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Abstract

In recent decades, global warming has contributed to an increase in the number and inten-
sity of wildfires destroying millions hectares of forest areas and causing many casualties
each year. Firemen must therefore have the most effective means to prevent any wildfire
from breaking out and to fight the blaze before being unable to contain and extinguish it.
This article will present a new network architecture based on Convolutional Neural Net-
work to detect and locate smoke and fire. This network generates fire and smoke masks in
an RGB image by segmentation. The purpose of this work is to help firemen in assessing
the extent of fire or monitor an incipient fire in real time with a camera embedded in a
vehicle. To train this network, a database with the corresponding images and masks has
been created. Such a database will allow to compare the performances of different net-
works. A comparison of this network with the best segmentation networks such as U-Net
and Yuan networks has highlighted its efficiency in terms of location accuracy, reduction
of false positive classifications such as clouds or haze. This architecture is also efficient in
real time.

1 INTRODUCTION

Each year, the news highlights the importance of fire detection
when it comes to saving lives, wild forests and homes. Video
images are able to detect and locate smoke and fire in real time
and help firemen to act quickly. Therefore, most of the time,
smoke is the first sign of a fire outbreak. Smoke detection and
localization provide information such as starting points, size,
type etc. It is essential to allow the firemen to organize the action
plan to protect the population and the operation to put out the
fire as quickly as possible. In the event of a wildfire, respon-
siveness is a very important factor in saving lives and protect-
ing nature.

Yann Le Cun pointed out the use of Convolutional Neural
Network (CNN) for classification in image learning. This type
of neural network by their accuracy uninterrupted have kept
growing for two decades. The substantial rate of improvements
of this type of architecture has kept increasing for image classi-
fication [1, 2]. CNN’s enhancements not only relate to the clas-
sification of images but also to the location of objects whose
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bounding box methods are examples [3–5]. Kaiming He et al
combine bounding box and segmentation to improve the object
localization [6].

In recent years, semantic segmentation methods have been
proposed using convolutions and deconvolutions architectures
[7]. The main advantage of semantic segmentation of RGB
images is to detect and locate objects in a single operation
promptly and accurately. Generally, the network is trained by
supervised learning based on examples input RGB images and
output masks pairs.

We suggest studying and comparing different convolutional–
deconvolutional architectures of neural network segmentation
to detect and locate smoke and fire in RGB frames. Our goal is
to find the best structure to segment smoke and fire compatible
with real time.

Inspired by the success of fully convolutional network
segmentation, we introduce in this article a new architecture
based on the VGG16 [8] for the convolution phase. To increase
the depth of our network and the size of the receptive field,
we have replaced the fully connected layer of the VGG16
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TABLE 1 Comparison between VGG16 and our network for the coding phase. Nb FM: number of feature maps. Size FM: feature map size. Feature map size
for an example of a 640×480 RGB image

