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Abstract

The BPMN standard notation allows business process designers to model both intra-
organizational processes and inter-organizational collaborations. A great effort has been
devoted in proposing formal semantics for BPMN, and, fewer, in providing dedicated
verification tools. Still, some advanced features of BPMN, namely communication or
time-related constructs, are often set aside. This becomes an issue as BPMN gains in-
terest outside of its original scope, e.g., for the IoT where communication and time play
an important role. In this paper, we propose a formal semantics for a subset of BPMN.
This semantics takes into account not only the usual gateways, but also sub-processes,
inter-process communication, and time-related constructs. In contrast to transforma-
tional approaches, which give a semantics to BPMN by mapping it to some formal model
(e.g., transition systems or Petri nets), our approach is based on a direct formalization
in first-order logic that is then realized in a straightforward way into the TLA+ formal
language. We build on the TLA+ model-checker, TLC, to provide process designers with
a verification framework, fbpmn, that one may use to check BPMN and workflow specific
properties. Our tools and our model database are open source and freely available online.

Keywords: BPMN, Formal Semantics, Collaboration, Communication, Time,
Verification, First-Order Logic, TLA+, Tool

1. Introduction

BPMN supports the modelling of the internal processes of organizations and of the
way they interact to reach objectives. This modelling can be achieved through the use
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of process and collaboration diagrams. In the standard [1], natural language is used to
describe the BPMN execution semantics. This leaves room for interpretation and ham-5

pers the formal analyses that would be desirable in order to find defaults at design time
rather than when running the processes and collaborations over business process engines.
This issue has been addressed in the last decade in different proposals for a formalization
of the BPMN execution semantics (see Section 7), some of them being supported with
tools. However, these proposals often leave apart features related to communication and0

time. Meanwhile, BPMN is gaining interest as a modeling language in new areas, such as
the Internet of Things (IoT) [2, 3]. There, taking into consideration the communication
between the nodes of the system, the configuration of different communication modes,
and time constraints such as durations and timeouts is a requirement.

Diving into BPMN. Let us now briefly introduce BPMN before presenting a motivating5

example in the next part. BPMN (Business Process Model and Notation) is a workflow
based notation. It defines a set of element notations (see Fig. 2 for the part of them that
we support). These elements can be classified into two types: flow objects (nodes), and
connection objects (edges). In BPMN, nodes fall into four categories: events, activities,
gateways, and data objects (not supported here). The events denote things that happen0

while a process is running. They affect the process flow and usually have a trigger or
a result. Events may indicate the starting point of a process, identified using a start
event or an ending point of a process, identified using an end event. BPMN also defines
intermediate events which occur between start and end events. These events affect the
process flow in the sense that they must occur for the process to go on. There are5

different types of intermediate events. In this work we focus on message-related and
time-related ones. An intermediate event can be attached to the boundary of an activity,
and is then called a boundary event. This is used to interrupt the activity or to launch
activities in parallel, based on some condition (e.g., a message reception or the deadline
of a timeout). An activity is a unit of work that can be either an atomic task or a0

compound sub-process. Gateways are used to control the process flow and in particular
the activity execution ordering. There are five main types of gateways in BPMN and we
are taking into account the main ones [4]. The exclusive type (XOR in Fig. 2) is used to
choose one out of a set of mutually exclusive alternative incoming or outgoing branches.
It can also be used to represent looping behaviors. The parallel type (AND in Fig. 2)5

synchronizes concurrent flows for all its incoming branches and creates concurrent flows
for all its outgoing branches. The inclusive type (OR in Fig. 2) states that any number of
branches among its incoming or outgoing branches may be taken1. These three types of
gateways can be merging, splitting, or mixed (both merging and splitting). We support
all three cases. Finally, with the event-based gateway (EB in Fig. 2), the process flow is0

based on which of the events (or message reception tasks) that follow the gateway occurs
first. Nodes are connected with edges that can be sequence flows (flows of control), or
message flows (flows for message exchange). The sequence flow category can in turn
be decomposed into normal sequence flows, conditional sequence flows (expressing the
condition for some branch to be activated), and default sequence flows (the default branch5

to activate if all others, conditional ones, cannot be). BPMN defines three main kinds

1This is indeed a simplification for this introduction. The semantics as defined in the standard and
hence as supported in our work is a bit more complex, see Section 2.2.
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Figure 1: Travel agency case study (extended from an example in [5]).

of models: process diagrams, collaboration diagrams, and choreography diagrams. In this
work, we deal with the first two. A process diagram is used to model the activities
of a single organization. Collaboration diagrams can be defined with a set of different
processes (for different organizations), exchanging messages and cooperating to reach a0

shared objective. In our work, we abstract away from data (data objects, data stores and
message payloads). Therefore, in the sequel, message (resp. event instance) and message
type (resp. event type) are used interchangeably. For more information BPMN, see [1].

Case study. Let us observe the collaboration model in Figure 1. It involves two par-
ticipants: a customer and a travel agency. The agency sends offers to the client (loop5

with an exclusive gateway) in a first sub-process, and, after some time (time boundary
event), begins a second sub-process to exchange information (booking, payment, confir-
mation, ticket) with the customer. The customer may reject some of the offers, and at
some point he/she may agree on one (loop using two exclusive gateways). If so, he/she
stops accepting offers and he/she sends booking and payment information to the agency0

and gets the corresponding ticket and confirmation. The agency and the customer rely
on interrupting features to deal with the fact that the customer stops accepting offers
as soon as he/she has agreed on one, while, as said before, the agency sends offers for
some amount of time only. If the customer has not agreed on an offer before the end
of this amount of time, the sending of offers by the agency will stop (timer boundary5

event on the first agency sub-process). The agency will send an interrupting message to
the client (message boundary event on the customer offer reception task) which will in
turn interrupt the exchange sub-process (message boundary event on the second agency
sub-process). If the customer has agreed on an offer before the end of the amount of
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time, he/she will begin to send information to the agency. The agency will timeout, send0

an interrupting message to the client (that will not be used), and enter the sub-process
which will, this time, not be interrupted.

As one can see, the interplay between communication, interrupting features, and time
makes the overall behavior of the collaboration difficult to grasp. Will the collaboration
always reach one of its ends? Either that the client and the agency have agreed on an offer5

(them ending in Transaction Completed and Offer Completed, respectively) or that they
have not but they are not waiting for some event to happen (them ending in Transaction
Aborted and Offer Aborted, respectively). Will the collaboration reach one of its ends
but with pending messages, that have been sent but neither received nor treated? Or,
worse, will the collaboration deadlock at some point depending on the choices made by0

the customer and the agency, and the passage of time?
This corresponds indeed to checking soundness properties (to be further introduced

in Sect. 4). One may note the different order in the customer and in the agency for
the reception (resp. sending) of the confirmation and of the ticket. As we will see
later on (in Section 4), the communication model used between the agency and the5

customer has an impact on this. With the verification framework we propose, the process
designer will be able to check that the collaboration at hand cannot be ensured to be
completely sound: for some executions there may be messages left untreated. But the
process designer will also be able to check that, given the right choice of communication
model (we analyse collaborations for seven possible communication models presented in0

Sect. 2.2.4), the collaboration is sound if the message treatment constraint is relaxed.
The process designer will also see that for some communication models the collaboration
even deadlocks, with the client not being able to reach one of its final events. Playing
with our counter-example example animator (see Fig. 4) he/she will be able to correct the
model. Here this means either changing the chosen communication model or changing5

the order in which the client or the agency exchanges information.
This case study is just one example of models that can be analyzed using our pro-

posal. The analysis of other examples, including ones from the literature, is presented in
Section 5, and models from our example repository are available at [6] under /models.

Contribution. The contribution of this paper is twofold. First, (1.) we provide a formal-0

ization of a subset of BPMN execution semantics that supports sub-processes, commu-
nication, and time constructs, and is parametric with reference to the properties of the
communication. Second, (2.) we support this formalization with tools that automatically
perform the verification of correctness properties for BPMN collaboration models, and
that animate counter examples when the properties are not satisfied.5

As far as (1.) is concerned, we have chosen to define a direct logic semantics for
BPMN. We use First-Order Logic (FOL) with natural numbers, sets, and maps. Instead
of using an intermediary formal model, e.g., Petri nets or process algebra, this choice of a
simple yet expressive framework enables one to get a formal semantics that is amenable
to implementation in different formal frameworks while still being close to the semi-0

formal semantics of the standard (hence it can be related to it). Furthermore, with
reference to Petri net token based semantics, e.g., [7, 8] as shown in Table 6, our choice
to rely on FOL enables us to directly support a non-local semantics for inclusive (OR)
gateways, sub-process interruption, and a choice of several communication models. We
implement our FOL semantics in TLA+ [9] as a set of TLA+ theories. This corresponds5
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to a pure syntactic transformation of FOL into the corresponding TLA+ fragment, as
demonstrated in Table 2.

Our semantics supports the seven point-to-point communication models that exist
when considering local, causal and global message ordering, and it is easily extensible.
As far as the subset of BPMN is concerned, we have first based our choice on the analysis0

of the 825 BPMN processes available in the BIT process library, release 2009 [10], given
in [4]. We have then taken more constructs into account, mainly relative to our focus:
creation and termination of processes based on messages or time, message and time-
related intermediary events and boundary events (interrupting or non-interrupting), and
event-based gateways. The subset of the notation that we support is given in Figure 2.5

With respect to (2.), our approach relies on two steps. First, one uses the fbpmn
tool that we have developed to get a TLA+ representation of the model to verify. Then,
one uses the TLC model checker from the TLA+ tool-suite to perform the verification.
The properties of interest are encoded in the TLA+ theories we have implemented. They
include usual correctness properties for workflows as well as ones (proposed more re-0

cently [5]) that are more specific to BPMN. Termination of verification for some of the
properties (see Sect. 5.5) is ensured only for BPMN models with a finite state semantic
model. If it is not the case, one can use constraints (see Sect. 6.4.1) to perform verification
on a subset of the semantic model.

Both our fbpmn tool and the TLC tool are open source and freely available online.5

Furthermore, the models we have used for evaluation in Section 5 are also available
online. To get the tools and the models, please see the fbpmn repository [6].

This work is based on the paper "A First-Order Logic Semantics for Communication-
Parametric BPMN Collaborations" [11], extended as follows:

1. We have enriched the subset of BPMN taken into account and the formalization0

of its execution semantics into first-order logic to support time-related events and
(message and time) boundary events, either interrupting or non-interrupting. We
propose two different semantics for time and compare their benefits.

2. We have extended the six possible communication models to be used as parameters
in the verification of a collaboration with a new one, relative to the causality of5

message emission. Furthermore, on top of these now seven generic communication
models that are applied on a collaboration as a whole, we now support the definition
and the use of ad-hoc communication models (a specific model built by assembling
micro communication models that provide different constraints on sending and
receiving messages).0

3. Accordingly, we have extended our verification tool, fbpmn, to support these new
elements and communication models. We have also extended fbpmn into a more
comprehensive tool suite with a counter-example animator and a containerized
Web application where process designers can model and verify BPMN processes or
collaborations directly from the browser. This tool suite is now presented, including5

with reference to its extension as far as verification constraints, new properties, and
new communication models are concerned.

4. The presentation is enriched with well-formedness rules, greater details on the
semantics rules, the formalization in first-order logic of the communication models
and of the properties that are verified, the presentation of the use of fairness for0

verification in presence of loops and alternatives, and an extended state of the art.
5
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Figure 2: BPMN subset being supported in our work, with types used in the formalization (e.g., MSE
stands for Message Start Events and SE for Start Events).

5. We discuss the relation between the FOL semantics and its TLA+ implementation.
6. We have a new and more complex and realistic case study, with the new BPMN

constructs taken into account.

Overview. The formal part of the paper is developed in Section 2, with Sections 2.15

and 2.2, respectively addressing the presentation of the model underlying the semantics,
and then the semantics itself, including seven possible communication models. Sec-
tion 3 is devoted to taking into account time, with two possible semantics, either non-
deterministic abstraction of time or based on explicit time, presented respectively in
Sections 3.2 and 3.3. The properties of interest for the process designer are presented in0

Section 4. The implementation of the semantics in TLA+, verification, and evaluation
are presented in Section 5. This section also includes a short introduction to the TLA+

language and verification framework, and a discussion on the use of fairness to deal with
loops and alternatives in models. Section 6 is devoted to our tool suite, fbpmn, its ar-
chitecture, general principles, and the way it can be easily extended. Related work is5

discussed in Section 7, and we end with conclusions and perspectives in Section 8.

2. Formal Semantics

In this section, we first present the model on which we base the definition of the
communication-parametric semantics for BPMN collaborations. This model is used to
represent collaborations as typed graphs. In a second step, we present the semantics0

itself. It follows the "token game" of the standard [1, Ch. 13], with a notion of state that
evolves with activation and completion of graph nodes.

2.1. A Typed Graph Representation of BPMN Collaborations
In our work, a BPMN model is seen as a typed graph (Def. 2.1), where types corre-

sponding to the BPMN syntax (see Fig. 2) are associated to nodes and edges.5
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• For Nodes:

– The task type (T ) groups the abstract task (AT ), the receive task (RT ), and
the send task (ST ) types. Formally: T = {AT,RT,ST}.

– The activity type (A) groups the task and the sub-process (SP) types. For-
mally: A = T ∪ {SP}.0

– The gateway type (G) groups the parallel (AND), the inclusive (OR), the
exclusive (XOR), and the event-based (EB) gateway types. Formally: G =
{AND,OR,XOR,EB}.

– The start event type (SE ) groups the none start event (NSE ), the message
start event (MSE ), and the timer start event (TSE ) types. Formally: SE =5

{NSE,MSE,TSE}.
– The intermediate event type (IE ) groups the catch message intermediate event

(CMIE ), the throw message intermediate event (TMIE ), and the timer inter-
mediate catch event (TICE ) types. Formally: IE = {CMIE,TMIE,TICE}.

– The boundary event type (BE ) groups the message boundary event (MBE )0

and the timer boundary event (TBE ) types. Formally: BE = {MBE,TBE}.
Both indeed regroup interrupting and non-interrupting versions. A function,
isInterrupt (Def. 2.1), is used to make the difference.

– The end event type (EE ) groups the none end event (NEE ), the terminate
end event (TEE ), and the message end event (MEE ) types. Formally: EE =5

{NEE,TEE,MEE}.
– The event type (E ) is the set of all event types. Formally: E = SE ∪ IE ∪

BE ∪ EE.

• For Edges:

– The sequence flow type (SF ) groups the normal sequence flow (NSF ), the0

conditional sequence flow (CSF ), and the default sequence flow (DSF ) types.
Formally: SF = {NSF,CSF,DSF}.

– The message flow type (MF ), is used to denote message flows.

TNodes denotes the set of all node types, with an added type, P, to denote processes.
Formally: TNodes = A ∪ G ∪ E ∪ {P}. TEdges denotes the set of all edge types. For-5

mally: TEdges = SF∪ {MF}. The hierarchical structure of collaborations, with processes
P and sub-processes SP is dealt with by using specific types for nodes, and a relation,R,
denoting containment. From our example, Figure 1, we would then have two nodes of
type P (say n1 for Customer, n2 for Travel Agency), two nodes of type SP (say n3 for
Offer SP, n4 for Exchange SP), n3 ∈ R(n2), n4 ∈ R(n2), and n5 ∈ R(n3) with n5 being0

the node of type ST for Make Travel Offer.

