comma category mapping each instance 〈γ ∈ ΓT , i : LT (γ) →֒
g〉 to the used rule γ. Notice the role of the rule inclusion arrows (in red and
blue) which are reminiscent of the input structure.

2. Local application of rules which consists in locally transforming each found
l.h.s. into its corresponding r.h.s., the structure being conserved thanks to
rule inclusions. This step is achieved by applying the r.h.s. functor RT on
each rule occurrence: RT ◦Proj[LT /g]. See the right column of Fig. 2 for an
illustration.

Accretive Computation of Global Transformations of Graphs 5

(1) pattern
matching

(2) local
application

(3) output
construction

Fig. 2: Step of computation of the Sierpinsky gasket using the rules of Fig. 1.

3. Output construction which consists in assembling the output graph from the
structured collection of r.h.s. The inclusions take here their full meaning as
they are used to align the r.h.s. and drive the merge. See the bottom row of
Fig. 2 for an illustration. The resulting graph is formally the apex of a cocone
from the diagram defined in the previous step which we used to obtain by
colimit [10,5]. Since colimits are only guaranteed in Graph, we consider the
following functor T : GraphI→ Graph:

T (−) = Colim(DT (−)) with DT (−) = U ◦ RT ◦ Proj[LT /−] (1)

using the forgetful functor U, T (g) being the result of the application.

Remark 1. Notice that T is a complete functor also acting on morphisms. Con-
sider a monomorphism m : g →֒ g′. By definition of colimits, T (g) is the uni-

6 Alexandre Fernandez, Luidnel Maignan, and Antoine Spicher

versal cocone with components T (g)〈γ,i〉 : U(RT (γ)) → T (g) for each instance

〈γ, i : LT (γ) →֒ g〉 ∈ LT /g. We have a similar construction for T (g′) which gives
rise to a cocone C as the restriction of T (g′) on the diagram of T (g). Formally,
C is defined with apex C = T (g′) and components C〈γ,i〉 = T (g′)〈γ,m◦i〉. The

image T (m) is then the mediating morphism from the colimit T (g) to C.

We focus on those rule systems where the results stay inside GraphI, i.e.
such that all previous mediating morphisms are monomorphisms. This leads to
the following definition of global transformation for GraphI.

Definition 2. A global transformation T is a rule system such that T factors

through the forgetful functor U : GraphI → Graph. In this case, we denote

T : GraphI→ GraphI the functor such that U ◦ T = T .

4 Incremental Global Transformations and Accretion

Now that the framework is set up, let us begin the algorithmic description of
the application of a global transformation by an efficient accretive mechanism.
Efficiency is obtained by producing each r.h.s. as soon as each l.h.s. is found,
in an online fashion, and by arranging the discovery of l.h.s. so as to avoid use-
less duplication, fusion and associated bookkeeping of the same final element.
Metaphorically, “matter is only added”, each piece of matter attracting other
closely related pieces of matter. This mechanism relies strongly on the fact that
global transformations are not just rule systems, but actually manipulate only
monomorphisms. We begin in Section 4.1 by providing a criterion ensuring that
a rule system is indeed a global transformation. We then explain how the cate-
gorical concepts of Section 3 are represented computationally (Section 4.2). This
is followed by a high-level (Section 4.3) then detailed description (Section 4.4)
of the algorithm with the main elements of its proof of correction (Section 4.5).

4.1 Incremental Rule Systems and Global Transformations

We are interested in giving sufficient conditions for rule systems to be global
transformations. The following conditions prevent a super-rule to merge by itself
the r.h.s. of its sub-rules. In other words, the rule only adds fresh matter to
the r.h.s. of its sub-rules in an incremental way. A positive expression of this
constraint is as follows: if the r.h.s. of two rules overlap in the r.h.s. of a common
super-rule, this overlap must have been required by some common sub-rules.

Definition 3. Given a rule system T , we say that a rule γ ∈ ΓT is incremental

if for any two sub-rules γ1
i1−→ γ

i2←− γ2 in ΓT , any atomic graph a ∈ A, and

any R(γ1)
p1

←֓ a
p2

→֒ R(γ2) such that R(i1) ◦ p1 = R(i2) ◦ p2, there are some

γ1
π1← γ′ π2→ γ2 and p : a →֒ R(γ′) such that the following diagrams commute.

