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Objectives being able to represent all kinds of morphologies

. or at least dense granular morphologies
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Morphological models

Goals:

= Random aspect of heterogeneities shape and positions
= Discrete aspect
= Control geometrical and topological quantities (volume, surface, size distribution of the

heterogeneities. . .)

Hard spheres packing:

Simple, natural and efficient, one “kind” of morphology, ideal shapes, heavy

& M. Bargie and E. M. Tory, Packing fraction and measures of disorder of ultradense irregular packings of equal spheres, 2001.
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Excursion set of correlated Random Fields:

& R. Adler, Some new random field tools for spatial analysis, 2008.
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Morphological models

Excursion set of correlated Random Fields:

= Different “kinds” of morphologies, light, random shapes, evolutive

= Hard to control, distribution less natural, smooth surfaces (for now)

& R. Adler, Some new random field tools for spatial analysis, 2008.

& E. Roubin, J.-B. Colliat N. Benk Meso-scale deling of concrete: a morphological description based on excursion sets of Random Fields, 2015.
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Excursions of correlated Random Fields



Correlated Random Fields

Technically to define a stricly stationary correlated Random Field we have to define:

= A constant probability distribution over the spatial parameter . g(x) can be seen as a
RV X. A classical distribution is the Gaussian distribution A/ (p, o) where p is the mean
value and o the standard deviation:

1 2 2
(x—p)*/20
xXr) = @

= A covariance function wich depends on the distance between two points in space
d = |lx — y||. A classical choice is the Gaussian covariance function:

O(d) = o2e~4/L0



Correlated

Correlation length L.

The Gaussian correlation function

C(d) = o2e~ /L

has a single structural parameter L. called the correlation length.

Large L. Small L.



Correlated Ra

Out of topic... but other classes of covariance functions bring more flexibilty.

With the Matérn class we can play with the roughness (additional parameter v):

o () ()

L. L.

v=1/2
Gaussian Exponential

vV — 0

10

& Rasmussen and Williams, Gaussian Processes for Machine Learning, 2006.



Excursion sets

An excursion set & is the result of the “threshold” of a realisation of a RF:
E={xeM]|glx)eHs}

where M is the domain of definition of the RF and #s the so called Hitting Set.
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Excursion sets

An excursion set & is the result of the “threshold” of a realisation of a RF:
E={xeM]|glx)eHs}

where M is the domain of definition of the RF and H; the so called Hitting Set.

For example if we set Hs =] — 00; k] we have &(k) = {x € M | g(x) < k}
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Excursion sets

Medium L.
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The Excursion Set Theory

N + 1 measures for N —dimensional spaces



Family of measures

It exists several family of measures (Minkowski functionals, Lipschitz-Killing
curvatures...). In an N—dimensional space, the size of the family is N + 1 where
each element can be seen as a n—dimensional measure.

Each measure can be classified into two types:

= geometrical measures (1 <n < N)

= topological measure (n = 0)
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Family of measures

It exists several family of measures (Minkowski functionals, Lipschitz-Killing
curvatures...). In an N—dimensional space, the size of the family is N + 1 where
each element can be seen as a n—dimensional measure.

Each measure can be classified into two types:

= geometrical measures (1 <n < N)

= topological measure (n = 0)

Here we simplify by using known linear combinasions of those which gives:

In 2D In 3D
n = 2: Surface area n = 3: Volume
n = 1: Total curvature n = 2: Surface area
n = 0: Euler Characteristic n = 1: Total curvature

n = 0: Euler Characteristic 15



The Euler Characteristic

The Euler Characteristic: a topological measure

The Euler Characteristic is a mathematical measure that gives information on the topo-
logy of the morphology.

It enumerates n—dimensional features.
= In2D
X = #{connected components} — #{holes}
= In3D
X = #{connected components} — #{handles} 4+ #{holes}

16



Mean value of the measures over the threshold

Threshold
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The Excursion Set Theory

Expectations of the measures



The expectation formula

In the context of excursion sets of correlated Random Fields each measure £; is a
Random Variable.
They have a distribution that depends on:

= the parameters of the correlated Random Field (C'(x,y), fx (x), M)
= the hitting set (k)
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The expectation formula

In the context of excursion sets of correlated Random Fields each measure £; is a
Random Variable.
They have a distribution that depends on:

= the parameters of the correlated Random Field (C'(x,y), fx (x), M)
= the hitting set (k)

We don't know the distribution but we know its expected value:

if; " i/2
E{L; (& =Z< “) *’@;) Lo (M) M (5)

WilWj
7

& R. Adler, Some new random field tools for spatial analysis, 2008.
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The expectation formula

Gaussian Minkowski functionals: M* (H)

» They measure the probability of the Random Field to be in the hitting set H, C R¥.
= They are Minkowski functionals associated with the measure of a Gaussian distribution .
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The expectation formula

Gaussian Minkowski functionals: M* (H)

» They measure the probability of the Random Field to be in the hitting set H, C R¥.
= They are Minkowski functionals associated with the measure of a Gaussian distribution .