Notation (Restriction to types). Given a set of types T , a set X that whose elements can
be typed using a function catX : X → T , and a subset T ′ of T , we note XT ′

= {x ∈ X |
catX(x) ∈ T ′}. By abuse of notation, we may write Xt, for some t in T , instead of X{t}.
In the sequel, we are mainly interested into two sets that are typed, N (nodes) typed5

using TNodes, and E (edges) typed using TEdges. Accordingly, we will use NT (resp. ET )
to denote the subset of nodes (resp. edges) of type T .

7
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Definition 2.1 (BPMN Graph). A BPMN graph is a tuple Ĝ = ( N , E , M, catN , catE ,
source, target , R, msg , attachedTo, isInterrupt) where:

• N , is the set of nodes,0

• E (N ∩ E = ∅), is the set of edges,

• M, is the set of message types,

• catN : N → TNodes, gives the type of a node,

• catE : E → TEdges, gives the type of an edge,

• source/target : E → N , give the source/target of an edge,5

• R : N{P,SP} → 2N∪E , gives the set of nodes and edges which are directly contained
in a container (process or sub-process),

• msg : EMF →M gives the message associated to a message flow,

• attachedTo : NBE → NA, gives the activity to which a boundary event node is
attached,0

• isInterrupt : NBE → Bool, denotes whether a boundary event node is interrupting
or not,

Notation. We note R+ the transitive closure of R.

Auxiliary functions. For a graph Ĝ = ( N , E , M, catN , catE , source, target , R, msgt,
attachedTo, we define the following auxiliary functions:5

• in/out : N → 2E give the incoming/outgoing edges of a node:

in(n) = {e ∈ E | target(e) = n}

out(n) = {e ∈ E | source(e) = n}

• a family of functions inT (resp. outT ) : N → 2E is used to get incoming/outgoing
edges of a selected type T , inT (n) = in(n) ∩ ET and outT (n) = out(n) ∩ ET .

• procOf : N → NP gives the container process of a given node, procOf(n) = p if and
only if n ∈ R+(p).

It is desirable to enforce that models respect some well-formedness rules before per-0

forming verification. We therefore define well-formed BPMN graphs using well-formed
condition rules.

8
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Well-formed BPMN graph. A well-formed BPMN graph satisfies the following conditions.
These rules are extracted from the standard [1]:

• (C1) No incoming sequence flow edges for start events: ∀n ∈ NSE, inSF(n) = ∅5

• (C2) No outgoing sequence flow edges for end events: ∀n ∈ NEE, outSF(n) = ∅

• (C3) A sub-process contains exactly one None Start Event and no other start event
types: ∀n ∈ NSP, |R(n) ∩NNSE| = 1 ∧R(n) ∩N{MSE,TSE} = ∅

• (C4) A sub-process node cannot contain a process node: ∀n ∈ NSP , R(n)∩NP = ∅

• (C5) For each process node, we require that:0

– it contains at least one initial node: ∀n ∈ NP, R(n) ∩NSE 6= ∅;
– it contains at least one end node: ∀n ∈ NP, R(n) ∩NEE 6= ∅.

• (C6) No looping edges: ∀e ∈ E, source(e) 6= target(e)

• (C7) No node isolation: ∀n /∈ NP =⇒ in(n) 6= ∅ ∨ out(n) 6= ∅

• (C8) A gateway that has a conditional edge must have a unique default edge:

∀n ∈ N{AND,XOR}, outCSF(n) 6= ∅ =⇒ |outDSF(n)| = 1

• (C9) No incoming message flow for send task, message end event, throw message5

intermediate event: ∀n ∈ N{ST,MEE,TMIE}, inMF(n) = ∅

• (C10) No outgoing message flow for receive tasks, message start event, catch mes-
sage intermediate event, boundary message intermediate event:

∀n ∈ N{RT,MSE,CMIE,MBE}, outMF(n) = ∅

• (C11) A message flow edge connects two nodes of different processes:

∀e ∈ EMF, procOf(source(e)) 6= procOf(target(e))

• (C12) An event-based gateway must have two or more outgoing edges:

∀n ∈ NEB, |outSF(n)| ≥ 2

• (C13) Parallel and event-based gateways cannot have an outgoing edge of condi-
tional sequence flow type: ∀n ∈ N{AND,EB}, (outSF(n) ∩ ECSF = ∅)

• (C14) Elements that follow an event-based gateway can only be catching intermedi-
ate message events, receive tasks, or timer intermediate catch events. Additionally,
one cannot have both receive tasks and intermediate message events (see for exam-
ple Fig. 31):

∀n ∈ NEB (∀e ∈ outSF(n), target(e) ∈ N{CMIE,RT,TICE})

∧
(

({e ∈ outSF(n) | target(e) ∈ NRT} = ∅)
∨ ({e ∈ outSF(n) | target(e) ∈ NCMIE} = ∅)

)

9
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• (C15) The outgoing edges of an inclusive or an exclusive gateway must be a com-
bination between default sequence flows and conditional sequence flows, or all are
of the normal sequence flow type:

∀n ∈ N{XOR,OR}, (∀e ∈ outSF(n), e ∈ E{CSF,DSF}) ∨ (∀e ∈ outSF(n), e ∈ ENSF)

• (C16) Message flows connect the throwing elements (send task, message end event,
throw message intermediate event) with catching elements (receive task, message
start event, catch message intermediate event, message boundary intermediate
event):

∀e ∈ EMF, source(e) ∈ N{ST,MEE,TMIE} ∧ target(e) ∈ N{RT,MSE,CMIE,MBE}

• (C17) Message catching elements must have at least one incoming message flow
edge: ∀n ∈ N{RT,MSE,CMIE,MBE}, |inMF(n)| ≥ 10

• (C18) Message throwing elements must have at least one outgoing message flow
edge: ∀n ∈ N{ST,MEE,TMIE}, |outMF(n)| ≥ 1

It should be noted that, but for these rules, we do not require a specific structure of
the BPMN graph. For example, we do not require these graphs to be well-balanced (when
for each splitting gateway of a given type, there is a corresponding merging gateway of5

the same type). One can use a splitting exclusive gateway and merge its branches using
a parallel gateway. Verification will be able to detect this is a erroneous model.

2.2. A FOL Semantics for BPMN Collaborations
In order to maintain traceability with the standard, we use a token-based approach

to define the semantics. The movement of tokens is based on node types and on two0

predicates, starting predicate St and completing predicate Ct defined for each node
type. These predicates correspond to the enabling of the node to start its execution,
and the enabling of the node to complete its execution, respectively. Some nodes only
have a start transition (e.g., end events), and others only have a completion transition
(e.g., gateways). When a node defines only one of the two predicates, the other one5

is considered to be false. The semantics (Sect. 2.2.3) relies on a notion of state of the
BPMN graph (Sect. 2.2.1) to define the St and Ct predicates. Further, the semantics
is parameterized by a type Tnet that encapsulates the properties of the communication
network using an initialization function, initnet , and two predicates, send and receive (see
Sect. 2.2.2 for the abstract definition and Sect. 2.2.4 for realizations of Tnet corresponding0

to seven communication models).

2.2.1. State
A state of a BPMN graph gives a marking for the nodes and the edges, together with

a state of the communication network.

Definition 2.2 (State). The state of a BPMN graph is a tuple s = (mn,me,mnet) such5

that:

• mn : N → N, is a function assigning a natural number marking to each node.
10



30

30

31

31

32
• me : E → N, is a function assigning a natural number marking to each edge.

• mnet : Tnet, is the state of the communication network.

The set of all states of a BPMN graph is denoted by States.0

Definition 2.3 (Initial state). The initial state of a BPMN graph, denoted by so =
(mn0,me0,mnet0), is such that:

• the start nodes of the processes hold a token, all other nodes are unmarked:

∀n ∈ N,mn0(n) =

{
1 if ∃p ∈ NP , n ∈ NSE ∩R(p)

0 otherwise.

• all edges are unmarked: ∀e ∈ E,me0(e) = 0

• the network is empty: mnet0 = initnet

2.2.2. Communication5

The properties of communication between two participants (process nodes) for a given
type of message are abstracted with an initialization function, initnet , and two transition
predicates, send and receive. initnet is used to give the initial state of mnet. send and
receive specify when a communication action is enabled and what effect it has on mnet.
The value of mnet describes the state of the network in terms of what messages are sent0

but not yet received, as the network evolves through time. In essence we are modeling
the pool of messages that have been sent but not yet received, possibly using a single
universal queue, or by using channel-by-channel queues, or some other structures that
carry information to allow and order send and receive events.

Several communication models are formally described in Section 2.2.4. For instance,5

with the Fifo All asynchronous communication model, messages must be delivered in the
order they were sent. In this model, send(p1, p2,m) is always enabled, and adds m to
mnet ; receive(p1, p2,m) is true only if m is the oldest message and thus the next one to
be delivered, and the new state of mnet is its previous value minus m.

Definition 2.4 (Communication Model). The communication model is characterized by0

a function initnet : Tnet and two predicates send/receive : NP ×NP ×M.

2.2.3. Semantics
We define here the execution semantics of BPMN based on the above-mentioned St

and Ct predicates, for each type of node in the BPMN graph, and based on its notion
of state. The presentation of time-related constructs is deferred to Section 3 where we
present two different semantics for time. In the semantics, let s = (mn,me,mnet) and
s′ = (mn′,me′,mnet′) denote two states. Additionally, we consider the predicate 4 that
denotes marking equality but for nodes and edges given as parameter. Hence, 4(X)
means "nothing changes except for X":

4(X)
def≡ ∀n ∈ N \X,mn′(n) = mn(n) ∧ ∀e ∈ E \X,me′(e) = me(e)

Similarly, Ξ denotes that the state of the network does not change: Ξ
def≡ mnet′ = mnet.
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Start nodes. There are two starting node types for the instantiation of the process: the
none start event (NSE ), and the message start event (MSE ).5

The behavior of an NSE is defined only by a completing predicate. It consumes its
token and generates one token on all of its outgoing sequence flow edges. If it is the
initial node of a process p, it activates p by generating a token on it. When an NSE is
defined within a sub-process p, its activation is conditioned by the activation of p.
Formally.

∀n ∈ NNSE, Ct(n)
def≡ (mn(n) = 1) ∧ (mn′(n) = mn(n)− 1)
∧ ∀e ∈ outSF(n), (me′(e) = me(e) + 1)

∧




(∃p ∈ NP , (n ∈ R(p)) ∧ (mn(p) = 0)
∧ (mn′(p) = 1) ∧4({n, p} ∪ outSF(n)) ∧ Ξ)

∨ (∃p ∈ NSP , (n ∈ R(p)) ∧4({n} ∪ outSF(n)) ∧ Ξ)




Example. Figure 3 presents a process p with a none start event (nse), an abstract task0

(task), and a none end event (nee). It shows that there is a token within nse node which
is represented by a green token. nse completes by consuming this token and produces
one on P and its outgoing sequence flow (e1).

P task
neense

e1 e21

P task
neense

e1 e21

1

Figure 3: Completing behavior of a None Start Event. Before (left) and after (right) application of the
Ct rule.

The behavior of a message start event (MSE ) is defined by a completing predicate.
An MSE is enabled if it has a token and there is a message offer on one of its incoming5

sequence flow edges. It completes by consuming the message, generating one token on all
of its outgoing sequence flow edges, and activating the process p by generating a token
on it.
Formally.

∀n ∈ NMSE, Ct(n)
def≡ (mn(n) = 1) ∧ (mn′(n) = mn(n)− 1)
∧ ∀e ∈ outSF(n), (me′(e) = me(e) + 1)
∧ ∃em ∈ inMF(n), (me(em) ≥ 1) ∧ (me′(em) = me(em)− 1)
∧ receive(procOf(source(em)), procOf(n),msg(em))
∧ ∃p ∈ NP, n ∈ R(p) ∧ (mn(p) = 0) ∧ (mn′(p) = 1)
∧4 ({n, p, em} ∪ outSF(n))

Example. Consider again the example of Figure 3. By modifying the none start event
to a message start event (mse), we get the model in Figure 4. It represents the complete0

execution semantics behavior. The left hand-side of Figure 4 shows that there is a token
on the start node and a message offer (m1) on the incoming message flow edge of mse.
This latter completes by consuming the message according to the chosen communication
model, and producing a token on the process and on all its outgoing edges.
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P task
nee

mse
e1 e21

m11

P task
nee

mse
e1 e21

m1

1

Figure 4: Completing behavior of a Message Start Event. Before (left) and after (right) application of
the Ct rule.

Ending nodes. We have three ending node types for the termination of a process: none5

end event (NEE ), terminate end event (EE ), and message end event (MEE ).
The behavior of a none end event (NEE ) node is defined only by a starting predicate:

it is enabled if it has at least one token on one of its incoming edges. It starts by
consuming this token and adding one to itself.
Formally.

∀n ∈ NNEE, St(n)
def≡ ∃e ∈ inSF(n), (me(e) ≥ 1) ∧ (me′(e) = me(e)− 1)

∧ (mn′(n) = mn(n) + 1) ∧4({n, e}) ∧Xi

Example. Figure 5 presents the execution semantics of an end node (nee). The left-hand0

side of the figure shows the enabling of nee by the presence of a token on its incoming
edge (e2). The right-hand side of the figure shows the starting behavior. It consumes
the token from e2 and generates a token on it.

P task
neense

e1 e21 P task
neense

e1 e2 1

Figure 5: Starting behavior of None End Event. Before (left) and after (right) application of the St rule.

A terminate end event (TEE ) node is defined only by a starting predicate: it is
enabled if it has at least one token on one of its incoming edges. It behaves like a none5

end event by consuming a token from one of its incoming sequence flows and generates a
token on itself. Besides, it does the additional work of dropping down all the remaining
tokens of the process or sub-processes to which it belongs.
Formally.

∀n ∈ NTEE, St(n)
def≡ ∃e ∈ inSF(n), (me(e) ≥ 1) ∧ (mn′(n) = 1)
∧ ∃p ∈ N{P,SP}, (n ∈ R(p))
∧ ∀nn ∈ ((R+(p) ∩N) \ {n}), (mn′(nn) = 0)
∧ ∀ee ∈ (R+(p) ∩ E), (me′(ee) = 0)
∧4 (R+(p)) ∧ Ξ

Example. The left-hand side of Figure 6 shows the enabling of a terminate end node
(tee) by the presence of a token on its incoming edge (e7). The right-hand side of the0

figure shows the starting execution of the node. It consumes the token from e7 and
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generates a token on itself. Besides, it affects all the existing executions in parallel (here
e3 and e4) by dropping down all their tokens.

task1

task2

task3

P

nse

e1

e3

e2

e4

e5

e6

e7

e8

nee1

tee

nee2

1

1

1

task1

task2

task3

P

nse

e1

e3

e2

e4

e5

e6

e7

e8

nee1

tee

nee2

1

Figure 6: Starting behavior of a Terminate End Event. Before (left) and after (right) application of the
St rule.

A message end event (MEE ) is defined only by a starting predicate. It is enabled to
start if it has a token on one of its incoming edges. It starts by moving the token from5

one of its incoming edges to itself, and sending a message on the network according to
the communication model.
Formally.

∀n ∈ NMEE, St(n)
def≡ ∃e ∈ inSF(n), (me(e) ≥ 1) ∧ (me′(e) = me(e)− 1)

∧ (mn′(n) = mn(n) + 1)
∧ ∃ee ∈ outMF(n), (me′(ee) = me(ee) + 1)
∧ send(procOf(n), procOf(target(ee)),msg(ee))
∧4 ({n, e, ee})

Example. Figure 7 shows the starting behavior of the message end event (mee). It
starts by consuming the token from the incoming edge (e2), producing a token on itself,
and sending a message m1 on the network.0

P task
nse

e1 e2
mee

1

m1

P task
nse

e1 e2
mee

1

m1 1

Figure 7: Starting behavior of a Message End Event. Before (left) and after (right) application of the
St rule.