Coding phase

VGG16 network Our network

Operations Nb FM Operations Nb FM Name Size FM

Convolution + ReLu 3x3 64 Convolution + ReLu 3x3 64 FM1 640x480

Convolution 3x3 + ReLu 64 Convolution 3x3 + ReLu 64 FM2 640x480

MaxPooling 2x2 64 MaxPooling 2x2 64 FM3 320x240

Convolution 3x3 + ReLu 128 Convolution 3x3 + ReLu 128 FM4 320x240

Convolution 3x3 + ReLu 128 Convolution 3x3 + ReLu 128 FM5 320x240

MaxPooling 2x2 128 MaxPooling 2x2 128 FM6 160x120

Convolution 3x3 + ReLu 256 Convolution 3x3 + ReLu 256 FM7 160x120

Convolution 3x3 + ReLu 256 Convolution 3x3 + ReLu 256 FM8 160x120

Convolution 3x3 + ReLu 256 Convolution 3x3 + ReLu 256 FM9 160x120

MaxPooling 2x2 256 MaxPooling 2x2 256 FM10 80x60

Convolution 3x3 + ReLu 512 Convolution 3x3 + ReLu 512 FM11 80x60

Convolution 3x3 + ReLu 512 Convolution 3x3 + ReLu 512 FM12 80x60

Convolution 3x3 + ReLu 512 Convolution 3x3 + ReLu 512 FM13 80x60

MaxPooling 512 MaxPooling 512 FM14 40x30

Convolution 3x3 + ReLu 512 Convolution 3x3 + ReLu 512 FM15 40x30

Convolution 3x3 + ReLu 512 Convolution 3x3 + ReLu 512 FM16 40x30

Convolution 3x3 + ReLu 512 Convolution 3x3 + ReLu 512 FM17 40x30

MaxPooling 2x2 512 MaxPooling 2x2 512 FM18 20x15

Fully connected layer + ReLu 4096 Convolution 7x7 1024 Output coding phase 20x15

Fully connected layer + ReLu 4096

Fully connected layer + Softmax 1000

structure for a 7 ×7 convolution operation kernel Table 1 .
Removing fully connected layers frees us from the input size
of images. For the decoding phase, we have chosen to use only
three transposed convolutions to reach for the output masks
the size of the input data. The output of the first and second
up-sampling operation are combined with feature maps of
the coding path [9] and followed by a convolution operation.
Context information is propagated to the higher resolution
layers by this sharing of the feature maps in the decoding
path.

The paper is organized as follows: In Section 2, first of
all, we have reviewed related work to convolutional neu-
ral network applied to semantic segmentation as well as the
evolution of smoke and fire detection techniques. Then, in
the same section, we describe our distinctive network archi-
tecture,the composition of our smoke/fire database and the
evaluation parameters chosen to compare our network to
Yuan [10] and U-Net [11] networks. The experimental results
and discussion of our study are presented in the Section 3.
Finally, the last section summarizes our work and lists the
ways to improve semantic segmentation of smoke and
fire.

2 RELATED WORK

2.1 Convolution neural network for
semantic segmentation

Historically, first methods for fire and smoke detection in an
image or video rely exclusively on colours. The latter have given
satisfactory results. Some interesting works can be mentioned:
Toreyin et al. did an extensive work on this field, in [12–15].
In [12], as an initial step in his fire and flame detection system,
he used a hybrid background estimation for moving region
detection. Afterwards, colours of moving pixels are compared
with a colour distribution obtained from sample images con-
taining fire regions. In the third step, he uses a temporal wavelet
analysis to determine high activity region within these moving
regions. Finally, he processed a spatial wavelet analysis of
moving regions containing fire mask pixels to capture colour
variations in pixel values. These two last steps are crucial in
Toreyin’s approach because of the turbulent high frequency
behaviors on the boundary and inside a fire region. In [13]
and [14], he enhanced his model by using separate Markov
models for flame and non-flame moving pixels. He also, carried
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out a flicker analysis by using HMMs and a wavelet domain
analysis of object contours. Finally in [15], he updates his
work using the least-mean-square (LMS) algorithm to combine
the decisions from four sub-algorithms: (i) detection of fire
coloured moving objects, (ii) temporal and (iii) spatial wavelet
analysis for flicker detection, and (iv) contour analysis of flame
boundaries. Similarly, Celik made a significant contribution in
this area: [16–18]: The main originality in his work was the use
of YCbCr colour space instead of the RGB one to construct
a generic chrominance model for flame pixel classification.
Moreover, he developed new rules in YCbCr colour space
to alleviate the harmful effects of changing illumination and
improved detection performance. Other methods similar and
derived from those presented above can be found in [19].

These methods have brought an advanced solution to the
field of fire and smoke detection in videos and images. Unfor-
tunately, they remain sensitive to the problem of false alarms.
Moreover, these methods require an expert to set the rules and
features of the process for the object classification pipeline.
On the other hand, there are methods based on neural net-
works that make it possible to overcome these weaknesses. In
2012, Alex K.’s work highlighted this type of method [1]: the
so called “Deep Learning.” This field predates Alex’s work,
and was initiated by Hinton [20], Lecun [21], Bengio [22]
etc.

