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Motivations

Specimen Simulations (model)
Cracks / displacements

Morphological model

� O. Stamati, E. Roubin, E. Andó and Y. Malecot, Phase segmentation of concrete x-ray tomographic images at meso-scale: Validation with neutron tomography, 2018.

1



Motivations

Specimen Simulations (model)
Cracks / displacements

Morphological model

X-Ray Tomography

� O. Stamati, E. Roubin, E. Andó and Y. Malecot, Phase segmentation of concrete x-ray tomographic images at meso-scale: Validation with neutron tomography, 2018.

1



Motivations

Specimen Simulations (model)
Cracks / displacements

Morphological model

X-Ray Tomography

� O. Stamati, E. Roubin, E. Andó and Y. Malecot, Phase segmentation of concrete x-ray tomographic images at meso-scale: Validation with neutron tomography, 2018.

1



Motivations

Specimen Simulations (model)
Cracks / displacements

Morphological model

X-Ray Tomography Morphology Identification

� O. Stamati, E. Roubin, E. Andó and Y. Malecot, Phase segmentation of concrete x-ray tomographic images at meso-scale: Validation with neutron tomography, 2018.

1



Motivations

Specimen Simulations (model)
Cracks / displacements

Morphological model

X-Ray Tomography Morphology Identification

� O. Stamati, E. Roubin, E. Andó and Y. Malecot, Phase segmentation of concrete x-ray tomographic images at meso-scale: Validation with neutron tomography, 2018.

1



Motivations

Specimen Simulations (model)
Cracks / displacements

Morphological model

X-Ray Tomography Morphology Identification Simulations (model)
Cracks / displacements

� O. Stamati, E. Roubin, E. Andó and Y. Malecot, Phase segmentation of concrete x-ray tomographic images at meso-scale: Validation with neutron tomography, 2018.

1



Motivations

Specimen Simulations (model)
Cracks / displacements

Morphological model

X-Ray Tomography Morphology Identification Simulations (model)
Cracks / displacements

Morphological model

� O. Stamati, E. Roubin, E. Andó and Y. Malecot, Phase segmentation of concrete x-ray tomographic images at meso-scale: Validation with neutron tomography, 2018.

1



Objectives being able to represent all kinds of morphologies

... or at least dense granular morphologies



Objectives being able to represent all kinds of morphologies
... or at least dense granular morphologies



Outline

Morphological model based on correlated Random Fields

Morphological models

Excursions of correlated Random Fields

The Excursion Set Theory

N + 1 measures for N−dimensional spaces

Expectations of the measures

Application to percolation

Our positioning

The Euler Characteristic: percolation criterion



Morphological model based on
correlated Random Fields



Outline

Morphological model based on correlated Random Fields

Morphological models

Excursions of correlated Random Fields

The Excursion Set Theory

N + 1 measures for N−dimensional spaces

Expectations of the measures

Application to percolation

Our positioning

The Euler Characteristic: percolation criterion



Morphological models

Goals:

• Random aspect of heterogeneities shape and positions
• Discrete aspect
• Control geometrical and topological quantities (volume, surface, size distribution of the

heterogeneities. . . )

Hard spheres packing:

Simple, natural and efficient, one “kind” of morphology, ideal shapes, heavy

� M. Bargie and E. M. Tory, Packing fraction and measures of disorder of ultradense irregular packings of equal spheres, 2001.
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Morphological models

Excursion set of correlated Random Fields:

• Different “kinds” of morphologies, light, random shapes, evolutive
• Hard to control, distribution less natural, smooth surfaces (for now)

� R. Adler, Some new random field tools for spatial analysis, 2008.