Activity nodes. Two kinds of activity nodes have to be taken into account: the abstract
tasks (AT ), and the sub-processes (SP).

The behavior of an abstract task node (AT ) is defined by a starting and a completing
predicate. An AT starts if at least one token is present on one of its incoming edges and
it does not already own a token. It consumes a token from one of its incoming edges, and5

produces one on itself. An AT node is completed by consuming one token from itself,
14
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and adding one token on each of its outgoing edges. Note that an abstract task may be
ended by an interrupting boundary event (see MBE and TBE in pages 20 and 31).
Formally.

∀n ∈ NAT, St(n)
def≡ ∃e ∈ inSF(n), (me(e) ≥ 1) ∧ (me′(e) = me(e)− 1)

∧ (mn(n) = 0) ∧ (mn′(n) = mn(n) + 1)
∧4 ({n, e}) ∧ Ξ

∀n ∈ NAT, Ct(n)
def≡ (mn(n) = 1) ∧ (mn′(n) = mn(n)− 1)
∧ ∀e ∈ outSF(n), (me′(e) = me(e) + 1)
∧4 ({n} ∪ outSF(n)) ∧ Ξ

Example. Figure 8 shows the starting behavior of the abstract task task. It starts by
consuming the token from e1 and generating a token on itself.0

P task
neense

e1 e21 P task
neense

e1 e2
1

Figure 8: Starting behavior of an Abstract Task activity. Before (left) and after (right) application of
the St rule.

Figure 9 shows its completing behavior. It consumes the token from itself and gener-
ates one on its outgoing edge e2.

P task
neense

e1 e2
1

P task
neense

e1 e21

Figure 9: Completing behavior of an Abstract Task activity. Before (left) and after (right) application
of the Ct rule.

The behavior of a sub-process activity SP node extends the one of an AT node with
some additional conditions: when it is enabled, a sub-process adds a token to the start
event it contains. It completes when at least one end event it contains has some tokens5

and none of its edges or non end event nodes are still active (i.e., owning a token). Note
that, alike an abstract task, a sub-process may also be ended by an interrupting boundary
event (see MBE and TBE in pages 20 and 31).
Formally.

∀n ∈ NSP, St(n)
def≡ ∃e ∈ inSF(n), (me(e) ≥ 1) ∧ (me′(e) = me(e)− 1)

∧ (mn(n) = 0) ∧ (mn′(n) = mn(n) + 1)
∧ ∀ns ∈ (NNSE ∩R(n)), (mn′(ns) = mn(ns) + 1)
∧4 ({e, n} ∪ (NNSE ∩R(n))) ∧ Ξ
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∀n ∈ NSP, Ct(n)
def≡ (mn(n) = 1) ∧ (mn′(n) = mn(n)− 1)
∧ ∀e ∈ R(n) ∩ E, (me(e) = 0)
∧ ∃nee ∈ (NEE ∩R(n)), (mn(nee) ≥ 1)
∧ ∀nn ∈ R(n) ∩N, (mn(nn) ≥ 1⇒ nn ∈ NEE)
∧ ∀nn ∈ (R(n) ∩NEE), (mn′(nn) = 0)
∧ ∀e ∈ outSF(n), (me′(e) = me(e) + 1)
∧4 ({n} ∪ (R(n) ∩NEE) ∪ outSF(n)) ∧ Ξ

Example. Figure 10 shows the starting behavior of the sub-process activity (SP). It
starts by consuming a token from its incoming edge (e1) and generating a token on itself0

and on its start event (nse1).

P

SP

task1

task2

task3
nee1

nee2

nee3

neense

nse1

e1 e10

e2

e3
e4

e6

e5

e7 e8

e9

1 P

SP

task1

task2

task3
nee1

nee2

nee3

neense

nse1

e1 e10

e2

e3
e4

e6

e5

e7 e8

e9

1
1

Figure 10: Starting behavior of a Sub-Process activity. Before (left) and after (right) application of the
St rule.

Figure 11 shows that even if there is a token on one of the end events, here nee3, the
sub-process can not execute its completing transition: to complete, SP must wait until
the token on e5 has given place to one on nee1.

P

SP

task1

task2

task3
nee1

nee2

nee3

neense

nse1

e1 e10

e2

e3
e4

e6

e5

e7 e8

e9

1

1

1

Figure 11: A Sub-Process activity not ready to complete: a token is still present on one of its edges.
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Communication. The semantics for MSE and MEE have been presented above. The5

remaining communicating elements, TMIE, CMIE, MBE, ST and RT require additional
conditions for starting and completing due to the presence of sending/reception predi-
cates. All these elements require a token on one of their incoming edges to be enabled.

The ST and RT are enabled when they have a token on their incoming edges and they
have no token on them. They start executing by moving this token inside. ST completes0

by sending a message on all its outgoing edges regarding the chosen communication model
(which affects the network state) and producing a token on all its outgoing edges.

A ST is not necessarily instantaneous as a send may block, for instance with syn-
chronous communication, RSC or a bounded size network. Another important point is
that a boundary event, such as a timeout, can be attached to a receive or send task5

and not to an event. For all these reasons, we have chosen to make these tasks non-
atomic. This allows to distinguish a send task from aThrowMessageIntermediateEvent,
and a receive task from a CatchMessageIntermediateEvent. Note that the semantics in
the standard is ambiguous, since there are two contradictory aspects: tasks in BPMN
are non-atomic while the purpose of a send task is to only send a message, which is0

intrinsically atomic.
Formally.

∀n ∈ NST, St(n)
def≡ ∃e ∈ inSF(n), (me(e) ≥ 1) ∧ (me′(e) = me(e)− 1)

∧ (mn(n) = 0) ∧ (mn′(n) = mn(n) + 1)
∧4 ({n, e}) ∧ Ξ

∀n ∈ NST, Ct(n)
def≡ (mn(n) = 1) ∧ (mn′(n) = mn(n)− 1)
∧ ∀e ∈ outSF(n), (me′(e) = me(e) + 1)
∧ ∃ee ∈ outMF(n), (me′(ee) = me(ee) + 1)
∧ send(procOf(n), procOf(target(ee)),msg(ee))
∧4 ({n, ee} ∪ outSF(n))

Example. Figure 12 presents the starting behavior of a send task activity (task). It
shows the same starting behavior as the one presented in Figure 8.

P task
neense

e1 e21

m1

P task
neense

e1 e2
1

m1

Figure 12: Starting behavior of a Send Task activity. Before (left) and after (right) application of the
St rule.

Fig. 13 shows the completing behavior, task completes by consuming one token from
it and by generating a token on its outgoing edge e2, and producing a message m1 on5

the network according to the chosen communication model.
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P task
neense

e1 e2
1

m1

P task
neense

e1 e21

m1 1

Figure 13: Completing behavior of a Send Task activity. Before (left) and after (right) application of
the Ct rule.

A receive task (RT ) has a complementary behavior to the send task (ST ). It is enabled
to complete only if it is active (i.e., it has a token) and it has a message on one of its
incoming message flows. RT completes by consuming the message offer, updating the
network state, and producing a token on all its outgoing edges.0

Formally.

∀n ∈ NRT, St(n)
def≡ ∃e ∈ inSF(n), (me(e) ≥ 1) ∧ (me′(e) = me(e)− 1)

∧ (mn(n) = 0) ∧ (mn′(n) = mn(n) + 1)
∧4 ({n, e}) ∧ Ξ

∀n ∈ NRT, Ct(n)
def≡ (mn(n) = 1) ∧ (mn′(n) = mn(n)− 1)
∧ ∀e ∈ outSF(n), (me′(e) = me(e) + 1)
∧ ∃ee ∈ inMF(n), (me(ee) ≥ 1) ∧ (me′(ee) = me(ee)− 1)
∧ receive(procOf(source(ee)), procOf(n),msg(ee))
∧4 ({n, ee} ∪ outSF(n))

Example. The starting of the receive task activity is similar to the one presented for the
abstract task in Figure 8. Fig. 14 shows that the receive task activity (task) can complete
if it has a token on itself and a message m1 on its incoming message flow. It completes
by consuming its token, receiving the message from the network, and producing a token
on its outgoing edge (e2).5

P task
neense

e1 e2
1

m11

P task
neense

e1 e21

m1

Figure 14: Completing behavior of a Receive Task activity. Before (left) and after (right) application of
the Ct rule.

A throw message intermediate event (TMIE ) defines only the starting behavior. It
is enabled to start if it has a token on one of its incoming edges. It starts by consuming
the token from this incoming edge, sending a message on the network according to the
chosen communication model, and producing a token on all its outgoing edges.
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Formally.

∀n ∈ NTMIE, St(n)
def≡ ∃ein ∈ inSF(n), (me(ein) ≥ 1) ∧ (me′(ein) = me(ein)− 1)

∧ ∀e ∈ outSF(n), (me′(e) = me(e) + 1)
∧ ∃eout ∈ outMF(n), (me′(eout) = me(eout) + 1)
∧ send(procOf(n), procOf(target(eout)),msg(eout))
∧4 ({ein, eout} ∪ outSF(n))

Example. Figure 15 shows the starting behavior of a throw message intermediate event0

(Send Notif.). It starts by consuming the token from its incoming edge (e1), producing
a token on its outgoing edge (e2), and sending a message m1 on the network.

P

neense

e1 e21

Send Notif.

m1

P

neense

e1 e21

Send Notif.

m11

Figure 15: Starting behavior of a Throw Message Intermediate Event. Before (left) and after (right)
application of the St rule.

A catching message intermediate event (CMIE ) is an instantaneous event with only
a starting transition. It is enabled if it has a message offer on one of its incoming
message flow edges and a token on one of its incoming sequential flow edges. It starts by5

consuming the token from this incoming edge, receiving the message from the incoming
message flow according to chosen the communication model, and producing a token on
all its outgoing edges.
Formally.

∀n ∈ NCMIE, St(n)
def≡ ∃e1 ∈ inSF(n), (me(e1) ≥ 1) ∧ (me′(e1) = me(e1)− 1)

∧ ∀e2 ∈ outSF(n), (me′(e2) = me(e2) + 1)
∧ ∃ein ∈ inMF(n), (me(ein) ≥ 1) ∧ (me′(ein) = me(ein)− 1)
∧ receive(procOf(source(ein)), procOf(n),msg(ein))
∧4 ({e1, ein} ∪ outSF(n))

Example. Figure 16 shows the starting behavior of a catching message intermediate
event (Receive Notif.). It starts by consuming the token from e1, receiving the message0

m1 from the medium, and producing a token on its outgoing edge, e2.

P

neense

e1 e21

Receive Notif.

m11

P

neense

e1 e21

Receive Notif.

m1

Figure 16: Starting behavior of a Catching Message Intermediate Event. Before (left) and after (right)
application of the St rule.
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Boundary Events. A message boundary event (MBE ) defines only the starting behavior.
An MBE is ready to start if it has a message offer on one of its incoming message flows,
and if the activity on which it is attached has a token. An MBE may have either an
interrupting behavior or a non-interrupting one. In the latter case, the MBE starts by5

receiving a message and generating a token on all its outgoing edges. For an interrupting
behavior, the MBE starts also by cancelling the activity to which it is attached, which
is possible only if this activity is not a sub-process in a completing step. This is checked
using the mayComplete predicate that is formally defined below. Cancelling an activity
involves dropping all its tokens. After that, the MBE produces a token on each of its0

outgoing edges.
Formally.

Auxiliary functions. To formalize the semantics of a message boundary event, we define
an auxiliary function.

• mayComplete(n) : NSP → Bool, returns true if the subprocess may complete, i.e.,
if there are no tokens on its elements except for its end event nodes where there is
at least one that holds some tokens.

∀n ∈ NSP,mayComplete(n)
def≡ (mn(n) ≥ 1)
∧ ∀e ∈ (R(n) ∩ E), (me(e) = 0)
∧ ∃nn ∈ R(n) ∩NEE, (mn(nn) ≥ 1)
∧ ∀x ∈ R(n) ∩ (N \NEE), (mn(x) = 0)

Stinterrupting(n, act, ein)
def≡ (act /∈ NSP ∧ (mn′(act) = 0) ∧4({act, ein} ∪ outSF(n)) )

∨




act ∈ NSP ∧ ¬mayComplete(act) ∧ (mn′(act) = 0)
∧ ∀nn ∈ R(act) ∩N, (mn′(nn) = 0)
∧ ∀ee ∈ R(act) ∩ E, (me′(ee) = 0)
∧4 ({act, ein} ∪R(act) ∪ outSF(n))




∀n ∈ NMBE, St(n)
def≡ ∃act ∈ NA, (act = attachedTo(n)) ∧ (mn(act) = 1)

∧ ∃ein ∈ inMF(n), (me(ein) ≥ 1)
∧ receive(procOf(source(ein)), procOf(n),msg(ein))
∧ (me′(ein) = me(ein)− 1)
∧ ∀eo ∈ outSF(n), (me′(eo) = me(eo) + 1)

∧
(

(isInterrupt(n) ∧ Stinterrupting(n, act, ein))
∨ (¬isInterrupt(n) ∧4({ein} ∪ outSF(n)))

)

Example. Figure 17 presents a part of a process with a none start event nse, an5

abstract task task1 with an outgoing sequence flow edge e2, an interrupting boundary
event (interrupt) with an outgoing sequence flow edge e4, and two abstract tasks task2,
and task3. The interrupt boundary node starts by consuming a token from the activity
it is attached to, receiving a message m1 from the network, and producing a token on
its outgoing edge e4.0
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m1 nee2
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task2

task3
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m1 nee2
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Figure 17: Starting behavior of an interrupting Message Boundary Event (task case). Before (left) and
after (right) application of the St rule.

Figure 18 shows an interrupting boundary event interrupt attached to a sub-process SP.
The interrupt event interrupts the execution of SP when it receives a message m1. It
cancels the execution of the sub-process by removing all its token (the token on it and
the token on node nse1), and generates a token on its outgoing sequence flow edge, e4.
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nee1

nse
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m1 nee2
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e3e2

e6

interrupt
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task1
e7

task2

task3

e1

1

1

nse1 nee3

P

SP

nee1

nse

e5

m1 nee2

e4

e3e2

e6

interrupt

task1
e7

task2

task3

e1

1

nse1 nee3

Figure 18: Starting behavior of an interrupting Message Boundary Event (sub-process case). Before
(left) and after (right) application of the St rule.

Gateways. Gateways are atomic and define only the completing behavior.5

A parallel gateway (AND) is ready to complete if it has at least one token on all
its incoming edges. It completes by removing one token on each of these edges, and
producing one on all its outgoing edges.
Formally.

∀n ∈ NAND, Ct(n)
def≡ ∀ei ∈ inSF(n), (me(ei) ≥ 1) ∧ (me′(ei) = me(ei)− 1)
∧ ∀eo ∈ outSF(n), (me′(eo) = me(eo) + 1)
∧4 (inSF(n) ∪ outSF(n)) ∧ Ξ

Example. Figure 19 shows that the parallel gateway AND1 completes by consuming a
token from its incoming edge (e1) and producing a token on all its outgoing edges (e20

and e3).
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Figure 19: Completing behavior of a splitting Parallel Gateway. Before (left) and after (right) application
of the Ct rule.

In Figure 20, the parallel gateway AND2 completes only if all its incoming sequence
flows edges (e4 and e5) are synchronized (i.e., own at least a token).
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Figure 20: Completing behavior of a merging Parallel Gateway. Before (left) and after (right) application
of the Ct rule.