Accretive Computation of Global Transformations of Graphs 7

γ

γ1 γ2

γ′

i1 i2

π1 π2

R(γ)

R(γ1) R(γ2)

R(γ′)

a

R(i1) R(i2)

R(π1) R(π2)

p1 p p2

A rule system T is said incremental if every γ ∈ ΓT is incremental.

We now establish that any incremental rule system is a global transformation.
For this purpose, consider the following lemma which allows to reduce to a span
any a zig-zag involved in the computation of the colimit of DT .

Lemma 1. Given an incremental rule system T = 〈Γ,L,R〉, a zig-zag z in Γ, an

atomic graph a ∈ A and two monomorphisms p0 : a →֒ R(z0), p|z| : a →֒ R(z|z|)
such that z links h0 and p|z|, there is a zig-zag z′ in Γ of the form z0 = z′0 ←
z′1 → z′2 = z|z| that also links p0 and p|z|.

R(z0) . . . R(z|z|)

a

R(z0) R(z|z|−1)

h0 h|z|

R(z0) R(z′1) R(z|z|)

a

R(z′0) R(z′1)

h0 h|z|

Proof. This is proved by induction on the length of z. We show the base case
with |z| = 0 by taking z′ = 〈idz0 , idz0〉. For the induction case we assume that
the proposition is true for any zig-zag of size k and take z of size k+1. Then we
have two cases that depends on the direction of the first morphism of z:

– If z0 : z1 → z0 we can apply the induction hypothesis on the zig-zag y =
〈z1, . . . zk+1〉 to get a zig-zag y′ of the form z1 = y′0 ←֓ y′1 →֒ y′2 = zk+1 that
links h1 and hk+1. Then we take z′ = 〈z0 ◦ y′0, y

′
1〉 to conclude this case.

– If z0 : z0 → z1 we first apply the induction hypothesis on y = 〈z1, . . . zk+1〉
to get a zig-zag y′ of the form z1 = y′0 ←֓ y′1 →֒ y′2 = zk+1 that links h1

and hk+1. Now observe that we have the commutative square R(z0) ◦ h0 =
R(y′0) ◦h

′. Applying Def. 3 on this square, we get a quadruplet 〈γ′ ∈ Γ, π1 :
γ′ → z0, π2 : γ′ → y′1, h : a→ R(γ′)〉 such that R(z0)◦R(π1) = R(y′0)◦R(π2),
h0 = R(π1) ◦ h, and h′ = R(π2) ◦ h. Here the wanted z′ is 〈π1, y′1 ◦ π2〉. ⊓⊔

Theorem 1. Any incremental rule system is a global transformation.

Proof. Consider the setting of Remark 1. We need to show that T (m) is a
monomorphism for m : g →֒ g′. Using Proposition 1, it is enough to show that

8 Alexandre Fernandez, Luidnel Maignan, and Antoine Spicher

T (m) is an atomic-monomorphism. Take any two morphisms p1, p2 : a →֒ T (g)
for a ∈ A such that T (m) ◦ p1 = T (m) ◦ p2. We are left to show that p1 = p2.

Take k ∈ {1, 2}. By Proposition 2, pk factors through some cocone component
of T (g). Say pk = T (g)〈γk,mk〉 ◦ qk where 〈γk,mk〉 is a object of L/g. So T (m) ◦

pk = T (m) ◦T (g)〈γk,mk〉 ◦ qk = T (g′)〈γk,m◦mk〉 ◦ qk. Since T (m) ◦ p1 = T (m) ◦ p2
then T (g′)〈γ1,m◦m1〉 ◦ q1 = T (g′)〈γ2,m◦m2〉 ◦ q2. Using Proposition 2 on the latter

equality into the colimit T (g′), there is a zig-zag z in L/g′ from 〈γ1,m ◦m1〉 to
〈γ2,m ◦m2〉 that links q1 and q2 through D(g′). The zig-zag Proj[L/g′](z) in Γ
obviously links q1 and q2 through U◦R. Since the rule system T is incremental, we
apply Lemma 1 to obtain a zig-zag z′ in Γ of the form γ1 = z′0 ←֓ z′1 →֒ z′2 = γ2
that links q1 and q2 through U ◦ R. Let us define the zig-zag z′′ in L/g to
be 〈γ1,m1〉 ←֓ 〈z′1, h〉 →֒ 〈γ2,m2〉 where h = m1 ◦ L(z′1) = m2 ◦ L(z′2) and
z′′j = 〈z′k,mk〉 for k ∈ {1, 2}. Clearly, Proj[L/g](z′′) = z′, so z′′ links q1 and q2
through D(g). By commutation properties of cocones over D(g), we have that
T (g)〈γ1,m1〉 ◦ q1 = T (g)〈γ2,m2〉 ◦ q2, which implies p1 = p2 as wanted. ⊓⊔

The suffficient conditions of Definition 3 are definitively not necessary.

