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Abstract

In this work, we provide an asymptotic analysis of the solutions to an elliptic integro-differential
equation. This equation describes the evolutionary equilibria of a phenotypically structured population,
subject to selection, mutation, and both local and non-local dispersion in a spatially heterogeneous,
possibly patchy, environment. Considering small effects of mutations, we provide an asymptotic descrip-
tion of the equilibria of the phenotypic density. This asymptotic description involves a Hamilton-Jacobi
equation with constraint coupled with an eigenvalue problem. Based on such analysis, we characterize
some qualitative properties of the phenotypic density at equilibrium depending on the heterogeneity
of the environment. In particular, we show that when the heterogeneity of the environment is low,
the population concentrates around a single phenotypic trait leading to a unimodal phenotypic distri-
bution. On the contrary, a strong fragmentation of the environment leads to multi-modal phenotypic
distributions.
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1 Introduction

1.1 The model and motivations

In this work, we provide an asymptotic analysis of the equilibria of a non-local parabolic Lotka-Volterra
type equation. Such equation arises in the study of adaptive evolution of phenotypically structured
populations. The equation under study is the following

− ∂xxnε − ε2∂θθnε + Lnε = nε(R(x, θ)− ρε(x)) in Ω×]−A,A[,

ρε(x) =

∫
]−A,A[

nε(x, θ)dθ in ]−A,A[,

Lnε(x, θ) =

∫
Ω

[nε(x, θ)− nε(y, θ)]K(x− y)dy in Ω×]−A,A[,

∂νxnε(x, θ) = 0 on ∂Ω×]−A,A[, ∂νθnε(x,±A) = 0

(E)

with Ω a bounded subset of R. Here, nε(x, θ) stands for the density of a population at equilibrium at
position x with a phenotypical trait θ. The term R(x, θ) corresponds to the intrinsic growth rate of
individuals of phenotype θ at position x. The term ρ(x) corresponds to the total size of the population
at position x. Via this term in the right hand side of (E), we take into account a mortality rate due to
the competition between the individuals at the same position, independently of their traits. The trait
of the parent is transmitted to the offspring. However the trait can be modified due to the mutations
that we model by a Laplace term. We also consider that the species is subject to a local and a non-local
dispersion in the space variable x. Indeed, in addition to a classical local dispersion term modeled by a
Laplace term, we assume that the individuals can jump from position x to position y with a rate K(x−y).
Finally, we have denoted by ∂νx , ∂νθ the exterior derivatives with respect to the variables x and θ. The
Neumann boundary condition with respect to x models the fact that the species cannot leave the domain.
The Neumann boundary condition with respect to θ means that the mutants cannot be born with a trait
in ]−A,A[c.

Several questions motivate our analysis. Can we determine extinction and survival criteria for such
model? How would the population be spatially distributed at equilibrium? Would all the spatial domain
be exploited close to its local carrying capacity or would we observe formation of clusters in certain zones
of the environment? How the population would be distributed phenotypically? Would the population be
adapted locally everywhere, or would we observe emergence of dominant traits? More specifically, would
we observe emergence of generalist traits being adapted to an average environment, or specialist traits
being adapted to certain zones of the environment? What will be the impact of the the fragmentation
of the habitat on the phenotypical distribution of the population? Would it lead to the emergence of
specialist traits?
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An originality of our work lies in the non-local spatial dispersion operator L which allows to consider
non-connected domains. While the role of the nonlocal dispersion and the fragmentation of the environ-
ment is significant in many situations, as in the adaptation of forest trees to the climate change because
of the effect of the wind on the seeds or the pollens, very few theoretical works take it into account [21].
The non-local dispersion may have antagonistic effects on the population dynamics. On the one hand, it
may allow the population to reach new favorable geographic regions which are not accessible by a local
diffusion. On the other hand, it may also impede local adaptation by bringing individuals with locally
maladapted traits from other regions.

1.2 The state of the art

Related models and the questions of spatial distribution and ecological niches where studied from a nu-
merical point of view in the biological literature, considering local dispersion and a connected domain (see
for instance [15, 29]). In particular, in [29] formation of clusters was observed in a closely related model.
While the authors suggested that the formation of such clusters would be a result of the bounded domain
or small mutational effects, they did not provide any analytical support for such hypothesis. Such type of
models, again in the context of local dispersion, was later derived from stochastic individual based models
by Champagnat and Méléard in [13] where further numerical studies were provided (see also [3] for a
preliminary analysis of this model by Arnold, Desvilettes and Prévost). More recently, Alfaro, Coville and
Raoul [2] studied a closely related model, considering again local dispersion but in unbounded domains.
They proved propagation phenomena and existence of traveling front solutions for parabolic equations
close to (E) (see also the related works [10, 1]). In the context of their study with unbounded domain, one
expects indeed that the population would propagate and get adapted locally in every position in space
attaining its local carrying capacity, which is in contrast with what we observe in bounded domains, in
particular with what we obtain in the present work. However, in such model to our knowledge, yet there
is no result characterizing rigorously the population distribution at the back of the front (see however the
work of Berestycki, Jin and Silvestre in [6] in a particular case with spatially homogeneous growth rate).

A wide number of articles have also studied a closely related equation known as the "cane-toads"
model where the growth rate is independent of the trait, but the trait influences the ability of dispersal
leading to a θ coefficient in front of the diffusion term in space (see for instance [31, 7, 9, 8]). This
equation is motivated by the propagation of the cane toads in Australia by taking into account the role
of a phenotypical trait: the size of the legs of the toads. More closely to our work, the steady states of a
"cane-toads" type model, in the regime of small mutations, were studied by Perthame and Souganidis in
[28] and by Lam and Lou in [22]. In another related project, a model where similarly to (E) the growth
rate, and not the dispersion rate, depends on the phenotype, but considering a discrete spatial structure,
was studied by Mirrahimi and Gandon [26, 27]. In these works an asymptotic analysis of the steady states
in the regime of small mutations was provided. In particular, it was shown that the presence of spatial
heterogeneity can lead to polymorphic situations, that is the emergence of several dominant traits in the
population.

In this work, we will use an approach based on Hamilton-Jacobi equations, which is adapted to study
the small mutation regime (ε small). A closely related approach was first introduced in [19, 18], by
Friedlin using probabilistic techniques and by Evans and Souganidis using deterministic tools, to study
the propagation phenomena in reaction-diffusion equations. In the context of models from evolutionary
biology and in the regime of small mutations, this method was suggested by Dieckmann, Jabin, Mishler
and Perthame [14]. In [5], Barles and Perthame provide the first rigorous results within this approach
and obtain a concentration phenomena considering homogeneous environments: as the mutational effects
become small, the solution converges to a Dirac mass. In this case, the population at equilibrium is
monomorphic (there is a single dominant trait in the population). We quote [4] which extends the main
results of [5]. This approach was then widely extended to study more general models with heterogeneity.
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In particular, in the context of the space heterogeneous environments, the works [10, 31, 28, 26] are within
this framework. However, the analysis provided in these previous works do not allow to study problem
(E). The closest work is the one in [10] which studies the propagation phenomenon in an unbounded
domain, considering a different rescaling. Note also that none of the previous works considered a non-local
dispersion operator, which adds significant difficulties to the analysis.

In an ecological context, fragmented environments and non-local spatial dispersion phenomena were
studied by Léculier, Mirrahimi and Roquejoffre [23] and by Léculier and Roquejoffre [24]. Both mentioned
works do not take into account any phenotypical structure. In [23], the authors study invasion phenomena
in a Fisher-KPP equation involving a fractional Laplacian arising in a fragmented periodic environment
with Dirichlet exterior conditions. In [24], the authors study the existence and uniqueness of bounded
positive steady-states in a Fisher-KPP equation involving a fractional Laplacian in general fragmented
environment with Dirichlet exterior conditions. One of the perspectives of the present work is to study
models with other operators of dispersion, as the fractional Laplacian (−∂xx)α, instead of −∂xx + L, and
considering Dirichlet exterior conditions.

1.3 The assumptions and the notations

The domain Ω ⊂ R is assumed to be bounded and composed of one or several connected components :

Ω =

n⋃
i=1

]ai, bi[ with a1 < b1 < a2 < ... < an < bn. (H1)

We assume that the growth rate verifies

R ∈ C1(Ω× [−A,A]) and ‖R‖W 1,∞(Ω×]−A,A[) < CR. (H2)

Example 1. A typical example of growth rate is written

R(x, θ) = r − g(bx− θ)2.

In this example, r is the maximal growth rate. The above quadratic term indicates that the optimal trait
at position x is given by θo = bx. The term b is the gradient of the environment: it indicates how fast the
optimal trait varies as a function of a position in space. Moreover, g corresponds to the selection pressure.
If g increases, the habitats becomes more hostile for unsuitable individuals.

We make the following assumptions on K

K ∈ C1(Ω), K > 0, K(x) = K(−x), 0 < cK < K < CK and |∂xK| < CK . (H3)

We introduce here two eigenvalues problems associated to the equation (E): let λ(θ, ρ) be the principal
eigenvalue of the operator −∂xx − L − [R(·, θ) − ρ]Id and µε be the principal eigenvalue of the operator
−∂xx − ε2∂θθ − L−R with Neumann boundary conditions:

i.e.

{
− ∂xxψθ + L(ψθ)− [R(·, θ)− ρ]ψθ = λ(θ, ρ)ψθ in Ω,

∂νxψ
θ = 0 in ∂Ω

(1)

and {
− ∂xxξε − ε2∂θθξε + Lξε −Rξε = µεξε in Ω×]−A,A[,

∂νxξε = ∂νθξε = 0 on ∂(Ω×]−A,A[).
(2)

All along the article, we consider that the principal eigenfunctions (such as ψ or ξε) are taken positive
with L2 norms equal to 1.

We make the following assumption:

∃θ0 ∈]−A,A[, such that min
θ∈]−A,A[

λ(θ, 0) = λ(θ0, 0) < 0. (H4)
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Lemma 1. Under the assumptions (H1)–(H4)

µε −→
ε→0

λ(θ0, 0).

It follows obviously that

∃ε0 > 0, ∀ε ∈]0, ε0[, µε <
λ(θ0, 0)

2
< 0. (3)

We postpone the proof of Lemma 1 to the Appendix and we make the hypothesis that (3) holds true.

1.4 The results and the strategy

First, we prove the following theorem which provides conditions for existence or non-existence of a solution
of (E) for all small value ε.