� E. Roubin, J.-B. Colliat N. Benkemoun, Meso-scale modeling of concrete: a morphological description based on excursion sets of Random Fields, 2015.
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Correlated Random Fields

Technically to define a stricly stationary correlated Random Field we have to define:

• A constant probability distribution over the spatial parameter x. g(x) can be seen as a
RV X. A classical distribution is the Gaussian distribution N (µ, σ) where µ is the mean
value and σ the standard deviation:

fX(x) = 1
σ

√
2π

e−(x−µ)2/2σ2

• A covariance function wich depends on the distance between two points in space
d = ‖x − y‖. A classical choice is the Gaussian covariance function:

C(d) = σ2e−d2/L2
c
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Correlated Random Fields

Correlation length Lc

The Gaussian correlation function

C(d) = σ2e−d2/L2
c

has a single structural parameter Lc called the correlation length.
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Correlated Random Fields

Out of topic. . . but other classes of covariance functions bring more flexibilty.

With the Matérn class we can play with the roughness (additional parameter ν):

C(d) = σ2

Γ(ν)21−ν

(√
2νd

Lc

)ν

Kν

(√
2νd

Lc

)

ν → ∞
Gaussian

ν = 3/2 ν = 1/2
Exponential

� Rasmussen and Williams, Gaussian Processes for Machine Learning, 2006.
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Excursion sets

An excursion set Es is the result of the “threshold” of a realisation of a RF:

Es = {x ∈ M | g(x) ∈ Hs}

where M is the domain of definition of the RF and Hs the so called Hitting Set.

For example if we set Hs =] − ∞; κ] we have Es(κ) = {x ∈ M | g(x) ≤ κ}

Ex-
cur-
sion
with
“low”
threshold

x

M

g
κ

Hs

Es(κ)

Excursion with “high” threshold
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Excursion sets

Medium Lc

Correlated Random Fields
g : Ω × R3 7→ R

Continuous aspect
parametric variability

Large Lc Small Lc

Heterogeneity sizes

� �

Observation scale

Excursion sets
Es = {x ∈ M | g(x) ∈ Hs}

Discrete aspect
explicit morphology

Heterogeneity sizes
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Excursion sets
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The Excursion Set Theory
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Family of measures

It exists several family of measures (Minkowski functionals, Lipschitz-Killing
curvatures. . . ). In an N−dimensional space, the size of the family is N + 1 where
each element can be seen as a n−dimensional measure.
Each measure can be classified into two types:

• geometrical measures (1 ≤ n ≤ N)
• topological measure (n = 0)

Here we simplify by using known linear combinasions of those which gives:

In 2D
n = 2: Surface area
n = 1: Total curvature
n = 0: Euler Characteristic

In 3D
n = 3: Volume
n = 2: Surface area
n = 1: Total curvature
n = 0: Euler Characteristic

15
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The Euler Characteristic

The Euler Characteristic: a topological measure

The Euler Characteristic is a mathematical measure that gives information on the topo-
logy of the morphology.
It enumerates n−dimensional features.

• In 2D
χ = #{connected components} − #{holes}

• In 3D
χ = #{connected components} − #{handles} + #{holes}

16



Mean value of the measures over the threshold

Threshold κ

Evolution of the 4 measures?
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The expectation formula

In the context of excursion sets of correlated Random Fields each measure Lj is a
Random Variable.
They have a distribution that depends on:

• the parameters of the correlated Random Field (C(x, y), fX(x), M)
• the hitting set (κ)

We don’t know the distribution but we know its expected value:

� R. Adler, Some new random field tools for spatial analysis, 2008.
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The expectation formula

In the context of excursion sets of correlated Random Fields each measure Lj is a
Random Variable.
They have a distribution that depends on:

• the parameters of the correlated Random Field (C(x, y), fX(x), M)
• the hitting set (κ)

We don’t know the distribution but we know its expected value:

E{Lj(Es)} =
N−j∑
i=0

(
i + j

i

)
ωi+j

ωiωj

(
λ2

2π

)i/2
Li+j(M) Mγ

i (κ)

� R. Adler, Some new random field tools for spatial analysis, 2008.
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The expectation formula

Gaussian Minkowski functionals: Mγk

i (Hs)

• They measure the probability of the Random Field to be in the hitting set Hs ⊂ Rk.
• They are Minkowski functionals associated with the measure of a Gaussian distribution γk.