For a few years now, deep learning has become an essential
tool for detecting smoke and fire in images or videos. This is
due to the robustness of the algorithms used and the increasing
availability of data. Sebastien [23] is one of the first researchers
who used Convolutional Neural Network (CNN) to detect fire
and smoke in a video stream. The CNN model inspired by
AlexNet [1] operates directly on raw RGB frame without the
need of the feature extraction stage. The CNN automatically
learns a set of visual features from the training data. A classifi-
cation accuracy score of 97 % was achieved. Similarly, Muham-
mad [24] used a fine-tuned CNN derived from Squeeze Net
[25]. The latter allows the detection, localization and semantic
interpretation of the fire scene to be carried out at the same
time. More recently, Kim [26], proposed a net based on Faster
Region-based Convolutional Neural Network (R-CNN) [27] to
detect the suspected regions of fire (SRoFs) and of non-fire
based on their spatial features. He also used Long Short-Term
Memory (LSTM) [28] to interpret the dynamic fire behavior.
The last methods give very good results, but that is still not
enough, as the location of the fire or smoke region is not pre-
cise and is only characterized by a bounding box. To overcome
this weakness, we have moved toward complete semantic seg-
mentation. Indeed, semantic segmentation classifies all the pix-
els of the image, thus making the location of the fire or smoke
very accurate.

Technical achievement of Convolutional Neural Network
applied to semantic segmentation (CNN Segmentation) [9] has
led us to apply this type of architecture to detect and locate
smoke and fire. Smoke and fire are difficult to segment due
to their non-constant shape and colour characteristics. The fire
seems to be easier to segment than smoke due to its hues, but
fire is less present at the start of a wildfire and de facto less

present in database images involving a difficulty in classifying
it.

The U-net network architecture [11] is composed of an
encoder-decoder with the distinctive particularity of sharing
features maps from the convolution phase to the deconvolu-
tion phase.

Feiniu Yuan et al. [10] propose a smoke segmentation using
CNN with an architecture composed of two different paths
merging at the end to create the smoke mask. Both coding
part are based on VGG16 architecture [8]. The coding path
is followed by a successive up-sampling operations with con-
catenations of coding feature maps. The first path, which is
deeper, provides global contextual information for smoke seg-
mentation. The second shallower gives rich local information
for smoke localization and object details.

2.2 Our architecture

We assume a camera onboard a drone or a helicopter to locate
a fire or smoke. Vehicle movements might not allow us to fix
same spatial pixels in successive frames. This can prevent us
from focusing on the temporal dynamic texture of fire and
smoke. Our CNN architecture segments fire and smoke in each
video frame without taking into account the temporal history of
the pixels.

Our network (Figure 1) is based on VGG16 architecture [8]
for coding phase. VGG16 is an architecture model proposed by
K. Simonyan and A. Zisserman from the University of Oxford
used for large-scale image recognition with good accuracy. We
have chosen this structure for the coding phase due to the per-
formances of features extraction for a large diversity of objects
classification. VGG16 is composed of 13 convolution operation
blocks with kernel 3×3 followed by three fully connected lay-
ers allowing object classification. For the coding phase, we kept
from the VGG16 architecture for our network the five convolu-
tion blocks with a 3 × 3 kernel followed by a maxpooling oper-
ation. The dense layers of VGG16 structure set the input size
of the image at 224 × 224 pixels. We have chosen to replace the
fully connected layer by a convolutional operation with a 7 × 7
kernel giving 1024 feature maps. This approach keeps out from
the issue of input images size (Table 1). We test different sizes
for the last kernel (1×1, 3×3, 5×5, 7×7, 9×9). The 7×7 kernel
size was the best compromise between accuracy segmentation
and time consuming.

The purpose of the coding phase is to extract local infor-
mation relating to fire and smoke. The deeper layers lose
detail localization but increase the generalization capacity of
the classification process. The decoding phase aims to recre-
ate a high resolution segmentation of fire and smoke with good
generalization. To achieve this objective, like U-Net network,
we concatenate feature maps of the coding phase with the
decoding phase to propagate contextual information to higher
layers.