An exclusive gateway (XOR) is ready to complete if it has at least one token on one
of its incoming edges. It completes by removing this token, and producing one on one5

of its outgoing edges, depending on conditions. Since we abstract away from data, the
concerned edge is non-deterministically chosen.
Formally.

∀n ∈ NXOR, Ct(n)
def≡ ∃ei ∈ inSF(n), (me(ei) ≥ 1) ∧ (me′(ei) = me(ei)− 1)
∧ ∃eo ∈ outSF(n), (me′(eo) = me(eo) + 1)
∧ 4 ({ei, eo}) ∧ Ξ

Example. Figure 21 shows that the exclusive gateway (XOR1) completes by consuming
a token from its incoming edge (e1), and producing a token on one of its outgoing edges
(e2 in the example).0
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Figure 21: Completing behavior of an Exclusive Gateway. Before (left) and after (right) application of
the Ct rule.

As described in the standard [1], an event-based gateway (EB) is always followed by
communication elements, either receive tasks (RT ) or intermediate catching message
events (CMIE )2. The firing of an event-based gateway relies on the enabling of one of
these elements. Hence, an event-based gateway completes by consuming a token from
one of its incoming edges, and producing a token on its outgoing edge on which the event5

is enabled.
Formally.

∀n ∈ NEB, Ct(n)
def≡ ∃ei ∈ inSF(n), (me(ei) ≥ 1) ∧ (me′(ei) = me(ei)− 1)
∧ ∃eo ∈ outSF(n), target(eo) ∈ N{RT,CMIE}

∧ ∃em ∈ inMF(target(eo)), (me(em) ≥ 1)
∧ (me′(eo) = me(eo) + 1)
∧4 ({ei, eo}) ∧ Ξ

Example. Figure 22 shows a process that contains an event-based gateway (EBG),
and two receive tasks (Rec.1 and Rec.2). The left-hand side of the figure shows that the
event-based gateway is enabled because it has a token on its incoming edge (e1), and0

an incoming message for at least one of the two receive tasks. Actually, this is true for
both receive tasks here. Hence, EBG completes by consuming the token from e1, and
generating a token on one of its two outgoing edges (arbitrarily chosen, here e2).

Rec.2

Rec.1

P EBG

e3

e2 e4

e5

e6

neense

e1 XOR1

m1 m2
11

Rec.2

Rec.1

P EBG

e3

e2 e4

e5

e6

neense

e1 XOR

1

m1 m2
11

Figure 22: Completing behavior of an Event-Based Gateway. Before (left) and after (right) application
of the Ct rule.

2We recall that the semantics for time-related constructs is the focus of Section 3, hence we extend
the definition of event-based gateways to support time-related events there.

23



49

50

50

51
An inclusive gateway (OR) behaves differently from the other gateways. The acti-
vation of an OR gateway g is more complex [1, Chap. 13]. It can be activated only5

if:

• (1) it has at least one token on one of its incoming edges, and

• (2) for each marked node or edge x such that there is a path – that does not pass
through g – from x to an unmarked incoming edge of g, there must be also a path
– that does not pass through g – from x to a marked incoming edge of g.0

The OR gateway completes by adding a token either to the outgoing edges whose
conditions are true, otherwise to its default sequence flow edge. Since we abstract from
data, we chose non-deterministically to add a token either to a combination (1 or more)
of the outgoing non-default edges, or to the default edge.
Formally.5

Auxiliary functions. To formalize the semantics of an OR gateway, we define some aux-
iliary functions.

• PreN : N × E → 2N gives the predecessor nodes of an edge such that npre is
in PreN (n, e) if there is a path from npre to e that never visits n. Accordingly,
PreE : N × E → 2E gives predecessor edges. These two sets can be structurally0

computed from the BPMN graph structure, hence can be taken as constants (for a
given BPMN model).

• InMinus : N → E gives the unmarked incoming edges of a node:

InMinus(n) = {e ∈ inSF(n) | me(e) = 0}

• InPlus : N → E gives the marked incoming edges of a node:

InPlus(n) = {e ∈ inSF(n) | me(e) ≥ 1}

• ignoreE : N → 2E gives the predecessor edges of the marked incoming edges of a
given node:

ignoreE(n)
def≡

⋃

e∈InPlus(n)

PreE(n, e)

• ignoreN : N → 2N gives the predecessor nodes of the marked incoming edges of a
given node:

ignoreN (n) =
⋃

e∈InPlus(n)

PreN (n, e)
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∀n ∈ NOR, Ct(n)
def≡ (InPlus(n) 6= ∅)
∧ ∀e ∈ InPlus(n), (me′(e) = me(e)− 1)
∧ ∀ez ∈ InMinus(n),∀ee ∈ (PreE(n, ez) \ ignoreE(n)), (me(ee) = 0)
∧ (∀nn ∈ (PreN (n, ez) \ ignoreN (n)), (mn(nn) = 0))

∧






∃Outs ⊂ (outSF(n) ∩ E{NSF,CSF}), (Outs 6= ∅)
∧ ∀e ∈ Outs, (me′(e) = me(e) + 1)
∧4 (InPlus(n) ∪Outs) ∧ Ξ




∨
(
∃e ∈ outDSF(n), (me′(e) = me(e) + 1)
∧4 (InPlus(n) ∪ {e}) ∧ Ξ

)




Example. Figure 23 illustrates the case when an OR getaway cannot be activated,
despite a marked incoming edge, here e3: there is a path from the marked edge e2 to an
unmarked incoming edge of OR (e6 or e7) but no path from e2 to a marked incoming edge5

of OR. If the token on e2 had been on e1, the OR gateway could have been activated.

P

neense

task1

task2
e1 e2

e3

e4

e5

e6

e7 e8
1

1

OR

Figure 23: Non activable Inclusive Gateway. It has to wait for the token on e2 which is in PreE(OR, e6)
and PreE(OR, e7).

2.2.4. Communication Models
Generic Communication Models. We define seven communication models which differ
in the order the messages can be sent or received, and are all the possible point-to-
point models when considering local ordering (per process), causal ordering, and global0

ordering (absolute time) [12]. In the following we define the structure of each model as
a type called Tnet where Tnet ∈ {bag, pair, inbox , outbox, causal,fifoall,RSC}.

The models are formally defined in Table 1 and are explained below. To simplify
notation, we include sequences of terms (Seq[T ]) and bags (Bag[T ]) as a part of the
usual definition of ground terms in first order logic. We also assume some standard5

definitions and operations on terms:

• 〈〉 is the empty sequence

• head : Seq[T ]→ T : head of a sequence

• tail : Seq[T ]→ Seq[T ] : tail of a sequence

• append :Seq[T ]× T → Seq[T ] : append an element at the end of a sequence0

• ⊕, 	: Bag[T ]×Bag[T ]→ Bag[T ] : union and difference of bags
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Table 1: Encoding of the network models in first-order logic.

Network model Definition

Bag

initnet
def≡ ∅

send(from, to,m)
def≡ mnet′ = mnet⊕ {〈from, to,m〉}

receive(from, to,m)
def≡ 〈from, to,m〉 ∈ mnet

∧ mnet′ = mnet	 {〈from, to,m〉}

Fifo Pair

initnet
def≡ [p, q ∈ NP 7→ 〈〉]

send(from, to,m)
def≡ mnet′(from, to) = append(mnet(from, to),m)

receive(from, to,m)
def≡ m = head(mnet(from, to))

∧ mnet′(from, to) = tail(mnet(from, to))

Fifo Inbox

initnet
def≡ [p ∈ NP 7→ 〈〉]

send(from, to,m)
def≡ mnet′(to) = append(mnet(to), 〈from,m〉)

receive(from, to,m)
def≡ 〈from,m〉 = head(mnet(to))

∧ mnet′(to) = tail(mnet(to))

Fifo Outbox

initnet
def≡ [p ∈ NP 7→ 〈〉]

send(from, to,m)
def≡ mnet′(from) = append(mnet(from), 〈to,m〉)

receive(from, to,m)
def≡ 〈to,m〉 = head(mnet(from))

∧ mnet′(from) = tail(mnet(from))

Fifo All
initnet

def≡ 〈〉
send(from, to,m)

def≡ mnet′ = append(mnet, 〈from, to,m〉)
receive(from, to,m)

def≡ 〈from, to,m〉 = head(mnet) ∧mnet′ = tail(mnet)

Causal

initnet
def≡ ∅ × [p ∈ NP 7→ [q ∈ NP 7→ 0]]

send(from, to,m)
def≡

mnet′[1] = mnet[1] ∪ {〈from, to,m, vc[from]〉}
∧ mnet′[2] = vc

with vc
def≡ [p ∈ NP → [q ∈ NP →

if p = from ∧ q = from then mnet[2][p][q] + 1 else mnet[2][p][

receive(from, to,m)
def≡

∃msg ∈ mnet[1],msg[1] = from ∧msg[2] = to ∧msg[3] = m
∧ ¬(∃msg2,msg2 6= msg ∧msg2[2] = to ∧ ∀p ∈ NP,msg2[4][p] ≤ msg
∧ mnet′[1] = mnet[1] \ {msg}
∧ mnet′[2] = [p ∈ NP 7→ if p = to then Sup(mnet[2][p],m[4]) else mne

RSC
initnet

def≡ ∅
send(from, to,m)

def≡ mnet = ∅ ∧mnet′ = {〈from, to,m〉}
receive(from, to,m)

def≡ 〈from, to,m〉 ∈ mnet ∧mnet′ = ∅
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• Bag is a multiset of messages. Formally:

bag
def≡ Bag[NP ×NP ×M]

No order on message reception is imposed. Messages can overtake each other or be
arbitrarily delayed. It is usually modeled by a bag, or a set if messages are unique.

• Fifo pair is a queue of messages attached to each couple of processes. Formally:

pair
def≡ NP ×NP → Seq[M]

Messages between a couple of processes are received in their send order. Messages
from or to different processes are independently received. More precisely, if a5

process P1 sends a message m1 to process P2, and later a message m2 to this same
process, then m2 cannot be received before m1.

• Fifo inbox is an input queue attached to each process, where senders put messages.
Formally:

inbox
def≡ NP → Seq[NP ×M]

Each process has its own unique input queue, and senders add messages to this
queue, without blocking. Messages are consumed from this queue in their insertion
order. This means that if a process P1 sends a message m1 to P0, and later (but0

independently) a process P2 sends a message m2 to P0, then m2 cannot be received
before m1. This model is stricter than Fifo pair as it requires a global order on the
emission events.

• Fifo outbox is an output queue attached to each process where messages are
retrieved. Formally:

outbox
def≡ NP → Seq[NP ×M]

Messages from a same process are received in their send order. If a process P sends
a message m1 and later a message m2 (to the same process or to another one),5

then m2 cannot be received before m1, even if the receptions occurs on distinct
processes.

• Fifo All is a unique shared queue. Formally:

fifoall
def≡ Seq[NP ×NP ×M]

Messages are globally ordered, independently of their sender or receiver process,
and are received in the global emission order.

• Causal. Messages are received according to the causality of their emission [13].
Formally:

V C
def≡ [NP → N] -- a vector clock

causal ∈ Set[NP ×NP ×M× V C]× [NP → V C]

If a message m1 is causally sent before message m2 (there exists a causal path from0

the emission of m1 to the emission of m2), then a process cannot receive m2 before
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Figure 24: A Non-Causal Execution. The emission of the proposal causally precedes the emission of
the description which causally precedes the emission of the quote. Then the quote cannot be consumed
before the proposal on the client in the causal communication model.

m1. Figure 24 presents a model that deadlocks with causal communication. In
this example, a scientist writes a proposal, sends the proposal to the client, and
sends its description to its financial department. Based on the description, the
financial department computes a quote and sends it to the client. Without causal5

communication, the quote can be received by the client before the proposal; with
causal communication, the quote cannot be delivered because it causally depends
on the proposal that must be received first. A usual implementation of this model
uses causal histories [14, 15] or vector/matrix logical clocks [16] as presented here3.
The state of the network mnet holds a couple: the set of messages in transit (with0

their associated vector clock), and the vector clocks of each process.

• RSC (Realisable with Synchronous Communication) is a shared 1-sized
buffer for all processes. Formally:

netRSC
def≡ (NP ×NP ×M)

Send and receive events strictly alternate. If the couple (send event, reception
event) is considered as atomic, this corresponds to synchronous communication [17].

Ad-hoc Communication Models. The previous communication models are monolithic and
are applied on the whole collaboration. In Section 5.4, we show how a modular commu-5

nication model can be specified.

2.2.5. Transition Relation and Executions
With the previously defined predicates, we are able now to express the complete

transition relation (successor relation between states).

Definition 2.5 (Transition Relation). Let s and s′ be two states. We say that s′ is a
successor of s, iff the predicate Next(s, s′) holds:

Next(s, s′)
def≡

∨

n∈N
(St(n) ∨ Ct(n))

3A vector clock is a logical clock that tracks the causal dependencies between send and receive events.
They are not to be confused with the clocks used for timing constraints in Section 3.3.
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We recall that states, here s and s′, correspond to tuples of the form (me, mn, mnet)0

and (me′, mn′, mnet′), whose elements are used in the definitions of St and Ct.
An execution of the whole process is defined through the notion of trace.

Definition 2.6 (Trace). A trace is a finite or infinite sequence of states such that σ[0]
is the initial state, and ∀i ∈ 0..Len(σ) − 1, Next(σ[i], σ[i + 1]) (if the trace is finite) or
∀i ∈ N, Next(σ[i], σ[i+ 1]) (if the trace is infinite), where σ[i] denotes the ith state of the5

trace. The set of all the traces of the collaboration is noted Traces.

Definition 2.7 (Execution). An execution is a maximal trace, i.e., a trace that goes as
far as possible. Formally, an execution σ is either an infinite trace, or a finite trace such
that 6 ∃s′, Next(σ[Len(σ)], s′). The set of all the executions of the collaboration is noted
Exec.0

2.2.6. Fair Executions
A BPMN model can include loops. In that case, an execution defined as a maximal

trace can get stuck in a loop, where only this loop progresses, and the rest of the model
doesn’t progress at all. Moreover, when modeling actual business activities, loops are
expected to finish at some point. To prevent these infinite loops, fairness is introduced5

to restrain the set of executions. We use two kinds of fairness: weak fairness and strong
fairness. Informally, weak fairness ensures that a transition cannot be permanently en-
abled and never done. Strong fairness ensures that a transition cannot be infinitely often
enabled and never done. Both are formally defined in Section 5.3.

Thus, fairness is a conjunction of two parts. The first part is the weak fairness on each0

start (St) and complete (Ct) transitions of every node: ∀n ∈ Node : weakfair(step(n)).
This property ensures that any permanently enabled transition eventually occurs. This
means that no process may progress forever while others are never allowed to do so if they
can. This also means that if a process contains several loops that are simultaneously live,
all loops will progress (not necessarily at the same speed, but no loop can be permanently5

halted while another run forever).
The second part is the strong fairness on each output edges of XOR, OR, and EB

gateways. Strong fairness ensures that no choice is infinitely often ignored: if a XOR,
OR, or EB gateway is included in a loop, the fairness forbids the infinite executions that
never use some output edges. Either the loop finishes somehow, or all the choices are0

infinitely often taken. Consider Figure 25, left; as strong fairness is imposed on the two
output edges of gateway choice, an execution cannot always ignore the edge (e5) leading
to the ending node, and this model is sound. Consider Figure 25, right; as strong fairness
is imposed on the output edges of gateway choice, both task1 and task2 are infinitely
often chosen.5

3. Temporal Support for BPMN

The goal of our FOL semantics is to give a meaning to the BPMN elements. In
a sense, it defines which executions are possible. With regard to time, our semantics
is asynchronous: enabled elements are fired at some point, but not necessarily at the
instant they have become enabled; message transfer is asynchronous, which means that0

a message is available for reception at some point after its sending, but there is no time
constraint.
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Figure 25: Use of strong fairness to avoid infinite loops (left) and starvation (right).