Kinematic formula

If X = Xi is a standard Gaussian vector of size k in which Xi ∼ N (0, σ2) are independant
and Hs ⊂ Rk:

γk(Hs) = P (X ∈ Hs) = 1
σk(2π)k/2

∫
Hs

e−‖x‖2/2σ2
dx

If K(A, ρ) is the tube of A or ray ρ we have the following Taylor expansion:

γk(K(Hs, ρ)) =
∞∑

j=0

ρj

j! Mγk

i (Hs)

� J. Taylor, A Gaussian kinematic formula, 2006.
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The expectation formula

Application to scalar valued Gaussian Random Fields: Mγ
i (Hs)

Hitting set, Tube and expansions

Hs and Tube Hs = [κ, ∞[ and K(Hs) = [κ − ρ, ∞[

Measures γ(Hs) = 1
σ

√
2π

∫ ∞

κ

e−x2/σ2
dx = F̄ (κ) and γ(K(Hs)) = F̄ (κ − ρ)

Expansions γ(K(Hs)) = F̄ (κ − ρ) =
∞∑

i=0

(−1ρ)i

j! F̄ (i)(κ)︸ ︷︷ ︸
For small ρ

=
∞∑

i=0

ρi

j! Mγ
i (Hs)︸ ︷︷ ︸

Kinematic formula

Identification of the Gaussian Minkowski Functionals

Mγ
i (Hs) = (−1)jF̄ (i)(κ)
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The expectation formula

Volume Fraction

E{Φ} = 1√
π

∫ ∞

κ/σ

e−t2
dt

Euler Characteristic

With the scale ratio β = size(M)/Lc

E{χ} =
[

β3
√

2π2

(
κ2

σ2 − 1
)

+ 3β2
√

2π3/2
κ

σ
+ 3β√

2π

]
e−κ2/2σ2

+ 1√
π

∫ ∞

κ/σ

e−t2
dt

� R.J. Adler, Random Fields and Geometry, 1976.

� K.J. Worsley, The geometry of random images, 1996.
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Mean value of the measures over the threshold
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Application to percolation
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The pioners

� Paul J. Flory, Molecular size distribution in three dimensional polymers: Gelation, 1941.

� S. R. Broadbent and J. M. Hammersley, Percolation process I and II, 1957.
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� Paul J. Flory, Molecular size distribution in three dimensional polymers: Gelation, 1941.
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The Critical Percolation Probabilities pc

� R. Zallen, The Physics of Amorphous Solids: Chapter 4 The
Percolation Model, 1983.

� M. F. Sykes and J. W. Essam, Exact Critical Percolation Probabilities for Site and Bond Problems in
Two Dimensions, 1964.

• Lattices (graphs)

• Volumetric approach to regularise
� R. Zallen, Critical density in percolation processes, 1970.

• Boolean models
� K. Mecke, Morphology of spatial patterns, 1997.
� R. Schneider and W. Weil, Stochastic and Integral Geometry, 2008.
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Links between percolation theory and topology

Percolation and topological quantification

They are two different concepts.
Percolation: find the existence of clusters of the size of the system

Topology: measure the connectivity

However it has been observed many times that critical behaviour takes place when the
Euler Characteristic changes sign.

• Often with analytical solutions
• Often limited to boolean problems in infinite spaces

� B. L. Okun, Euler Charachteristic in Percolation Theory, 1989.

� K. R. Mecke and H. Wagner, Euler characteristic and related measures for random geometric sets, 1991.

� H. Tomita and C. Murakami, Percolation pattern in continuous media and its topology, 1994.
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The Euler Characteristic
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The Euler Characteristic
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The Euler Characteristic: scale ratio
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Phase diagram
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Percolation of the solid phase in N dimensions
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Topology of excursion sets [Roubin and Colliat, 2016]

Continuum / overlapping spheres [Torquato and Jiao, 2012]

Bond problem / hypercubes [Grassberger, 2003]
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Objectives being able to represent all kinds of morphologies

Problems we’re limited to certain morphologies

• ∃ (Hs, C(X, Y ), fX) for a given set of L?
• ∃! "type" of morphology for a given set of L?
• ...

Solutions • Play with the distribution (or the hitting set)
• Play with covariance function
• Seek help :)
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