The decoding phase is composed of two transpose convo-
lutions (up-sampling operation) with a 4×4 kernel and a last
transpose convolutions with a 16×16 kernel Table 2. The wide



FRIZZI ET AL. 637

TABLE 2 Our network decoding phase. Nb FM: number of features
maps. Size FM: feature map size. Feature map size for an example of a 640x480
RGB image

Decoding phase

Operation type Nb FM Size FM

Output coding phase 1024 20x15

Deconvolution 4x4 Kernel 512 40x30

Concatenation with FM14 1024 40x30

Convolution 3x3 kernel + ReLU 512 40x30

Deconvolution 4x4 Kernel 256 80x60

Concatenation with FM10 512 80x60

Convolution 3x3 kernel + ReLU 256 80x60

Deconvolution 16x16 Kernel 3 640x480

“receptive field” of the transpose convolution kernel aims to
increase the generalization capacity of the mask constructions.
The first and second up-sampling operations are followed by a
concatenation operation with the feature maps of coding phase
and followed by convolution operation with a kernel 3×3. All
convolution operations are followed by Rectified Linear Units
ReLU activation function. The training parameter number of
our network architecture is 57 million.

While U-Net architecture use four up-convolutions and Yuan
eight with kernel 2×2, we use only three with the kernels
4×4, 4×4, and 16×16, respectively. Our coding path based on
VGG16 is different from U-Net one. Our network differs from
Yuan’s network due to a unique coding–decoding path, as well
as the size of the kernel 7×7 of the last convolution of the cod-
ing phase.

2.3 Our database

Database quality is of paramount importance to train deep net-
work with good accuracy. We use internet images with differ-
ent sizes and qualities. The presence in the database of different
type of rather whitish or blackish smoke is also important to
detect and segment correctly most types of the fires. We seg-
mented 366 images and labelled them manually with Labelme
software under Linux [29]. We performed offline data augmen-
tation by flipping, cropping, rotating, adding noises, changing
contrast/brightness and a combination of theses transforma-
tions to reach 8784 images (Figures 2 and 3).

The 8784 images are divided into 82% to train our network
(7224 images) and 18% (1560 images) to validate it. The valida-
tion images set is only used to follow the IoU (Intersection over
union) metric for each class and avoid over-fitting. The weight
and bias of the network are set during the validation phase.

2.4 Evaluation parameters

We used the Python library Tensorflow 1.12.0 and Opencv 3.4.0
under Linux 18.04 to train our network and rise up the num-

ber of image data. We worked with GPU of a Nvidia GeForce
1080 graphic card with 11GB RAM. We initialized the param-
eters of the coder part of the network (weight of the first
13 convolution operations ) by using a VGG16 pre-trained
model on the ImageNet database. We trained our model on
our train dataset with an Adam optimizer method [30] with a
set learning rate of 5×10−5 and a cross entropy with logit loss
function.

We compared our architecture with the U-Net [11] and
Yuan [10] networks. To measure fairly the respective perfor-
mances of these networks, we trained the three networks on
our dataset. Unfortunately, we were unable to test our net-
work with Yuan team dataset due to the absence of fire
masks.

Training parameters for the U-Net and Yuan network follow
the procedure explained in their research articles.

2.4.1 Standard accuracy metrics

This sections describes metrics criteria used to com-
pare the performances of segmentation for the differ-
ent networks [31]. The confusion matrix (Figure 4) allows
for each class and on all the valid images to calculate
standard metrics to evaluate the performance of pixel
classification.

Accuracy is a good tool to report the percentage of the
correctly classified pixels in the image. We have chosen to
report accuracy for each class. We calculated the average
accuracy (1) on the N validation images for each class c.
TPi , TNi , FPi and FNi are for the ith image, respectively,
the true positives, true negatives, false positives and false
negatives.

Accuracy
c
=

N∑
i=1

(
TPi + TNi

TPi + TNi + FPi + FNi

)
. (1)

Precision (2) provides a class agreement of the data labels
with the positive labels given by the classifier,

Precision
c
=

N∑
i=1

(
TPi

TPi + FPi

)
=

N∑
i=1

(
TPi

PredPositivesi

)
. (2)

Recall (3) permit to assess the effectiveness of the network to
identify positives labels with respect to the ground truth labels.