Proposition 3. There exist non-incremental global transformations.

Proof. Consider the following rule system as a counter-example:

=

γ3

γ2

γ1

Let e1 : γ2 → γ3 the plain arrow into γ3 and e2 : γ2 → γ3 the dashed arrow into
γ3. Observe that for the cospan γ2 →֒ γ3 ←֓ γ2 we have h1 : e →֒ R(γ2) and
h2 : e →֒ R(γ2) such that R(e1)◦h1 = R(e2)◦h2 but there is no rule γ′ to ensure
the incremental condition. However, the functor T associated to this rule system
maps any graph to a thin version of it where parallel edges are replaced by a
single edge. Given any i : g →֒ g′, T (i) : T (g)→ T (g′) is a monomorphism. ⊓⊔

4.2 Categorical Constructions Computationally

Up to now, we exposed everything formally using categorical concepts. Let us
describe their computational counterparts. For this, we consider finite global
transformations and finite graphs.

First of all, the category GraphI is the formal abstraction of any library
for manipulating graphs. Such a library has to provide data structures for rep-
resenting (finite) graphs and monomorphisms between them, respectively the

Accretive Computation of Global Transformations of Graphs 9

objects and morphisms of GraphI. It also needs to come with a function taking
as input two finite graphs g and g′ and returning the set of monomorphisms
HomGraphI(g, g

′). This function corresponds in fact to a pattern matching al-
gorithm, as usual in categorical accounts of graph rewriting. A function − ◦ −
also needs to be provided to compute composition of monomorphisms, together
with a function − = − testing equality of monomorphisms. Finally, an extension
function can be optionally provided. Such a function takes two monomorphisms
m : g′ → g and e : g′ → g′′ and returns the set of all extensions of m along e,
i.e. all monomorphisms m′ ∈ HomGraphI(g

′′, g) such that m′ ◦ e = m. A default
implementation is readily possible, but a more efficient one is typically available.

Second, a finite rule system is described as a finite graph whose vertices
are pairs 〈l, r〉 ∈ GraphI × GraphI and edges are pairs of monomorphisms
〈m : l → l′, i : r → r′〉. The l.h.s. and r.h.s. functors L and R return the first
and second components of these pairs respectively. At the semantic level, Γ is
the category generated from this graph. For example, Fig. 1 actually describes
the graph that is used to generate the complete category corresponding to Defi-
nition 1. Although our implementation uses this graph directly without actually
generating the category Γ, we simplify the following discussion by referring to
the generated category only.

The algorithm being online, the comma category of step (1) is never entirely
represented in memory, neither is the cocone associated to the resulting colimit
of step (3). Their descriptions are part of the algorithm.

4.3 A High-level Description of the Algorithm

Let us consider once and for all a finite global transformation T = 〈Γ,L,R〉 and
a finite graph g. We write D for DT (g) for simplicity. As already mentioned, the
comma category L/g represents the collection of all instances of any l.h.s. in g
and their relations. It is discovered in a specific way for efficiency, by moving
from neighbors to neighbors and by exploiting two important asymmetries.

The first one is that, whenever we have a morphism 〈e, f ′〉 : 〈γ, f〉 →
〈γ′, f ′〉 ∈ L/g between two instances, the r.h.s. of γ′ contains the r.h.s. of γ
through e : γ → γ′. This means that 〈γ, f〉 does not contribute more data to the
output and it is enough to amalgamate only the r.h.s. of those 〈γ′, f ′〉 that are
“maximal” in L/g. A non-maximal 〈γ, f〉 has a relevant role only when there is
a second morphism 〈γ, f〉 → 〈γ′′, f ′′〉 to another maximal instance 〈γ′′, f ′′〉. In
this case, it specifies how the r.h.s. of γ′′ should be aligned with the r.h.s. of γ′

in the resulting graph.
The second asymmetry concerns the neighbors of a given instance 〈γ′ ∈ Γ, f ′ :

L(γ′)→ g〉. Indeed, it is really efficient to compute all “incoming neighbors” or
sub-instances

⋃
n HomL/g(n, 〈γ

′, f ′〉) specified as

{〈e, f ′〉 : 〈γ, f ′ ◦ L(e)〉 → 〈γ′, f ′〉 | e : γ → γ′}.