Kinematic formula

If X = X, is a standard Gaussian vector of size k in which X; ~ A/(0,0?) are independant
and H, C R*:

1 2 2
J=P J=— —lz|*/20
Vi (Hs) (X € Hs) 2T /Hse dx

& ). Taylor, A Gaussian kinematic formula, 2006. 21



The expectation formula

Gaussian Minkowski functionals: M* (H)

» They measure the probability of the Random Field to be in the hitting set H, C R¥.
= They are Minkowski functionals associated with the measure of a Gaussian distribution .

Kinematic formula

If X = X, is a standard Gaussian vector of size k in which X; ~ A/(0,0?) are independant
and H, C R*:

1 2 2
J=P J=— —lz|*/20
Vi (Hs) (X € Hs) 2T /Hse dx

If IC(A, p) is the tube of A or ray p we have the following Taylor expansion:
— S ﬁ Yk
'Yk(,C(HSvP)) = Z ;1 Mi (7‘[5)
j=0 "

& ). Taylor, A Gaussian kinematic formula, 2006. 21



The expectation formula

Application to scalar valued Gaussian Random Fields: M ()

Hitting set, Tube and expansions

Hs and Tube Hs = [k,00[ and K(Hs) = [k — p, 0]
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The expectation formula

Application to scalar valued Gaussian Random Fields: M ()

Hitting set, Tube and expansions

Hs and Tube Hs = [k,00[ and K(Hs) = [k — p, 0]
1

oV 2w

Measures  y(Hs) = / e/ dy = F(k) and ~(K(Hs)) = F(k—p)
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The expectation formula

Application to scalar valued Gaussian Random Fields: M ()

Hitting set, Tube and expansions

Hs and Tube Hs = [k, oo[ and IC(H )= [k — p,00]

e/ dr = F(r) and v(K(Hs)) = F(k — p)

Measures H
ur 'Y( 5) 0'\/%

Expansions (K (Hs)) = F(k — p) = i (_1p>iﬁ(i)(,ﬁ)

For small p
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Application to scalar valued Gaussian Random Fields: M ()

Hitting set, Tube and expansions

Hs and Tube Hs = [k, oo[ and IC(H ) = [k — p, 0]

Measures  y(Hs) =

oV 2T
- = (-1p) =
Expansions Y(K(Hs)) = F(k — p) = Z j'p FO(g) = %M;’(HS)
i=0 ’ i=0 7’
For small p Kinematic formula

22



The expectation formula

Application to scalar valued Gaussian Random Fields: M ()

Hitting set, Tube and expansions

Hs and Tube Hs = [k,00[ and K(Hs) = [k — p, 0]

1 _

Measures  y(Hs) = 0\/%/,4 e/ dy = F(k) and ~(K(Hs)) = F(k—p)

_ ee 1 i e 4

Expansions Y(K(Hs)) = F(k — p) = Z ( j'ﬂ) FO(g) = %M;’(HS)
i=0 ’ i=0 7’

For small p Kinematic formula

Identification of the Gaussian Minkowski Functionals

M (Hs) = (=1) FO(x)

22



The expectation formula

Volume Fraction

E{®} = \/17?// e dt

Euler Characteristic

With the scale ratio 8 = size(M)/L.

ﬁg I<C2 352 K 35 _ 2 2 1 /OC _ 42
E = |l—|=-1 — Gy — Cdt
0 L/?WQ a? - V2m3/2 o * Vor] € i VT n/a6
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The expectation formula

Volume Fraction

E{®} = \/17?// e dt

Euler Characteristic

With the scale ratio 8 = size(M)/L.

B3 (K2 382 k38 2902 1 [
E{x}=|—— (= —1)+ — =+ e*“/2"+—/ e~tdt
{X} |:\/§7T2 <O’2 ) \673/2 o ﬁ7:| ﬁ e

& R.J. Adler, Random Fields and Geometry, 1976.
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The expectation formula

Volume Fraction

E{®} = \/17?// et at

Euler Characteristic

With the scale ratio 8 = size(M)/L.

33 I€2 3/3)2 Y 3[3 2 2 1 o 2
E =|L=(Z&==1)< S e*K//QU +7/ —t% dt
=5 (5 1)+ s + v Ve

& R.J. Adler, Random Fields and Geometry, 1976.

B K.J. Worsley, The geometry of random images, 1996
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Mean value of the measures over the threshold
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Application to percolation

Our positioning



Summary
A diagrammatic scheme has been presented for
representing the structure of a three-dimensional
polymer in a way which facilitates statistical an-
alysis. It has been shown that the general con-

dition for‘ the formation of infinitely large mole-

cules|is expressed by a > 1/(f — 1), where fis the
functionality of the branch units and « is the
probability of chain branching as opposed to chain
termination. Methods have been presented for

& Paul J. Flory, Molecular size distribution in three dimensional polymers

: Gelation, 1941.
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The pioners

Summary

A diagrammatic scheme has been presented for
representing the structure of a three-dimensional
polymer in a way which facilitates statistical an-
alysis. It has been shown that the general con-
dition for‘ the formation of infinitely large mole-
cules|is expressed by a > 1/(f — 1), where fis the
functionality of the branch units and « is the
probability of chain branching as opposed to chain
termination. Methods have been presented for

B Paul J. Flory, Molecular size distribution in three dimensional polymers: Gelation, 1941.