Recall
c
=

N∑
i=1

(
TPi

TPi + FNi

)
=

N∑
i=1

(
TPi

Truepositivesi

)
. (3)

We calculated metrics on valid images for each class and not
global metrics because they are not appropriate when the rep-
resentative frequency of the classes is unbalanced. Our database
is unbalanced, the pixels of the smoke class are more frequent
than those of the fire class.
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FIGURE 1 Network architecture

2.4.2 Intersection over Union

Jaccard index or Intersection over Union (IoU) criterion (4)
allows a quantitative evaluation of the accuracy segmentation.
We used this criterion on the valid dataset by calculating the
average IoU for each class (GroundTruth, smoke and fire )

IoU
c
=

N∑
i=1

(
TPi

TPi + FNi + FPi

)
. (4)

2.4.3 ROC curves

Receive Operating Characteristic (ROC) curve [32] (Figure 5) is
a graphical representation of a model performance in function
of the classification threshold. We used a Softmax function on
the last feature maps to evaluate the likelihood of each pixel in
order to verify if it belong to a given class or not. In addition
to the area under the ROC curves [33] , this evaluation method
determines the behavior toward the false negatives or false pos-
itives of the model.

Finally, we selected two methods to define the optimal
threshold which gives the maximum correct pixel classification

(Figure 5). The first consists in finding the optimal classifica-
tion threshold by minimizing the distance d between the point
(FPR=0,TPR=1) and the point(FPR,TPR) for a given thresh-
old. The second method is based on maximizing the Youden
index J [34] that maximizes the distance between the random
chance line and the point (FPR,TPR) for a given threshold.
Maximal J criterion is commonly used because it gives the
threshold which maximizes the TPR and minimizes the FPR
[35].

2.4.4 Other criterion

We chose to plot the accuracy and IoU versus the threshold
to evaluate the probability distribution of the pixel classifica-
tion for a given class. We use the Softmax function at the
output of the networks to calculate the probability of pixel
prediction.

In addition, by observing the shape of the accuracy or
IoU versus time, we could compare the ability of networks to
segment classes. The decrease in the accuracy curves versus
threshold (for high threshold) indicates a low proportion of
high probability that the pixels belong to class c means lower
segmentation performance.
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FIGURE 2 Example of augmentation image smoke: (a) original image and smoke mask; (b) flip and crop transformations; (c) flip and contrast variation
transformations; (d) rotation and contrast variation transformations

TABLE 3 Average accuracy, precision, recall and IoU for background class

Background Accuracy Precision Recall IoU

Our network 0.934 0.916 0.939 0.864

U-Net network 0.902 0.872 0.915 0.806

Yuan network 0.924 0.899 0.934 0.846

3 EXPERIMENTAL RESULTS

In this section, we compare segmentation classification perfor-
mance for smoke, fire and background in RGB images with
different networks. We have chosen the last two best architec-
tures for images segmentation which are U-Net network [11]
and Yuan et al. network [10]. We have used the same validation
images not yet seen by the network to compare network perfor-
mances.

Tables 3–5 show that the U-Net network achieved the lowest
performance in the background, fire and smoke pixels classifi-

TABLE 4 Average accuracy, precision, recall and IoU for Smoke class

Accuracy Precision Recall IoU

Our network 0.925 0.941 0.907 0.858

U-Net network 0.893 0.915 0.866 0.801

Yuan network 0.916 0.934 0.895 0.841

TABLE 5 Average accuracy, precision, recall and IoU for Fire class

Accuracy Precision Recall IoU

Our network 0.981 0.794 0.890 0.723

U-Net network 0.977 0.764 0.833 0.663

Yuan network 0.981 0.813 0.860 0.718

cation. U-Net has low segmentation efficiency considering the
IoU for each classes. The network of Yuan et al. achieves fire
classification fairly well by equalizing the average accuracy with
respect to our network. Nevertheless, the fire recall parameter
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FIGURE 3 Example of augmentation image smoke and fire: (a) original image, smoke and fire mask; (b) flip transformation; (c) rotation and crop transformation;
(d) rotation, crop and contrast variation transformation

FIGURE 4 Confusion matrix and notation

FIGURE 5 (a) RGB image. Area of smoke and fire are ambiguous (b)
Ground truth segmentation ( green: smoke and red:fire). you can note the smoke
area segmented under the tree. (c) the predicted segmentation. The network seg-
ment fire area under the tree

for our network surpasses the Yuan network indicating a better
classification. The IoU metrics prove the pre-eminence of our
network to generalize segmentation over fire and smoke classes.