Theorem 1. Under the assumptions (H1)– (H4), for all ε ∈]0, ε0[, there exists a non-trivial positive
bounded solution nε of (E). If Assumption (H4) does not hold and λ(θ0, 0) > 0, then there exists ε0 > 0
small enough such that for all ε < ε0, there does not exist a positive solution nε to (E).

We expect indeed that in a dynamic version of (E), the solution would converge in long time to a
nontrivial stationary solution, that is a solution to (E), when such non-trivial steady state exists and to
0 otherwise. Admitting such property, the theorem above provides us with conditions of survival and
extinction of the population. The survival condition means indeed that there exists at least one trait θ
such that λ(θ, 0) < 0, so that such trait is viable in absence of competition.

The proof of Theorem 1 follows the one of Theorem 2.1 by Lam and Lou in [22] which treats the case of
local diffusion. This proof relies on a topological degree argument. In section 2, we provide the additional
arguments which allow to adapt the proof of [22] to the non-local operator L.

Next, we perform the Hopf-Cole transformation

nε(x, θ) = e
uε(x,θ)

ε . (4)

This is the usual first step in the Hamilton-Jacobi approach (see [14], [5], [4]). The main idea in this
approach is to first study the limit of uε as ε → 0, and next obtain from this limit, information on
the limit of the phenotypic density nε. The advantage of this transformation is that the limit of uε is
usually a continuous function which solves a Hamilton-Jacobi equation, while the limit of nε is a measure.
Performing such change of variable, we find that uε is solution to

− 1

ε
∂xxuε −

|∂xuε|2

ε2
− ε∂θθuε − |∂θuε|2

+

∫
Ω

[
1− e

uε(y)−uε(x)
ε

]
K(x− y)dy = (R(x, θ)− ρε(x)) in Ω×]−A,A[,

ρε(x) =

∫
]−A,A[

nε(x, θ)dθ in ]−A,A[,

∂νxuε(x, θ) = 0 on ∂Ω×]−A,A[, ∂νθuε(x,±A) = 0.

(EHC)

We prove the following

Theorem 2. Under the assumptions (H1)–(H4), as ε→ 0 along subsequences, there holds

1. ρε converges uniformly to ρ with
0 < c ≤ ρ ≤ C,
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2. uε converges uniformly to u with u a viscosity solution of
− |∂θu(θ)|2 = −λ(θ, ρ),

max u(θ) = 0,

∂νθu(±A) = 0,

(5)

where λ(θ, ρ) is the principal eigenvalue introduced in (1). Moreover, the limit u depends only on θ.

3. nε converges to n in the sense of measures. Moreover,

supp n ⊂ Ω× {u(θ) = 0} ⊂ Ω× {λ(θ, ρ) = 0} . (6)

The theorem above allows us to characterize the phenotypic density n, at the limit as ε → 0, via the
Hamilton-Jacobi equation with constraint (5) coupled with the eigenvalue problem (1) and the inclusion
properties (6). We expect indeed that n would be a sum of Dirac masses in θ as follows:

n(x, θ) =

d∑
i=1

ρi(x)δ(θ − θi).

In section 5, we will use the information obtained above to characterize the phenotypic density n is some
particular situations. On the one hand, we will identify a situation where the phenotypic density at the
limit will be a single Dirac mass in θ corresponding to a monomorphic population. On the other hand, we
will show that a strong fragmentation of the environment will lead to polymorphic situations.

We present briefly heuristic arguments to understand how the second item of Theorem 2 can be
recovered. First, we perform asymptotic developments of uε and ρε with respect to the powers of ε

i.e. uε(x, θ) = u0(x, θ) + εu1(x, θ) + o(ε) and ρε(x) = ρ0(x) + oε(1).

Next, we implement such asymptotic developments into (EHC), it follows that

1

ε

(
−∂xxu0 − 2|∂xu0∂xu1| −

|∂xu0|2

ε

)
+

∫
Ω

[1− e
u0(y,θ)−u0(x,θ)

ε
+u1(y,θ)−u1(x,θ)+oε(1)]K(x− y)dy

− ∂xxu1 − |∂xu1|2 − |∂θu0|2 − [R− ρ0] + oε(1) = 0.

This equation suggests that
u0(x, θ) = u0(θ)

and passing to the limit ε→ 0, we deduce that

−|∂θu0(θ)|2 = [R(x, θ)− ρ0(x)] + ∂xxu1(x, θ)− |∂xu1(x, θ)|2 −
∫

Ω
[1− eu1(y,θ)−u1(x,θ)]K(x− y)dy. (7)

Since the left hand side of (7) does not depend on x, it suggests that u1 is such that u1 = log(ψθ) with
ψθ the principal eigenfunction introduced in (1), that is

−|∂θu0(θ)|2 =
(

[R(x, θ)− ρ0(x)]ψθ(x) + ∂xxψ
θ(x)− L(ψθ)

)
(ψθ)−1. (8)

We deduce that u0 is a formal solution of (5).
From a technical point of view, the convergence of (uε)ε>0 is proved using the Arzela-Ascoli Theorem

and a perturbed test function argument (see [16]). To prove the uniform continuity, using the Bernstein’s
method, we prove that the first derivatives are bounded. These bounds rely on the establishment of
Harnack type inequalities. Indeed, we prove the following regularity results on uε
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Theorem 3. Under assumptions (H1)–(H4), the following results hold true.

1. [Harnack inequality] There exists a constant C > 0 (independent of the choice of ε) such that for
all intervals I ⊂]−A,A[ with |I| = ε, there holds

sup
(x,θ)∈Ω×I

nε(x, θ) ≤ C inf
(x,θ)∈Ω×I

nε(x, θ). (9)

2. [Lipschitz bounds] There exists C > 0 such that for all ε small enough,

|∂xuε| ≤ Cε and |∂θuε| < C. (10)

3. [Bounds on ρε] For all ε small enough, ρε is uniformly bounded in W 2,p(Ω) for all p ∈ [1,+∞].
Moreover, there exists c, C > 0 (independent of the choice of ε) such that

c ≤ ρε ≤ C. (11)

4. [Bounds on uε] The following holds true

lim
ε→0

sup
(x,θ)∈Ω×]−A,A[

uε ≤ 0 and − a < lim
ε→0

inf
(x,θ)∈Ω×]−A,A[

uε, (12)

with a > 0.

Note that the combination of the local and the non-local diffusion terms makes the establishment of
such regularity estimates non-standard (see for instance [4] and [25] where such types of estimates where
obtained for related models with a local diffusion term).

Remark. In 1. of Theorem 3, the interval I can be at the boundary of ]−A,A[

i.e. I =]−A,−A+ ε[ or I =]A− ε,A[.

1.5 Outline of the paper

In section 2, we provide some preliminary results and the existence of nε by proving Theorem 1. Next,
in section 3, we prove the regularity results given by Theorem 3. Section 4 is devoted to the proof of
Theorem 2. In section 5, we focus on the properties of the limit n. We illustrate the above properties by
some numerical simulations in section 6.
The constants c, C are positive constants independent of the choice of ε and may change from line to line
when there is no confusion possible.

2 Preliminary results

First, we establish a Hopf Lemma. It is obtained by a classical argument but for the sake of completeness
and because of the presence of the less classical non-local operator L, we provide the proof. Next, we
verify the existence of λ(θ, ρ) and then the existence of a non-trivial bounded solution nε.
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2.1 A Hopf Lemma

In this section we prove the following Hopf Lemma

Lemma 2 (Hopf Lemma). Let u be a smooth function defined on Ω such that

−∂xxu+ L(u) + c(x)u ≥ 0, (13)

with c a positive bounded smooth function. If there exists x0 ∈ ∂Ω such that min
x∈Ω

u(x) = u(x0) < 0 then

either u is constant or
∂νxu(x) < 0. (14)

The proof is in the spirit of the classical proof of the Hopf Lemma (see [17] p.250).

Proof. Up to a scaling, there is no loss of generality if we assume that B(0, 1) ⊂ Ω and x0 = 1. Next, we
define

v(x) =
[
e−

3
4
λ − e−λmax(0,|x|2− 1

4
)
]

1B(0,1)(x),

for λ a positive constant. We underline that v(x) = e−
3
4
λ − 1 in B(0, 1

2). Next, we claim that by taking λ
large enough, for all x ∈ B(0, 1)\B(0, 3

4) there holds

− ∂xxv(x) = 2λe−λmax(0,|x|2− 1
4

)(2λ|x|2 − 1) > 0

and Lv(x) ≥
∫
B(0,1)

e−λmax(0,|y|2− 1
4

)K(x− y)dy −
∫

Ω
e−λmax(0,|x|2− 1

4
)K(x− y)dy > 0.

(15)

The first inequality of (15) follows from a straightforward computation. For the second inequality, accord-
ing to the assumption (H3), we have

lim inf
λ→+∞

∫
B(0,1)

e−λmax(0,|y|2− 1
4

)K(x− y)dy −
∫

Ω
e−λmax(0,|x|2− 1

4
)K(x− y)dy ≥ cK |B(0,

1

2
)| > 0.

Therefore, if λ is large enough, (15) holds true.

Next, we claim that if u is not constant, the minimum can not be reached in the interior of Ω.
Otherwise, we deduce the existence of x1 ∈ Ω such that u(x1) = min

x∈Ω
u < 0. Since c is positive, we have

−∂xxu(x1) ≤ 0, Lu(x1) < 0 and c(x1)u(x1) ≤ 0.

Therefore, we deduce that
−∂xxu(x1) + Lu(x1) + c(x1)u(x1) < 0.

This is in contradiction with the assumption (13).
We deduce that min

x∈∂B(0, 3
4

)
u(x0)− u(x) < 0. Next, taking ε small enough, there holds that

∀x ∈ ∂B(0,
3

4
), u(x0)− u(x)− εv(x) < 0.

Since v = 0 on ∂B(0, 1) and by definition of x0, it follows

∀x ∈ ∂B(0, 1), u(x0)− u(x)− εv(x) ≤ 0.

Moreover, according to (13) and (15) we have for all x ∈ B(0, 1)\B(0, 3
4) that

−∂xx(u(x0)− u(x)− εv(x)) + L(u(x0)− u− εv)(x) + c(x)(u(x0)− u(x)− εv(x)) ≤ 0.

We deduce thanks to the maximum principle that u(x0) − u(x) − εv(x) ≤ 0, for all x ∈ B(0, 1)\B(0, 3
4).