With these remarks in mind, we present two choices for handling time: in the first
one, the semantics does not explicitly handle time constraints, but it reverts to non-
determinism: if a time constraint exists, it may fire; in the second one, the semantics is5

defined with explicit time to verify duration properties.

3.1. BPMN Elements with Time
Events where time occurs are the following:

1. Timer Start Event for Top-level Processes. A process is started when the time
constraint allows it.0

2. Timer Intermediate Catch Event. The norm states that it acts as a delay.
3. Timer Boundary Event, which can be interrupting or non-interrupting. It can act

as a timeout on a long running task (interrupting event) or create a secondary path
when the time constraint specifies it (non-interrupting event).

4. An Event-Based Gateway can be followed by a Timer Intermediate Catch Event.5

Especially, it can be used as a timeout while waiting for a message amongst several
links.

An event with time has an attribute specifying the time constraint. It is one of
timeDate (a date and/or time, e.g., 2019-11-27 16:44), timeDuration (a time duration,
e.g., PT05:15 for a duration of five hours and fifteen minutes), or timeCycle (a time0

interval, e.g., a start and end time, or a start time and a duration).

3.2. Non-deterministic Abstraction of Time
So far, our FOL semantics is asynchronous (an event or a task is fired at any point

of time after it is enabled) and non-deterministic (e.g., for an XOR gateway, any of the
output branches can be taken, and the verification ensures that all the cases are covered):5

the semantics arbitrarily fires an enabled transition. Consequently, time progress can be
modeled with non-determinism.

1. Timer Start Event (TSE ): as the semantics is asynchronous, it is exactly as a None
Start Event (NSE ), where the event will fire at some point.

2. Timer Intermediate Catch Event (TICE ): it is indistinguishable from a gateway
with one input and one output (it fires at some point).

∀n ∈ NTICE , Ct(n)
def≡ ∃ei ∈ inSF(n), (me(ei) ≥ 1) ∧ (me′(ei) = me(ei)− 1)
∧ ∃eo ∈ outSF(n), (me′(eo) = me(eo) + 1)
∧4 ({ei, eo}) ∧ Ξ
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Figure 26: Timer Boundary Event with an impossible timeout. As the timeout on task1 is later than
the date imposed by the timer intermediate catch event, this timeout should never fire and task2 should
never be activated.

3. Timer Boundary Event (TBE ): a TBE is non-deterministically activated, without
fairness (it may never fire). Its semantics is close to a Message Boundary Event
(MBE), without the constraint on the presence of a message.

Stinterrupting(n, act)
def≡ (act /∈ NSP ∧ (mn′(act) = 0) ∧4({act} ∪ outSF(n)))

∨




act ∈ NSP ∧ ¬mayComplete(act) ∧ (mn′(act) = 0)
∧ ∀nn ∈ R(act) ∩N, (mn′(nn) = 0)
∧ ∀ee ∈ R(act) ∩ E, (me′(ee) = 0)
∧4 ({act} ∪R(act) ∪ outSF(n))




∀n ∈ NTBE, St(n)
def≡ ∃act ∈ NA, (act = attachedTo(n)) ∧ (mn(act) = 1)

∧ ∀eo ∈ outSF(n), (me′(eo) = me(eo) + 1)

∧
(

(isInterrupt(n) ∧ Stinterrupting(n, act))
∨ (¬isInterrupt(n) ∧4(outSF(n)))

)

∧ Ξ

4. Event-Based Gateway followed by a Timer Intermediate Catch Event: as the event-0

based gateway can be fired at any time after it is enabled, a branch with a TICE
is indistinguishable from a Default branch followed by a TICE modelled as above
in item 2.

A limitation to non-deterministic time is when a TBE can actually never be fired in
BPMN semantics (e.g., a date in the past): the non-deterministic semantics allows it to5

fire. This gives us an over-approximation: the non-deterministic semantics contains the
same executions as with BPMN semantics, plus additional ones. Thus, if the verification
states that a property is verified with the non-deterministic semantics, it is necessarily
verified with BPMN semantics. The reverse is not true. For instance, in the example of
Fig. 26, BPMN semantics states that task task2 should never be activated as its time0

constraint is always in the past. The non-deterministic semantics defines two executions:
one where the timeout is not fired, and one where the timeout is fired and task2 is
activated.

3.3. Explicit Time
In order to integrate the notion of explicit time, we extend the BPMN graph to deal5

with some time constraints: here, we treat only the timeDuration type for the different
time events (i.e., timeDate and timeCycle types are not handled by our extension).
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To simplify our definition, we introduce the set Timer that groups the time start
(TSE ), the timer intermediate catch (TICE ) and the timer boundary (TBE ) events:
Timer= { TSE, TICE, TBE}. Hence, to express the timeDuration type for each timer
node, we add to the graph definition (Def. 2.1) a timing function: Ĝ= (N , E, M, catN ,
catE , source, target, R, msg, attachedTo, isInterrupt, timing). timing maps a time
duration t to each timer node.

timing : NTimer → N

.
We extend the state definition with locals clocks (lc). Hence, the definitions of state

(Def. 2.2) and initial state (Def. 2.3) change as follows.0

Definition 3.1 (State). s = (mn,me,mnet, lc) such that:

• lc : NTimer → N, is the local discrete clock representing the time spent on a given
timer node.

Definition 3.2 (Initial state). The initial state of a BPMN graph, denoted by so =
(mn0,me0,mnet0, lc0).5

• Local clocks are initialized to zero: ∀n ∈ NTimer, lc0(n) = 0.

• mn0, me0, and mnet0 are initialized as above (Def. 2.3).

Based on these changes, we define the execution semantics of the timer event nodes
as follows.

• A start timer event (TSE ) is defined by a completing predicate. TSE is enabled0

to complete only if it has a token and the time of its local clock has elapsed. It
completes by consuming its token, producing a token on each of its outgoing edges
and on the process, and resetting its local clock.

∀n ∈ NTSE, Ct(n)
def≡ (lc(n) ≥ Timing(n)) ∧ (l′c(n) = 0)
∧ (mn(n) = 1) ∧ (mn′(n) = mn(n)− 1)
∧ ∀eo ∈ outSF(n), (me′(eo) = me(eo) + 1)
∧ ∃p ∈ NP, n ∈ R(p), (mn(p) = 0) ∧ (mn′(p) = mn(p) + 1)
∧4 ({n, p} ∪ outSF(n)) ∧ Ξ

Example. Consider the process of Figure 27. Here, the start event node (tse) is
associated with a timing duration of 5 units. The figure presents the completing5

behavior of tse. The starting node has a token and its local clock meets the deadline.
So the completing transition can fire. The right-hand side of the figure shows the
result of this operation: the local clock is reset, the process is started, and a token
is added to the outgoing edge (e1).

• A timer intermediate catch event (TICE ) is defined by a starting predicate. A0

TICE is enabled to start if one of its incoming edges has a token, and the time
of its local clock has met its deadline. It starts by consuming a token from one of
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Figure 27: Completing behavior of a Timer Start Event.

its marked incoming edges, resetting its local clock, and generating a token on its
outgoing edges.

Formally.

∀n ∈ NTICE, St(n)
def≡ (lc(n) ≥ Timing(n)) ∧ (l′c(n) = 0)
∧ ∃ei ∈ inSF(n), (me(ei) ≥ 1) ∧ (me′(ei) = me(ei)− 1)
∧ ∀eo ∈ outSF(n), (me′(eo) = me(eo) + 1)
∧4 ({ei} ∪ outSF(n)) ∧ Ξ

Example. Let us consider a claims process. To support his claim, a client should5

register and provide some documents. Then, the claim is analysed to take the
necessary actions and inform the client. The action to be taken is executed after
a certain time. This delay can be modelled by an intermediate catching time
event. Figure 28 shows the starting behavior of a timer intermediate catching
event (Waiting). The upper part of the figure shows that Waiting is enabled to0

complete: it has a token on its incoming edge (e4), and its clock meets the deadline.
The lower part of the figure shows that Waiting completes by moving the token on
its outgoing sequence flow edge (e5), and resetting its local clock.

Figure 28: Starting behavior of a Timer Intermediate Catch Event.

• A timer boundary event (TBE ) is defined by a starting predicate. TBE is ready
to start if its local clock meets its deadline and the activity attached to it is active5

(i.e., owns a token). In this case, we distinguish the interrupting behavior from non-
interrupting one. In the latter, a TBE starts by generating a token on its outgoing
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sequence flow edges and resetting its local clock. In the interrupting behavior, a
TBE starts by cancelling the activity which it is attached to if this activity is not
a sub-process in its completing step (i.e., it has at least one token on one of its0

elements other than its end events). If it is the case, the activity is cancelled by
dropping all its tokens. The TBE resets then its local clock and produces a token
on each of its outgoing edges.
Formally.

Stinterrupting(n, act)
def≡ (act /∈ NSP ∧ (mn′(act) = 0) ∧4({act} ∪ outSF(n)))

∨




act ∈ NSP ∧ ¬mayComplete(act) ∧ (mn′(act) = 0)
∧ ∀nn ∈ R(act) ∩N, (mn′(nn) = 0)
∧ ∀ee ∈ R(act) ∩ E, (me′(ee) = 0)
∧4 ({act} ∪R(act) ∪ outSF(n))




∀n ∈ NTBE, St(n)
def≡ ∃act ∈ NA, (act = attachedTo(n)) ∧ (mn(act) = 1)

∧ (lc(n) ≥ Timing(n)) ∧ (l′c(n) = 0)
∧ ∀eo ∈ outSF(n), (me′(eo) = me(eo) + 1)

∧
(

(isInterrupt(n) ∧ Stinterrupting(n, act))
∨ (¬isInterrupt(n) ∧4(outSF(n)))

)
∧ Ξ

Example. Consider an example of an on-line payment process: when the payment
page is opened, the user must enter the credit card number, this task is stopped5

if a timeout (e.g., 10 minutes) is triggered. Besides, the user receives a notifi-
cation of the remaining time before the deadline (e.g., at minute 7, to say that
it remains 3 minutes). The timeout can be modelled by an interrupting bound-
ary time event (timeOut) and the reminder by a non-interrupting boundary event
(timeReminder).0

Figure 29 presents the starting behavior of timeOut. The left-hand side of the figure
shows that timeOut is ready to start (i.e., the task CB−payment has a token and
the local clock of timeOut meets its deadline). The right-hand side of the figure
shows that timeOut starts by cancelling the CB−payment task and generating a
token on its outgoing edge (e4).5

Figure 29: Starting behavior of an interrupting Timer Boundary Event.

Figure 30 presents the starting behavior of timeReminder. The left-hand side of
the figure shows that timeReminder is ready to complete (i.e., CB−payment has
a token and the local clock of timeReminder meets its deadline). The right-hand
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side of the figure shows that timeReminder completes by generating a token on
its outgoing edge (e6) without interrupting the behavior of CB−payment (it still0

owns a token).

Figure 30: Starting behavior of a non-interrupting Timer Boundary Event.

• Event-Based Gateway. Due to the provided semantics for the timer events, the
semantics of an event-based gateway must be changed. In the standard, the exe-
cution semantics of an event-based gateway is defined as a branching point where
exactly one of its outgoing edges is activated, depending on which event is trig-5

gered. Then, the path to that event will be used (a token will be sent down the
outgoing sequence flows of the event) [1].
In a BPMN model, an event-based gateway is followed by a receive task (RT ) or an
intermediate catching message event (CMIE ), combined with a timer intermediate
catch event (TICE ): the activation of one of the outgoing edges depends on the0

enabling of these elements (i.e., the reception of a message, or a specific time event
is triggered). So, to handle time, we adapt the semantics of an event-based gateway
as follows.
An Event-based gateway (EB) is defined only by a completing predicate. It is ready
to complete if one of its incoming edges has a token and one of its target events is5

enabled (i.e., the target of an outgoing edge is an RT or a CMIE that has an offer
on one of its incoming message edges, or the target of an outgoing edge is a timer
intermediate event that meets its deadline). The EB completes by consuming the
token from one of its incoming edge and producing a token on the outgoing edge
on which the event is enabled.0

Formally.

∀n ∈ NEB, Ct(n)
def≡ ∃ ei ∈ inSF(n), (me(ei) ≥ 1) ∧ (me′(ei) = me(ei)− 1)

∧






∃eo ∈ outSF(n), target(eo) ∈ N{RT,CMIE}

∧ ∃em ∈ inMF(target(eo)), (me(em) ≥ 1)
∧ (me′(eo) = me(eo) + 1) ∧4({ei, eo})




∨



∃eo ∈ outSF(n), (target(eo) ∈ NTICE)
∧ (lc(target(eo)) ≥ timing(target(eo)))
∧ (me′(eo) = me(eo) + 1) ∧4({ei, eo})







∧ Ξ

Example. Let us consider an extension of the claim process presented in Figure 28.
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If the documentation is not provided by the client within a certain period, the
claim will fail. This should be included in the diagram (see Fig. 32). After the
registration of the claim, an event-based gateway waits for the first event to occur:
a Receive document or a TimeOut. The figure shows that after a maximum period5

of time (defined through the deadline of TimeOut), if the client does not present
the documents, TimeOut is activated and then the event-based gateway generates
a token on its outgoing edge leading to TimeOut (see lower part of Fig. 32). The
lower part of Figure 31 shows the case where the documents are provided in time,
and the event-based gateway generates a token on the corresponding outgoing edge0

(e3).

Figure 31: Completing behavior of an Event-Based Gateway: a message is ready to be received.