#ipr212046-tbl-0004.tab Fire IoU is lower than the smoke
and the background classes for all the networks. The first expla-
nation of this low value is due to the manual segmentation of
the ground truth in our database. It seems easier to segment
fire according to its distinctive red or orange colour but it does
not. When we segment an image containing fire and smoke, it is
difficult to separate the bounds between fire and smoke. Some-
times, we can see the fire behind the smoke. In this case, do we
classify these areas as fire or smoke? The network sometimes
detects fire where we had segment a smoke because it finds areas
related to fire characteristics (Figure 6). This segmentation is not
really false but the misinterpretation of the network decreases
the value of the intersection over union for the fire and smoke.
The second explanation is due to the unbalanced number of pix-
els between the three classes. Fire is less present in images than
smoke and background . Therefore, a fire segmentation error
will have a greater effect due to the small amount of fire pixels
on the database.

To improve the IoU of our unbalanced database, we trained
our network with a weighted cross-entropy loss [38]. The three
classes are weighted by wc = median_ fc∕ freq(c ) to create a more
balanced version of our model. f (c ) is the total number of pixels
of the class c divided by the total number of pixels of images
where c is present and media_ fc is the median frequency of the
frequency of the class c (Table 6). The IoU results for weighted
loss showed a very small increase for all metrics for the fire
class and a very small decrease for all the metrics for the smoke
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FIGURE 6 ROC curve and its components

TABLE 6 Weight for the three classes for the weighted cross-entropy loss

Background Smoke Fire

mediane_ fc 0.510 0.418 0.064

fc 0.503 0.435 0.121

wc 1.01 0.962 0.529

and background (Table 7). Smoke is the first fundamental
information visible to detect a wildfire outbreak. The decrease
in smoke metrics and the weak improvement in fire metrics
incited us to maintain an unweighted loss function to train
the networks.

Discrete ROC curves for each class are superior to the U-Net
and Yang network. The areas under the curve for our model
(Table 8) have the highest values that are close to the unit. That
indicates the superiority of our prediction model for the three
classes. Moreover, ROC curves of our network near the point
of origin increase faster, pointing out a lower rate false positives
classification whether it is fire, smoke or background classes.

TABLE 7 Comparison between weighted and non-weighted cross-entropy
loss for the three classes. Metrics: Average accuracy, precision, recall and IoU

Background Accuracy Precision Recall IoU

Our network 0.934 0.916 0.939 0.864

Our network weighted 0.931 0.908 0.943 0.860

Smoke

Our network 0.925 0.941 0.907 0.858

Our network weighted 0.923 0.942 0.901 0.854

Fire

Our network 0.981 0.794 0.890 0.723

Our network weighted 0.983 0.819 0.890 0.744

TABLE 8 AUC for background, smoke and fire classes

AUC values AUC background AUC smoke AUC fire

Our network 0.973 0.963 0.970

U-Net network 0.914 0.906 0.908

Yuan network 0.964 0.958 0.969

TABLE 9 Softmax average probabilities repartition of the true positives
values for the smoke and fire

Network type

TP average

probabilities

TP standard

deviation

probabilities

Smoke

Our network 0.987 0.056

U-Net 0.571 0.012

Yuan et al. 0.762 0.068

Fire

Our network 0.979 0.072

U-Net 0.570 0.020

Yuan et al. 0.757 0.079

The curve of the Houden index versus classification thresh-
old provides information on the shape of the ROC curve. The
faster the curve increases for the low threshold, the closer the
ROC curve is to the perfect classification model. A value of the
Houden index close to the unit also indicates a good classifi-
cation. Houden index curve (Figures 7 and 8) highlights a long
plateau for high value for our network, whether it be for smoke
or fire, which means a high range of classification thresholds
achieving an excellent segmentation with a maximum of true
positives rate and a minimum of false positives rate. We have
chosen not to draw the d measures because they are strongly
correlated with the Houden index. U-Net and Yuan networks

FIGURE 7 ROC curves for background class
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FIGURE 8 ROC curves for background class

FIGURE 9 ROC curves for fire class

possess a thinner band and a lower Houden index emphasizing a
poorer fire and smoke segmentation performance than our net-
work.

The accuracy and IoU curves are plotted according to the
threshold which is directly related to the probability prediction
of a pixel belonging to the class c. We use the Softmax func-
tion at the output of the networks to calculate this probability
of pixel prediction.