We conclude that
∂νxu(x0) ≤ −∂νxεv(x0) = −ε2λe−

3λ
4 < 0.
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2.2 Existence of a principal eigenpair

Proposition 1. For a fixed bounded smooth function ρ and a fixed value θ ∈]−A,A[ there exists a principal
eigenvalue λ(θ, ρ) of the operator −∂xxψ + L(ψ)− (R(·, θ)− ρ)ψ with Neumann boundary conditions

i.e.

{
− ∂xxψ + L(ψ)− (R(·, θ)− ρ)ψ = λ(θ, ρ)ψ in Ω,

∂νxψ = 0 on ∂Ω.
(16)

The associated eigenfunction ψ has a constant sign and is unique up to multiplication by a constant.
Moreover, the function λ(θ, ρ) and ψ are C1 with respect to θ and ρ ∈ H1(Ω).

In the following, we will consider that ψ is positive and of L2 norm equal to 1.

Proof. First, we prove the existence of the principal eigenpair by verifying that we can apply the Krein
Rutman Theorem (see [30] p 122). Since it is classical, we do not provide all the details. The cone of
functions where we apply the Krein-Rutmann Theorem is

K = {u ∈ C1+α(Ω) | u > 0 and ∂νxu = 0}.

We define L(v) as the unique solution of− ∂xxL(v) +

∫
Ω

[L(v)(x)− L(v)(y)]K(x− y)dy − (R(·, θ)− ρ− C)L(v) = v in Ω,

∂νxL(v) = 0 on ∂Ω

where C > sup
x∈Ω

(R(x, θ) − ρ(x)) and v ∈ K. The operator L is linear, compact thanks to the elliptic

estimates. We have to prove that

∀v ∈ K\ {0} , L(v) ∈ int(K).

Let v be in K with v not trivial. By elliptic regularity, it follows L(v) ∈ C1+α and ∂νxL(v) = 0. It remains
to prove that L(v) > 0.
First we prove that if L(v) is constant then it is necessarily a positive constant. Next we prove that if
L(v) varies then L(v) > 0.
Assume that L(v) = c. Let x ∈ Ω be such that v(x) > 0. Moreover, the choice of C gives −(R(x, θ) −
ρ(x)− C) > 0 and since−∂xxL(v) = L(L(v)) = 0, we deduce that

L(v)(x) = c =
v(x)

−(R(x, θ)− ρ(x)− C)
> 0.

Next, we suppose that L(v) is not constant. Assume by contradiction that there exists x such that
L(v)(x) ≤ 0. Let x′ ∈ Ω be such that

inf
x∈Ω
L(v)(x) = L(v)(x′).

Then either x′ ∈ Ω or x′ ∈ ∂Ω. In the first case, we deduce that

−∂xxL(v)(x′) ≤ 0 and L(L(v))(x′) < 0,

which leads to the following contradiction

0 ≤ v(x′) = −∂xxL(v)(x′) + L(L(v))(x′)− (R(x′, θ)− ρ(x′)− C)L(v)(x′) < 0.

If x′ ∈ ∂Ω, since L(v) is not constant, we deduce from Lemma 2 that ∂νxL(v)(x′) < 0. It is in contradiction
with the Neumann boundary condition.

We conclude that we can apply the Krein Rutman theorem and the conclusion follows.
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Next, we focus on the regularity of λ and ψ with respect to θ and ρ. The result follows directly from
the implicit function theorem applied to

G : (φ, λ, θ, ρ) ∈ H1(Ω)× R× R×H1(Ω) 7→
(
−∂xxφ+ Lφ− [R(·, θ)− ρ+ λ]φ,

∫
Ω
φ(x)2dx− 1

)
.

The interested reader may refer to Theorem 2 of Chapter 11 of [17] for technical details in a finite
dimensional setting.

The existence of the solution of (2) is also due to the Krein-Rutman Theorem, therefore we do not
provide the proof of existence.

2.3 Existence of a non-trivial solution of (E)

As mentioned in the introduction, we recall that the proof of existence of a non-trivial solution is an
adaptation of the proof of Theorem 2.1 by Lam and Lou in [22]. The major difference is the presence of
the integral operator L. Therefore, we only provide the main elements dealing with the integral operator
L. We also skip the proof of non-existence of a non-trivial solution, when (H4) does not hold, which follows
from classical arguments.

Proof of Theorem 1. We fix ε ∈]0, ε0[ (where ε0 is given by (3)). Let τ ∈ [0, 1] and nτ be a solution of
− ∂xxnτ − ε2∂θθnτ + Lnτ = nτ (R− τρτ − (1− τ)nτ ) in Ω×]−A,A[,

ρτ (x) =

∫
]−A,A[

nτ (x, θ)dθ in ]−A,A[,

∂νxnτ (x, θ) = 0 on ∂Ω×]−A,A[, ∂νθnτ (x,±A) = 0

(Eτ )

It is well known that for τ = 0, according to (3), there exists a non-trivial steady solution n0. As in [22],
we prove that there exists a constant Cε > 1 (which may depend on ε) such that we have for any τ ∈ [0, 1]

C−1
ε ≤

∫ A

−A

∫
Ω
nτdxdθ ≤ Cε.

Then one can conclude using a topological degree arguments.

The lower bound. Let vτ be such that nτ = ξεvτ (where ξε is provided by (2)). First, we remark
that

L(vτξε) = vτL(ξε) + ξεL(vτ ) + Λ(vτ , ξε)

and Λ(vτ , ξε)(x) =

∫
Ω

[(vτ (x)− vτ (y))(ξε(y)− ξε(x))]K(x− y)dy.

Then vτ is solution of

−ξε∂xxvτ − 2∂xξε∂xvτ − ε2ξε∂θθvτ − 2ε2∂θξε∂θvτ + ξεL(vτ )+Λ(vτ , ξε) + µεξεvτ

= −vτξε[τρτ + (1− τ)nτ ].

If we multiply it by ξε
vτ
, we obtain

−∂x(ξ2
ε∂xvτ )− ε2∂θ(ξ

2
ε∂θvτ ) + ξ2

εL(vτ ) + ξεΛ(vτ , ξε)

vτ
= ξ2

ε (−µε − τρτ − (1− τ)nτ ).
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Next, we integrate over all the domain∫ A

−A

∫
Ω

−∂x(ξ2
ε∂xvτ )− ε2∂θ(ξ

2
ε∂θvτ ) + ξ2

εL(vτ ) + ξεΛ(vτ , ξε)

vτ
dxdθ

=

∫ A

−A

∫
Ω

−∂x(ξ2
ε∂xvτ )− ε2∂θ(ξ

2
ε∂θvτ )

vτ
dxdθ +

∫ A

−A

∫
Ω

ξ2
εL(vτ ) + ξεΛ(vτ , ξε)

vτ
dxdθ

= I1 + I2.

We next prove that I1 and I2 are negative. For I1, by an integration by part, we have

I1 =

∫ A

−A

∫
Ω

−∂x(ξ2
ε∂xvτ )− ε2∂θ(ξ

2
ε∂θvτ )

vτ
dxdθ = −

∫ A

−A

∫
Ω

ξ2
ε

v2
τ

(
|∂xvτ |2 + ε2|∂θvτ |2

)
dxdθ ≤ 0.

For I2, using that K is even and the Fubini Theorem, we obtain

I2 =

∫ A

−A

∫
Ω

ξ2
ε (x)L(vτ )(x) + ξε(x)Λ(vτ , ξε)(x)

vτ (x)
dxdθ

=

∫ A

−A

∫
Ω

ξε(x)

vτ (x)

∫
Ω

[(vτ (x)− vτ (y))ξε(y)]K(x− y)dydxdθ

= −
∫ A

−A

∫
Ω

∫
Ω

[
ξε(x)ξε(y)

vτ (x)vτ (y)
(vτ (y)− vτ (x))2

]
K(x− y)dydxdθ − I2

We deduce that

I2 = −1

2

∫ A

−A

∫
Ω

∫
Ω

[
ξε(x)ξε(y)

vτ (x)vτ (y)
(vτ (y)− vτ (x))2

]
K(x− y)dydxdθ ≤ 0.

Therefore, we have that ∫ A

−A

∫
Ω
ξ2
ε [−µε − τρτ − (1− τ)nτ ]dxdθ ≤ 0.

Thanks to (3), we conclude that for ε small enough

|λ(θ0, 0)|
2

≤ −µε = −µε
∫ A

−A

∫
Ω
ξ2
εdxdθ ≤ sup(ξ2

ε )[τ + (1− τ)]

∫ A

−A

∫
Ω
nτdxdθ.

The upper bound. First, we remark that thanks to the Neumann boundary conditions and the
parity of K, we have that ∫ A

−A

∫
Ω
−∂xxnτ − ∂θθnτ + L(nτ )dxdθ = 0.

Therefore, if we integrate (Eτ ) with respect to x and θ, we obtain(
(1− τ)

2A|Ω|
+

τ

|Ω|

)
‖nτ‖2L1 =

τ

|Ω|

(∫
Ω
ρτdx

)2

+
(1− τ)

2A|Ω|

(∫ A

−A

∫
Ω
nτdxdθ

)2

≤ τ
∫

Ω
ρ2
τdx+ (1− τ)

∫ A

−A

∫
Ω
n2
τdxdθ

=

∫ A

−A

∫
Ω
Rnτdxdθ ≤ CR

∫ A

−A

∫
Ω
nτdxdθ = CR ‖nτ‖L1 .

Conclusion. It follows that there exists a bounded non trivial solution nε of (E). Moreover, we have
indeed proved that there exists constants c, C > 0 such that

c

sup ξ2
ε

≤
∫ A

−A

∫
Ω
nεdxdθ ≤ C.
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3 Regularity results

In this section we prove Theorem 3. The sub-sections correspond respectively to the proof of the item 1.
2. 3. and 4. of Theorem 3. But, we need an intermediate result : ρε is uniformly bounded.

Lemma 3. Under the assumptions (H1) – (H4), we have that for all ε < ε0

0 ≤ ρε ≤ CR,

(where CR is introduced in (H2)). Moreover, there exists C > 0 such that for all ε small enough

‖ρε‖W 2,p(Ω) ≤ C.

Proof. The L∞-bounds. It is obvious that ρε > 0. If we integrate (E) with respect to θ, we obtain− ∂xxρε + Lρε =

∫ A

−A
R(·, θ)nε(·, θ)dθ − ρ2

ε in Ω,

∂νxρε = 0 in ∂Ω.