This corresponds simply to the composition in GraphI discussed earlier. On
the contrary, “outgoing neighbors” or super-instances

⋃
m HomL/g(〈γ

′, f ′〉,m)

10 Alexandre Fernandez, Luidnel Maignan, and Antoine Spicher

D(n1) G1 G2 G3 G3

D(n1) D(n1)

D(n4)

D(n1)

D(n2)

D(n5)

D(m1) D(m2) D(m3)

c1

D(i)

C(n1)

t1

c2

t2

c3

t3

n1 n1

n2 n3

n4

m1

n1

n2 n3

n4

n5 n6

m1

m2

n1

n2 n3

n4

n5 n6

n7

n8 m1

m2

m3

n2 n3

n4

n5 n6

n7

n8 m1

m2

m3

Fig. 3: Evolution of the data during the four firsts steps of the algorithm. From
left to right: we start with a non-maximal instance, process its associated maxi-
mal instances successively, and finally drop the non-maximal. At each stage, the
output is updated by generalized pushout.

correspond to extensions (so pattern matching) and are more expensive:

{〈e′, f ′′〉 : 〈γ′, f ′〉 → 〈γ′′, f ′′〉 |

e′ : γ′ → γ′′,f ′′ ∈ HomGraphI(L(γ
′′), g) s.t. f ′ = f ′′ ◦ L(e′)}.

Notice that these two specifications are obtained by simply unfolding the defi-
nition of the morphisms of the comma category. Also, the set of incoming mor-
phisms e : γ → γ′ and outgoing morphisms e′ : γ′ → γ′′ in Γ are directly
available in the description of T as an abstract graph. All in all, L/g is thought
as an abstract undirected bipartite graph that we call the network.

Fig. 3 illustrates the first steps of the algorithm representing maximal in-
stances as black dots, and non-maximal instances as white squares. The ini-
tialization step is to find a first instance. For efficiency, we therefore try each
minimal pattern, and start with the first founded minimal instance n1 ∈ Γ. At
this point, the first result G0 is simply the r.h.s. D(n1) and we memorize the
(identity) relationship between D(n1) and G0 and call it C(n1) : D(n1) → G0.
Then we consider all maximal super-instances of n1. In Fig. 3, we consider that
there are three such super-instances m1, m2 and m3 with associated morphisms
n1 → m1, n1 → m2 and n1 → m3, and they are processed one after the after.

The first iteration is the processing of m1 which consists in taking all its sub-
instances n1, . . . , n4, noticing that n1 was already computed, and therefore serves
as a link with the current result G0. The pushout of G0 and the r.h.s. D(m1) of
m1 through the morphisms C(n1) : D(n1)→ G0 and D(i) : D(n1)→ D(m1) is
therefore computed and gives the new result G1, where i is the morphism from
n1 to m1. Since G1 now includes the r.h.s. of all non-maximal N = {n1, . . . , n4}
discovered, we memorize as C(n) : D(n) → G1 for n ∈ N the location of these
r.h.s. in G1.

Accretive Computation of Global Transformations of Graphs 11

The second iteration processes m2 similarly and all its sub-instances n1,
n4, n5, and n6 are computed. This times, this is n1 and n4 that were already
computed and that serves as links with the current result G1. So a generalized
pushout is computed to amalgamate D(m2) within G1. We say generalized be-
cause there are two spans 〈n1, C(n1) : D(n1)→ G1, D(j) : D(n1)→ D(m2)〉 and
〈n4, C(n4) : D(n4)→ G1, D(k) : D(n4)→ D(m2)〉, one for each for each already
discovered non-maximal n1 and n4. We thus obtain G2 and update the set N
of discovered non-maximals and the locations C of their r.h.s. in G2. Note that
it is important to take the two spans into account simultaneously. Otherwise,
some non-monomorphism would enter the game, preventing some optimization
explained at the end.