The accuracy with respect to the threshold provides infor-
mation on the percentage of the correctly classified pixels for a
c class. A large plateau between a low threshold and a thresh-
old close to the unit indicates that the majority of pixels in class
c have a high accuracy for a high threshold and de facto a high
prediction probabilities. Relating to smoke accuracy curves (Fig-
ure 9), we notice a large plateau between few percent threshold
and 100% for our network compared with Yuan and U-Net net-
work. The large and constant value of the plateau seems to indi-
cate a clustering of high classification probabilities of the pixels

FIGURE 10 Accuracy versus threshold for smoke class

FIGURE 11 IoU versus threshold for smoke class

of the smoke class . These analyzes are correlated with the prob-
ability distributions of the true positives for the smoke and fire
classes (Figure 10 and 12) (the pixel class is assigned to the high-
est Softmax probability class).

The same pattern as the accuracy curve one can be observed
with the IoU curves (Figure 11 and 13). We can interpret this
large plateau of the curve between a threshold of few percent
and a threshold of 100% to a very high probability of classi-
fication of smoke pixel. For U-Net and Yuan network, the IoU
curves decrease for, respectively, 60% and 80% indicating a drop
of the locate accuracy segmentation for the high probabilities of
smoke pixels classification. The same analysis can be done for
the segmentation of the fire (Figures 14 and 15). Nevertheless,
the drop of the curve has a lower impact than the smoke curve
for the U-Net and Yuan network, which reveals a better pixel
segmentation for the fire class than for the smoke class. The IoU
and accuracy versus threshold curves assert, for our method, a
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FIGURE 12 Accuracy versus threshold for fire class

FIGURE 13 IoU versus threshold for fire class

FIGURE 14 Houden index J versus threshold for smoke class

FIGURE 15 Houden index J versus threshold for fire class

TABLE 10 Number of parameters of the network in millions and the
time rate segmentation for images of 640×480 RGB with Nvidia GTX1080TI
graphic card

Network type

Number of parameters

(millions)

Segmentation rate

time (image/s)

Our network 57.0 21.1

UNet 33.1 11.0

Yuan et al. 29.9 5.8

better segmentation of fire and smoke with less false positives
and false negatives ( Table 9).

#ipr212046-fig-0012.fig #ipr212046-fig-0013.fig The
Table 10 compares the three network characteristics. Our net-
work is the deepest with 57 million train parameters. However,
our network is the fastest to segment images with the three
classes due to the smaller number of up-sampling operations,
the smaller number of high resolution features maps and only a
single coding-decoding path. Our network is almost two times
faster than U-Net network and almost four times faster than
Yuan network.

#ipr212046-tbl-0009.tab Our architecture with a segmen-
tation rate time greater than 20 frames per seconde is able to
segment fire and smoke in a video 640x480 size in real time.

Figure 16 exhibits different images which clearly show the
smoke mask predicted in green and the fire mask predicted in
red for our network, U-Net and Yuan network.

Our network possesses the architecture with the lowest num-
ber of up-sampling operations (5+3 for Yuan, 4 for U-Net and
3 decoding transformation for our network). It can be assumed
that the number of up-sampling operation is not an essential
parameter for creating accurate smoke and fire segmentation.

The effective size of the receptive field is an important
parameter in deep learning [36]. For a dense prediction such
as segmentation image, it is essential for each pixel class of the
output mask to have a large receptive field on the input image to
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FIGURE 16 Mask prediction segmentation (a) original image. (b) Superimposition smoke mask in green, fire in red on original image. (c) Our network masks
(green smoke and red fire). (d) U-Net network masks. (e) Yuan network masks
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ensure that important information in the image is not omitted.
Our network possesses the highest receptive field for the encod-
ing phase due to the last 7×7 convolution operation (These
effective receptive fields are respectively for our network, U-Net
and yuan: 404, 140 and 196. For our network, a pixel mask PM
of coordinates (x,y) are influenced by information given by pix-
els of the input RGB images in a windows of 404×404 centred
around PM position.)

Our generative mask method is close to the ground truth
masks (e.g. Figure 16). False positives for fire and smoke classes
are less prevalent with our network than in the Yuan and U-Net
network. In addition, our method misclassified a small number
of cloud pixels compared to the U-Net and Yuan methods. The
quality of the segmentation can be explained by the large size of
the receptive field and the depth of our network.