(Eρ)

Recalling the L∞ bounds on R (H2), it follows:

−∂xxρε + Lρε ≤ CRρε − ρ2
ε.

We conclude thanks to the maximum principle that ρε ≤ CR.

The W 2,p(Ω) bounds. Thanks to the L∞ bounds on R,K, ρ (assumptions (H2), (H3) and the previous
inequality), we may write (Eρ) on the following form

−∂xxρε = fε

with fε ∈ L∞(Ω) uniformly bounded. The result follows from the standard elliptic estimates.

Corollary 1. There exists a constant C > 0 such that for all ε small enough

|∂xρε| ≤ C. (17)

3.1 A Harnack inequality

The first step to prove the first item of Theorem 3 is to prove the result in the interior of Ω×]−A,A[.

Theorem 4. For all (x0, θ0) ∈ Ω×]−A,A[, and R0 > 0 such that

B3R0(x0)×B3εR0(θ0) ⊂ Ω×]−A,A[

there exists C(R0) > 0 such that

sup
(x,θ)∈BR0

(x0)×BεR0
(θ0)

nε(x, θ) ≤ C(R0) inf
(x,θ)∈BR0

(x0)×BεR0
(θ0)

nε(x, θ). (18)

Next, we prove that we can extend the solution thanks to a reflective argument(see Remark 9 p.275 in
[11]).
We perform the following change of variable: ñ(x, θ) = nε(x, εθ). Therefore, we consider the following
scaled equation {

− ∂xxñ− ∂θθñ+ Lñ = ñ[R̃− ρ] in Ω×]− ε−1A, εA[,

∂νx ñ = ∂νθ ñ = 0 in ∂(Ω×]− ε−1A, εA[.
(E’)

We have denoted by R̃ the function R̃(x, θ) = R(x, εθ). Remark that R̃ still verifies (H2).
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Proof of Theorem 4. Let (x0, θ0) ∈ Ω×] − ε−1A, ε−1A[ and a radius R0 > 0 be such that B3R0(x0, θ0) ⊂
Ω×] − ε−1A, ε−1A[. If we denote by f(x, θ) =

∫
Ω ñ(y, θ)K(y − x)dy, according to (H3) it follows that

f ∈ L∞(B2R0(x0, θ0)). From the classical Harnack inequality, the Theorem 9.20 and 9.22 pp. 244-246 in
[20], and using (H2) we deduce the existence of C1 > 0 (depending on R0) such that

sup
(x,θ)∈BR0

(x0,θ0)
ñ(x, θ) ≤ C1 inf

(x,θ)∈BR0
(x0,θ0)

ñ(x, θ) + C1 sup
(x,θ)∈B2R0

(x0,θ0)
|f(x, θ)|

≤ C1 inf
(x,θ)∈BR0

(x0,θ0)
ñ(x, θ) + C1CK sup

θ∈B2R0
(θ0)

∫
Ω
ñ(x, θ)dx.

(19)

The main element of the proof is to prove the following claim:

∃C > 0 such that sup
θ∈B2R0

(θ0)

∫
Ω
ñ(x, θ)dx ≤ C inf

(x,θ)∈BR0
(x0,θ0)

ñ(x, θ). (20)

It is clear that if (20) holds true, the conclusion follows.

First, we integrate (E’) with respect to x. It follows thanks to the Neumann boundary conditions that
for all θ ∈ B3R0(θ0) we have

−∂θθ
∫

Ω
ñ(x, θ)dx =

∫
Ω ñ(x, θ)

(
R̃(x, θ)− ρ(x)−

∫
ΩK(x− y)dy

)
dx∫

Ω ñ(x, θ)dx

∫
Ω
ñ(x, θ)dx

+

∫
Ω

∫
Ω ñ(y, θ)K(x− y)dydx∫

Ω ñ(x, θ)dx

∫
Ω
ñ(x, θ)dx.

Thanks to the L∞-bounds on K, R̃, ρ (assumptions (H2), (H3) and Lemma 3) and the Fubini theorem, we
have

− C ≤

∫
Ω ñ(x, θ)

(
R̃(x, θ)− ρ(x)−

∫
ΩK(x− y)dy

)
dx∫

Ω ñ(x, θ)dx
< C

and
∫

Ω

∫
Ω ñ(y, θ)K(x− y)dydx∫

Ω ñ(x, θ)dx
≤ CK |Ω|.

It follows
−C

∫
Ω
ñ(x, θ)dx ≤ −∂θθ

∫
Ω
ñ(x, θ)dx ≤ C

∫
Ω
ñ(x, θ)dx.

Hence, we apply the Harnack inequality to θ ∈ B3R0(θ0) 7→
∫

Ω ñ(x, θ)dx into the ball B2R0(θ0) and we
deduce the existence of a constant C2 > 0 such that

sup
θ∈B2R0

(θ0)

∫
Ω
ñ(x, θ)dx ≤ C2 inf

θ∈B2R0
(θ0)

∫
Ω
ñ(x, θ)dx. (21)

Next, thanks to the L∞-bounds on K, R̃, ρ (assumptions (H2), (H3) and Lemma 3), it follows that in
Ω×B2R0(θ0)

cK inf
θ∈B2R0

(θ0)

∫
Ω
ñ(y, θ)dy ≤ cK

∫
Ω
ñ(y, θ)dy ≤

∫
Ω
ñ(y, θ)K(x− y)dy ≤ (−∂xx − ∂θθ) ñ+ Cñ.

From an inequality developed by Krylov (we refer to Theorem 7.1 p33 in [12] and the reference therein),
we deduce the existence of a constant C3 > 0 such that

inf
B2R0

(θ0)

∫
Ω
ñ(x, θ)dx ≤ C3 inf

BR0
(x0,θ0)

ñ(x, θ). (22)
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Combining the previous inequality with (21) and (22) yields to

sup
θ∈B2R0

(θ0)

∫
Ω
ñ(x, θ)dx ≤ C2 inf

θ∈B2R0
(θ0)

∫
Ω
ñ(x, θ)dx ≤ C2C3 inf

(x,θ)∈BR0
(x0,θ0)

ñ(x, θ).

This concludes the proof.

3.2 Lipschitz estimates

We prove 2. of Theorem 3 by the Bernstein method.

Proof of 2. of Theorem 3. We recall the main equation satisfied by uε:

−∂xxuε
ε

− |∂xuε|
2

ε2
− ε∂θθuε − |∂θuε|2 +

∫
Ω

[1− e
uε(y)−uε(x)

ε ]K(x− y)dy = R(x, θ)− ρε (23)

with Neumann boundary conditions. The first step is to differentiate (23) with respect to x and multiply
it by ∂xuε

ε2
:

− ∂xxxuε∂xuε
ε3

−
∂x

(
|∂xuε|2
ε2

)
∂xuε

ε2
+

∫
Ω
e
uε(y)−uε(x)

ε K(x− y)dy
∂xu

2
ε

ε3

− ∂x|∂θuε|2∂xuε
ε2

− ∂xθθuε∂xuε
ε

=

(∫
Ω[e

uε(y)−uε(x)
ε − 1]∂xK(x− y)dy + ∂xR− ∂xρε

)
∂xuε

ε2
.

Remarking that

∂xxxuε∂xuε =
∂xx(|∂xuε|2)

2
− (∂xxuε)

2 and ∂xθθuε∂xuε =
∂θθ(|∂xuε|2)

2
− (∂θxuε)

2

yields to

−
∂xx( |∂xuε|

2

ε2
)

2ε
+

(∂xxuε)
2

ε3
−
∂x

(
|∂xuε|2
ε2

)
∂xuε

ε2

+

∫
Ω
e
uε(y)−uε(x)

ε K(x− y)dy
(∂xuε)

2

ε3
− ∂x|∂θuε|2∂xuε

ε2

+
(∂θxuε)

2

ε
−
ε∂θθ(

|∂xuε|2
ε2

)

2
=

(∫
Ω[e

uε(y)−uε(x)
ε − 1]∂xK(x− y)dy + ∂xR− ∂xρε

)
∂xuε

ε2
.

(24)

In the second step, we differentiate (23) with respect to θ and multiply by ∂θuε. With computations
similar to the ones presented above, we find

−∂xx(|∂θuε|2)

2ε
+

(∂θxuε)
2

ε
− ∂θ

|∂xuε|2

ε2
∂θuε −

ε

2
∂θθ(|∂θuε|2) + ε(∂θθuε)

2 − ∂θ|∂θuε|2∂θuε

+

∫
Ω

(
∂θuε(x)2 − ∂θuε(x)∂θuε(y)

)
ε

e
uε(y)−uε(x)

ε K(x− y)dy = ∂θR∂θuε.

(25)

Next, we introduce

pε(x, θ) =
|∂xuε(x, θ)|2

ε2
+ |∂θuε(x, θ)|2. (26)

14



If we combine (24) and (25) and we rewrite it in terms of pε , it follows

− ∂xxpε
2ε
− ε∂θθpε

2
+

1

ε

∫
Ω

[pε(x, θ)− ∂θuε(x, θ)∂θuε(y, θ)]e
uε(y,θ)−uε(x,θ)

ε K(x− y)dy

− ∂xpε∂xuε
ε2

− ∂θpε∂θuε +
2(∂xθuε)

2

ε
+

(∂xxuε)
2

ε3
+ ε(∂θθuε)

2

=

(∫
Ω

[e
uε(y)−uε(x)

ε − 1]∂xK(x− y)dy + ∂xR− ∂xρε
)
∂xuε
ε2

+ ∂θR∂θuε.

(27)

Let (xε, θε) be such that
sup

(x,θ)∈Ω×]−A,A[
pε(x, θ) = pε(xε, θε).