The processing of m3 is similar and shows no novelty. At this point non-
maximal n1 does not have any further role to play and is dropped together with
all data associated to it, as shown in the the last step of Fig.3. Indeed, it has
linked all its associated maximal together in the result.

During these processings, other non-maximal instances see some of their as-
sociated maximals being processed. We have to keep track of this to avoid double
processing of maximals which would cause infinite loops. Also, non-maximals are
processed in the order of first discovery, so the next one is n2 in the example.
With these precautions, the algorithm proceeds by treating the maximals of n1,
which are at distance 1 from n1 in the network. Then each new non-maximals,
at distance 2 from n1, launches the processing of their new associated maximals,
at distance 3, and so on, until the complete connected component of the net-
work is processed. In memory, there are never stored more than four “radius” of
instances d, d+ 1, d+ 2 and d+ 3 from n1.

4.4 The Global Transformation Algorithm

Algorithm 1 gives a complete description of the previous procedure. The algo-
rithm manages four variables G, N , E and C. Variable G contains the output
graph. The part of the comma category that is kept in memory is represented
by variables N and E: N is a queue containing, in order of discovery, the non-
maximal instances that might still have a role to play and E associates each
instance in N to the set of their maximal super-instances that have already
been processed. For simplicity, E is not represented as a function from N to a
sets but as a relation. The r.h.s. D(n) of each instance n ∈ N is already in the
current result G through the morphism kept as C(n).

Lines 1 to 5 corresponds to the initialization step, where a first instance n
is found, its associated r.h.s. D(n) is taken as initial result G, and E and C
are initialized accordingly. While there are some non-maximal instances to treat
(line 6), take the first of them called n without removing it from N (line 7), and
compute (lazily) all its super-instances (line 8). Now, for each super-instance m
of n that is maximal and not already processed (line 9), compute all its sub-
instances (line 10) and the spans (line 11) allowing to amalgamate its associated
r.h.s. D(m) with the current result G (line 12). This produces a new result
G′ and two morphisms t : G → G′ and r : D(m) → G′ exhibiting G′ as the

12 Alexandre Fernandez, Luidnel Maignan, and Antoine Spicher

Algorithm 1: Global Transformation Application

Data: G : GraphI

Data: N : (L/g)∗

Data: E ⊆
∐

n∈N

∐
m HomL/g(n,m)

Data: C :
∏

n∈N HomGraphI(D(n), G)
1 let n = findAnyMinimal(T, g) any minimal element in L/g
2 let E = ∅
3 let C = {n 7→ idD(n)}
4 let N = n
5 let G = D(n)
6 while N 6= ǫ do
7 let n · = N
8 let M ′ =

∐
m Hom(n,m)

9 for (m,e) ∈ M ′ s.t. (n,m, e) 6∈ E and t is maximal do
10 let E′ =

∐
n′ Hom(n′,m)

11 let S = {〈n′, C(n′), D(e′)〉 | (n′, e′) ∈ E′, n′ ∈ N}
12 let (G′, t, c) = generalizedPushout(G,D(m), S)
13 E := E ∪ {(n′,m, e′) | (n′, e′) ∈ E′}
14 C := {n′ 7→ t ◦ C(n′) | n′ ∈ N}
15 C := C ∪ {n′ 7→ c ◦D(e′) | (n′, e′) ∈ E′, n′ 6∈ N}
16 N := N · 〈n′ | (n′, e′) ∈ E′, n′ 6∈ N〉
17 G := G′

18 E := {(n′,m, e′) ∈ E | n′ 6= n}
19 C := {n′ 7→ C(n′) ∈ C | n′ 6= n}
20 ·N := N

21 return G

generalized pushout, i.e. the colimit of all the spans in S simultaneously. At line
13, we keep track of which already discovered non-maximal the maximal m is
associated to, to prevent double-processing and infinite-loops as explained. At
line 14, we update for each previous non-maximal instance n′ ∈ N its morphisms
C(n′) : D(n′)→ G to G into a morphism t◦C(n′) to G′. At line 15, we bookkeep
for each new non-maximal n′ 6∈ N the morphism r ◦ D(e) indicating where its
associated r.h.s. D(n′) is to be found in G. Finally, we add all new non-maximal
instances to the queue N and switch to the new result at line 16 and 17. At this
point, the invariant is restored and we loop to the next maximal instance. Once
all maximal instances of n processed, we drop references to it at line 18, 19 and
20 and loop to the next non-maximal.