This article presents a new network architecture for segment-
ing smoke and fire in RGB images. We mainly compared our
architecture with that of the Yuan. However, to prove that the
good performances achieved by our network architecture is
independent of the database we created, we decided to test it
on the Yuan database.

We trained our network and Yuan’s one on the Yuan database
[39] .The latter is made up of 70,632 synthetic RGB images of
size 256×256 pixels and their corresponding smoke masks. We
split it into two sets: the train set (80%) and the valid set (20%).
Yuan database contains three test datasets named DS01, DS02
and DS03. Each test set consists of 1000 256×256 RGB images
and corresponding 8 bits ground truth of alpha channels. Using
the ground truth of alpha channels, we created smoke masks
(Figure 17). We had to choose a threshold to create smoke
masks from the groundtruth of alpha channels because low val-
ues of the alpha channels for the smoke were not visible on the
RGB images. We chose the value 20 for this threshold; that is,
pixels of the alpha channels with values under 20 were consid-
ered as background and values over or equal to 20 were consid-
ered as smoke.

We tested performances of the networks by calculating the
IoU (4) and mMse (5) the average square difference per pixel
between the prediction and the ground truth on the test datasets
(DS01, DS02 and DS03).

mMse =
1

N × h × w

N∑
i=1

h×w∑
k=1

(
Pred (xk ) − Gtruth(xk )

)2

for 2 classes : mMse =
1

N × h × w

N∑
i=1

(FPi + FNi )

N is the number of images of the test set,

h and w are, respectively, the height and the width of images,

pred(Xk) is the prediction of the pixel Xk,

and Gtruth(Xk) is the ground truth of the pixel Xk.

, (5)

Tables 11 and 12 show that results of segmentation perfor-
mances for both architecture on DS01 are almost similar. On

FIGURE 17 (a) Examples of Synthetic RGB images 256×256 pixels of the
Yuan test datasets (DS01,DS02 and DS03). (b) Smoke masks generated with
threshold 20. (c) Synthetic smoke: Ground truth of alpha channels

TABLE 11 IoU smoke segmentation on Yuan test datasets (4)

Network IoU (%) DS01 IoU (%) DS02 IoU (%) DS03

Yuan network 70.45 69.03 69.47

Our network 70.43 70.08 70.70

TABLE 12 mMse smoke segmentation on Yuan test datasets (5)

Network mMse DS01 mMse DS02 mMse DS03

Yuan network 0.110 0.120 0.116

Our network 0.109 0.115 0.110
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TABLE 13 Average prediction execution time for a 256×256 px RGB
image on the DS01, DS02 and DS03 test dataset

Network Prediction time (mS) FPS: frame per second

Yuan network 30.7 32.5

Our network 16.6 60.4

the other hand, results achieved on DS02 and DS03 datasets
thanks to ou network architecture outperform those of Yuan’s
one. Moreover, Table 13 indicates the execution time of the
smoke mask prediction for a 256×256 px RGB image. Our net-
work is twice as fast as the Yuan network. We can argue that
in case of higher definition images, our architecture would still
have results in real-time. This study has proven the quality of
our network architecture for semantic segmentation compatible
with real-time.

4 CONCLUSION

Recently, full convolution networks have provided architectures
to accurately segment objects in an image. Fire and smoke are
objects with wide variety of shape and colours. Despite the
difficulty of detecting and locating such objects, our network
composed of a coding and decoding phase achieves a much
better segmentation task than the Yuan and U-Net networks.
Our method has demonstrated accuracy in classifying pixels
with low false positives such as clouds or haze. Time consumed
is also an important factor in segmenting fire and smoke
according to real-time compatibility. Our network outperforms
the other architectures for segmentation time.

To improve the segmentation accuracy of the fire class ,
we could increase the number of fire images in our database
(we could add fire images coming from other database to our
database like [37]). We could also, when the camera is almost
static, use 3D convolutions to capture the dynamics of smoke
and fire in successive frames of a video.

Our network outperforms U-Net and Yuan networks for the
semantic segmentation method of smoke and fire in terms of
location accuracy and segmentation rate time.
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