Transition Relation with Time. Based on the latter, we change the definition of the
transition relation mentioned in Section 2.5 by introducing a set of predicates and subsets
of nodes:

Let us consider a subset of timer nodes, called S, that groups the nodes that satisfy
one of the following conditions: (i) all starting timer nodes that have a token and their
local clocks are not active, (ii) all intermediate timer nodes that have an inactive local
clock and have a marked incoming edge, or if they follow an event based gateway and the
latter has a marked incoming edge, (iii) all boundary timer nodes attached to an active
activity and their local clock is not active, or (vi) all active timer nodes (i.e., their local
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Figure 32: Completing behavior of an Event-Based Gateway: the timer is ready to fire.

clocks are greater than 0 and they didn’t reach their timing limits) as follows:

S
def≡ {n ∈ NTSE | (lc(n) = 0) ∧ (mn(n) = 1)}

∪ {n ∈ NTICE | ∃e ∈ inSF(n), (lc(n) = 0) ∧ (me(e) > 0)}
∪ {n ∈ NTICE | ∃e ∈ inSF(source(inSF(n))), (lc(n) = 0) ∧ (me(e) > 0)}
∪ {n ∈ NTBE | (lc(n) = 0) ∧ (mn(attachedTo(n)) > 0)}
∪ {n ∈ NTimer | timing(n) > lc(n) > 0}

Let Y be the subset of timer nodes in the BPMN graph that are ready to fire:

Y
def≡ {y ∈ NTimer | lc(y) ≥ Timing(y)}

To facilitate the reading of the transition relation, we define the following predicates:5

• step defines a step of execution for a given node:

step(n)
def≡ St(n) ∨ Ct(n)

• stepT increases the local clock of each enabled timer node or currently executed:

stepT
def≡ ∀n ∈ S, l′c(n) = lc(n) + 1
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• fztime denotes time equality for the local clock of all timer nodes given as param-
eter:

fztime(Z)
def≡ ∀z ∈ Z, l′c(z) = lc(z)

The transition relation distinguishes two cases. If at least a timer is ready to fire
(Y 6= ∅), then a timer fires (it does a step) or an event-based gateway that precedes
a firable timer does a step. Time does not advance, and other timers with the same
expiration time can then fire. If no timer is ready to fire, all timers increase (stepT ) and
non-deterministically, a step can occur (∃n, step(n)) or no step is done (4(∅) ∧ Ξ).0

Definition 3.3 (Transition Relation with time). Let s and s′ be two states. We say
that s′ is a successor of s, iff the predicate Next(s, s′) holds:

Next(s, s′)
def≡ (Y 6= ∅ ∧




(∃n ∈ Y : step(n) ∧ fztime(NTimer \ {n}))
∨
(
∃n ∈ NEB,∃eo ∈ outSF(n),

(target(eo) ∈ Y ) ∧ step(n) ∧ fztime(NTimer)

)



∨ (Y = ∅ ∧ stepT ∧ fztime(NTimer \ S) ∧ ((∃n ∈ N : step(n)) ∨ (4(∅) ∧ Ξ))

3.4. Discussion
The advantage of abstracting time with non-deterministic transitions is its simplicity,

and its efficiency in model-checking once translated in TLA+. The first limitation is that
it can not recognize impossible-to-meet time constraints, e.g. a time necessarily in the
past. As noted above, this is safe with regard to LTL properties, which are the majority5

of the useful properties in Section 4. The no dead activities property is the only one that
cannot be checked, as it translates to a CTL existential property. The second limitation
is that we cannot derive any temporal information on a collaboration, for instance how
long it takes to complete. With explicit time, on the other hand, it is possible to compute
the minimal number of ticks a process or a collaboration need to complete. This requires0

adding history variables [18, p. 270] to record time information such as the start time of a
process, without altering the semantics [19]. Our semantics use discrete time. As shown
in [20], discrete time allows specifications to be checked with ordinary model checkers,
and our semantics do not require continuous time model checkers such as Uppaal.

4. Verification Properties5

Verifying a model involves checking the correctness of its properties. In the context
of process modelling, properties are classified into two main classes: structural and be-
havioural. The structural properties relate to the type of elements and how they are
connected. Such properties could be checked using a standard process modelling tool
which can enforce that the model is correctly designed. The behavioural properties relate0

to the sequences of execution as defined by the process model. We further classify the
behavioural properties into general and specific ones. The specific properties are unique
to business process models, while the general properties are used in other types of models.
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General properties. deadlocks and livelocks are common examples of general properties.
Fig. 33 shows a simple BPMN model with an XOR and an AND gateway. The XOR5

gateway produces a token either on its outgoing edge e2 or e3 but not on both. As
a consequence, the AND gateway will never be enabled (its incoming edges e4, e5 will
never be synchronized). Hence, this model suffers from a deadlock situation. While in
a deadlock the involved activities can never be executed and the process can never be
completed, in a livelock situation a set of activities are executed indefinitely.0

P XOR

e3

e2 e4

e5

task1

task2

e6

neense

e1 AND

Figure 33: BPMN diagram with deadlock.

Specific properties. Soundness is the main property that can be checked after a process
model is executed.

Soundness property for business processes was developed by Wil van der Aalst in
the context of workflow nets [21]. A workflow net has a unique terminal place and the
authors defined the soundness of the WF-net by the satisfaction of the three following5

requirements: "(1) Option to complete: from any reachable state, it is possible to reach
a state with marks on the terminal place, (2) proper completion: if the terminal place
is marked, all other places are empty, (3) no dead transitions: it should be possible to
execute an arbitrary activity by following an appropriate route through the WF-net". In
the case of Petri nets in workflow verification, [22] and [23] prove that a workflow net is0

sound if and only if the corresponding short-circuited Petri net is live and bounded. In
addition, they define the safeness of a WF-net by ensuring that each place cannot hold
multiple tokens at the same time.

In the book [24], [p.186, ch.5], Dumas et.al define informally the soundness of the
BPMN process model by the satisfaction of the following three properties: "(1) Option to5

complete: any running process instance must eventually complete, (2) Proper completion:
at the moment of completion, each token of the process instance must be in a different
end event, (3) No dead activities: any activity can be executed in at least one process
instance".

In [5], authors address BPMN collaboration models. They introduce a formal defi-0

nition of safeness and soundness properties by focussing on the specificities of BPMN.
"A process is safe if during its execution no more than one token occurs along the same
sequence edge". The authors extend the safeness property for processes collaboration
which require that "each of all the processes that involved in the overall collaboration ex-
ecution is safe". On the other hand, they define the soundness of the process as follows:5

"A BPMN process is sound, if it can complete its execution without leaving active ele-
ments and all the model elements can be activated in at least one of the execution traces".
In addition, they extend the latter to define the soundness of the whole collaboration
model.
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 Based on those definitions [24, 5], we provide a set of properties that can be formally0

specified as follows. We recall here that a state in our formalisation of BPMN is s =
(mn,me,mnet). For an execution σ = s1s2... and a node x, we note σ[i].mn(x) the value
of the marking of x at step i in σ, and domain(σ) = {1, ..., |σ|}.
Definition 4.1 (Option to complete). Any running process must eventually complete.
A process is complete in a state if markings occur only on end events.

Completed(p, s)
def≡ ∀n ∈ R(p) ∩N, (s.mn(n) = 0) ∨ (s.mn(n) = 1 ∧ n ∈ NEE)

∧ (∀e ∈ R(p) ∩ E, (s.me(e) = 0))

OptionToComplete
def≡ ∀p ∈ NP ,∀σ ∈ Exec,∀i ∈ domain(σ), σ[i].mn(p) > 0⇒

∃j ∈ domain(σ), j ≥ i ∧ Completed(p, σ[j])

Definition 4.2 (Proper Completion). At the moment of completion, each token of the
process instance must be in a different end event.

ProperCompletion
def≡ ∀p ∈ NP ,∀σ ∈ Exec,∀i ∈ domain(σ),

Completed(p, σ[i])⇒ ∀n ∈ R(p) ∩NEE, σ[i].mn(n) = 1

Definition 4.3 (No dead activities). An activity is dead if no execution activates it.

NoDeadActivities
def≡ ∀a ∈ NA,∃σ ∈ Exec,∃i ∈ domain(σ), σ[i].mn(a) 6= 0

Definition 4.4 (Undelivered messages). No messages are left in transit.

NoUndeliveredMessages
def≡ ∀σ ∈ Exec,∃i ∈ domain(σ),∀j ∈ domain(sigma),

j ≥ i =⇒ ∀e ∈ MF, σ[j].me(e) = 0

Definition 4.5 (Safe process). A process is safe if and only if all its sequence flow edges
never hold more than one token during their execution.

For p ∈ NP, SafePr(p)
def≡ ∀σ ∈ Exec,∀i ∈ domain(σ),∀e ∈ R(p) ∩ E, (σ[i].me(e) ≤ 1)

Definition 4.6 (Safe Collaboration). A collaboration is safe all its processes are safe.

Safe
def≡ ∀p ∈ NP, SafePr(p)

Definition 4.7 (Process soundness). A process is sound in a state if only its end events
hold at most one token, and all the other nodes (ignoring start events) and all the edges
are unmarked. Formally, process p ∈ NP is sound in state s if and only if the following
predicate is true :

soundPr(p, s)
def≡ ∀n ∈ R(p) ∩N, (s.mn(n) = 0) ∨ (s.mn(n) = 1 ∧ n ∈ (NEE ∪NSE))

∧ ∀e ∈ R(p) ∩ E, s.me(e) = 0

Definition 4.8 (Message-relaxed sound collaboration). A collaboration is message-
relaxed sound if eventually all the processes are sound and it is stable:

msgSoundCol
def≡ ∀σ ∈ Exec,∃i ∈ domain(σ),∀j ∈ domain(σ),

j ≥ i =⇒ ∀p ∈ NP, soundPr(p, σ[j])
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Definition 4.9 (Collaboration soundness). A collaboration is sound if and only if, for
all executions, eventually, all the processes involved in the collaboration are sound and
all the message flow edges are unmarked.

soundCol
def≡ ∀σ ∈ Exec,∃i ∈ domain(σ),∀j ∈ domain(σ),

j ≥ i =⇒ ∀p ∈ NP, soundPr(p, σ[j]) ∧ ∀e ∈ EMF, (σ[j].me(e) = 0)

With reference to other definitions of soundness [21, 24, 5], we consider a form of
soundness under fairness assumptions, that could be called fair soundness.5

5. Implementation & Verification

In this section, we present our encoding of the FOL semantics in TLA+. This allows
one to easily parameter the properties of the communication, and to benefit from the
efficient TLC model checker to automatically verify collaborations.

5.1. The TLA+ Specification Language and Verification Framework0

TLA+ [9] is a formal specification language based on untyped Zermelo-Fraenkel set
theory for specifying data structures, and on the temporal logic of actions (TLA) for
specifying dynamic behaviors. TLA+ allows one to specify symbolic transition systems
with variables and actions. An action is a transition predicate between a state and a
successor state. It is an arbitrary first-order predicate with quantifiers, set and arithmetic5

operators, and functions. In an action, x denotes the value of a variable x in the origin
state, and x′ denotes its value in the next state. Functions are primitive objects in TLA+.
The application of function f to an expression e is written as f [e]. The expression
[x ∈ X 7→ e] denotes the function with domain X that maps any x ∈ X to e. The
expression [f except ![e1] = e2] is a function that is equal to the function f except at0

point e1, where its value is e2. A system specification is usually a disjunction of actions.
Fairness, usually expressed as a conjunction of weak or strong fairness on actions, or
more generally as an LTL (Linear Temporal Logic) property, ensures progression. Weak
fairness on an action states that this action cannot be continuously enabled without being
fired, and strong fairness on an action states that this action cannot be infinitely often5

enabled without being fired. The TLA+ toolbox, freely available at http://lamport.
azurewebsites.net/tla/tla.html, contains an editor, a pretty-printer, the TLC model
checker, and the TLAPS proof assistant.

5.2. Encoding of FOL Semantics in TLA+

The expression and action fragment of TLA+ contains FOL, and the encoding of the0

semantics in TLA+ is straightforward (459 lines of TLA+ formulae).
Actually, the given FOL formalisation captures the behavior of each of the components

of BPMN (nodes which can be events, activities, and gateways), and thus the behavior
of the whole BPMN model. This behavior is defined using the concept of tokens which
move from nodes to edges (and vice-versa) when specific conditions are fulfilled. The5

distribution of those tokens (marking) on the elements of the BPMN model describes
its state. Hence, the whole behavior is seen as a set of states reachable when specific
transitions are fired.
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As extensively described before, the idea here is to associate to each node (n) two
predicates4: a first predicate, St(n), which states if the node can start its execution,0

and thus changing its current marking before its execution (mn (n)) to another marking
after its execution (mn’ (n)). The second predicate, Ct(n), that states if the node can
finish its execution and so change the current marking (mn (n)) before its termination
to another marking (mn’ (n)) after its termination.

In this context, the TLA+ specification of the semantics of node n is nothing but a5

direct translation of the St(n) and Ct(n) predicates of node n into the TLA+ syntax.

Example.
Let us reconsider the semantics of a "none start event" defined through the predicate

Ct(n):0

∀n ∈ NNSE, Ct(n)
def≡ (mn(n) = 1) ∧ (mn′(n) = mn(n)− 1)
∧ ∀e ∈ outSF(n), (me′(e) = me(e) + 1)

∧




(∃p ∈ NP , (n ∈ R(p)) ∧ (mn(p) = 0)
∧ (mn′(p) = 1) ∧4({n, p} ∪ outSF(n)) ∧ Ξ)

∨ (∃p ∈ NSP , (n ∈ R(p)) ∧4({n} ∪ outSF(n)) ∧ Ξ)




This FOL semantics is translated into a TLA+ specification as follows.

nonestart_complete(n) , ∧ CatN [n] = NoneStartEvent
∧ nodemarks[n] >= 1
∧ LET p == ContainRelInv(n) IN
∨ ∧ CatN [p] = Process
∧ nodemarks[p] = 0
∧ nodemarks′ = [nodemarks except ![n] = @− 1, ![p] = 1]
∨ ∧ CatN [p] = SubProcess
∧ nodemarks′ = [nodemarks except ![n] = @− 1]

∧ edgemarks′ = [e ∈ domain edgemarks 7→
if e ∈ outtype(SeqF lowType, n) then edgemarks[e] + 1
else edgemarks[e]]

∧ Network!unchanged

Intuitively, the translation is done syntactically as shown in Table 2. Here, we can
easily observe that the translation is straightforward, and this holds for all the elements
of BPMN.

5

The resulting theories, for the translation of the whole elements, are available at [6]
under theories/tla.

Module PWSTypes defines the abstract constants that correspond to the node and
edge types. Module PWSDefs specifies the constants that describe a BPMN graph (Def-
inition 2.1): Node (for N), Edge (for E), Message (for M), CatN (for catN ), CatE (for0

4In some cases, the behavior is described using only one of the two predicates.
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Table 2: Translation between FOL and TLA+ (NSE example).

FOL Expression TLA+ expression
φ1 catN (n) = NSE φ′1 CatN [n] = NoneStartEvent
φ2 mn(n) ≥ 1 φ′2 nodemarks[n] >= 1

φ3
∀e ∈ outSF(n),

(me′(e) = me(e) + 1)
φ′3

edgemarks′ = [e ∈ domain edgemarks 7→
if e ∈ outtype(SeqF lowType, n)

then edgemarks[e] + 1
else edgemarks[e] ]

φ4

∃p ∈ NP, (n ∈ R(p))
∧ (mn(p) = 0)
∧ (mn′(n) = mn(n)− 1)
∧ (mn′(p) = 1)

φ′4

LET p == ContainRelInv(n) IN
∧ CatN [p] = Process
∧ nodemarks[p] = 0
∧ nodemarks′ =

[nodemarks except ![n] = @− 1, ![p] = 1]

φ5
∃p ∈ NSP, (n ∈ R(p))
∧ (mn′(n) = mn(n)− 1)

φ′5

LET p == ContainRelInv(n) IN
∧ CatN [p] = SubProcess
∧ nodemarks′ =

[nodemarks except ![n] = @− 1]
φ6 Ξ φ′6 Network!unchanged

catE), ContainRel (for R). . . This module also defines auxiliary functions such as inT ,
defined in TLA+ as the operator intype(type, n) , {e ∈ {ee ∈ Edge : target(ee) = n} :
CatE[e] ∈ type}.

Module PWSWellFormed encodes the well-formedness predicates for BPMN graphs.
For instance, the rule C3 (a sub-process has a unique start event node) becomes:

C3_SubProcessUniqueStart , ∀n ∈ Node : CatN [n] = SubProcess⇒
Cardinality(ContainRel[n] ∩ {nn ∈ Node : CatN [nn] ∈ StartEventType}) = 1

Last, module PWSSemantics contains the semantics. It defines the variables for the
marking: nodemarks (∈ [Node→ Nat]), edgemarks (∈ [Edge→ Nat]), and net (whose5

type depends on the selected communication model). Then it contains a translation of
the FOL formulas, where each rule yields one TLA+ action, translated from the FOL
semantics as explained above.