4.5 Correction of the Algorithm

This section is the proof of the correction of Algorithm 1 that we consider without
any memory management. We do as if the lines 18 and 19 were removed and
some alternative mechanism controlled the while loop.

Accretive Computation of Global Transformations of Graphs 13

Theorem 2. Given any finite rule system T , the algorithm computes T (g) for

all finite graphs g.

First, let us show that the different components of the previous coarse rea-
soning indeed correspond to the formal specification given in the Equation 1.
First of all, thinking in terms of maximal, non-maximal and minimal instances,
sub- and super-instances actually makes sense for any comma category L/g.

Proposition 4. For any category I, any functor F : I → GraphI, and any

graph g ∈ GraphI, the comma category F/g is thin, i.e. there is at most one

morphism between any two objects of F/g.

A thin category is isomorphic to a preordered set, but in our implementation,
any time an element is generated, all of its isomorphic elements are taken care of
at the same time. This corresponds informally to taking the poset of equivalence
classes of the preordered set.

Second, note that the network considered in the algorithm does not contain
the morphisms of L/g that are between non-maximal instances. The actual im-
plementation does use them, but only to discard useless redundancies in S at
line 11. The correction of this approach is given by the following proposition.

Proposition 5. The subcategory of L/g given by all instances but only mor-

phisms to maximal instances is final in L/g, in the sense of final functor.

Proof. We need to show that for any instance o ∈ L/g, and any two morphisms
e0 : o → o0 and e1 : o → o1, there is a zig-zag z in the subcategory and a
sequence of morphisms of L/g from o to each zk that commutes with each zk.
Take i ∈ {0, 1}. If oi is maximal we set zi = ei. If it is non-maximal, we set
zi = e′i ◦ ei for any e′i : oi → o′i to some maximal o′i. We have just built a valid
z of length 2 in the subcategory, the associated sequence of morphism being
simply z0, ido, z1, which trivially commutes as wanted. ⊓⊔

This means that any colimit computed on a functor from L/g is unchanged if
the functor is restricted to the network subcategory.

To continue, let us describe the evolution of the data, and start by using E0,
C0, n0 and G0 to denote the values taken by the variable E, C, n and G at lines
2, 3, 4 and 5 respectively. Let us also write N0 = {n0}, and M0 = ∅. These data
describe two things: the initial sub-network E0 with a single non-maximal N0 =
{n0}, no maximal M0 = ∅, and no morphisms E0 = ∅; and the initial cocone K0

of D ↾ E0 having G0 for apex and components K0,n0
= C0(n0) = idD(n0).

This initial situation is then updated at the discovery of each new maximal.
Let us use 〈mi, E

′
i, Si, G

′
i, ti, ci, Ei, Ci, Ni, Gi〉 starting with i = 1 to denote the

successive values taken by the respective variables at lines 9 to 17. Let us add
Mi = Mi−1∪{mi} to denote the set of discovered maximals. These data describe
the successive sub-networks Ei having for set of objects the non-maximals Ni

and the maximals Mi, and for set of morphisms Ei. The described cocone Ki

over D ↾ Ei have Gi for apex and components Ki,n = Ci(n) for n ∈ Ni, Ki,mj
=

ti ◦Ki−1,mj
for all j < i and Ki,mi

= ci. Lines 14 and 15 gives us that Ki,n =
ti◦Ci−1(n) = ti◦Ki−1,n for n ∈ Ni−1 andKi,n = ci◦Di−1(e) for all a ∈ Ni\Ni−1.

14 Alexandre Fernandez, Luidnel Maignan, and Antoine Spicher

In this setting, what are left to be proved are, first, that the successive sub-
network Ei, as described by the evolution of Ni and Mi and Ei, grows until
the complete network is covered, and, second, that the cocone Ki, as described
by the evolution of Gi, Ci and ti and ci, maintain the property of being the
universal cocone of D ↾ Ei. For the growing of Ei, a look at lines 1, 2, 4, 6,
7, 8, 9, 10, 13, and 16, 20, should be enough to convince the reader that we
progress from each radius to the next as wanted, until the complete connected
component is covered. In fact, Ei consists of all maximals Mi = {mj | j ≤ i}
and all morphisms to them, a new maximal being added at each iteration.