Thanks to the Neumann boundaries conditions, we deduce that (xε, θε) /∈ ∂Ω × ∂ (]−A,A[). Therefore,
we distinguish three cases: either (xε, θε) ∈ Ω×]−A,A[ or (xε, θε) ∈ ∂Ω×]−A,A[ or (xε, θε) ∈ Ω×{±A}.
Case 1 : (xε, θε) ∈ Ω×] − A,A[. First, we bound the right-hand-side of (27). Indeed, thanks to
the Harnack inequality (first item of Theorem 3) and the L∞-bounds on the derivative of K, R and ρε
(assumptions (H2), (H3) and Corollary 1), it follows that(∫

Ω
[e
uε(y)−uε(x)

ε − 1]∂xK(x− y)dy + ∂xR− ∂xρε
)
∂xuε
ε2

+ ∂θR∂θuε ≤
C
√
p

ε
. (28)

Next, we evaluate (27) at (xε, θε). We claim that

− ∂xxpε(xε, θε) ≥ 0, −∂θθpε(xε, θε) ≥ 0, ∂xpε(xε, θε) = ∂θpε(xε, θε) = 0

and
1

ε

∫
Ω

[pε(xε, θε)− ∂θuε(xε, θε)∂θuε(y, θε)]e
uε(y,θε)−uε(xε,θε)

ε K(xε − y)dy ≥ 0.
(29)

Indeed, the first inequalities follow easily since p(xε, θε) = max pε and the last inequality holds true thanks
to the following computations

1

ε

∫
Ω

[pε(xε, θε)− ∂θuε(xε, θε)∂θuε(y, θε)]e
uε(y,θε)−uε(xε,θε)

ε K(xε − y)dy

≥ 1

ε

[∫
Ω
pε(xε, θε)e

uε(y,θε)−uε(xε,θε)
ε K(xε − y)dy

− 1

2

∫
Ω
∂θu

2
ε(xε, θε)e

uε(y,θε)−uε(xε,θε)
ε K(xε − y)dy

−1

2

∫
Ω
∂θu

2
ε(y, θε)e

uε(y,θε)−uε(xε,θε)
ε K(xε − y)dy

]
≥ 1

2ε

[∫
Ω
pε(xε, θε)e

uε(y,θε)−uε(xε,θε)
ε K(xε − y)dy −

∫
Ω
pε(y, θε)e

uε(y,θε)−uε(xε,θε)
ε K(xε − y)dy

]
≥ 0.

We deduce thanks to (28) and (29) that

1

2ε

[
∂xxuε(xε, θε)

ε
+ ε∂θθuε(xε, θε)

]2

≤ 1

ε

[(
∂xxuε(xε, θε)

ε

)2

+ (ε∂θθuε(xε, θε))
2

]

≤
C
√
pε(xε, θε)

ε
.

Hence, using the original equation (23), we deduce that[
−pε(xε, θε) +

∫
Ω

(1− e
uε(y,θε)−uε(xε,θε)

ε )K(xε − y)dy −R(xε, θε) + ρε(xε)

]2

≤ C
√
pε(xε, θε). (30)
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Thanks to the L∞-bounds on K, R and ρε (assumption (H2) (H3) and Lemma 3), it follows that pε(xε, θε)
is uniformly bounded with respect to ε. The conclusion follows.
Case 2 : (xε, θε) ∈ ∂Ω×]−A,A[. First remark that in this case, pε(xε, θε) = |∂θuε(xε, θε)|2. We claim that
pε verifies also the Neumann boundary conditions at (xε, θε). Indeed, according to the Neumann boundary
conditions satisfied by uε, we can use a reflective argument and differentiate pε on the boundary. We obtain

∂xpε(xε, θε) =
2∂xuε(xε, θε)∂xxuε(xε, θε)

ε2
+ 2∂θuε(xε, θε)∂xθuε(xε, θε) = 0

because
∂xuε(xε, θε) = 0 and ∂xθuε(xε, θε) = 0.

Since p(xε, θε) = max pε, we deduce that

−∂xxpε(xε, θε) ≥ 0.

We conclude that (29) and (28) hold also true in this case and the conclusion follows from the same
computations as in the previous case.
Case 3 : (xε, θε) ∈ Ω× {±A}. This case is treated in the same manner as the previous case.

3.3 The bounds on ρε

We recall the equation (Eρ) satisfied by ρε:− ∂xxρε + Lρε =

∫ A

−A
R(x, θ)nε(x, θ)dθ − ρ2

ε in Ω,

∂νxρε = 0 on ∂Ω.

(Eρ)

Proof of 3. of Theorem 3. The uniform bound from above and theW 2,p bounds on ρε are already provided
in Lemma 3. Here we prove the uniform lower bound. We start by proving that 0 < c ≤ sup ρε. Next, we
prove that c < ρε holds true in the whole domain Ω.
A lower bound on sup ρε. Assume by contradiction that there exists a sequence εk such that

εk −→
k→+∞

0 and sup ρεk −→
k→+∞

0.

Next, if we multiply (E) by ξεk (introduced in (2)) and we integrate by part, we obtain

µε

∫ A

−A

∫
Ω
nεkξεkdxdθ = −

∫ A

−A

∫
Ω
ρεknεkξεkdxdθ.

We deduce thanks to (3) that for k large enough, it holds

|λ(θ0, 0)|
2

≤ −µεk ≤ sup ρεk

∫ A
−A
∫

Ω nεkξεkdxdθ∫ A
−A
∫

Ω nεkξεkdxdθ
.

It is in contradiction with the hypothesis sup ρεk −→
k→+∞

0. Therefore, there exists a constant c > 0 such

that
∀ε ∈]0, ε0[, c ≤ sup ρε. (31)

The lower bound on ρε in the whole domain Ω. Let ε < ε0 and x0 ∈ Ω be such that

ρε(x0) = sup ρε.
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We conclude thanks to (31) and the Lipschitz estimates obtained in the second item of Theorem 3 that
for all x ∈ Ω

ρε(x) =

∫ A

−A
e
uε(x,θ)

ε dθ =

∫ A

−A
e
uε(x,θ)−uε(x0,θ)+uε(x0,θ)

ε dθ ≥ ρε(x0)e−C ≥ ce−C .

3.4 The bounds on uε

Proof of 4. of Theorem 3. First, we prove that there exists a > 0 such that −a < uε. Thanks to the third
item of Theorem 3, we know that there exists c > 0 such that for all ε small enough we have

c <

∫ A

−A
nε(x, θ)dθ.

We deduce the existence of (x0, θ0) ∈ Ω×]−A,A[ such that

c

2A
≤ nε(x0, θ0).

Hence, it follows
ε log

( c

2A

)
≤ uε(x0, θ0).

We conclude thanks to the Lipschitz estimates established in the second item of Theorem 3 that

∀(x, θ) ∈ Ω×]−A,A[, −a ≤ −2CA+ ε[log
( c

2A

)
− C|Ω|] ≤ uε(x, θ). (32)

Next, we prove that lim
ε→0

sup
(x,θ)∈Ω×]−A,A[

uε(x, θ) ≤ 0.

We prove it by contradiction. Assume that there exists a > 0 and sequences εk, (xk, θk) such that

εk −→
k→+∞

0 and uεk(xk, θk) > a.

Using the Lipschitz estimates provided by the second item of Theorem 3, it follows for all θ ∈
(
B a

4C
(θk)∩]−A,A[

)
uεk(xk, θ) = uεk(xk, θ)− uεk(xk, θk) + uεk(xk, θk) ≥ −C|θ − θk|+ a ≥ a

2

where C corresponds to the Lipschitz estimate given by (10). We deduce that

ρεk(xk) ≥ min(2A,
a

4C
)e

a
2εk .

We conclude that lim inf
k→+∞

ρεk(xk) = +∞. This is in contradiction with the L∞ bounds on ρε established in

the third item of Theorem 3.
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4 Convergence to the Hamilton Jacobi equation

Proof of Theorem 2. We prove here the 3 items of Theorem 2.
Proof of 1. Thanks to the third item of Theorem 3, it follows that for ε small enough 0 < c ≤ ρε ≤ C

and ‖ρε‖W 2,p(Ω) ≤ C. We deduce from the classical Sobolev injection (see [11]) that ρε converges, along
subsequences, strongly in W 1,p(Ω) and in particular uniformly to ρ and ρ verifies

0 < c ≤ ρ ≤ C.

Proof of 2. From the Lipschitz estimates and the bounds established in the second and the fourth
items of Theorem 3, we deduce thanks to the Arzela-Ascoli Theorem that up to a subsequence, (uε)ε>0

converges locally uniformly to some continuous function u. Moreover, the limit function u does not depend
on x.
We prove that u is a viscosity solution of{

− |∂θu|2 = −λ(θ, ρ),

∂νθu(±A) = 0,

with λ(θ, ρ) the principal eigenvalue of (1). First, we focus on the equation in the interior of the domain
and then we treat the boundary conditions.

The interior equation. We recall that for a fixed value θ, Proposition 1 provides the existence of
a sequence of principal eigenvalues λ(θ, ρε) associated with a sequence of positive eigenfunctions (ψθε)ε>0

of the operator −∂xx + L− (R(x, θ)− ρε) with Neumann boundary conditions:

i.e.

{
− ∂xxψθε + L(ψθε)− (R(x, θ)− ρε)ψθε = λ(θ, ρε)ψ

θ
ε in Ω,

∂νxψ
θ
ε = 0 on ∂Ω.

(33)

Since ψθε > 0, we introduce
Ψθ
ε = ln(ψθε).

Let φ be test function such that u− φ has a strict maximum at θ ∈]−A,A[. Then, there exists (xε, θε) ∈
Ω×]−A,A[ such that

θε −→
ε→0

θ and max
(x,θ)∈Ω×]−A,A[

uε(x, θ)− φ(θ)− εΨθε
ε (x) = uε(xε, θε)− φ(θε)− εΨθε

ε (xε).

We distinguish two cases: either xε ∈ Ω or xε ∈ ∂Ω.
Case 1: xε ∈ Ω. Since uε is a classical solution of (EHC), we deduce that it is also a viscosity solution,
therefore

− ∂xx(φ(θε) + εΨθε
ε (xε))

ε
− [∂x(φ(θε) + εΨθε

ε (xε))]
2

ε2
+

∫
Ω

[1− eΨθεε (y)−Ψθεε (xε)]K(xε − y)dy

− ε∂θθ(φ(θε) + εΨθε
ε (xε))− [∂θ(φ(θε) + εΨθε

ε (xε))]
2 −R(xε, θε) + ρε(xε) ≤ 0.

Remarking that φ does not depend on x and the θ value is fixed in Ψθε
ε , we deduce that

− ∂xxΨθε
ε (xε)− [∂xΨθε

ε (xε)]
2 +

∫
Ω

[1− eΨθεε (y)−Ψθεε (xε)]K(xε − y)dy −R(xε, θε) + ρε(xε)

− ε∂θθφ(θε)− [∂θφ(θε)]
2 ≤ 0.

(34)
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Next, we observe that (33) implies

−∂xxΨθε
ε (xε)− [∂xΨθε

ε (xε)]
2 +

∫
Ω

[1− eΨθεε (y)−Ψθεε (xε)]K(xε − y)dy −R(xε, θε) + ρε(xε) = λ(θε, ρε).