PERCOLATION PROCESSES
I. CRYSTALS AND MAZES

By 8. R. BROADBENT axp J. M. HAMMERSLEY
Received 15 August 1956

ABSTRACT. The paper studies, in a general way, how the random properties of & ‘medium’
influence the percolation of a ‘fluid’ through it. The treatment differs from conventional diffu-
sion theory, in which it is bhe\mndom properties of the fluid that matter. | Fluid and medium
bear general interpretations: for example, solute diffusing through solvent, electrons migrating
over an atomic lattice, molecules penetrating & porous solid, disease infecting a community, etc.

& S.R. Broadbent and J. M. Hammersley, Percolation process | and II, 1957
26



The Critical Percolation Probabilities p.

From (7.1), if K is singular at p, then it is also
singular at 1 — p,, and if there is only one singularity
II these must be identical points, or

-

This establishes two important percolation proba-
bilities as 3—that for the site problem on the tri-
angular lattice and that for the bond problem on
the simple quadratic lattice. The result (7.2) holds
for any fully triangulated lattice.

& M. F. Sykes and J. W. Essam, Exact Critical Percolation Probabilities for Site and Bond Problems in
X Two Dimensions, 1964.

CURRENT

]
'

)
o 05 |

FRACTION OF UNCUT BONDS (p)
Figure 4.1 The randomly cut network as an example of percolation.
& R. Zallen, The Physics of Amorphous Solids: Chapter 4 The
Percolation Model, 1983.
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The Critical Percolation Probabilities p.

From (7.1), if K is singular at p, then it is also
singular at 1 — p,, and if there is only one singularity
II these must be identical points, or

-

This establishes two important percolation proba-
bilities as 3—that for the site problem on the tri-
angular lattice and that for the bond problem on
the simple quadratic lattice. The result (7.2) holds
for any fully triangulated lattice.

& M. F. Sykes and J. W. Essam, Exact Critical Percolation Probabilities for Site and Bond Problems in

X Two Dimensions, 1964.
-
3 .
g 7 = Lattices (graphs)
3
% = Volumetric approach to regularise
5 : & R. Zallen, Critical density in percolation processes, 1970.
0.5
FRACTION OF UNCUT BONDS (p)
Figure 4.1 The randomly cut network as an example of percolation. s Boolean models
& R. Zallen, The Physics of Amorphous Solids: Chapter 4 The & K. Mecke, Morphology of spatial patterns, 1997.
Percolation Model, 1983. & R. Schneider and W. Weil, Stochastic and Integral Geometry, 2008.
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Percolation and topological quantification

They are two different concepts.
Percolation: find the existence of clusters of the size of the system
Topology: measure the connectivity

However it has been observed many times that critical behaviour takes place when the
Euler Characteristic changes sign.

& B. L. Okun, Euler Charachteristic in Percolation Theory, 1989.
& K. R. Mecke and H. Wagner, Euler characteristic and related measures for random geometric sets, 1991.

& H. Tomita and C. Murakami, Percolation pattern in continuous media and its topology, 1994.
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Percolation and topological quantification

They are two different concepts.
Percolation: find the existence of clusters of the size of the system
Topology: measure the connectivity

However it has been observed many times that critical behaviour takes place when the
Euler Characteristic changes sign.

Often with analytical solutions

Often limited to boolean problems in infinite spaces

L. Okun, Euler Charachteristic in Percolation Theory, 1989.
. R. Mecke and H. Wagner, Euler characteristic and related measures for random geometric sets, 1991.

. Tomita and C. Murakami, Percolation pattern in continuous media and its topology, 1994.
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Application to percolation

The Euler Characteristic: percolation criterion
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The Euler Characteristic

Analytical knowledge of the
volume fraction
[Adler, 2008]
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The Euler Characteristic: scale ratio
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Percolation of the solid phase in N dimensions
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Objectives being able to represent all kinds of morphologies
Problems we're limited to certain morphologies
» 3 (Hs,C(X,Y), fx) for a given set of L?
= 3! "type" of morphology for a given set of L7

Solutions = Play with the distribution (or the hitting set)

= Play with covariance function
Seek help :)



	Morphological model based on correlated Random Fields
	Morphological models
	Excursions of correlated Random Fields

	The Excursion Set Theory
	N+1 measures for N-dimensional spaces
	Expectations of the measures

	Application to percolation
	Our positioning
	The Euler Characteristic: percolation criterion