Now, we proceed inductively to show that Ki is indeed the universal cocone
of D ↾ Ei for all i. This is clearly true for i = 0, so we jump to the induction step
and suppose that some i. Looking at lines 10, 11, 12 and 17, we see that Gi+1 is
the generalized pushout of the spans collected in Si+1, i.e. Gi+1 = Colim(Si+1),
where Si+1 refers to the following diagram

D(n′) . . . D(n′′)

Gi

D(mi+1)
Ci(n

′)
Ci(n

′′)

D(e′)

D(e′′)

where {n′, . . . , n′′} are sub-instances of mi+1 that are also sub-instances of pre-
vious m ∈Mi. This can also be written {n′, . . . , n′′} = Ni ∩Ni+1.

Proposition 6. For all i ≥ 1, if Gi = Colim(D ↾ Ei) with Ki as universal

cocone, then Gi+1 := Colim(Si+1) is such that Gi+1 = Colim(D ↾ Ei+1) with

Ki+1 as universal cocone.

Proof. Let us consider a bigger diagram containing the diagrams D ↾ Ei, Si+1

and D ↾ Ei+1. For this, we take D ↾ Ei+1 and add the object Gi and all
morphisms Ki(o) : D(o) → Gi for o ∈ Ni ∪Mi. But universality of Gi, there is
a bijection between cocones on this big diagram and cocones on D ↾ Ei+1.

D(n) . . . D(n′) . . . D(n′′) . . . D(n′′′)

D(m1) . . . D(mi) D(mi+1)

Gi

Adding to the picture Gi+1 := Colim(Si+1) with the associated morphisms ti+1

and ci+1, recall that Ki+1,o = ti+1 ◦ Ki,o for all o ∈ Ni ∪Mi, and Ki+1,o =
ci+1 ◦ D(e) for all e : o → mi+1. This is indeed a cocone on D ↾ Ei+1 by
properties of ti+1 and ci+1, and extending it with Ki+1,Gi = ti+1 gives us the
unique corresponding cocone on the big diagram. To establish that it is universal,
let us consider another arbitrary cocone W on D ↾ Ei+1.

Accretive Computation of Global Transformations of Graphs 15

D(n) . . . D(n′) . . . D(n′′) . . . D(n′′′)

D(m1) . . . D(mi) D(mi+1)

Gi

Gi+1

ti+1 ci+1
W

By diagram chasing, one can see that this cocone can be restricted to its com-
ponents on Ei, i.e. on {n, . . . , n′′,m1, . . . ,mi}. This gives us a unique extension
of W on all the big diagram. By restricting again to its components on S, i.e.
components at n′, . . . , n′′, Gi,mi+1, and by universality of Gi+1, we obtain a
unique mediating from Gi+1 to W , as wanted. ⊓⊔

As a last remark, note that the splitting of colimit as specified by the algo-
rithm ensures that all ti and ci are monomorphisms.

Proposition 7. Given that T is incremental, we have that for each i ≥ 1,
ti : Gi−1 → Gi and ci : D(mi)→ Gi are monomorphisms.

Proof. The proof is similar to the proof of Theorem 1. ⊓⊔

In the implementation of the algorithm, this fact is used, and all modifications
are realized in place. In other words, everything is implemented to ensures that
t and c always act as identity functions. This means that neither line 14 of the
algorithm, nor the composition in line 15 are actually implemented.

5 Conclusion

In this paper, we have presented an algorithm for computing the application of
global transformations on graphs. Our primary goal was to show the feasibility
of implementing global transformations. Indeed parallel graphs rewriting usu-
ally rises the issue of rule overlaps and conflict management (for example with
restricting conditions to get only conflict-free rule systems [2] or by merging
alternatives [4,3]). This issue does not arise in our approach which formally en-
forces the rules to mutually agree in case of overlap [10]. The cost of this strategy
is a multiplication of rules causing an over load of work during computation [5].
As a comparison, the Sierpinski rule system of Fig. 1 is the data of 8 rules where
a unique one is enough for alternative approaches [11]. The focus on maximal
instances in the proposed algorithm clearly shows that only maximal instances
matters during computation, sub-instances being used to guide the exploration
of the match space. Moreover, the extra cost of memory requirement for storing
instances is strongly reduced thanks to the comma category discovery strategy.