Therefore, passing to the limit ε→ 0, thanks to the continuity of λ(θ, ρ) with respect to θ and ρ (Propo-
sition 1), it follows that

−[∂θφ(θ)]2 ≤ −λ(θ, ρ).

Case 2 : xε ∈ ∂Ω. First, we remark that in this case,

−∂xuε(xε, θε) = −∂xΨθε
ε (xε) = 0.

Therefore, we deduce that
−∂x[uε(xε, θε)− φ(θε)− εΨθε

ε (xε)] = 0.

Moreover, since (uε − φ − εΨθε
ε )(xε, θε) = max(uε − φ − εΨθε

ε ), we have firstly by a reflective argument
that

−∂xx(uε − φ− εΨθε
ε )(xε, θε) ≥ 0, (35)

and secondly, we have
uε(y, θε)− uε(xε, θε) ≤ ε[Ψε(y)−Ψε(xε)]. (36)

The inequalities (35) and (36) lead to

− ∂xxεΨθε
ε (xε) ≤ −∂xxuε(xε, θε)

and
∫

Ω
[1− eΨθεε (y)−Ψθεε (xε)]K(xε − y)dy ≤

∫
Ω

[1− e
uε(y,θε)−uε(xε,θε)

ε ]K(xε − y)dy.

Therefore, the conclusion follows from similar computation as above.

The boundary conditions. Let φ be a test function such that u − φ has a strict maximum at A
(the proof works the same for −A). Then, there exists (xε, θε) ∈ Ω× [−A,A] such that

θε →
ε→0

A and max
(x,θ)∈Ω×[−A,A]

uε − φ = (uε − φ)(xε, θε).

We distinguish two cases: (xε, θε) ∈ Ω×]−A,A[, (xε, θε) ∈ Ω× {A}.

Case 1 : (xε, θε) ∈ Ω×]−A,A[. In this case, by a similar analysis as above, we deduce that

−[∂θφ(θε)]
2 ≤ −λ(θε, ρ) + oε(1).

Case 2 : (xε, θε) ∈ Ω × {A}. In this case, since the maximum is reached on the boundary, we deduce
thanks to the boundary conditions of uε

−∂νεφ(θε) = ∂νθ(uε − φ)(xε, θε) ≥ 0.

Taking the inferior limit, we conclude that

min(−[∂θφ(A)]2 + λ(A, ρ), ∂νθφ(±A)) ≤ 0,

which corresponds to the boundary condition in the viscosity sense.
Finally, u is a sub-solution of (5) in a viscosity sense. With similar arguments, u is also a super-solution.

We conclude that u is a viscosity solution of (5).

19



Next, we prove that sup
θ∈[−A,A]

u(θ) = 0.

If it does not holds true, it follows that sup
θ∈[−A,A]

u(θ) < −a < 0. Hence for ε small enough, we deduce that

max
(x,θ)∈Ω×[−A,A]

uε(x, θ) < −a
2 , which implies that ρε < c for ε sufficiently small. This is in contradiction

with the third item of Theorem 3. We conclude that max
θ∈[−A,A]

u(θ) = 0.

Proof of 3. Thanks to the L∞ bounds on ρε (third point of Theorem 3), we deduce that

c ≤ ‖nε‖L1(Ω×]−A,A[) ≤ C.

It follows that nε converges in the sense of the measure to n and the measure n is non-negative and not
trivial. We next prove that

supp nε ⊂ Ω× {θ ∈]−A,A[ | u(θ) = 0} .

Indeed, let φ ∈ C∞c (Ω×]−A,A[) be any positive test function such that

supp φ ⊂ Ω× {θ ∈]−A,A[ | u(θ) = 0}c . (37)

We prove that
∫

Ω

∫ A
−A φ(x, θ)n(x, θ)dxdθ = 0.

To this end, we introduce −a = sup
supp φ

u. According to (37), it follows that a > 0. We deduce that for all

ε small enough and all (x, θ) ∈ Ω× supp φ, we have

uε(x, θ) ≤ −
a

2
. (38)

We conclude that ∫
Ω

∫ A

−A
φ(x, θ)n(x, θ)dθdx =

∫
Ω

∫
supp φ(x,·)

φ(x, θ)n(x, θ)dθdx

= lim
ε→0

∫
Ω

∫
supp φ(x,·)

φ(x, θ)nε(x, θ)dθdx

= lim
ε→0

∫
Ω

∫
supp φ(x,·)

φ(x, θ)e
uε(x,θ)

ε dθdx

≤ lim
ε→0

∫
Ω

∫
supp φ(x,·)

φ(x, θ)e
−a
2ε dθdx

= 0.

We finally prove that
{u(θ) = 0} ⊂ {λ(θ, ρ) = 0} . (39)

To this end, note first that since u is a Lipschitz continuous function, it is a.e. differentiable. Therefore,
(5) implies that

λ(θ, ρ) ≥ 0, for a.e. θ.

Moreover, since λ is continuous with respect to θ the above inequality holds indeed for all θ. To prove
(39), it is therefore enough to prove that for any θ0 such that u(θ0) = 0, we have

λ(θ0, ρ) ≤ 0.

This property can be derived by testing the equation in (5) against the test function ϕ(θ) ≡ 0 at the point
θ0 for a viscosity subsolution criterion.

This concludes the proof of 3.

20



5 Qualitative properties of the phenotypic density n

The objective of this section is to show how the asymptotic results provided in Theorem 2 allows to obtain
qualitative results on the phenotypic density n, at the limit as ε → 0. Recall from Theorem 2 that as
ε→ 0, nε tends weakly to a measure n and ρε converges uniformly to a function ρ such that

suppn ⊂ Ω× {θ | u(θ) = 0} ⊂ Ω× {θ |λ(θ, ρ) = min
θ′

λ(θ′, ρ) = 0},

with u : [−A,A]→ R the viscosity to
− |∂θu(θ)|2 = −λ(θ, ρ), θ ∈ (−A,A)

∂θu(±A) = 0,

max u(θ) = 0,

and λ(θ, ρ) the principal eigenvalue corresponding to the following problem:{
− ∂xxψθ + L(ψθ)− [R(·, θ)− ρ]ψθ = λ(θ, ρ)ψθ in Ω,

∂νxψ
θ = 0 in ∂Ω

We expect indeed that u would take its maximum at some distinct traits such that the phenotypic density
n would have the following form:

n(x, θ) =
d∑
i=1

ρi(x)δ(θ − θi), ρ(x) =
d∑
i=1

ρi(x).

Note that Theorem 2 guarantees convergence of (nε, ρε) to (n, ρ), only along subsequences. It does not
exclude possibility of multiple limits as ε → 0. In subsection 5.1 we will show that, for a particular
choice of R, there is at most one possible monomorphic limit (n, ρ) such that n is a single Dirac mass, i.e.
n(x, θ) = ρ(x)δ(θ−θ). In particular under symmetry conditions the only possible monomorphic outcome at
the limit would be n(x, θ) = ρ(x)δ(θ). We next identify a situation in subsection 5.2 where the phenotypic
density n is indeed monomorphic. Finally we show in subsection 5.3 that a strong fragmentation of the
environment may lead to polymorphic situations.

Before providing our qualitative results, we prove the following technical result on the principal eigen-
value λ that will help us in the next subsections to obtain our qualitative results.

Proposition 2. The following identity holds true:

∂θλ(θ, ρ) = −
∫

Ω
∂θR(x, θ)ψθ(x)2dx. (40)

Proof. First recall from Proposition 1 that λ and ψθ are C1 functions with respect to θ. Differentiating
(1) with respect to θ we deduce that

∂θλ(θ, ρ)ψθ + λ(θ, ρ)∂θψ
θ = −∂xx∂θψθ + L(∂θψ

θ)− [R(·, θ)− ρ]∂θψ
θ − ∂θR(·, θ)ψθ. (41)

We multiply (41) by ψθ and integrate by parts, recalling
∫

Ω ψ
θ(x)2dx = 1, to obtain that

∂θλ(θ, ρ) = −
∫

Ω
∂θR(x, θ)ψθ(x)2dx+

∫
Ω
∂x∂θψ

θ∂xψ
θ+L(ψθ)∂θψ

θ− [R(x, θ)−ρ−λ(θ, ρ)]∂θψ
θψθdx. (42)

We remark that multiplying (1) by ∂θψθ and integrating by part leads to∫
Ω
∂xψ

θ∂x∂θψ
θ + L(ψθ)∂θψ

θ − [R(x, θ)− ρ− λ(θ, ρ)]ψθ∂θψ
θdx = 0.

The conclusion follows.

21



Corollary 2. Let θ ∈]−A,A[ be one of the emergent traits of n, it follows that∫
Ω
∂θR(x, θ)ψθ(x)2dx = 0.

Next, we consider some examples with explicit expressions of R. We illustrate how Proposition 2 can
be useful to characterize the emergent dominant traits.

Example A. We fix θ0 ∈]−A,A[, and we define

R(x, θ) = r − g(θ − θ0)2.

We assume that r is large enough such that (H4) holds true for θ = θ0. From Corollary 2, we deduce that
at any emergent trait θ, we have

2g(θ − θ0)

∫
Ω
ψθ(x)2dx = 0.

We deduce that the unique emergent trait is θ = θ0. Therefore, the limit population is monomorphic. Of
course, this example is a toy-model and does not take into account any spatial structure.

Example B. We define
R(x, θ) = r − g(θ − bx)2. (43)

From Corollary 2, we deduce that for any emergent trait θ, we have

θ = b

∫
Ω
xψθ(x)2dx.

It is not enough to conclude that the number of emergent traits is finite. However, we can still remark
that the optimal traits are fixed point of the application

χ : θ 7→ b

∫
Ω
xψθ(x)2dx. (44)

5.1 At most one possible monomorphic outcome

In this subsection, we restrict our study to monomorphic limits, that is when n = ρδ(θ−θ). We will prove
that, when R is given by (43), the problem admits at most one monomorphic limit.

Proposition 3. Let n1(x, θ) = ρ1(x)δ(θ − θ1) and n2(x, θ) = ρ2(x)δ(θ − θ2) be two monomorphic limits
of the problem. Then, ρ1 = ρ2. Additionally, if R is given by (43), then θ1 = θ2. If the domain Ω is
symmetric with respect to x = 0, then the only possible emergent trait corresponding to a monomorphic
population is θ = 0.