The Next predicate specifies a possible transition between a starting state and a
successor state. It is a disjunction of all the actions. The full specification is then, as usual0

in TLA+, Init ∧ �[Next]var ∧ Fairness, where Init specifies the initial state (Def. 2.3),
and �[Next] specifies that Next (or stuttering) is verified along all the execution steps.

5.3. Fairness in Loops and Alternatives
The restriction to fair executions (Section 2.2.6) is naturally translated in TLA+.

TLA+ supports weak and strong fairness, defined as below for an action A:

WFe(A)
def≡ �♦¬(ENABLED〈A〉e) ∨�♦〈A〉e

SFe(A)
def≡ ♦�¬(ENABLED〈A〉e) ∨�♦〈A〉e

Fairness is then a conjunction of weak fairness on all actions (∀n ∈ Node : WFvar(step(n))),
and of strong fairness on XOR, OR and EB transitions.5
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5.4. Communication as a Parameter
One of the objectives of our FOL semantics is to be able to specify the communication

behavior as a parameter of the verification. To achieve this, all operations related to
communication are isolated in a Network module. This module is a proxy for several
implementations that correspond to communication models with different properties,0

such as their delivery order.

Generic Communication Models. We provide seven communication models which differ
in the order messages can be sent or received, and are all the possible point-to-point
models when considering local ordering (per process), causal ordering, and global ordering
(absolute time). Their formal description is provided above in section 2.2.4, and their5

formal analysis and comparison are in [12].
The state of the communication model is specified with a variable net, whose content

depends on the communication model. The communication actions are two transition
predicates send and receive which are true when the action is enabled. These actions
take three parameters, the sender process, the destination process and the type of mes-
sage. Their specification depends on the communication model and is a direct translation
in TLA+ of the FOL formula of table 1. For instance, NetworkFifo specifies a communi-
cation model where the delivery order is globally first-in first-out: messages are delivered
in the order they have been sent. Its realization is a queue and the two predicates are:

send(from, to,m) , net′ = Append(net, 〈from, to,m〉)
receive(from, to,m) , net 6= 〈〉 ∧ 〈from, to,m〉 = Head(net) ∧ net′ = Tail(net)

Ad-hoc Communication Models. The communication models described in 2.2.4 are all
monolithic. This means that all the communication interactions are handled by the
same communication model, and that it restricts the receptions in the same way for
all communication channels. In some cases, one needs to have different properties in0

different parts of a model. For instance, a set of processes can require Fifo All commu-
nication for their interactions, while another set does not have any constraint. Using a
modular communication framework based on micromodels [25], we offer the possibility to
implement the send and receive predicates with a combination of micromodels that are
applied to subsets of the channels in the BPMN collaboration. The available micromod-5

els are : the seven ordering model as above, that order the receptions with regard to the
emission events; a micromodel where priorities are assigned to channels; a message cap
micromodel that limits the number of messages in transit; a bounded micromodel that
limits the total number of messages that a set of channels can transport in an execution.

Consider the example in Figure 1. This example has an infinite number of states as0

the travel agency can send an arbitrary number of offer. Moreover, it is required that the
NoMore message is received after all the Offer messages. With the monolithic commu-
nication models, this can be handled by using the Fifo Pair (or Fifo All) communication
model. However, observe that the Confirmation and Ticket messages are expected by
the customer in the reverse order of their emissions. Imposing fifo ordering means that5

the ticket cannot be delivered before the confirmation, and this collaboration with a Fifo
communication model is unsound: the customer process deadlocks without reaching the
final state.

Using micromodels, we state that all the channels are point-to-point (micromodel
"p2p"), and we impose fifo ordering only on Offer and NoMore (micromodel "fifo11").0
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Moreover, we limit the overall number of offers by limiting the number of messages sent
on Offer (micromodel "voting"). Lastly, we can also bound the number of messages in
transit (micromodel "message_cap"). This ad-hoc communication model is described as
below:

5
CHANNELS == {"Offer", "NoMore", "Travel", "Payment", "Abort",

"Ticket", "Confirmation"}
COMMODELS == {[name 7→ "p2p", params 7→ [chan 7→ CHANNELS ] ],

[name 7→ "fifo11", params 7→ [chan 7→ {"Offer","NoMore"} ] ],
[name 7→ "voting", params 7→ [chan 7→ {"Offer"}, bound 7→ 2 ] ],
[name 7→ "message_cap", params 7→ [chan 7→ CHANNELS, bound 7→ 4 ] ] }

COM == INSTANCE multicom WITH
PEERS ← {"Customer", "Travel Agency"}
COM ← COMMODELS,
CHANNEL ← CHANNELS

5.5. Mechanized Verification
A specific BPMN diagram is described by instantiating the constants in PWSDefs

(Node, Edge. . . ) from the BPMN collaboration. This is automated using our fbpmn tool.
Regarding the well-formedness of the BPMN diagram, the predicates from PWSWellFormed0

are assumed in the model. Before checking a model, The TLA+ model checker checks
these assumptions with the instantiated constants that describe the diagram, and re-
ports an error if an assumption is violated. Otherwise, this proves that the diagram is
well-formed.

The TLA+ model checker, TLC, is an explicit-state model checker that checks both5

safety and liveness properties specified in LTL. This logic includes operators � and ♦
that respectively denote that, in all executions, a property F must always hold (�F ) or
that it must hold at some instant in the future (♦F ). TLC builds and explores the full
state space of the diagram to verify if the given properties are verified. These properties
are generic properties related to any Business Process diagram, or specific properties for0

a given diagram. Some generic properties are safe collaboration, sound collaboration and
message-relaxed sound collaboration [5].

A collaboration is safe if no sequence flow holds more than one token:

�(∀e ∈ ESF,me(e) ≤ 1) (1)

A collaboration is sound if all the processes are sound and there are no undelivered
messages. A process is sound if it is in a stable state where there are no tokens on its
inside edges, and no tokens on its nodes, except possibly for start and end events.

SoundProc(p)
def
= ∀e ∈ R(p) ∩ ESF ,me(e) = 0

∧ ∀n ∈ R(p) ∩N, (mn(n) = 0 ∨ (mn(n) = 1 ∧ n ∈ (NEE ∪NSE)))

Soundness
def
= ♦�(∀p ∈ NP, SoundProc(p) ∧ ∀e ∈ EMF,me(e) = 0) (2)

A collaboration is message-relaxed sound if it is sound when ignoring messages in
transit, i.e., when ignoring the Message Flow edges.

MsgRelaxedSoundness
def
= ♦�(∀p ∈ NP, SoundProc(p)) (3)
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Other generic properties are available, such as the absence of undelivered message5

or the possible activation which states there does not exist a task node (Abstract Task,
Send Task, Receive Task) that is never activated in any execution. From a business
process point of view, it means that there are no tasks in the diagram that are never
used. This is expressed as ∀n ∈ NT : EF(mn(n) 6= 0) (TLC can check for the invalidity
of the negation of this CTL formula).0

Last, the user can also define business model properties concerning a specific dia-
gram. For instance, one can check that the marking of a given node is bounded by a
constant (i.e., �(nodemarks["Confirm Booking"]) ≤ 1), or that the activation of one
node necessarily leads to the activation of another node (�(nodemarks["Book Travel"]
6= 0⇒ ♦(nodemarks["Offer Completed"] 6= 0)).5

Termination of the verification is ensured for a finite state model. When the model
checker finds that a property is invalid, it outputs a counter-example trace that we
animate on the BPM graphical model to help the user understand it. TLC uses a
breadth-first algorithm, and this trace is minimal for safety properties. As any BPMN
model is structurally finite, a model with an infinite state space is necessarily unsafe (in0

the sense of (1): some edges hold more than one tokens). This property is invalidated on
a prefix of a trace. TLC incrementally checks invariants during the construction of the
state space, and an unsafe model will be detected even if it would yield an infinite state
space. TLC cannot check arbitrary properties on an infinite state model. Nevertheless,
we can use constraints expressed on states or transitions to limit the state space (see5

Section 6.4.1).

5.6. Experiments
Experiments were conducted on a laptop with a 1.9 GHz (turbo 4.8 GHz) Intel Core i7

processor (quad core) with 32 GB of memory. Results are presented in Table 3. The first
column is the reference of the example in our archive. The characteristics of a model are:0

number of participants, number of nodes (incl. gateways), number of flow edges (sequence
or message flows), whether the model is well-balanced (for each gateway with n diverging
branches we have a corresponding gateway with n converging branches) and whether it
includes a loop. The communication model is asynchronous (bag), fifo-ordered between
each couple of processes (fifo pair), globally fifo (fifo all), or synchronous-like (RSC).5

The results of the verification then follow. First, data on the resulting transition system
are given: number of states, number of transitions, and depth (length of the longest
sequence of transitions that the model checker had to explore). For each of the three
correctness properties presented above, we indicate if the model satisfies it. Lastly, the
accumulated time for the verification of the three properties is given. Our tool supports0

more verifications (see Table 6) and can be easily extended with new properties. We
selected these three ones since they are more BPMN specific [5].

Table 3 presents the results for a selection from our repository [6] for a variety of
gateways and activities. These illustrative examples include realistic business process
models (001 and 002 two client-supplier models, 040 from Figure 1, 017 from [4], and5

020 from [26]), and models dedicated to specific concerns: termination end events and
sub processes (007–011 from [5]), inclusive gateways (003, 012, 013 and 018), exclusive
and event-based gateways (015 and 016).

A first conclusion is that verification is rather fast: the verification of one property
generally takes just a few seconds per model, the longest being for model 020 that takes0
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up to 53s of accumulated time for the three properties (5s for the construction of the
state space). Experiments also show the effect of the communication model on property
satisfaction (models 1, 2, 6, 20), the use of TLA+ fairness to avoid infinite loops (12,
13, 18, 20), and the use of terminate end events combined with model constraints (see
Section 6.4.1) to deal with unsafety (6).5

LTL verification is O(M ∗ 2F ), where M is the size of the state space, and F is the
"size" of the formula (the number of involved temporal operators). F is mainly influenced
by the number of fairness constraints. RegardingM , in practice, more than the size of the
BPMN schemas, interleaving is the main cause of state explosion. Interleaving is directly
linked to the number of processes. Thus, more than the number of nodes (which has a0

limited impact), the verification time is mainly impacted by the number of processes and
the branching in them.

6. The fbpmn Tool Suite

Our FOL formal semantics for communication parametric BPMN collaboration, and
the verification of properties, realized over TLA+ and the TLC model checker, as pre-5

sented in Section 5, are implemented in the fbpmn tool suite. This open source, freely
available, suite is made up of :

• the fbpmn program and several accompanying scripts, to perform verification in
one’s command line and to graphically animate counter examples,

• a Web application version of the above, with a client-side front-end (for BPMN0

modelling and for giving communication and verification parameters) that runs in
one’s browser, and a server-side back-end verification engine, built around fbpmn
and scripts, for which a Docker version is available.

The URL to get fbpmn is https://github.com/pascalpoizat/fbpmn.

6.1. Architecture and General Principles5

The fbpmn tool suite is centered around a command, fbpmn, that is available for
Linux, OSX, and Windows (binaries are available for the first two, the later requiring,
for now, a compilation process). This command is used to transform a BPMN model
into a TLA+ representation of its BPMN Graph (Def. 2.1). fbpmn is also in charge
of the computation of the PreN and PreE sets that are used in the semantics of the0

OR gateways, since these two sets can be structurally computed from the BPMN graph
structure. This generated TLA+ module is then passed, together with modules for TLA+

implementation of our well-formedness rules (Sect. 2.1) and of semantics (Sect. 2.2), to
the TLC model checker, as described in the bottom of Figure 34.

In case verification fails, TLC outputs a counter-example in the form of a trace5

that includes for each step the state of the markings and the communication network
(Def. 2.2). In order to ease the interpretation of this by the process designer, fbpmn can
also be used to generate an interactive animation of the counter-example, where one can
see the marking over the BPMN model and navigate between the steps of the counter
example (Fig. 4). The presentation layer for the counter-example animator has been0

achieved using the Camunda.io javascript library.
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TLC	fBPMN	bpmn2tla	
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of	FOL	semantics	

fBPMN-check	

Figure 34: fbpmn approach for the verification of a BPMN collaboration.

6.2. Desktop Modelling and Verification
Since for a given model one may have different properties of interest (e.g., safety,

soundness, and message-relaxed soundness), and since several communication models
are possible (e.g., the seven ones presented in Sect. 2.2.4), it would be tedious to run5

fbpmn for each of the combinations. Hence, we provide the process designer with scripts
(only under Linux or OSX) that ease verification.

When the designer launches the fbpmn-check script (upper part of Fig. 34), it reads a
configuration directory and runs fbpmn based on the designer preferences. Let us suppose
the configuration directory is as follows.0

Network01Bag.tla Network04Inbox.tla Network07RSC.tla Prop03Sound.cfg
Network02FifoPair.tla Network05Outbox.tla Prop01Type.cfg Prop04MsgSound.cfg
Network03Causal.tla Network06Fifo.tla Prop02Safe.cfg

This will yield four different properties to be checked for seven different network models,
generating at most 28 counter-example traces. Running the fbpmn-logs2html script on5

a working directory generated by fbpmn-check, finds out these counter-examples and
generates an interactive animator for each of them. It is also possible to give fbpmn-
check a number of cores to use, this value being passed to the TLC model checker.

6.3. Online Modelling and Verification
In order to ease the use of the fbpmn tool suite, we have implemented a Web appli-0

cation for it (Fig. 35).
There, the user can import, design, or export a BPMN model (this is achieved using

the Camunda.io framework). Then verification parameters can be given: which properties
to check, which communication models to check with, possibly model constraints (see
below) for nodes and/or edges.5

After retrieving the results (Fig. 36) the user has the possibility to see a textual
version of counter-examples and/or to animate it on the model as presented in Sect. 6.1.

The fbpmn Web application is available at http://vacs.enseeiht.fr/bpmn/ for
demonstration purposes. Yet, if one is interested in it, we advocate the deployment of
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Figure 35: fbpmn Web application (modelling and verification panel).

Figure 36: fbpmn Web application (verification results).
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it on one’s own machine or server. For this, we provide a Docker image, downloadable0

from our Web application.

6.4. Extensibility
Our framework can be extended as far as safeness constraints, properties to check,

and communication models are concerned.

6.4.1. Model Constraints5

Some models are unsafe, i.e., the semantics can yield an infinite marking on some
node(s) or edge(s). In such a case, one may rely on model constraints associated to the
BPMN model to be verified. Given the model is model.bpmn, one just has to create a
file model.constraint of the form:

CONSTANT ConstraintNode <- <ConstraintOnNodes>0

ConstraintEdge <- <ConstraintOnEdges>
Constraint <- <Overall constraint in terms of ConstraintNode and ConstraintEdge>

Some node constraints and edge constraints are already defined in our TLA+ library,
e.g., the one to state that an edge should have at most 2 tokens on it, MaxEdgeMarking2,
or the one to limit the number of tokens only on message edgesMaxMessageEdgeMarking2.5

The most usual constraint combinator is also already defined there, ConstraintNodeEdge,
that is the conjunction of the user specified node and edge constraints. Using this, we
may verify model 006 (as seen in Sect. 5.6), defined in file e006TravelAgency.bpmn, with
a file e006TravelAgency.constraint:

CONSTANT ConstraintNode <- TRUE0

ConstraintEdge <- MaxEdgeMarking2
Constraint <- ConstraintNodeEdge

The user is free to extend our constraint library by extending the PWSConstraints.tla
TLA+ module.