The proposed algorithm has been designed to be generic. Indeed in Algo-
rithm 1 no graph-specific operations are referred, so it can also be used with
some underlying category C once a suitable generalizedPushoutC operation is
provided. As an example, the algorithm is perfectly functional for the category
of words given in [5]. We are currently investigating the necessary properties

16 Alexandre Fernandez, Luidnel Maignan, and Antoine Spicher

on C and generalizedPushoutC for the algorithm to be correct. The study of
the specificity of on the case C = GraphI and comparison with other tools
for graph rewriting (like GPaR, Two Tapes, GrGen.NET, XL, etc.) have been
delayed to future work. A part of the effort is also devoted to the extensions of
the algorithm to account for parametrized (i.e., dealing with labels) and non-
deterministic variants of global transformations [8].

By essence parallel rewriting systems implement the principle of space homo-

geneity: all rules apply everywhere. Rule inclusions obey to the same principle:
the r.h.s. of a super-rule has to contain the r.h.s. of its sub-rules. Conversely,
a sub-rule factorizes the common behavior of its super-rules. The incremental
criterion goes further by stating the independence of rules: given a super-rule, its
r.h.s. contains the r.h.s. of its sub-rules as if they were considered independently.
This alternative expression has been proved equivalent to Definition 3 [7]. The
criterion prevents from intuitively non-local behavior like collapsing non-empty
graphs to a single vertex. From that point of view, incremental global transfor-
mations follow the research direction of causal graph dynamics [1]. In this work
any produced matter (vertex or edge) in the output is attached to an element
of the input graph and a particular attention is put on the fact that two rule
instances cannot produced a common fresh piece of matter. Future work also
concerns understanding the notion of locality and causality in global transfor-
mations and to relate these notions to a kind of topological continuity of the
transformation.

References

1. Pablo Arrighi, Simon Martiel, and Vincent Nesme. Cellular automata over gener-
alized cayley graphs. Math. Struct. in Comp. Sc., 18:340–383, 2018.

2. Thierry Boy de la Tour and Rachid Echahed. A set-theoretic framework for parallel
graph rewriting. arXiv preprint arXiv:1808.03161, 2018.

3. Stéphane Despréaux and Aude Maignan. Gpar: A parallel graph rewriting tool.
In 2018 20th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC), pages 53–60. IEEE, 2018.

4. Rachid Echahed and Aude Maignan. Parallel graph rewriting with overlapping
rules. arXiv preprint arXiv:1701.06790, 2017.

5. Alexandre Fernandez, Luidnel Maignan, and Antoine Spicher. Lindenmayer sys-
tems and global transformations. In International Conference on Unconventional
Computation and Natural Computation, pages 65–78. Springer, 2019.

6. Alexandre Fernandez, Luidnel Maignan, and Antoine Spicher. Cel-
lular Automata and Kan Extensions. Research report, Univ Paris
Est Creteil, LACL, 94000, Creteil, France, February 2021. URL:
https://hal.archives-ouvertes.fr/hal-03149398.

7. Alexandre Fernandez, Luidnel Maignan, and Antoine Spicher. Incremental Global
Transformation of Graphs. Research report (to be published), Univ Paris Est
Creteil, LACL, 94000, Creteil, France, 2021.

8. Alexandre Fernandez, Luidnel Maignan, and Antoine Spicher. The
Bicategory of Open Functors. Research report, Univ Paris Est
Creteil, LACL, 94000, Creteil, France, February 2021. URL:
https://hal.archives-ouvertes.fr/hal-03139482.

https://hal.archives-ouvertes.fr/hal-03149398
https://hal.archives-ouvertes.fr/hal-03139482

Accretive Computation of Global Transformations of Graphs 17

9. Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer
Science & Business Media, 2013.

10. Luidnel Maignan and Antoine Spicher. Global graph transformations. In GCM@
ICGT, pages 34–49, 2015.

11. Gabriele Taentzer, Enrico Biermann, Dénes Bisztray, Bernd Bohnet, Iovka Boneva,
Artur Boronat, Leif Geiger, Rubino Geiß, Ákos Horvath, Ole Kniemeyer, et al.
Generation of sierpinski triangles: A case study for graph transformation tools. In
International Symposium on Applications of Graph Transformations with Indus-
trial Relevance, pages 514–539. Springer, 2007.

	Accretive Computation ofGlobal Transformations of Graphs