To prove Proposition 3, we enlarge the definition of the Rayleigh quotient defined in Proposition 1 by
including ρ in the definition:

R(θ, ρ, φ) =

∫
Ω |∂xφ|

2dx+
∫
Ω×Ω[φ(x)−φ(y)]2K(x−y)dxdy

2 −
∫

Ω[R(x, θ1)− ρ(x)]φ2dx∫
Ω φ(x)2dx

, (45)

and we will use the following lemma.

Lemma 4. Assume that (nε) converges in L∞
(
w∗(0,∞);M1(Rd)

)
to ρ(x)δ(θ − θ0). Then ρ(·) is the

principal eigenfunction corresponding to the operator −∆x + L− [R(·, θi)− ρ].

22



Proof. By passing weakly to the limit in the equation (E), we obtain that

−∂xxρ+ Lρ = ρ(R(x, θ0)− ρ),

which implies that ρ is the principal eigenfunction corresponding to the operator−∆x+L−[R(·, θ0)−ρ].

Proof of Proposition 3. Let n1(x, θ) = ρ1(x)δ(θ− θ1) and n2(x, θ) = ρ2(x)δ(θ− θ2) be two possible limits.
Our objective is to prove that

θ1 = θ2, ρ1 = ρ2.

From Theorem 2 we obtain that
min
θ
λ(θ, ρi) = λ(θi, ρi) = 0.

Let ψi be the eigenfunction associated to the operator −∆x +L− [R(·, θi)− ρi] ensured by Proposition 1
with ‖ψi‖L2 = 1. Notice that since the limit is monomorphic and thanks to Lemma 4, we have for each
case ρi = ciψi with ci > 0. Using the Rayleigh quotient introduced in (45), we deduce that

0 =

∫
Ω
c2

1ψ1(x)2dx×R(θ1, c1ψ1, c1ψ1)

= c2
1

∫
Ω
|∂xψ1|2dx+ c2

1

∫
Ω×Ω[ψ1(x)− ψ1(y)]2K(x− y)dxdy

2
− c2

1

∫
Ω

[R(x, θ1)− c1ψ1]ψ2
1dx,

(46)

and

0 ≤
∫

Ω
c2

1ψ1(x)2dx×R(θ1, c2ψ2, c1ψ1)

= c2
1

∫
Ω
|∂xψ1|2dx+ c2

1

∫
Ω×Ω[ψ1(x)− ψ1(y)]2K(x− y)dxdy

2
− c2

1

∫
Ω

[R(x, θ1)− c2ψ2]ψ2
1dx.

(47)

The last inequality holds since thanks to Theorem 2 we have

0 ≤ λ(θ1, c2ψ2) ≤ R(θ1, c2ψ2, c1ψ1).

By substracting (46) to (47), we deduce that∫
Ω

(c1ψ1(x))2 dx ≤
∫

Ω
(c1ψ1(x))2 c2ψ2(x)dx. (48)

Following similar computations, we obtain that∫
Ω

(c2ψ2(x))3 dx ≤
∫

Ω
(c2ψ2(x))2 c1ψ1(x)dx. (49)

By combining (48) and (49), we deduce that∫
Ω

[c1ψ1(x)− c2ψ2(x)]2(c1ψ1(x) + c2ψ2(x))dx ≤ 0.

Since c1,2ψ1,2 > 0, we deduce that c1ψ1 = c2ψ2, and hence ρ1 = ρ2.
We next assume that R is given by (43) and conclude thanks to Corollary 2. Indeed, since ∂θR(x, θi) =
−2g(θi − bx), we deduce that

θ1 =
−b
2g

∫
Ω
xc1ψ

2
1(x)dx =

−b
2g

∫
Ω
xc2ψ

2
2(x)dx = θ2.

Finally, note that under symmetry conditions, if n(x, θ) = ρ(x)δ(θ) is a possible monomorphic limit,
then ñ(x, θ) = n(−x,−θ) is also a possible monomorphic outcome. We hence deduce in this case that
θ = 0.
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5.2 A small selection pressure leads to a monomorphic population

The next proposition gives a condition which ensures the existence of a set of parameters such that the
limit is monomorphic.

Proposition 4. Assume that R is given by (43). Under the hypothesis (H1)–(H4), there exists g0 > 0
such that if g ∈]0, g0[ then there exists a unique optimal trait.

Proof. According to the implicit function theorem, the functions (θ 7→ ψθ) and (θ 7→ ∂θψ
θ) depend

continuously on the parameter g. Moreover, the following claims hold true:

λ(θ, ρ) is non-decreasing with respect to g, (50)

and ∫
Ω
|∂θψθ(x)|2dx −→

g→0
0. (51)

Claim (50) follows straightforward computations, therefore we do not provide the proof. The second one
is proved in Appendix B. Next, we differentiate χ (defined by (44)) with respect to θ, to obtain that

χ′(θ) = 2b

∫
Ω
xψθ(x)∂θψ

θ(x)dx.

Thanks to the Cauchy-Schwarz inequality, we deduce that

|χ′(θ)| ≤ 2b sup
x∈Ω

x

∫
Ω
ψθ(x)2dx

∫
Ω
∂θψ

θ(x)2dx = 2b sup
x∈Ω

x

∫
Ω
∂θψ

θ(x)2dx −→
g→0

0.

Since the last inequality does not depend on the choice of θ, we deduce the existence of a uniform g0 > 0
such that for all g ∈]0, g0[ we have

|χ′(θ)| < 1.

Thanks to Theorem 2 there exists a fixed point to χ. Moreover since χ is a contraction mapping, we
recover that the fixed point θ is unique.

5.3 A strong fragmentation of the environment leads to polymorphism

In this subsection we consider the growth rate given by (43) and spatial domains of the following type:

Ωd = (−d− a,−d) ∪ (d, d+ a).

We also assume that the function K : R→ R+ is bounded.

Proposition 5. For d ≥ d0, with d0 a large enough constant, the trait 0 is not included in the support of
the phenotypic density n. As a consequence, the population density may not be monomorphic.

Proof. We first note that, for fixed d, there always exists r(d) such that for all r ≥ r(d), (H4) is satisfied so
that thanks to Theorem 1 the population persists. We thus can assume that, up to adjusting the constant
r, we are in a situation where the population persists.

Let’s suppose that 0 is included in the support of the phenotypic density n. Then this implies that

λ(0, ρ) = inf
φ∈H1(Ω)

R(0, ρ, φ) = 0 ≤ λ(θ, ρ), for all θ ∈ [−A,A].

Let φ0 ∈ H1(Ω) be such that

inf
φ∈H1(Ω)

R(0, ρ, φ) = R(0, ρ, φ0) = 0, ‖φ0‖L2(Ω) = 1.
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We choose
θ1 = −d− a/2, θ2 = d+ a/2.

We also define

Ω1 = [−d− a,−d], Ω2 = [d, d+ a], φ
(1)
0 = φ01Ω1 , φ

(2)
0 = φ01Ω2 .

We will prove that when d is large enough,

‖φ(1)
0 ‖L2λ(θ1, ρ) + ‖φ(2)

0 ‖L2λ(θ2, ρ) < λ(0, ρ) = 0. (52)

Since ‖φ(1)
0 ‖L2 + ‖φ(2)

0 ‖L2 = 1, the inequality (52) would imply

min(λ(θ1, ρ), λ(θ2, ρ)) < 0

which is in contradiction with the positiveness of the eigenvalues λ(θ, ρ) established in 2. of Theorem 2.
We consider the function φi, for i = 1, 2, which minimizes R(0, ρ, ·) restricted to the set Ωi, that is the

following operator

R(0, ρ,Ωi, φ) =

∫
Ωi
|∂xφ|2dx+

∫
Ωi×Ωi

[φ(x)−φ(y)]2K(x−y)dxdy

2 −
∫

Ωi
[R(x, 0)− ρ(x)]φ2dx

‖φ‖2
L2(Ωi)

,

and such that
‖φi‖L2(Ωi) = 1.

Note that here φi has its support in Ωi, while φ0 has its support in Ωd. To prove (52), it is enough to
prove that

‖φ(1)
0 ‖

2
L2R(θ1, ρ, φ1) + ‖φ(2)

0 ‖
2
L2R(θ2, ρ, φ2) < R(0, ρ, φ0).

We compute

‖φ(i)
0 ‖2L2R(θi, ρ, φi) = ‖φ(i)

0 ‖2L2

[
R(θi, ρ,Ωi, φi) + 1

2

∫
Ωi×Ωj
i 6=j

φ2
i (x)K(x− y)dxdy

]
≤ ‖φ(i)

0 ‖2L2

[
R(θi, ρ,Ωi, φ

(i)
0 ) + 1

2

∫
Ωi×Ωj
i6=j

φ2
i (x)K(x− y)dxdy

]
=
∫

Ωi
|∂xφ(i)

0 |2dx+ 1
2

∫
Ωi×Ωi

[φ
(i)
0 (x)− φ(i)

0 (y)]2K(x− y)dxdy

−
∫

Ωi
[R(x, θi)− ρ(x)]φ

(i) 2
0 (x)dx+ 1

2‖φ
(i)
0 ‖2L2

∫
Ωi×Ωj
i 6=j

φ2
i (x)K(x− y)dxdy.

Combining the inequality above, for i = 1 and i = 2, we obtain that

‖φ(1)
0 ‖2L2R(θ1, ρ, φ1) + ‖φ(2)

0 ‖2L2R(θ2, ρ, φ2) ≤ R(0, ρ, φ0)
+
∫

Ω1
[R(x, 0)−R(x, θ1)]φ2

0(x)dx+
∫

Ω2
[R(x, 0)−R(x, θ2)]φ2

0(x)dx

+1
2‖φ

(1)
0 ‖2L2

∫
Ω1×Ω2

φ2
1(x)K(x− y)dxdy + 1

2‖φ
(2)
0 ‖2L2

∫
Ω2×Ω1

φ2
2(x)K(x− y)dxdy.

We next note that∫
Ωi

[R(x, 0)−R(x, θi)]φ
2
0(x)dx = −gθi

∫
Ωi

(2x− θi)φ2
0(x)dx ≤ −g(d2 − a2/4)

∫
Ωi

φ2
0(x)dx.

We also have ∫
Ωi×Ωj

φ2
i (x)K(x− y)dxdy ≤ a‖K‖L∞(R)

∫
Ωi

φ2
i (x) = a‖K‖L∞(R).
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We conclude that

‖φ(1)
0 ‖

2
L2R(θ1, ρ, φ1) + ‖φ(2)

0 ‖
2
L2R(θ2, ρ, φ2) ≤ R(0, ρ, φ0)− g(d2 − a2/4) +

a

2
‖K‖L∞(R).