6.4.2. New Properties5

We support several properties from the literature. However, it is possible to extend
this set. To do so, one has to:

1. define a new property, say MyProperty, at the end of the main TLA+ semantic
module, PWSSemantics.tla

2. create a new file PropNNMyProperty.cfg in the fbpmn configuration directory, with0

NN being a number different from the existing properties there
3. in the contents of PropNNMyProperty.cfg refer to the property name given in step 1.

The definition of new properties has some limitations. First it must be possible to
define them using LTL since this is the logic that is verified by TLC. Second, these
properties must cope with our definition of state (Def. 2.2), i.e., they can be defined in5

terms of node markings, edge markings, and/or network markings. Properties can also
refer to the types of the nodes and edges, as demonstrated in Sect. 5.5 for the soundness
property.
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6.4.3. New Communication Models
As stated before, we support the most usual communication models to be used as0

parameters for the BPMN semantics. Still, one may define new models. In order to
achieve this, one has to:

1. define the new communication model semantics, say MyNet, in a NetworkMyNet.tla
file in the fbpmn TLA+ theories directory

2. copy one of the files in the fbpmn configuration directory to a new file NetworkNN-5

MyNet.tla in the same directory, with NN being a number different from the existing
communication models there

3. in the contents of NetworkNNMyNet.tla, change the line of the network implemen-
tation definition to refer to the new communication model as defined in step 1.

7. Related Work0

The formalization of the BPMN execution semantics, and on a wider scale the formal
study of business processes, is an active field of research. In this section, we discuss the
most significant propositions in formalizing BPMN. We then compare our approach to
them. In our selection, we focus on two criteria: (1) the use of BPMN as a modelling
language for describing the business process; (2) the existence of tooling support for the5

developed approach.

Table 5: Verification tools in the literature.

Diagram Features Transformation artifact References Year BPMN Tool for transformation Tool for verification

Process

PN [27] 2011 1.0 InFlux Woflan , LoLA
Kripke structure [28] 2013 2.0 BPMN2SPIN EpiSpin

Data PN [29] 2014 2.0 BPMN2PN prototype LoLA
LTL [30] 2014 2.0 BPVSL –

Markov decision process [31], [32] 2016 2.0 SBOAT PRISM
WF-nets [33] 2016 2.0 InFlux WFlan

LNT (LOTOS) [34][35] 2017 2.0 VBPMN CADP
Time Maude source code [36],[37] 2017-2018 2.0 BPMN-P Maude Checker

CPN [38] 2019 2.0 GROOVE CPN Tool

Collab.

PN [39], [7] 2007-2008 1.0 Transformer ProM
YAWL [40], [41] 2008-2010 1.0 BPMN2YAWL –

Time CSP [42, 43, 44], [45], [46] 2008-2012 2.0 BTRANSFORMER FDR2
LTL [47] 2012 2.0 Prototype –

Graph rewriting rule [48], [49] 2010-2013 2.0 GrGen –
Data Maude source code [50] 2014 2.0 Prototype Maude checker

RECATNets [51], [52] 2016-2017 2.0 BPMNChecker Maude
LTS [53], [54] 2017-2018 2.0 BProve Maude checker
CPN [8], [55] 2018-2019 2.0 CP4BPMN CPN Tool

Time TPN [23] 2019 2.0 Transformer –

In Table 5, column Transformation artifact shows the formalism in which the BPMN
models are expressed, column Tool for transformation presents the supporting tool for
applying the approach, and column Tool for verification presents the tool that is used for
the verification. The upper part of the table lists approaches dealing only with process0

diagrams, while the lower part describes approaches dealing with collaboration diagrams.
In the upper part of the table, the discussed approaches formalize a minimal sub-

set of BPMN 2.0: parallel and exclusive gateways, start and end events, and sequence
flows. The inclusive gateway is treated only by a subset of these works. All but two
approaches rely on a third-party formalism (i.e., they transform the BPMN models to5

another language) to conduct the verification. Such an idea has the advantage to reuse
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the existing results and tools with a minimal effort, but has the main drawback of being
very restrictive with respect to the execution semantics of the target formalism.

From a time-related perspective, we consider the approach of [36, 37] to be very
promising. First, it implements a pure semantics to BPMN without using any transfor-0

mation. Second, it can deal with time constraints of the model using high level stochastic
expressions. However, the approach extends the behavior of the standard BPMN ele-
ments (e.g., timeouts for tasks and delays for sequence flow, probabilities to various forms
of branching behavior in gateways) to treat the time constraints, and did not stick to
the actual behaviors defined in the standard. With respect to our work, we provide a5

semantics for the timer BPMN elements as they are expressed in the standard.
The bottom part of the table presents work closer to ours with regard to the supported

BPMN elements. Some works are based on a transformation approach, while others
provide a direct formalization semantics.

Petri nets are used to formalize and verify correctness and soundness properties of0

BPMN in several works. Among them, the earliest work that we identified is [7]. The
authors propose a transformation from BPMN 1.2 into Petri nets models. They have
chosen the ILog BPMN Modeller as a graphical editor to create BPMN models. The
authors apply the defined transformation approach on BPMN models and export the
resulting Petri net in the form of a PNML file. Then, they use the resulting files as input5

for the verification tool to statically check the semantics of BPMN models. With the
ProM framework, soundness is verified, as well as other properties such as dead transi-
tions, deadlocks, and livelocks. Even if the work deals with collaboration elements, the
formalization as Petri nets suffers from limitation for the presentation of the communica-
tion, the hierarchical relation between processes and sub-processes, and the verification0

of internal activities within them. Recently, the work in [23] has extended the approach
of [7] to timed Petri nets to be able to express time constraints for activities, process re-
gions, and timer events. Besides, they tackle the detection and management of constraint
violations at run-time. The authors propose this formal model to analyze the soundness
of the collaboration and of its temporal constraints. However, no formal verification of5

these properties is given.
In [8], the authors present a transformation approach of BPMN models into colored

Petri nets (CPN). They have developed a tool called Coloured Petri net for BPMN design
(CPN4BPMN) to automatize the transformation. Their approach is defined trough two
phases: before applying the transformation, a BPMN design tool (such as the BPMN 2.00

Designer of the Eclipse IDE) is used to partition a BPMN model into sub-models. Then,
they use the sub-models as input for the CPN4BPMN tool to generate the corresponding
CPN model. Even if their work covers a large set of BPMN elements, (e.g., the boundary
events, sub-processes, communication elements), the message exchanges are not specified.
Indeed, the partitioning technique does not support unstructured BPMN models.5

In [52, 51], the authors present a formal verification approach for BPMN based on
high-level Petri nets, called RECATNets. The authors provide a prototype to perform the
automatic transformation from BPMN to RECATNets. Then the obtained RECATNets
are translated into rewriting logic terms, and the Maude model-checker is used to verify
proper termination and some other LTL properties. In the papers, no information about0

the communication model is given, and only a small set of BPMN elements is covered.
Besides, no benchmarking is given, and the approach is illustrated through three simple
examples.
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Other transformations that have been proposed are those from BPMN to workflow
models, e.g., Yet Another Workflow language (YAWL) [40, 41]. YAWL is a language5

with a strictly defined execution semantics inspired by Petri Nets. In [40, 41], the author
provide a formal semantics of BPMN models in terms of a transformation to YAWL nets.
They use the ILog BPMN Modeler as a graphical editor tool to create BPMN models.
They have implemented an open-source transformer plug-in called, BPMN2YAWL, and
integrated it into the ProM platform. This tool transforms a BPMN model into a YAWL0

one and helps to export the YAWL model as an XML file. This XML file then serves as
input to a YAWL-based verification tool. As a proof of concept, the tool has been tested
using simple models.

In [49], the authors propose a formalization of BPMN 2.0 based on a set of in-place
graph transformation rules. Then, they provide the implementation of their proposition5

in a framework called GrGen.
Process algebra have also been considered to formalize and verify BPMN processes [42,

43, 44]. The authors provide a formal semantic model for BPMN using Communicating
Sequential Processes (CSP) followed by a refinement procedure for property checking.
Two models are provided: the first one presents an un-timed model to facilitate the0

verification of safety and liveness properties. The second one, an extension of the first
model, introduces relative timing information. This allows the modelling of concurrent
activities under temporal constraints. The authors illustrate the advantages of their
approach by means of case studies. Translated BPMN models can be checked with CSP
checking tools such as FDR.5

Another line of work aims at using symbolic encodings. In [47] for example, the
authors give an execution semantics of BPMN elements expressed using linear temporal
logic (LTL). The formalization is defined for a large set of elements of BPMN 1.2. This
give an unambiguous definition of the execution semantics of BPMN diagrams, and could
serve as a basis for the formal analysis of BPMN diagrams, but no tool is presented.0

To overcome some issues related to the mapping of BPMN to other formal languages
equipped with their own semantics (e.g., non-local effects of BPMN elements such as
termination), several recent works have been proposed for verifying BPMN processes
based on a direct formalization of its execution semantics.

Rewriting logic and Maude have been proposed to formalize and analyze BPMN5

processes. In [50], the authors provide a formal semantics for a subset of BPMN models
and encode it in Maude for verification purposes. They focus on data objects semantics
and their use in database-related decision gateways. Besides, they focus on syntactic
issues by introducing the notion of well-formed BPMN processes to avoid them. Unlike
this work, we support all process models whether with a structured or non-structured0

topology.
In [56], the authors provide an operational semantics for a subset of BPMN models in

terms of Labelled Transition Systems (LTS). The authors focused on the collaboration
diagram elements. Then, in [54], they present a verification tool based on the Eclipse
IDE, called Business Process Verifier (BProVe). This tool is based on their proposed5

operational semantics, implemented using Maude. They use the Maude Linear Tempo-
ral Logic (LTL) model-checker to verify properties, and support the verification of safety
and soundness properties. In [26], the authors extend their formal framework to include
multiple instances and data perspectives. They also provide an associated model ani-
mator, called MIDA. It may help the process designers to visualize the behavior of their0
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models and debug them.
From another perspective, the standard [1] states that a choreography model can be

presented through a collaboration. In [57], the authors consider the interaction of busi-
ness process with a choreography perspective. They introduce a new formalism called
interaction Petri nets that aims at capturing the interaction in BPMN choreographies.5

This paper only considers synchronous communication while leaving asynchronous com-
munication as an open question.

Discussion. Unlike the mentioned works, we have defined the execution semantics of
BPMN models in terms of First-Order Logic, with the objective of defining a generic
formal semantics that can be implemented into different languages and tools. Neverthe-0

less, the above mentioned approaches have mainly focused on verifying the control flow
of business process models against a correctness criterion. To the best of our knowl-
edge, these approaches do not support verification of BPMN models under a specific,
and parametric, communication model.

Table 6 complements Table 5 by looking more into detail the BPMN features and5

properties of interest that are supported by recent works that provide tool support for the
verification of collaboration diagrams and communication features in BPMN. This table
divides the approaches between those that rely on an intermediary model, and those that
have the benefit of providing a direct link between BPMN constructs and the verification
formalism. Our work follows this line. Further, the choice of FOL lets one implement0

the semantics in different tools, e.g., TLA+ as here or SMT solvers. As far as the BPMN
coverage criteria is concerned, we can observe that we are among the approaches with a
high coverage. The use of FOL to define the semantics, and its implementation in TLA+,
made it possible for us to implement quite easily correctness checks as temporal logic
properties to be checked against the model.5

8. Conclusion & Future Work

In this paper we have proposed a direct formalization in first-order logic for a subset
of BPMN that includes sub-process, communication and time constructs. This semantics
is parametric with reference to the properties of the communication model, which is of
importance since, as seen for example in Table 3, it has an impact on the properties a0

BPMN model fulfils or not. Together with time, the support for distinct communication
models is useful when it comes to use the BPMN standard in contexts such as the IoT [2,
3]. Based on a realization of the first-order logic semantics into TLA+, and the use of the
TLC model-checker, we provide business process designers with tool support in order to
check domain-specific properties (dedicated either to workflow notations in general, or5

to BPMN in particular) and animate counter-examples in order to fix erroneous models.
Even if we have provided users with an integrated Web application where one can

model, check, and debug business process models, a direct perspective of our work is to
integrate it as a plug-in in more general purpose platforms for business processes, such
as Apromore [58] or ProM [59].0

An ongoing work is the replacement of parameterization using a global communication
model (here one in a choice of seven) by a more fine-grained solution based on the
communication framework we have developed in [25]. This would support, for example,
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the definition of communication policies per participant, per couples of communicating
participants, or using delivering priorities over the messages in transit.5

For now, time is dealt with fixed values in the model (e.g., the duration of task t
is 5 units of time, or after a timeout of 15 units of time run some specific subprocess).
The extension of parameterization is also interesting as far as time is concerned. This
would mean replacing the fixed information about time with intervals (bounded values)
or variables (free values). Some collaborations may fulfil properties depending on con-0

straints over the time at which processes are run, or over durations of tasks and timeouts.
Retrieving such constraints from the models one verifies, in a synthesis approach, would
have an added-value for the business process designers.

Some features that play a role in full-fledged executable collaborations have been
discarded here. This is the case of the data (data objects, data stores, assignments, and5

message payloads) and multi-instance (for activities and pool lanes) constructs.
As far as data are concerned, a direct (and usual) solution is to extend the notion of

state with a substitution from variables to values, indexed by process types or process
identifiers in case of multi-instance support. This is indeed what we already did for the
communication medium (the "substitution" in this case being limited to a single variable,0

mnet). Lets say that the substitution for data is σ. An assignment such as var := term
in a process p would then be supported by adding a clause σ′p = σp /var 7→ evalσp(term)
in the completion rule for tasks, with σ/var 7→ val denoting the update of a substitution
σ associating value val to variable var, and evalσ(term) the evaluation of term wrt. σ
(that gives values to the free variables in term). Accordingly, the conditions in exclusive5

and inclusive gateways can also be treated by requiring that their evaluation yields true,
i.e., for a condition c, evalσp(c) = true. The treatment for unbound data (e.g., if one
wants to verify a process whatever the initialization of the data objects is, or with data
stores whose content is unknown), is however much more complicated. This could be
tackled using approaches based on symbolic verification techniques [60, 61, 62, 63, 64].0

The support for multi-instance constructs requires also a specific treatment. There,
the tokens would have to carry process identifiers and our marking functions (mn and
me, yielding a value in N) would have to yield a value in a bag (multi-set) of the type
for process identifiers. This would be reflected in the semantic rules for the BPMN
constructs, e.g., for a merging parallel gateway, one would no longer require that each5

input edge has at least one token (me(ei) ≥ 1 in the rule for AND, page 21) but instead
that each input edge has at least one token for a process identifier of interest. Further,
the support for multi-instance BPMN features not only for processes (pool lanes) but also
for activities (sub-processes and tasks) would possibly require that the type for process
identifiers has a specific indexed structure.0

The interplay between data and multi-instance constructs also adds a degree to the
complexity of the semantics, as, e.g., data are used in message payloads and a part of
these payloads are used as a correlation mechanism. Few approaches are able to deal
with data, multi-instance activities and multi-instance pool lanes [49, 26].

Finally, a last perspective, that goes in the direction of spreading the use of lightweight5

formal verification for BPMN models, is related to the termination of verification. As we
have seen, with our proposal, for some models and some properties, one has to bound
the (construction of the) semantic state space using constraints. A perspective would
be to identify fragments of the formal model for which termination is ensured, and ones
for which changes in the BPMN model or bounding constraints are required. Work in0
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the field of combining control and data perspectives in business process modelling, and
performing verification on such expressive models, could be an inspiration here, following
what has been done for Data-Aware BPMN [63] and for Catalog Nets [64].
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