Therefore, for d large enough, we obtain that

‖φ(1)
0 ‖

2
L2R(θ1, ρ, φ1) + ‖φ(2)

0 ‖
2
L2R(θ2, ρ, φ2) < R(0, ρ, φ0).

6 Some numerical illustrations

In this section, we illustrate the numerical solutions of (E), for some particular examples, considering the
following type of growth rate

R(x, θ) = r − g(bx− θ)2.

We recall from Example 1 that in this case, r is a maximal growth rate and −g(bx − θ)2 models the
selection. The parameter g is the selection pressure whereas b is the gradient of the environment. We
provide numerical examples where we vary this set of parameters.

To find a numerical solution of (E), we solve numerically the following parabolic equation:

∂tnε − ∂xxnε − ε2∂θθnε + L(nε) = [R− ρε]nε in R+ × Ω×]−A,A[,

ρε(t, x) =

∫ A

−A
nε(t, x, θ)dθ in R+ × Ω,

∂νxnε = ∂νθnε = 0,

n(t = 0, x, θ) = n0(x, θ).

(Et)

We implement equation (Et) by a semi-implicit finite difference method. We stop the algorithm when we
find a numerical steady state of (Et): a numerical solution of (E).

First, we underline that in all the numerical resolutions, the density of the population concentrates
around one or several distinct trait(s). Moreover, these optimal traits are present everywhere in space
thanks to the local and the non-local migration. However, the density of the population at the position x
with an optimal trait θm depends on whether this trait θm is adapted or not to the position x.

Figure 1 illustrates the convergence of nε to a Dirac mass as ε goes to 0. The only variation is with
respect to the parameter ε = 0.1, 0.01 and 0.001.

Next, we focus on the qualitative properties established in Section 5, Figures 2 and 3 are numerical
illustrations of Proposition 3. We fix Ω as a single connected component and we investigate the dependence
on the parameter g. We recover numerically that as g → 0 the limit density is monomorphic with a
dominant trait centred at θ = 0. For larger values of g, the phenotypic density concentrates around
several distinct traits. For each simulations, we also provide the numerical distributions of ρε (Figure
3), this density seems to be centred around the point which maximizes R(·, θ) (where θ is any emergent
trait). Therefore, when the emergent trait is unique, ρε is increasing on (−2, 0) and then decreasing on
(0, 2) whereas the spatial distribution can be more involved whenever there exist several distinct emergent
traits.

To conclude, we present in Figure 4 a numerical illustration of Proposition 5. Here, the free parameter
is the distance between the two connected components of Ω. We recover that increasing the distance
between the two connected components may lead to the emergence of new dominant traits.
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ε = 0.1 ε = 0.01 ε = 0.001

Figure 1: Variation of the numerical solutions of (E) with respect to ε. The others parameters are fixed as
follow : r = 1, b = 1 g = 0.1, Ω = (−2, 2) and A = 2. We observe that the distribution of the population
concentrates around the optimal trait θ = 0.

g = 0.01 g = 1 g = 5

Figure 2: Variation of the numerical solutions nε of (E) with respect to g. The other parameters are fixed
as follow: r = 5, b = 1, ε = 0.01, Ω = (−2, 2) and A = 3. We recover that if g is small then the population
is monomorphic. For large values of g, there exist several distinct emergent traits.

g = 0.01 g = 1 g = 5

Figure 3: Variation of the numerical density ρε of (E) with respect to g. The other parameters are fixed
as follow: r = 5, b = 1, ε = 0.01, Ω = (−2, 2) and A = 3.
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Ω = (−1.1,−0.1) ∪ (0.1, 1.1) Ω = (−2.5,−1.5) ∪ (1.5, 2.5)

Figure 4: Variation of the numerical solutions nε of (E) with respect to the distance between the two
connected components of Ω. The other parameters are fixed as follow: r = 1, b = 1, g = 1 ε = 0.01 and
A = 2. We observe that for this set of parameters, increasing the distance induces
a polymorphic density population.

Appendix A- Proof of Lemma 1

The proof of Lemma 1 follows essentially the steps of the proof of the convergence of uε (i.e. second item
of Theorem 2). Therefore, we will only emphasize the differences between the two proofs. We made the
choice to provide the proof of the convergence of uε rather than the convergence of µε because it is the
result that motivated the current study.

Proof of Lemma 1. We recall the equation satisfied by µε and ξε{
− ∂xxξε − ε2∂θθξε + Lξε −Rξε = µεξε in Ω×]−A,A[,

∂νxξε = ∂νθξε = 0 on ∂(Ω×]−A,A[).
(2)

The existence of ξε is ensured by the Krein-Rutman Theorem. Moreover, according to the Krein-Rutman
Theorem, the sign of ξε is constant. Therefore, we consider that ξε > 0, ‖ξε‖L2 = 1 and we define

vε = ε ln(ξε).

Next, we prove that µε is bounded from below and above respectively by − supR and − inf R.
First, we focus on the upper bound. Let (x, θ) ∈ Ω× [−A,A] be such that sup

(x,θ)∈Ω×[−A,A]

ξε(x, θ) = ξε(x, θ).

If (x, θ) ∈ Ω×]−A,A[, it follows

(−∂xxξε − ε2∂θθξε + L(ξε))(x, θ) ≤ 0.

From (2), we deduce that
µε ≤ −R(x, θ) ≤ − inf R.

If (x, θ) belongs to ∂ (Ω×]−A,A[), we conclude with a reflective argument and the same computations
as in the previous case. In any case, for all ε > 0 we have

µε < − inf R.
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Next, we focus on the lower bound. Let (x, θ) ∈ Ω× [−A,A] be such that inf
(x,θ)∈Ω×[−A,A]

ξε = ξε(x, θ). With

similar arguments as for the upper bound, we deduce that

− sup R ≤ −R(x, θ) ≤ µε.

Therefore, µε is uniformly bounded from below and above thus µε converges along subsequences to µ.
Next, as we have established Lipschitz and uniform bounds on uε, we can prove that there exists a constant
C > 0 such that

|∂xvε| < Cε, |∂θvε| < C, −C < lim
ε→0

inf
Ω×]−A,A[

vε, and lim
ε→0

sup
Ω×]−A,A[

vε ≤ 0.

Therefore, we deduce that vε converges along subsequences to v. Moreover, with similar computations as
in the proof of the second item of Theorem 2, we deduce that v is a viscosity solution of− [∂θv(θ)]2 = −λ(θ,−µ),

max
θ∈[−A,A]

v(θ) = 0. (53)

Next, we claim that
λ(θ,−µ) = λ(θ, 0)− µ. (54)

We postpone the proof of this claim to the end of this paragraph. Thanks to (53) and (54) we deduce that− [∂θv(θ)]2 = −λ(θ, 0) + µ,

max
θ∈[−A,A]

v(θ) = 0.

Remark that −λ(θ, 0) + µ ≤ 0 for all θ ∈ [−A,A]. Next, we introduce θm ∈ [−A,A] such that

v(θm) = max
θ∈[−A,A]

v(θ).

It follows that ∂θv(θm) = 0 and −λ(θm, 0) + µ = 0 = max (−λ(θ, 0) + µ). We deduce thanks to (H4) that

0 = max(−λ(θ, 0) + µ) = −min (λ(θ, 0)) + µ = −λ(θ0, 0) + µ.

We conclude that
λ(θ0, 0) = µ.

We finish the proof by remarking that the previous convergence result holds for any subsequence of µε.
Therefore, we conclude that

lim
ε→0

µε = λ(θ0, 0).

It remains to prove (54). Let ψθµ be the principal eigenfunction associated to the principal eigenvalue
of λ(θ,−µ) with µ a constant{

− ∂xxψθµ + Lψθµ − [R(·, θ) + µ]ψθµ = λ(θ,−µ)ψθµ in Ω,

∂νxψ
θ
µ = 0 on ∂Ω.

It follows that
−∂xxψθµ + Lψθµ −R(·, θ)ψθµ = (λ(θ,−µ) + µ)ψθµ.

Since µ is constant, ψθµ > 0 and by the uniqueness of the positive eigenfunction of −∂xx + L−R(·, θ) (up
to a multiplication by a scalar), we deduce that λ(θ,−µ) + µ = λ(θ, 0).
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Appendix B- Proof of (51)

Proof. According to the implicit function theorem, the eigenfunction ψ is regular with respect to its
parameters g and θ. In this appendix, we will take into account in the notations this dependence with
respect to the parameters: we will denote ψ by ψθ,g, λ(θ) by λ(θ, g) and R by Rg.

Since ‖ψθ,g‖2L2(Ω) = 1, we deduce that
∫

Ω ψ
θ,g(x)∂θψ

θ,g(x)dx = 0. If we diffenrentiate (16) with respect
to θ, we have that ∂θψθ,g is solution in Ω of

−∂xx∂θψθ,g + L(∂θψ
θ,g)− [Rg(·, θ)− ρ]∂θψ

θ,g − ∂θRg(·, θ)ψθ,g = λ(θ, g)∂θψ
θ,g + ∂θλ(θ, g)ψθ,g.

We then multiply the above equation by ψθ,g and integrate over Ω to obtain that∫
Ω

(
∂x(∂θψ

θ,g)
)2
dx−

∫
Ω×Ω[∂θψ

θ,g(x)− ∂θψθ,g(y)]2K(x− y)dydx

2
−
∫

Ω
[Rg(x, θ)− ρ(x)]∂θψ

θ,g(x)2dx

= λ(θ, g)

∫
Ω

(
∂θψ

θ,g
)2
dx+

∫
Ω
∂θRg(x, θ)ψ

θ,g(x)∂θψ
θ,g(x)dx+ ∂θλ(θ, g)

∫
Ω
ψθ,g(x)∂θψ

θ,g(x)dx.

Remarking that ∂θR0 = 0 and recalling that
∫

Ω ψ
θ,0(x)∂θψ

θ,0(x)dx = 0, we deduce that ∂θψθ,0 belongs to
the eigenspace associated to the principal eigenvalue λ(θ, 0) of the operator −∂xx + L − [R0 − ρ]. Since
this space is one dimensional, engendered by ψθ,0 and using again that ψθ,0 is orthogonal to ∂θψθ,0, we
conclude that ∫

Ω

(
∂θψ

θ,g(x)
)2
dx →

g→0
0.
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